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FOREVER FINITE: The Case Against Infinity
Expanded Edition

INFINITY IS NOT WHAT IT SEEMS...

Infinity is commonly assumed to be a logical concept, reliable for conducting mathematics, describing the
Universe, and understanding the divine. Most of us are educated to take for granted that there exist
infinite sets of numbers, that lines contain an infinite number of points, that space is infinite in expanse,
that time has an infinite succession of events, that possibilities are infinite in quantity, and over half of the
world’s population believes in a divine Creator infinite in knowledge, power, and benevolence.

According to this treatise, such assumptions are mistaken. In reality, to be is to be finite. The implications
of this assessment are profound: the Universe and even God must necessarily be finite.

The author makes a compelling case against infinity, refuting its most prominent advocates. Any defense
of the infinite will find it challenging to answer the arguments laid out in this book. But regardless of the
reader’s position, Forever Finite offers plenty of thought-provoking material for anyone interested in the
subject of infinity from the perspectives of philosophy, mathematics, science, and theology.

Kip Sewell holds BA and MA degrees in Philosophy. His writings support the Rond Project, which aims to
integrate ideas from science, philosophy, and spirituality into a novel worldview for understanding the
nature of existence and coping with the human condition.
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There is a concept which corrupts and upsets all others. | refer not to Evil, whose limited realm is that of
ethics; | refer to the infinite.
—Jorge Luis Borges
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PREFACE

Infinity is not what it appears to be. While most take for granted that infinity makes sense, it is actually a
logically inconsistent concept that has caused a great deal of confusion for the past 2.5 millennia. My aim
is to elucidate infinity, expose the many logical inconsistencies inherent in both the meaning of infinity
and in its usage during discourse, explain why those inconsistencies result, and argue that we are better
off to rid ourselves of infinity altogether in favor of more logically consistent concepts.

To be infinite is to be limitless—in quantity, in quality, or both. What the term ‘infinity’ refers to can
imply any of these notions of limitlessness. Infinity as limitless quantity is the conception of infinity
assumed in mathematics, but also throughout other academic fields of study such as physics and
cosmology. Whereas infinity taken to be unlimited quality is a conception of infinity assumed in theology,
as is infinity conceived to be a combination of both limitless quantity and unlimited quality.

| take the quantitative infinity of mathematics and the other two conceptions of infinity assumed in
theology to be exhaustive of the relevant senses of what the term ‘infinity’ refers to. | will argue that all
three ways of conceiving infinity are flawed because describing anything as limitless in terms of either its
guantity or quality, let alone both together, results in logical inconsistencies. | make the case that infinity
is a logically erroneous concept that does not accurately apply for descriptions of anything in existence.
Consequently, all the objects of study in mathematics, physics, cosmology, and even theology should be
reconceived in purely finite terms.

BACKGROUND

My critique of infinity began as a couple of chapters in a philosophical monograph published in the late
1990s on the subject of cosmology [1]. While my initial critique in that monograph was on the right track,
| later assessed that | had not quite nailed the subject of infinity. Eventually, | decided the chapters on
infinity needed to be amended. Around a decade later, | posted preprint versions of an article online to
revise my earlier arguments. But when feedback from reviewers revealed some misunderstanding about
my approach to the subject, it became clear to me that the page limitations of even a lengthy article would
never suffice for my thesis. Ultimately, | opted to turn the article into this book—now a work of several
hundred pages under a new title.

Although my skepticism toward infinity remains unchanged since my initial philosophical foray into
cosmology, | have heavily revised my line of thought over the years, and so my prior writings on infinity
are not entirely consistent with the content presented in this book [2]. Consequently, readers familiar
with my prior writings on infinity should not take them as definitive of my position; rather, it is this book
that represents my final conclusions on infinity.
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INTENDED AUDIENCE

There are three categories of readers | aim to reach.

First, the primary focus of this book is on the quantitative conception of infinity—basically, infinity as
conceived in mathematics and the philosophy of mathematics. However, this book is intended neither for
mathematicians nor for philosophers of mathematics. Rather, | wrote this book primarily for philosophers
(amateur and professional, students and instructors) who may specialize in other subjects—such as
philosophy of science, philosophy of religion, metaphysics, epistemology, and so forth—but who have
also developed an interest in the topic of infinity.

Second, | wrote this book with lay seekers in mind—those who have at least some familiarity with
works written by professional philosophers but little or no familiarity with academic writings on the topic
of infinity. Given such a wide audience, | will risk being pedantic by explaining throughout the book certain
terms and concepts frequently found in the literature on infinity. (However, those who are well-versed in
academic philosophy will find that | do not always heed popular or traditional definitions of philosophical
terms or positions.)

Third and finally, | suspect of readers with no formal education in academic philosophy that some are
not as interested in the quantitative notion of infinity as they are in infinity as it relates to ideas about the
divine—especially the divine conceived to be God. With that in mind, | address some of the main
theological notions of infinity found in the academic literature. Although my treatment of the theological
understanding of infinity is rather brief compared to the mathematical understanding, readers [3][4]
interested in what my case against infinity entails for belief in the divine may find some content worthy
of consideration.

RECOMMENDATIONS FOR READING THIS BOOK

Each chapter in this book either assumes or builds on the information in previous chapters. Those who
intend to consume the entire book will therefore get more out of finishing earlier chapters prior to later
chapters and covering the chapters in sequence.

However, | expect many readers will not be interested in reading the entire treatise, opting instead to
skim the content for the main points. With that in mind, it is not crucial to read every chapter for a grasp
of the book’s thesis. If you prefer to cover only the crucial information, then the introductory chapter is
the most important as it lays out the issues and provides an overview of later chapters. The final chapter
is a summary of the main points over the entirety of the book. The chapters in between provide the details
of the case against infinity. While those details are needed for a complete picture, a bulleted list of the
main points is provided at the end of each chapter for those readers interested in merely skimming the
content.

APPROACH

While the quantitative conception of infinity is the main topic of this book, | do not approach that
conception of infinity as would a mathematician but rather as would a philosopher. That is to say, | subject
the quantitative conception of infinity to logical analysis—logic being the tool of the philosopher. Although
mathematics draws on logical reasoning for its practice, the discipline of logic owes its development,
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study, and instruction to the Department of Philosophy rather than the Department of Mathematics. It
should therefore not be surprising if philosophers rather than mathematicians discover logical problems
lurking in the quantitative conception of infinity—problems mathematicians either overlook or do not
typically concern themselves with, given the specialized focus of their discipline.

Because my approach is philosophical rather than mathematical, an advanced degree in mathematics
is not needed for the aspects of infinity | cover in this book. Readers should therefore not expect this book
to be like a calculus or set theory textbook. | do not present long, formal proofs or rigorous calculations
that would satisfy mathematicians or meet the requirements of academic journals in the philosophy of
mathematics. While | do touch on some of the technical details regarding the quantitative conception of
infinity, mathematicians would likely be disappointed that | stick primarily to prose rather than formal
proofs. The non-mathematician, however, should appreciate that the mathematical content | provide
requires no expertise to understand.

For any readers who do specialize in mathematics, you may find this book of some use for
understanding the nuances between the concept of infinity as expressed in mathematics and the notion
of infinity as expressed more broadly in natural language. The bulk of my thesis concerns not the formal
language syntax of mathematical expressions of infinity but instead the underlying, natural language
semantics (meanings) of infinity that are tacitly assumed behind those mathematical expressions. | intend
to show how the underlying meaning of infinity, whether literal or taken figuratively, misleads both
mathematics and mathematical disciplines such as theoretical physics and scientific cosmology into
conceptual errors whenever infinity comes up.

As for the theological conceptions of infinity, here too | approach the subject of infinity as would a
philosopher rather than a theologian, religious apologist, or mystic. | rely on conceptual analysis and
logical argumentation to make the case that so-called ‘divine infinity’ (which includes both qualitative
infinity and absolute infinity) is likewise a misleading notion, leading us astray from obtaining a proper
understanding of the spiritual.

On Definitions

Like mathematicians, philosophers typically approach issues by first defining their terms. Words such as
‘infinity’ and ‘infinite’ can have several meanings. This book offers various definitions for infinity and for
a variety of terms relating in some way to infinity (see also the glossary at the end of this book for a
condensed list of definitions).

Some of the definitions | offer for terms will be technical in nature as found in the professional
literature on infinity, some of the definitions will be colloquial, and some will be my own stipulated
definitions. | endeavor to carefully distinguish between the ordinary language definitions of terms from
their technical counterparts, such as the various theoretical and operational definitions used by
professional mathematicians and logicians.

However, as | hope to show, the ordinary language definitions for the word ‘infinity’ and its cognates
(‘infinite’, ‘infinitely’, etc.)—definitions that capture what we commonly mean by such words—are either
assumed or implied in discourse of all kinds, even when the speaker intends to use such words as technical
terms in a specialized field such as mathematics or theology.
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On Sources and References

Throughout this book, | quote and cite various sources regarding views about infinity (and related
subjects) in philosophy, science, mathematics, and theology [5]. While | will be citing contemporary
professionals working in these fields, unlike some university-affiliated academics | feel no need to limit
myself to such sources. Instead, | cite works from antiquity to the present day, from professionals to
graduate students to freelance authors, from the primary literature of academia to secondary and even
some tertiary sources for lay audiences. | cite scholarly forums, websites, blogs, specialized dictionary and
encyclopedia entries, and even a few novels and poems. Most of my sources are those | believe make an
impact, either directly or indirectly, on the wider culture and are not just influential in academia. Others
are those | believe articulate a position particularly well, though the works may not be widely recognized.

On Intellectual Dissent

In arguing that infinity is a logically erroneous concept, | will unfortunately be attacking the positions of
many well-known scholars. This is the part of analytic philosophy | do not particularly care for—in order
for a philosopher to justify a highly unorthodox position or conclusion, the philosopher often cannot avoid
arguing against the works of other scholars, including giants in their respective fields [6].

Nevertheless, as the late astronomer Carl Sagan remarked, “...intellectual capacity is no guarantee
against being dead wrong” [7]. Even the brightest of us can be wrong [8]. Unfortunately, | think some of
the most brilliant among us have been wrong about infinity and certain related topics. This book provides
solid grounds that the current academic mainstream is mistaken in holding infinity to be a logically
coherent concept able to be applied for accurate descriptions of real-world features.

That infinity is an erroneous concept is, as Sagan would have said, an extraordinary claim and as such
requires extraordinary justification. This book is my attempt to provide that extraordinary justification
(hence, the large page count). The reader should find the exposition and conceptual analysis provided in
the chapters ahead to be more than sufficient in justifying a guilty verdict in the case against infinity.

NOTE ON THIS EDITION

The published print edition of this book is intended for those who prefer hardcopy format and do not care
to spend time and resources on desktop printing. This electronic edition is offered free online for all and
is expanded with content that does not appear in the published edition due to print production page
limitations.

From the Introduction to the Conclusion, Chapters 1-27 are identical to the published print edition,
including the page numbering for the chapters. This electronic edition adds an appendix and associated
content—specifically, updates to the book’s back matter (68 new endnotes, 17 new bibliographic
references, 3 new figure credits, 14 new glossary terms) and front matter (an updated table of contents
and this preface note).
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1: CHALLENGING INFINITY

Gazing into the sublime expanse of the starry night sky, pondering the awesome eons of the past and
future, we naturally feel small and insignificant compared with such magnitudes. So vast and enduring is
the Universe that it is commonly assumed to be spatially and temporally infinite [9].

On the contrary, | will make the case that the Universe is finite rather than infinite. Space is limited in
dimension and scale, time is limited in succession and duration, and all things in space and time—all places
and events, all objects and subjects, all states of motion—are limited as well.

In proclaiming the Universe is finite | do not mean to suggest it could ever be observed as a whole. It
is far beyond our practical ability to experience the totalities of space and time. Even with the most
powerful of telescopes, no one will ever survey all of space and its myriad worlds. Even with the greatest
medical advances for longevity, no one will ever live through all of time with its cosmic series of events
[10]. Certainly, space is vast and time enduring beyond any degree we can experience. Nevertheless, |
take the position that neither space nor time is quantitatively limitless; the Universe is not infinite.

| realize this view of the Universe may not become popular. Infinity is an ancient and profound
concept, holding a powerful emotional appeal across cultures and generations. The notion that the
Universe is infinite in either space or time, or both, is deeply entrenched in customs around the world and
has the momentum of history behind it. And yet, despite its popularity, the belief that the Universe is
infinite is mistaken. The chapters that follow present the case for this conclusion.

In addition, my case against infinity carries implications for more than just our interpretation of the
Universe. If my case is sound, even if there are metaphysical realities transcending the physical world,
they too cannot be infinite. The very essence of being as such must be finite. The concept of infinity does
not rationally apply to anything that exists—not to anything in the physical world, nor even to purported
metaphysical realities such as God. | will make this case by analyzing and debunking the very concept of
infinity itself.

My case will begin with some definitions. In this chapter | will clarify the definition of infinity and its
related terms, then | will lay out the general nature of the case against infinity as a concept, and close with
a brief overview of the content in the chapters ahead.

1.1 INFINITY DEFINED

Infinity can be a tricky concept to define in exact terms. Some prefer to say that infinity refers to “the
incomprehensible” or “the inexpressible.” However, while there certainly are aspects of infinity that
cannot be comprehended or expressed, infinity cannot plausibly be defined as incomprehensibility or
inexpressibility simply as such. After all, | may not be able to sufficiently comprehend or express what it
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feels like to be you, but that does not make the feeling of being you infinite. There are some things that
are incomprehensible or inexpressible to which the word ‘infinite’ does not apply.

Others claim that infinity cannot be defined at all. They usually base this claim on the fact that scholars
have never agreed about how to properly define infinity. Adrian William (A.W.) Moore, Professor of
Philosophy at the University of Oxford, pointed out that “there have been many attempts throughout the
history of thought about the infinite to define it...these attempts have revealed a striking lack of
consensus” [11]. Although there is a lack of consensus among mathematicians, scientists, and
philosophers as to the right technical definition for infinity, that lack of consensus does not necessarily
mean infinity resists a common definition per se. As we will see, nearly all of the various technical
definitions for infinity assume a more general conception of infinity, a conception of infinity as it is
commonly used in ordinary language, handed down to us from ancient Greek philosophers and translated
to English in the Middle Ages.

1.1.1 Infinity as Commonly Known

While mathematicians define infinity in several technical ways (which we’ll explore later in this book), we
should start with a more general notion of infinity that can be defined in ordinary, everyday colloquial
language. Infinity and its related terms have a few such definitions, which | will number for convenient
reference.

Here is our first definition for the noun ‘infinity’:

= infinity: (1) the condition of being infinite.

Sometimes the word ‘infinity’ is also used as a label for something that is not finite, as when something
is referred to as “an infinity,” such as an infinity of stars or an infinity of decimal places. The above
definition of course raises the question of what the adjective ‘infinite’ means, which also has a few simple
definitions, the first of which is as follows:

= infinite: (1) not finite.

Like the word ‘infinity’, the adjective ‘infinite’ is sometimes used as a noun to indicate something that is
not finite. Philosophers, scientists, and mathematicians especially sometimes refer to a given group of
things as ‘an infinite’ if the group is conceived to have no finite number of members. They may also
occasionally make reference to ‘infinites’ or more generally use ‘the infinite’ as a substantive noun to
indicate the concept of infinitude or the category of all that is infinite.

Since to be infinite is to be “not finite,” this now brings up another question: what does it mean to be
‘finite’? Mathematicians have various technical definitions for the term ‘finite’, narrow in meaning for
their trade, but let’s stick with a natural language definition for now.

The adjective ‘finite’ is a late Middle English word from around the 14" Century and stems from the
Latin word finitus, which means “limited” [12]. Let’s keep it simple and stick with “limited.” We can now
provide a preliminary, ordinary language definition for finite:

= finite: (1) having a limit.
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Occasionally mathematicians and philosophers of mathematics will refer to ‘the finite’ (a substantive
noun), which is sometimes used as a synonym for the property finitude (or finiteness), or they may at
other times refer to the concept of finitude in order to indicate the category of all that is finite. The term
‘finitude’ is thus defined:

= finitude: (1) the condition of being finite.

Since to be finite is to have a limit, then finitude is the condition of having a limit.
Conversely, as the adjective ‘infinite’ is a negation of the adjective ‘finite’ and to be finite is to have a
limit, then we logically have an alternative definition for ‘infinite’, a definition as accurate as the first:

= infinite: (2) having no limit.

In fact, the word ‘infinite’ is a Middle English word that also first appeared around 14" Century; it comes
from the Latin word infinitus, composed from the Latin word in—“not” or “opposite of”—and the Latin
word finitus which means “finite” [13]. Since to be finite is to have a limit, to be infinite is to have no limit,
to be without limit. (For the definition of ‘limit’, see § 5.3.1.)

1.1.2 ‘Infinite’ is Not Synonymous with 'Endless’ or ‘Unbounded’

When we say to be finite is to be limited, we should be careful to distinguish what kind of limit we have
in mind because when we say something has a limit, we sometimes mean it has a limit of a particular type
such as an end or bound. But not everything that is limited has an end or bound. Conversely, not
everything that lacks an end or bound is without limit in a manner we would call “infinite.”

For example, consider a circle.

A circle has a circumference. Easy enough, but there is a problem with the word ‘circumference’ —it
means two different things.

The word ‘circumference’ can mean either (a) the perimeter of the circle—the continuous line that
forms the boundary of a disk—or (b) the measure of distance around the circle—the extent of the circle’s
perimeter.

When necessary for clarity, instead of using ‘circumference’ according to the former meaning, a, | will
simply refer to the curve of the circle and dub it a ‘perimeter’ when referencing the interior as a disk. | will
primarily use ‘circumference’ according to the latter meaning, b, which is to say the distance around the
circle—its measure—as opposed to the closed curve of the circle. However, | may occasionally need to
use ‘circumference’ in the sense of the circle’s closed curve. I'll endeavor to make it clear by context.

The curve of the circle has no end or bound; you will find no break or edge along the closed curve.
The circle is in that sense without limit. The circumference (distance around) is another matter; a circle
does indeed have a limit in the form of an end or bound with respect to circumference in this sense.

We see that the curve of the circle has no limit in the form of an end or bound when we notice how
each of its directions (clockwise/counterclockwise) turns back to itself—there is no end or bound to either
of the directions along the curve, no point at which they begin or stop. The left-hand image in Figure 1.1
functions as an analogy to capture this concept.

The circumference of the circle, however, does have an end or bound because the circumference is
the distance around the circle, and that distance has a beginning and end to its extent [14]. The limit of
the circle’s circumference can be shown in various ways.
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Figure 1.1: A set of arrows in a self-referencing pattern (left) provides an analogy for how the curve of a circle has no beginning
and no end, yet clearly there are limits to a circle’s circumference as revealed when placing a simple mark by the circle at any
arbitrary point to measure the extent of the circle’s circumference all the way around and back to the same point (center) or by
dividing the circle’s curve into a finite set of units (right).

One obvious way to show the limit of the circle’s circumference is just to draw a circle. The circle is
drawn by beginning its curve and forming that curve until it closes upon itself, and we make a complete
stop upon closure of the curve. The stop to drawing the circle is indeed a limit in the form of an end.
However, the end to the drawing process is not an end or bound to the curve of the circle. Rather, the
end of the drawing process is simply what limits the circle’s circumference—the distance around the circle
as a closed curve. The curve of the circle itself still has no end or bound with respect to its two directions
(as shown by the arrows in the leftmost image of Figure 1.1).

Another way to show the circumference of the circle is limited is to place a mark next to any arbitrary
point along the closed curve of the circle and then trace the curve back to that mark, returning to the
starting point. We can even place the mark next to the circle anywhere we like and achieve the same
result, as shown in the center image of Figure 1.1. It is true that we return to a starting point and so the
circle has an ‘end’ in that respect, but it is not the circle’s curve that has the end, but rather the process
of circumnavigating the curve of the circle that has an end. It is the end to the circumnavigation process
that shows the circumference of the circle is limited even though the closed curve corresponding to that
circumference has no end or bound.

The ability to return to the arbitrarily placed mark shows not only that there is a limit to the circle’s
circumference but also that the limit need not correspond to any specific location on the curve of the
circle, such as an end or bound breaking the curve. The curve of the circle can be as smooth and seamless
as we like, without any breaks or borders.

However, we can create breaks in the curve of the circle as one more way to demonstrate that the
circle’s circumference is limited. One way to do this is to divide the curve of the circle into a definite
number of units, as shown in the right-hand image of Figure 1.1. If the extent of the circle’s circumference
were not limited at all, we would not be able to do so. Another way to show the limits of the circumference
is to simply break the circle’s curve at a single location and then stretch the broken circle flat, into a
straight line from end to end. The fact that there are ends shows the extent of the circle’s circumference
is limited.
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The limited nature of the circle’s circumference reveals the limited nature of the circle itself, despite
the fact that the circle has no end or bound to the directions along its curve. That is, the circle’s curve has
a limit with respect to its extent as shown by the circle’s circumference, which is the measure of the curve’s
extent, even though the circle has no end or bound to the directions following that curve. In fact, it’s
precisely the circumference as a measure of the circle that makes the circle something measurable, even
though the circle in either direction along its curve has no end or bound. We can obtain a limited measure
of the circle as a closed curve because the circle’s circumference is a limited measure and maps the extent
of that curve.

Because a circle’s circumference is limited despite the circle having no limit in the sense of an end or
bound to the directions along its curve, the circle is itself still a finite figure. In fact, all objects of closed
geometry like circles, spheres, and tori are finite even though unbounded—they are shapes that will be
referred to as finite-unbounded.

What being finite-unbounded illustrates is that to be finite cannot be simply to have a limit in the form
of an end or bound; if it were otherwise, the curve of the circle would be infinite, which is not the case.
The circle’s curve is finite despite the lack of end or bound to the two directions along the curve because
the curve has a limit in its circumference, which is the measure of the curve’s extent.

So, to be finite is to have the kind of limit that is able, at least in principle if not also in practice, to be
demonstrated by making a measurement. And circles serve as a good example of what it is to be finite
because circles are limited in the measure of their circumference, just as Figure 1.1 illustrates. So even if
there is no end or bound to a circle’s curvature—even though the circle is not limited with respect to the
two directions around its closed curve, being ‘unbounded’ with respect to its curve—a circle is still not
something we would call ‘infinite’.

This goes to show that to be finite is to have a limit, while the given ‘limit’ may in some circumstances
be an end or bound while in other circumstances it need not be. But whatever kind of limit something
has, it must have the kind of limit that is at least in principle measurable if that something is to be finite.

With respect to the example of the circle, | suppose | should caveat that some would argue there is
such a thing as a circle composed of infinitely many points or facets (see § 17.3.2) or such a thing as an
infinitely large circle (see § 18.4.2), but we’ll worry about such matters later. Right now, | wish to show
that just because something is endless or boundless in one respect, that doesn’t make it infinite in the
sense of being limitless altogether. It might still be limited, and therefore finite, by virtue of having an
exact measurement.

1.1.3 The Infinite is About Having No Limit in Measure

Measurability, then, is the key indicator that something is finite. From this consideration, we can articulate
a second, more precise definition for the adjective ‘finite’ as it is used in our colloquial speech:

= finite: (2) having a limit to a given measure.
And, of course, a second definition for its substantive noun:
= finitude: (2) the condition of having a limit to a given measure.

Still, the definition has a bit of vagueness to it. That vagueness has to do with measurement. We need to
get a clearer idea of what is meant by ‘measurement’ and having a measure.
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Measurement is simply the amount of what is measured or the activity of measuring. Definition:
= measure: a comparison made according to a standard.

To measure something is to assume a particular standard and then compare what’s measured to the
standard. For example, draw a standard for a given feature (e.g., for weight, beauty, etc.) that some things
are said to have and then compare a given instance of that feature to the standard for sake of comparison.

We can now apply the concept of limit to the concept of measure for a better understanding of
finitude. Having a limit to a given measure (that is, being finite) means having a limit by a standard of
comparison—to have a limit to a given measure means that by the given standard defining the
measurement, there is no more to compare. That is what it means for something to be finite.

With this understanding of measurement and the meaning of finitude, we can now derive a third,
more precise, definition for the adjective ‘infinite’:

= infinite: (3) having no limit to a given measure.

It is not just lacking a limit per se that makes something infinite but lacking a limit to its measure—that is,
lacking a limit by a given standard of comparison. A circle lacks a limit to its curvature in the sense of
having no end or bound to the curvature, but the circle’s curvature is still finite as shown by the limit to
the extent to the curvature—the extent of curvature being a kind of standard of comparison (a measure).
In contrast, what makes something infinite is not just that it lacks a limit of any kind to some feature, but
rather that it lacks a limit to a particular, given measure for that feature.

We now arrive at a better understanding of infinity. Since “the condition of being infinite” is how
infinity was previously defined, and the adjective ‘infinite’ means to have no limit to a given measure,
then we can also add a second definition to the noun ‘infinity’:

= infinity: (2) the condition of having no limit to a given measure.

From ancient times to the present, this general notion of infinity—a condition of being infinite, of
having no limit for a given measure—has predominated in colloquial discourse when the word ‘infinity’ is
used. | take the second definition of infinity to be the general, underlying meaning of infinity when the
word is used in discourse. Adding further content to that definition qualifies infinity according to particular
contexts for the purpose of being more precise as to what exactly is being ‘measured’ and what kind of
limit the measure lacks for that which is infinite.

1.2 THE MAIN TYPES OF INFINITY

So what kind of limit is lacking for that which is infinite? It depends on who you ask and what kind of thing
you want to measure. Who you ask because many philosophers have proposed various classification
schemes for infinity. What kind of thing you want to measure because, despite the various schemes that
have been proposed for infinity, it seems to me that we can think of measures as coming in three broad
types: quantitative measures, qualitative measures, and a combination of both. Because measures
assume limits, then if something is infinite—if it lacks a limit in measure—it may either lack a limit to its
guantity, or to its quality, or to both.
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We can therefore regard infinity as falling into three general types:

= quantitative infinity
= qualitative infinity
= gbsolute infinity

To get a better idea of the similarities and differences of each type of infinity, we will need to define what
it means to have measures that lack limits in all three respects. Let’s take each type of infinity in order.

1.3 QUANTITATIVE INFINITY

To measure something by quantity is to compare that thing against a standard for quantity. For example,
we may measure the size of a physical object by using a quantitative standard for size in numerical units
of space (millimeters, meters, kilometers, etc.) and we may measure the duration of an event by using a
guantitative standard for duration in units of time (seconds, minutes, hours, days, etc.). Such quantitative
standards enable us to describe or designate the relative limits of what is being measured.

This assumes, of course, that what we are measuring has a limit. Something has a limit in measure if
the feature or aspect that we are attempting to measure can be exhaustively quantified. We know it is
exhaustively quantified if on measuring it we reach a final number that captures all the elements of what
we are measuring at a given time. That final number, that measure, should tell us the relative amount we
are looking to describe—such as how large or small something is compared to some scale of size or
perhaps how brief or long an event is compared to a scale of time. The example of measuring the line
segment was another instance of quantitative measure. Despite the issue of how many points are in the
line segment, we can adopt a standard, such as the use of meters, to tell how long the segment is from
end a to end b—a standard that provides a finite measure for the limits of the object.

In actual practice, even quantitative measurements themselves have a limit to both the scale used for
measurement and the number of steps taken to measure something. Quantitative measurement captures
limits and has limits of its own, at least in real-world situations.

The use of quantitative measurements to capture the limits of things entails that we have an alternate
way of defining what it means to be finite. To define ‘finite’ as having a limit to measure while assuming
guantitative measurement entails that to be finite is to have a limited quantity. Ergo, a third definition for
“finite’:

= finite: (3) having a limited quantity.

This third definition of ‘finite’ has bearing for our definitions of ‘infinite’ and infinity. We previously
defined ‘infinite’ as having no limit to a given measure. That means to be infinite is to lack a limit that can
be compared to a given standard. So, if the standard of our measurement system is quantitative, then
whatever quantity we attempt to assign as the measure of something infinite cannot be correct because
any quantity we assign designates a limit, whereas if something is infinite, it has no limit—it cannot be
guantitatively measured.

For example, if we say something is infinitely high when measuring it by, say, meters, and go on to
assign a definite quantity like 50 meters to the full measure of height, then we have gone wrong
somewhere: either what we are measuring is not infinitely high in meters or the assignment of 50 meters
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to its height cannot be correct. If you can assign an exact number to it, you are saying its measure is of a
limited quantity—it is finite rather than infinite.

Hence, assuming a quantitative measurement is made, to say something is infinite is to say it contains
guantities but cannot be exhaustively quantified as a whole. We may therefore provide a fourth definition
for the adjective ‘infinite’ in terms of quantity:

= infinite: (4) having a limitless quantity.
The noun ‘infinity’ can also be given a third definition in terms of quantity:
= infinity: (3) the condition of having a limitless quantity.

Such a definition for infinity refines but does not contradict our first two definitions for infinity. It also
reflects how most folks ordinarily think of infinity and have spoken of infinity since antiquity. In fact, the
same can be said of the previous two definitions for infinity. Regarding the first two definitions of infinity
and the quantitative definition that we have for infinity—

= infinity:
(1) the condition of being infinite.
(2) the condition of having no limit to a given measure.
(3) the condition of having a limitless quantity.

—all of these definitions complement one another, and each definition expresses how most of us
commonly think of infinity. We can even put them all together to form a still clearer idea of infinity in its
quantitative sense:

= infinity: (4) the condition of being infinite by lacking a quantitative limit to a given measure.

We can think of definitions 3 and 4 for infinity as definitions of infinity in its quantitative sense—what |
will call “‘quantitative infinity’. It is quantitative infinity that | will be assuming when | refer to ‘infinity’ for
the bulk of my case. Qualitative infinity and absolute infinity will both be of far less concern because
infinity in its quantitative sense is what | take to be the most common use of the word ‘infinity’, and
likewise for its cognates ‘infinite’, ‘infinitely’, and so forth.

1.3.1 Making Quantitative Infinity Precise

Even the previous quantitative definitions of infinity, while correct, are still not quite precise enough to
fully explain how infinity is commonly referred to in ordinary, everyday discourse. When we use the word
‘infinity’ in everyday discourse, we typically have in mind an infinite amount or quantity of something—
perhaps a magnitude that is infinitely great. But even when referring to infinity in the quantitative sense,
we don’t always mean it literally. Sometimes infinity, or talk of infinite quantities, is just a figure of speech.
Hence, quantitative infinity can be articulated in two different but related senses. Both senses understand
infinity to be a limitless quantity, but one of these senses takes infinity literally while the other regards it
as only a figure of speech.
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To be infinite in the literal sense is for a collection to have no limit at all to the amount of objects it
contains, whereas to be ‘infinite’ in a figurative sense is for a collection to have no definite limit to its
guantity of objects but, nonetheless, to still have a limit [15]. If we understand infinity in terms of quantity,
more precise literal and figurative senses of infinity can be defined in natural language (i.e., ordinary
language, everyday speech) like so:

= infinity: (5) literal — the condition of being both complete and limitless in quantity.
= infinity: (6) figurative — the condition of indefinitely changing in quantity.

The literal sense of infinity, or literal infinity, is consistent with definitions 1 and 2 of infinity in its
general sense, but also with definitions 3 and 4 of infinity, which are the definitions of quantitative infinity
in particular—that is, assuming all these definitions are also taken literally.

The figurative sense of infinity, or figurative infinity, on the other hand, while consistent with
definitions 1 and 2 of infinity in its general sense, is only consistent with definitions 3 and 4 (quantitative
infinity) if “having no limit” or being “limitless” likewise is to be taken in a figurative sense (i.e., to indicate
that which appears to be without limit but really does have a limit).

In making these distinctions for two different senses of quantitative infinity, the definitions for literal
infinity and figurative infinity articulate more precisely how we use the word ‘infinity’ in ordinary,
everyday discourse. Figure 1.2 captures these two senses of quantitative infinity as two ‘types’ of
guantitative infinity. These two quantitative senses of infinity are the main focus of my case (especially
literal infinity), so | will briefly elaborate on each of them before we move on.

INFINITY

Qualitative Quantitative
Infinity Infinity
|
| |
Literal Figurative
Infinity Infinity

Figure 1.2: The two types of quantitative infinity as distinct from qualitative infinity.

1.3.2 Literal Infinity
Philosophers and mathematicians have given the literal sense of infinity various names—

= Qactual infinity

= proper infinity

= completed infinity

= determinate infinity



28 Forever Finite Kip K. Sewell

—and yet other names, but | will simply call it ‘literal infinity’ unless | need to refer to a specific scholar’s
interpretation of infinity for sake of clarity [16].

Regardless of what it is called, to say something is infinite in the literal sense of ‘infinite’ is to imply
that which is infinite is a collection comprised of a limitless quantity of components existing together all
at once and the collection is also complete as is, without further modification. If, for example, a bag
contains an infinite quantity of marbles, then the quantity of marbles in the bag has no limit even while
the collection of marbles in the bag is nevertheless complete [17]. To say there is no limit to the quantity
of marbles means that no range of numbers (such as 1-10, 1-100, 1-1,000, etc.) can be specified for the
size of the collection, even in principle [18]. For the collection of marbles to be complete is for the
collection to be a whole, entire, full, and finished totality of members (see Chapter 3). For any collection
to be complete and yet also limitless in its quantity of members is what it means for a collection to be
infinite in the literal sense.

Literal infinity is not just a concept applied to collections of material objects. The concept of literal
infinity is often applied for describing other features of the real world such as space and time. If space is
literally infinite, then there is a complete collection of locations making up space and that quantity of
locations is without limit. Likewise, if time is literally infinite, then it may be that the past or future (or
both) are complete and limitless in their quantity of events. For example, if the past is literally infinite,
then the collection of all events that have already occurred up to the present moment, m, is at m a
complete collection of prior events and the events making up that collection are limitless in quantity. So
too, if the future is literally infinite, then the collection of all events that will ever occur from m onward is
a complete collection of events and those events are limitless in quantity.

In addition to matter, space, and time, the word ‘infinity’ in its literal sense has also been applied to
mathematical objects. Dr. Peter Fletcher, a mathematician and philosopher of mathematics at Keele
University, United Kingdom, provides mathematical examples of literal infinity. According to Fletcher,
literal infinity includes “such things as lines of infinite length, infinitesimal numbers, sums of infinitely
many terms, points at infinity, infinite sets, and infinite quantifiers” [19]. Mathematical ‘objects’ like lines,
numbers, sums, points, sets, and quantifiers are often regarded as literally infinite: both complete and
limitless in quantity.

Regardless of whether infinity, in the literal sense of the term, is said to be the condition of certain
things in the physical world or of certain things in the conceptual world of mathematics, infinity means
the same thing: it denotes a complete collection of something that is limitless in quantity or measure. For
a collection to be ‘limitless” means the process of measuring the infinite collection can never come to a
definite end because there is a non-zero number of elements in the collection and yet there is no final
number, no end or absolute bound to the collection’s quantity of elements, and so no final measure to it;
it cannot be fully measured even as a matter of principle. It is said to be, again speaking literally,
immeasurable.

For these reasons, the meaning of literal infinity is often expressed in terms of synonyms such as the
following:

= [imitlessness

= endlessness

=  boundlessness
= immeasurability
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Although terms such as these are sometimes used as synonyms for infinity, that is not always the case.
Such words as ‘limitless’, ‘endless’, ‘boundless’, and ‘immeasurable’ are sometimes used more narrowly
or even figuratively, whereas to denote the literally infinite they must themselves be taken in a purely
literal sense. Such words do not always imply the infinite in the literals sense of the term.

For example, the word ‘immeasurable’ is often (though not always) used to imply an infinite amount,
but just because we cannot measure something does not mean it is infinite. Immeasurability and infinity
are not quite the same thing.

The words ‘endless’ and ‘boundless’ are perhaps safer as synonyms for infinity. True, some finite
things such as circles have no end or bound. However, while a circle has no end we tend to use the word
‘closed’ when talking about the curve of circles since ‘endless’ is a word most commonly applied to infinity.
Likewise, a circle has no bound but we tend to use the word ‘unbounded’ rather than ‘boundless’ when
describing a circle; ‘boundless’ being a word most often used for infinity. Perhaps ‘endless’ means a little
more than simply to have no end, and perhaps ‘boundless’ means more than just having no bound. Then
again, technically speaking, to be endless or boundless need not always be taken as implying infinity.

The word ‘limitless’ is perhaps the safest as a synonym for infinity, but literal infinity is more than just
limitlessness. Literal infinity also denotes that which is literally complete, as is, despite having no limit.

On this last point | do admit there are some philosophers who might disagree and contend that infinity
in its literal sense just is limitlessness, taken literally. In adopting that stance, they would deny literal
infinity refers to that which is complete in quantity in addition to being limitless in quantity. They deny
anything infinite in the literal sense of the term is ever a quantitatively complete collection, let alone that
literal infinity can be the condition of a collection within bounds like a collection of marbles in a bag or
points in a line segment [20].

However, | believe these philosophers are mistaken about what infinity, at least in its usual, literal
meaning, implies. They are actually stipulating a new notion of infinity that is not the same as how infinity
is usually thought of in its literal, quantitative sense. For that reason, | will stick to assuming infinity in its
usual, literal, quantitative sense refers to that which is not just limitless but also complete in quantity.
That said, | will address in § 12.7.3 and § 22.1.1 the conception of infinity as limitlessness without
guantitative completeness and the reasons that such an alternative conception of literal infinity is flawed.

1.3.3 Figurative Infinity

While there is a common literal meaning of infinity, there are also many different figurative ways to use
the word ‘infinity’ and its cognates (‘infinite’, ‘infinitely’, and so forth). Such words are often used in
metaphorical, allegorical, or poetic senses and not always in a consistent manner. However, when | refer
to the figurative sense of infinity or figurative infinity, it is the figurative sense of quantitative infinity that
I most have in mind. | have already defined figurative infinity as “the condition of indefinitely changing in
qguantity.” Unless otherwise noted then, that is what | will mean when | refer to figurative infinity or to
the figurative sense of infinity.

As with the literal sense of infinity in its quantitative interpretation, so too the figurative sense of
infinity goes by various names—

= potential infinity

= improper infinity

= incomplete infinity
= variable infinity
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—and so forth, but | will refer to this sense of infinity simply as ‘figurative infinity’ unless referring to a
specific scholar’s conception of figurative infinity for clarity [21].

Whatever name we use, to say something is infinite, but only in its figurative sense, is to imply that it
is really finite and so only seems to be literally infinite. To say something is infinite, but mean it only
figuratively, is not to regard it as a completed collection of components, all of which exist together at once
in a final totality that is also without limit. That way of being infinite is to be infinite in the literal sense.
Rather, to say something is figuratively infinite is to regard it as a necessarily incomplete collection in
which new members are added (or existing subsets of members divided) in such a manner that the
collection continuously changes in the finite quantity of its members, yet never reaching a final quantity
of members.

Toillustrate the idea, let’s continue with our marble analogy. Imagine that a marble-making company
continues to manufacture new marbles. Each new marble they make is just one more added to the
previous tally they made. At no time is the number of marbles produced ever limitless, no matter how
long they go on making marbles. The series of marbles manufactured would not be literally infinite
because at any given time only a finite number of marbles have been made, but the series of marbles
could nevertheless be said to be ‘infinite’ in a figurative sense since there will always be more marbles
made with no predefined end.

Now suppose you are continuously provided with new marbles from the marble-making company and
suppose you continuously drop each new marble you receive into a bag for safekeeping. Unbeknownst to
you, there is a device in the bag that annihilates every marble you drop in. Funny, the bag never seems to
get full...But suppose you ignore that strange fact and just keep dropping new marbles into the same bag,
ever dropping more in the bag, which never becomes full. Assuming you really enjoy this activity and
didn’t have to worry about dying, you could keep on dropping marbles into the bag without it ever
becoming full.

In this scenario, there is the series of marbles that have been dropped into the bag and the series of
marbles that will be dropped into the bag. The amount that has been dropped into the bag is never literally
infinite, for each new marble dropped just adds one more to a growing finite number of marbles dropped
into the bag. As for the amount of marbles to be dropped into the bag, it is not at all clear that amount
must be literally infinite. If it is infinite at all, it could be only ‘infinite’ in a figurative sense. For, however
large the quantity of marbles dropped into the bag ever becomes at any arbitrarily chosen future time,
only a finite number of marbles at that time will have been dropped into the bag. Even if the dropping of
marbles never ceases.

In other words, the marbles in the bag are never literally limitless in quantity because the series of
marble drops into the bag at no time ever becomes limitless in amount—each drop is just one more than
the previous amount of drops made. The process of dropping marbles in the bag is, at every step of the
way, limited, even if the process never stops.

The process of dropping marbles has an indefinitely changing (in this scenario, indefinitely growing)
guantity of steps. That is, the dropping of marbles can continue without any predefined end to the
process—the dropping of marbles can continue “indefinitely” in that sense. But to say a process is
indefinite is not synonymous with saying it is literally infinite. An indefinite process is always finite
however long it continues. It may have an unknown end or it may never end, but even if it does keep
going, at no time will it ever have accumulated a genuinely limitless—a literally infinite—quantity of steps
along the way.

So if the process of dropping the marbles in the bag is indefinite rather than literally infinite, then it
may seem infinite in the sense that it has no defined end. But actually, the process is finite in the sense
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that the quantity of steps composing the dropping process is not without limit at any given time. Hence,
to call the process of ceaselessly dropping marbles into the bag “infinite” is a figure of speech; certainly,
the process goes on at least indefinitely—maybe even in the sense of going on ceaselessly—but to say it
goes on infinitely should not be taken literally because at any time the number of instances of placing a
marble in the bag is finite and so at no time is the running total of instances without limit.

Now instead of the marbles being secretly annihilated in the bag, let’s imagine the bag just keeps
stretching to accommodate new marbles as they are dropped in. With each marble added, the set of
marbles in the bag grows one marble larger.

Or, if you prefer, each additional marble makes a new set of marbles in the bag—a set with one more
member than the previous set in the bag. In that case, the growing collection of marbles in the bag can
be considered as an indefinitely growing series of marble sets. The amount of sets that have replaced sets
can continue to increase with no defined end, but at each stage in the growth of the series of marble sets,
the bag of marbles contains just one marble more than it had before.

The series of marble accumulations may even grow indefinitely, but there is never a literally infinite
set of marbles in the bag—there is never a set that stands not just complete but also limitless. Some may
say the growing series of marble sets is an infinite series, but that is just to use the term ‘infinite’ as a
figure of speech.

For, if something is figuratively infinite, then it is a series or process, and the steps (actions) or
members making up that process remain, at any given time, limited and incomplete no matter how long
the series or process goes on successively adding new steps or new members. It might seem as though
steps that lie ahead, yet to be taken, comprise a complete and yet limitless quantity, but that may be only
an illusion; there need be no steps lying ahead, waiting to be taken. Rather, the process simply has the
potential to be extended further, and it continuously changes its finite extent with no definite end to the
process of change in sight. So, if one were to say something goes on infinitely in the figurative sense, one
would be implying that it is part of an indefinitely changing series or process the exact measure of which
is always limited no matter how much it changes.

The concept of figurative infinity can even be applied to examples of space and time. If space is infinite
but only in a figurative sense, then no matter how long that dimension of space is made to extend, it will
only reach a limited measure at any time. And if time is infinite in a figurative sense only, then no matter
how many years it takes to produce such an extension of space, only a limited number of years would
have passed. When we say that a collection grows “to infinity” and mean it figuratively speaking, we are
merely indicating that the collection indefinitely changes in the quantity of its members, even though that
quantity never reaches a literally infinite (complete and limitless) amount. Conversely, no matter how
many times you divide something in only a figuratively infinite sense, you never divide it a literally infinite
(complete and limitless) number of times.

Figurative infinity is not a condition of being literally limitless. However, just as synonyms are used for
the literal sense of infinity, so too the very same synonyms are used for the word ‘infinity’ in its figurative
usage:

= “limitlessness”

= “endlessness”

= “pboundlessness”
=  “immeasurability”
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Hence, these are the same words used as synonyms for infinity in its literal sense; however, when these
words are used as synonyms for figurative infinity, they too are intended to be understood only in a
figurative sense as metaphors or hyperbole (which is why | put them in scare quotes as examples).

There are various figurative uses for the term ‘infinity’ and its metaphorical synonyms. For example,
when we say the focus of a camera is set to infinity because the camera has a limitless zoom, that infinity
is only figurative because the zoom on the camera is only “limitless” as a figure of speech. Infinity is also
sometimes used to mean “endless” in a figurative sense as when a series of stories “continues endlessly”
or “goes on infinitely.” Sometimes the concept of infinity is used to denote that which is “boundless” in a
figurative sense, as when a lover claims to have “boundless love” or “infinite love” for the beloved. Infinity
is also used to denote something is immeasurable, but in a figurative or metaphorical way, as when a poet
says humanity has an “immeasurable capacity for genius” or an “infinite capacity for genius” [22]. All of
which illustrates that saying something is infinite in the sense of being “limitless”, “endless”, “boundless”,
or “immeasurable” can be construed as a way of saying the thing in question is infinite as a figure of
speech: really, what we’re talking about is finite, it’s just indefinitely changing in quantity—growing ever
larger or smaller, going on ever further to no predetermined point of rest [23].

Consider: a camera lens that is “set to infinity” does not have a limitless zoom in the literal sense of
the word ‘limitless’ because the zoom only gets your focus to the horizon and no further. Likewise, saying
that a series of stories goes on “endlessly” or has the potential to unfold “infinitely” is just to say the story-
telling process has no predefined end, though the telling of stories itself remains always finite as there are
only so many stories up to whatever is the latest story that has been told at any given time. To say one’s
love for another is infinite or “boundless” is simply to say one’s love can be expressed in a quantity of
ways that has no predetermined bound—the love is boundless only in the sense that the figurative
‘bound’ can always be expanded. So too, saying genius is infinite in the sense of being “immeasurable”
merely implies that no matter how many measures of genius you continue to make, it will always be a
finite number, but you won’t find a final measure of genius.

All such colloquial expressions can be considered instances of using infinity in the figurative sense;
they each imply finite amounts or processes that indefinitely change by growing ever vaster, shrinking
ever smaller, or going ever onward. The progressions referred to as ‘infinite’ in the word’s figurative sense
always remain finite no matter how many iterations they have, but, because the quantity of iterations
increases indefinitely, the quantity of iterations may suggest limitlessness in a literal sense and so may
seem literally ‘infinite’ to those familiar with the concept of infinity, even when the iterations are not
really without limit as they go but merely have a total that gets larger than before. To be infinite in a
figurative sense is to always be finite (limited) though indefinite in quantity rather than literally limitless
in quantity.

To be figuratively infinite is to be like a sand pile that grows ever larger or a length that is cut ever
finer—there’s always a finite amount to its quantity no matter how much it changes. In contrast, to be
literally limitless requires the quantity to be without any limit but also complete as is; it has no limit but
also does not grow or diminish in quantity.

It is quite common in colloquial discourse to use the term ‘infinity’ and its synonyms in the figurative
sense. There are certain things that, when considered in quantitative terms, are commonly said to be
infinite even when they are merely “infinite” in the figurative sense of undergoing indefinite quantitative
change or when they are able to be ever further analyzed or refined [24]. As I'll argue, such language is
misleading and it would be better to avoid such uses of the word ‘infinity’, even though that is in fact how
people commonly speak.
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Given that there are both literal and figurative uses of synonyms for infinity like the words ‘endless’,
‘boundless’, and so forth, | will set a rule of thumb for clarity: unless otherwise stated, or unless it is
otherwise clear from context, for the pages to come assume the literal meaning for words such as
limit/limitless, end/endless, bound/boundless, measurable/immeasurable, and so forth.

1.4 QUALITATIVE INFINITY

As quantitative infinity is about lack of limits to quantity, so qualitative infinity is about lack of limits to
quality. In order to grasp what it means to have no limits to quality, in order to properly understand
gualitative infinity, we first need to understand what is meant by quality.

With a little reflection, it’s easy to see there are many uses of the word ‘quality’, but three in particular
are philosophically relevant:

= quality:
(1) a property each instance of which has a particular appearance.
(2) a distinctive property used to identify an object.
(3) a property that sets a standard of value, importance, or performance.

Each definition makes clear that a quality is a kind of property. A ‘property’ in this context means some
aspect or feature shared among objects of the same kind. Some examples: wetness is a property of
raindrops, mass is a property of atoms, mortality is a property of humans, and so forth. While it’s not
necessarily true that all properties are qualities, we do know that at least some properties are qualities—
namely, those that fit one or more of the above definitions for the word ‘quality’.

Let’s take an example of a particular property and see how it fits all of the above definitions to be
considered as not just a property but also as a quality. An example of such a property is intelligence.

Intelligence is a quality according to the first definition since intelligence is a property with a particular
appearance for any of its instances. A given individual’s intelligence is apparent from their manner of
learning and ability to solve problems. One person may appear intelligent while another does not.

Intelligence is a quality according to the second definition since we can distinguish one person from
another by their intelligence. Albert Einstein’s intelligence is distinguishable from that of Salvador Dali.

Intelligence is a quality according to the third definition because intelligence is a property that can set
a standard of value, importance, or performance. The intelligence displayed by a particular professor may
(for better or worse) set a standard for determining the value, importance, or performance of intelligence
displayed by the rest of the faculty.

By any definition above, intelligence is not only a property but also a quality. It is not necessary,
however, for every property to meet all of the above definitions in order for a given property to be a
quality. Rather, if a property meets at least one of the above definitions, then the property is also a quality.
For example, height is a property that may be used for distinguishing a person from various other people
and so by the second definition of ‘quality’ height is not just a property but also a quality. But that does
not mean an instance of height meets the third definition of ‘quality’, which entails setting a standard of
value, importance, or performance. In some situations, a person’s height may make no difference to the
person’s value, importance, or performance, and so in those situations the property would not count as
a ‘quality’ by the third definition, though it may still be a quality according to the second definition.
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Of the three definitions of ‘quality’ given above, it is the third definition of quality that is the most
relevant for understanding qualitative infinity. Qualitative infinity is about being infinite (without limit)
with respect to quality, where ‘quality’ means “a property that sets a standard of value, importance, or
performance.” That is, qualitative infinity is the condition in which a property, as a quality, sets a standard
of value, importance, or performance that is in some manner not limited.

To get a clearer understanding of qualitative infinity, let’s start by considering what it means to set
standards, to be set by a standard (particularly, with respect to quality), and what it means for standards
of quality to have limits. That will provide the needed contrast with qualitative infinity.

Standards enable comparisons to be drawn between things with the same or similar properties. We
compare the intelligence of one person to that of another, the strength of one person to that of another,
the beauty of one person to that of another, and so on. And we draw comparisons not just between
properties shared by people; we draw comparisons between the properties of all manner of things. We
compare the speed of one car to another, the fun of one celebration to another, and so on. However,
setting a standard or having a standard to be set by is not only a matter of comparing one thing with
another. A standard is set when a given instance of a property is used to judge the value, importance, or
performance of something else with an instance of the same property. An instance of a property is a
quality when it “sets the standard” for comparison with things purported to have the same property, in
the same way—things purported to be of the same quality.

Recall that to compare things by a standard is to make a measurement. Setting a standard is a way of
establishing a basis for measurement by comparison and being set to a standard is to be measured by
(compared to) that basis. | bring this up because measurement is often assumed to be intrinsically
guantitative, requiring the use of numbers. But that is not necessarily so. Measures can be qualitative.
When the standards set for making comparisons are qualitative, we use those standards to make
qualitative measurements of things having the same property or similar properties.

In making qualitative comparisons or taking qualitative measures, we use the manner in which one
object or subject exemplifies a given property as the standard to judge the value, importance, or
performance of how others manifest that property. That is, we can use a property of an object for
comparing that object to something else having the same or similar property and in so doing we use the
property of the former object as a way of measuring the relative value, importance, or performance of
the latter object. For example, the beauty of one object might be used as a standard to measure the
beauty of another object—we thereby judge the beauty of the latter object based on the standard of
beauty set by the former object; the judgment of beauty establishes the latter object’s relative value.

So in this example, the instance of beauty that sets the standard is not just a property but also a quality
since that instance of beauty is used to determine how well something else meets, fails to meet, or
exceeds that instance of beauty as the standard. Hence, a quality is a property that sets the standard for
‘measuring’ the value, importance, or performance of something else by how well it does or does not
manifest or exemplify the same property and thereby also be or not be of the same quality.

The upshot of this explication of quality is that for a qualitative measure to take place—for a given
instance of a property to be measured according to the standard of comparison set by a quality—the
instance of the property measured must be /imited. Otherwise, we would have no basis by which to
compare the given instance of the property to the given quality. That is, without a qualitative limit we
would have no way to make the qualitative measure.

The question then becomes the manner of limit for a qualitative measurement. That is, there are
various ways something can be limited; so by what kind of limit are qualitative measures made?
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It is true that in some circumstances properties are measured according to quantitative limits. For
example, Olympic judges rate the properties of a figure skate according to how closely the skate matches
a performance of quality as defined by a numeric score. But the maximum numeric score possible is a
guantitative limit, not a qualitative limit. Consequently, that measure of a skate’s properties is not a
gualitive measure. Rather, it is a quantitative measure of the skate’s quality—a number used to indicate
how well the skate’s given property meets the standard of a performance of quality. Properties and
qualities are not always measured by quantitative limits, though. We don’t always use numbers for
measuring. In some cases, properties are measured by qualitative standards with qualitative limits.

So, a ‘qualitative limit’ is a condition by which we can specify how the given instance of a property can
be improved to match the standard of value, importance, or performance set by the instance of the
property we know as a quality. The ‘qualitative measure’ of something is thus the comparison of how well
something’s property meets a ‘qualitative limit’, where that limit is the standard of resemblance needed
for a property to be a quality. The qualitative measure is thus defined not by a numerical, quantitative
limit but by a conditional, qualitative limit.

For example, to qualitatively measure (vice quantitatively measure) an ice skating performance is to
judge how well the ice skating performance’s properties resemble or fail to resemble the properties of a
given performance held to be a quality performance—a skate the properties of which are quality. The
qualitative measure specifies the conditions for how the ice skating performance could be improved if it
is not equivalent to the performance the quality of which sets the standard for other skates. Those
conditions are the qualitative limits that the skate must be performed within in order to be a quality skate.

Essentially, the instance of a given property, insofar as that instance is also a quality, sets a standard
for value, importance, or performance by establishing a qualitative limit for other instances of the
property to match. Another way to put it is that an instance of a property, insofar as it is a quality, sets
the standard for other instances of the property by establishing the specific conditions under which
another instance of the same property could be improved to better match the quality to which it is
compared.

As a further example, take the humor of a comedian’s act as a property of the act. If we think of the
act’s humor as not just a property but a quality, then the humor of the act sets a standard for the humor
of any following comedy acts to take the stage, such that some of the following acts may be judged as not
performing to the qualitative limits of the standard of humor set by the first comedian’s act. The other
acts may therefore have specifiable ways they could be improved so that they would better match the
standard of humor set by the act of the first comedian. Those improvements may lead the other acts to
reach the qualitative limit of the first act.

That a particular property may set, or be set to, a standard of qualitative limits is what allows instances
of the property shared between things to be compared—the qualitative limit is what allows a given
instance of a property, as a quality, to set a standard for other instances of the property. A qualitative
limit is thus a kind of limit that enables qualitative measurement; the qualitative limit is the means by
which we can measure something’s relative value, importance, or performance on the basis of how that
thing exemplifies a given property (or if it fails to do so, how it could be improved to exemplify that
property and so be of equal value, importance, or performance).

More generally, limits allow us to compare instances of a property and thereby measure quality
between those instances. If we are able to make a qualitative measure between two things, at least one
of the instances of the property shared between them must be able to be judged as having some
qualitative limit, or no such qualitative measure can take place.
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Now since to be limited is to be finite, then the notion of having a limit to quality implies another
notion of what it means to be “finite’:

= finite: (4) having limited quality.

To be qualitatively finite is thus to have a quality that is in some way (quantitatively or categorically)
limited; those limits then determine the quality or quality bearer’s value, importance, or performance
when compared to how something else expresses or exemplifies the same property with respect to the
given limit. All finite things have qualities that are in some respect ‘limited’ according to comparisons of
value, importance, or performance.

But what we want to know is what it is to be qualitatively infinite. Since to be infinite is to be not finite,
and to be finite is to be limited in measure, then to be ‘infinite’ in a qualitative sense, or ‘qualitatively
infinite’, is to be unlimited in measure of quality. We thus have a fifth definition for the adjective ‘infinite’,
this time in terms of quality:

= infinite: (5) having unlimited quality.
Moreover, the noun ‘infinity’ can therefore also be given a seventh definition, this time in terms of quality:
= infinity: (7) the condition of having unlimited quality.

Since measures can be qualitative as well as quantitative, this way of defining infinity is consistent
with, and even complementary to, our first two definitions for infinity:

= infinity:
(1) the condition of being infinite.
(2) the condition of having no limit to a given measure.
(7) the condition of having unlimited quality.

We can combine the content of definitions 1, 2, and 7 together in order to provide yet a clearer idea of
the noun ‘infinity’ it its qualitative sense:

= infinity: (8) the condition of being infinite by lacking a limit to a qualitative measure.

When philosophers speak of infinity in a purely qualitative sense, they typically have in mind infinity as
articulated in definitions 7 and 8: the condition of having an unlimited quality or the condition of lacking
a limit to a qualitative measure. We can thus think of definitions 7 and 8 as constituting the definitions for
infinity in the qualitative sense—what | shall refer to as ‘qualitative infinity’.

If infinity is “the condition of being infinite by lacking a limit to a qualitative measure,” or of having an
unlimited measure of quality, then to say something is infinite in this qualitative sense is to say that it is
without a specifiability condition for improvement in quality. That is, there is no way even in principle to
distinctly identify the conditions by which something of finite quality could be improved to become
qualitatively infinite. Something is qualitatively infinite—something has no finite measure to its quality—
if it has a property that sets a standard such that no finite property can compare in value, importance, or
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performance. In other words, the qualitatively infinite is that which is of such superior quality as to be
‘immeasurable’ or ‘incomparable’ to the qualitatively finite.

Typically, the superiority of the qualitatively infinite to the qualitatively finite is characterized in two
different ways—one we might call ‘negative’ because it denies something and one that we might call
‘positive’ because it affirms something. There are thus two different types of qualitative infinity which |
refer to respectively as negative infinity and positive infinity, and both stand in contrast to the two types
of quantitative infinity: literal and figurative (see Figure 1.3).

INFINITY

Qualitative Quantitative
Infinity Infinity
| |
| | | |
Negative Positive Literal Figurative
Infinity Infinity Infinity Infinity

Figure 1.3: The two types of qualitative infinity in contrast with the two types of quantitative infinity.

The qualitative versions of infinity—negative infinity and positive infinity—are mainly concepts used
in theology and philosophy of religion. Negative infinity and positive infinity are concepts used either to
describe God as a being or to describe God’s particular attributes (such as God’s knowledge, power,
presence, benevolence, etc.).

Insofar as an attribute of God or the being of God is regarded as qualitatively infinite in either the
negative or positive sense, the qualitative infinity of God is known as divine infinity. Divine infinity is often
conceived to be a qualitative infinity of either the positive or negative variety, depending on the views of
the theologian making the given claim about God being infinite. However, there are also some theologians
who think of God’s divine infinity as an instance of, or identical with, yet another kind of infinity known as
absolute infinity (see 8 1.5).

With respect to God’s divine infinity, theologians have had various ideas about what the terms
‘negative infinity’ and ‘positive infinity’ mean. Some theologians say that negative infinity is merely the
denial that given attributes of God are qualitatively finite [25]. However, | find no consensus among
theologians as to what the denial of qualitative finitude entails for God’s attributes. As for positive infinity,
theologian and philosopher of religion Denys A. Turner stated, “I confess to not being clear about what is
meant by a ‘positive’ notion of the divine infinity” [26]. Likely that is because there is no universal
theological understanding of it to be found. Even worse, the condition of divine nature that some
theologians refer to as ‘negative infinity’ other theologians call ‘positive infinity’.
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Despite the lack of consensus among philosophers and theologians about the nature of qualitative
infinity, and so about divine infinity as an instance thereof, some general themes are nevertheless present
in the literature on the matter. After a review of the academic literature, | stipulate that in general the
two types of qualitative infinity can be defined like so:

= infinity: (9) negative—the condition in which unlimited qualities are indistinguishable.
= infinity: (10) positive—the condition in which distinguishable qualities are unlimited.

These definitions may seem a little esoteric, but they are derived from the writings of what historical
philosophers and theologians have had to say about infinity taken in the qualitative sense rather than the
purely quantitative sense, particularly with respect to the qualities of God that are said to be infinite. The
historical details of qualitative infinity | save for Chapter 25, but | will briefly elaborate on both qualitative
infinity’s negative and positive versions before we continue.

1.4.1 Negative Infinity

To describe something as infinite in a qualitative (or non-quantitative) sense may be taken in a negative
way. | do not mean ‘negative’ in the mathematical sense or in the moral sense but rather in the sense that
something is negated or denied. More specifically, the term ‘infinite’ means negative infinity whenever
use of the term ‘infinite’ implies that a given quality is unlimited in such a way as to deny distinctions with
other unlimited qualities—the quality’s distinctions to other unlimited qualities is negated. That is, to be
negatively infinite is to be categorically indistinguishable from other unlimited qualities, including when
those qualities are contrary to one another or even if they logically contradict one another.

To see what this is supposed to mean, imagine a person who has some particular quality, like wisdom,
beauty, or power. Take any one of those qualities and make it infinite such that the person is either
‘infinitely wise’ or ‘infinitely beautiful’ or ‘infinitely powerful’. Whichever quality you pick—wisdom,
beauty, or power—becomes unlimited when it is ‘infinite’. But to say a quality is infinite is not a synonym
for saying it is unlimited. There is more to qualitative infinity than that and so more to negative infinity
than that. With respect to negative infinity, to be qualitatively ‘infinite’ is to be unlimited in a particular
way: it is to be indistinguishable from other related qualities that are also unlimited.

In our example, a person is given a set of particular qualities that are infinite. The qualities when made
negatively infinite cannot be distinguished from each other. Suppose a person is infinitely wise, infinitely
beautiful, and infinitely powerful. If those qualities are negatively infinite, then it would be just as accurate
to say the infinitely wise person’s pronouncements are infinitely beautiful or infinitely powerful as it would
be to call them infinitely wise. It would be just as accurate to say of the infinitely beautiful person’s
appearance that it is infinitely powerful or even infinitely wise as to call it infinitely beautiful. And it would
be just as accurate to say of the infinitely powerful person’s actions that they are infinitely wise actions or
infinitely beautiful actions as to say they are infinitely powerful actions. In describing the person as having
an infinite quality, such as to say the person is ‘infinitely beautiful’, one is, of course, emphasizing a
particular quality as being infinite, such as beauty rather than some other quality, but one could just as
well have cited a different infinite quality that the person has such as infinite wisdom or infinite power
since all of the qualities become one and the same quality when they are made infinite in the qualitatively
negative sense of the term. All distinctions between wisdom, beauty, and power break down when such
qualities become ‘infinite’ in the negative sense.
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If this example sounds to you like talk of God, you are not mistaken. This is how God’s infinite qualities,
or divine attributes as they are sometimes called, are described according to certain theologies. When
God’s attributes, such as omniscience and omnipotence, are conceived to be negatively infinite, then they
are, as such, united together as a single attribute equivalent to God’s very essence. God’s essence is
conceived of as a divine simplicity in which God'’s attributes, as infinite attributes, are all identical to God
as such and therefore identical to each other [27]. According to philosopher of religion William F. Vallicella,
“If each attribute is identical to God, then each attribute is identical to each other by the Transitivity of
Identity. For example, if God = omniscience, and God = omnipotence, then omniscience = omnipotence...the
perfections constitutive of the divine nature are identical with one another. For if each is identical to God,
then each is identical to every other one” [28].

In theological circles, characterizing God’s qualities as a negative infinity implies that God’s attributes
can also be contrary to one another, and yet still be identical in God’s divine simplicity. Then too, some
theologies go yet further by suggesting that God'’s attributes can logically contradict one another while
still accurately portraying the essence of God [29]. Basically, some theologians suspend the logical
principle of non-contradiction with respect to God’s attributes, allowing for a conception of God as being
“infinite” in the sense that God does and does not have given qualities or attributes. That is, when God’s
qualities or attributes (whether primary qualities like wisdom and power or secondary qualities like being
or perfection) are described as infinite in the negative sense, those qualities or attributes are allowed to
come into contradiction with another and so negate each other—hence, this qualitative form of infinity
is, in that respect, “negative.”

For example, in the theology of Ismailism, a sub-sect of Shia Islam, God’s infinitude is such that God is
“beyond being and nonbeing,” implying that it would be “a radical error to seek to explain God in rational
terms” [30]. Certain Jewish and Christian theologies also adopt this negative conception of God's
qualitative infinity extending into the domain of conception where logic is suspended [31].

In Chapters 25 and 26 | will further elaborate on negative infinity and offer a critique of it and other
paradoxical or logically paraconsistent conceptions of infinity [32]. In the meantime, | wish only to contrast
the negative conception of qualitative infinity with the positive conception of such.

1.4.2 Positive Infinity

The term ‘infinite’ may be used in a qualitative sense that is positive rather than negative. Here too | do
not mean ‘positive’ in the mathematical sense or in the moral sense but rather in the sense by which
something is affirmed to have a given quality. Calling something ‘infinite’ in a qualitative sense that is
positive implies that which is called ‘infinite’ has at least one unlimited quality, and the quality it has is
unlimited in such a way that the quality is still categorically distinguishable from any other quality.

The qualities that are positively infinite are not ‘negated’ in comparison with other infinite qualities
as they are in the concept of negative infinity. Moreover, those who believe qualities (e.g., divine
attributes) can be infinite in the positive sense generally do not hold that those qualities may logically
contradict one another, as is the case in a theology promoting the negative sense of qualitative infinity.

Not all theologians and philosophers of religion agree as to whether God’s infinitude is of either the
qualitatively negative or positive variety. However, what theologians mean by a “positive infinity” (or even
a “negative infinity”) varies widely. While | can’t answer for theologians, | will use an analogy to indicate
what | take positive infinity to usually mean in theology.
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Suppose there is a pair of eyeglasses that has a quality such as optical functionality, by which | mean
the eyeglasses work for their given purpose of helping the wearer to see better. Now suppose the optics
of the eyeglasses are infinitely functional, but not in the quantitative sense of having infinitely many
functions. Instead, suppose that to be ‘infinitely functional’ is understood in the sense of positive infinity.
To be infinitely functional in this sense would mean to exceed any conceivable qualitative limit of the
function. A pair of eyeglasses that is infinitely functional would allow the wearer to see anything the
wearer desires to see, such that there is seemingly no qualitative limit to the vision afforded by the
eyeglasses. Hence, we cannot specify the conditions by which regular eyeglasses would need to be
improved in order to match the functionality of the infinitely functional eyeglasses—comparisons to
regular eyeglass functionality break down. All we can say with regard to the functionality of the infinitely
functional eyeglasses is that they allow the wearer to see whatever can in principle be seen, such as a
single electron in a single atom, even though it is located on the opposite side of the Galaxy.

Unlike qualities that are negatively infinite, positively infinite qualities remain distinct from each other
despite being unlimited. If the infinitely functional eyeglasses are also infinitely beautiful, the infinite
functionality and infinite beauty of the eyeglasses each remain distinct qualities. Each quality is
independently ‘unlimited’.

A positively infinite quality is a quality that is ‘unlimited’ in the sense of being incomparable. It's not
that something positively infinite is absolutely incomparable, such that we cannot know what it is that is
incapable of being compared. It is also not that the positively infinite is that which is incomparable by
losing distinction with other incomparable things. Rather, that which is positively infinite is that which is
relatively incomparable, such that no finite instance of the same property can meet its standard. For
example, incomparable beauty is still beauty; it is simply the kind of beauty that no (finitely) beautiful
thing can match with regard to beauty. For something to be qualitatively ‘infinite’ in a positive sense is
thus for it to be (relatively) ‘incomparable’ with respect to the limitations of finite instances of the same
property. That is the idea behind qualitative infinity in the positive sense of the term.

As with negative infinity, positive infinity is a metaphysical concept chiefly claimed to characterize
God. God'’s attributes (knowledge, power, benevolence, and so forth) are positively infinite in the sense
of being incomparable—God has incomparable knowledge, incomparable presence, incomparable power,
and so on. However, while God’s attributes as positively infinite in the sense of being incomparable to
their finite counterparts, God’s attributes as positively infinite are not indistinguishable from one another,
even though they are without qualitative limit [33].

We will take a closer look at positive infinity in Chapter 25, where we’ll briefly review how it has been
portrayed as a divine attribute of God by religious philosophers and theologians.

1.4.3 Transcending Qualitative Limits

Negative infinity and positive infinity are the two categories of qualitative infinity. Both of these
qualitative versions of infinity have some things in common.

For one thing, they are each widely recognized as describing various attributes of a divine being,
typically the God of the Western religions. The divine being is itself referred to as “infinite,” as when it is
said that “God is infinite,” in either the negative or positive sense of the term ‘infinite’. The divine being
is infinite because the divine being has qualities (or ‘attributes’ such as knowledge, power, benevolence,
etc.) that are ‘infinite’ in either the negative or positive sense.

Another thing negative and positive infinity have in common is that they tend to be associated, if not
confused, with certain states or conditions. For example, that which is said to be ‘infinite’ in either the
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negative or positive sense is often regarded as being, by virtue of its infinitude, an idealized condition such
as perfection or transcendence. Take the positive sense of infinity: according to professor of theology and
science Robert John Russell, “Early Christian writers were informed by [Aristotle’s] more ‘positive’
conception of infinity as they developed the doctrine of God...God’s infinity is a mode of God's
perfection...” [34]. As for the idealized conception of God’s infinity as a negative infinity, which combines
contrary or even contradictory properties into a single attribute, we find an example of such in the
theology of Ismailism which holds that God “transcends unity and plurality, perfection and imperfection”
[35].

Both negative and positive infinity also have in common that they are usually conceived of as
ineffable—beyond words to accurately describe with literal language. Recall from § 1.1 above that some
scholars have defined infinity as a condition of being incomprehensible or inexpressible. Such conditions
are certainly true of negative and positive infinity since both versions of infinity have ineffable aspects,
but neither version of infinity is synonymous with incomprehensibility or inexpressibility simply as such—
precisely for the reasons given earlier.

Now let’s consider the ineffability of these qualitative infinities.

Given negative infinity, we can know that God’s attributes are infinite, but we cannot comprehend
how they are each infinite [36]. According to one theologian holding this view of God’s infinitude, the
essence or nature of what it is to be God “is not of the nature of those things which can be comparatively
greater and lesser, it is beyond all that we can conceive...Sacred ignorance has taught us that God is
ineffable” [37]. Moreover, given the ‘paraconsistent’ nature of negative infinity, some ineffability of the
divine nature is guaranteed.

Conversely, another theologian may contend that God’s infinitude is positive rather than negative.
Nevertheless, the theologian may hold that even positive infinity has an ineffable component. If God’s
infinity is said to be of the positive variety, the infinitude of God would still be ineffable in the sense that
there cannot be a complete description of God’s essence and attributes—there will always remain
something more about God’s qualities beyond any powers of articulation we will ever develop [38]. The
positively infinite is, after all, a state of relative incomparability, and that incomparability implies at least
some degree of ineffability.

Either the negative or positive nature of an infinite quality makes that quality ineffable. But there is
yet another reason these forms of infinity are ineffable: they are each conceived to be intrinsically
mystical. (That is not to say that which is ineffable is necessarily that which is mystical, but just that to be
mystical implies ineffability.)

There are various conceptions of what words such as ‘mystical’, mysticism, and related terms mean
[39]. Instead of attempting an overview of them all, | will simply stipulate definitions, starting with the
following:

= mystical: to be in an intrinsically mysterious state for which logical categories and rational
descriptions cannot be consistently applied.

For example, consider something described in terms that violate logic, such as a darkness that is described
as luminous, something familiar described as “wholly other,” or separate things described as being “one.”
Now suppose such contradictory descriptions are further presented as capturing some deeper, mysterious
aspect of reality for which logic is claimed not to apply, not just in the manner of poetry and art but in the
manner of metaphysics. That is the mystical—the appeal to a metaphysical mystery beyond reason.



42 Forever Finite Kip K. Sewell

Moreover, it is sometimes claimed one can have an experience of the mystical. Belief in, or the
practice of obtaining experiences of the mystical is what ‘mysticism’ is about:

=  mysticism: belief in that which is mystical or the practice of obtaining experiences that are
purportedly mystical.

Those known as mystics are practitioners of mysticism; they engage in practices with the goal of
obtaining a mystical experience:

= mystical experience: an experience that purportedly provides knowledge or deep insight about a
fundamental truth of existence that transcends all logical categories and rational descriptions.

These definitions for ‘mystical’, ‘mysticism’, and ‘mystical experience’ are based on and adapted from
the definition of ‘mystical experience’ provided by Dr. Jerome Gellman of Ben-Gurion University of the
Negev, Israel [40]. You will notice in the definitions for ‘mysticism’ and ‘mystical experience’ the word
‘purportedly’, which | borrow from Gellman. Gellman states, “The inclusion of ‘purportedly’ is to allow the
definition to be accepted without acknowledging that mystics ever really do experience realities or states
of affairs in the way described” [41]. Not everyone agrees that mystics genuinely experience realities that
are beyond logical categorization or rational description. Mystics may just be people who imagine they
experience such.

Whether mystical experiences genuinely reveal some aspect(s) of reality or not, the point is that the
mystical is about a state of being transcending logic and rational thought and, by virtue of that, mystical
states are ineffable. So, to know a mystical truth about reality is to know a truth beyond logical categories
and rational thought, a truth that is therefore inherently ineffable.

Whether the concept of a ‘mystical truth’ even makes sense is another issue. | simply offer that
ineffability is implied by the very notion of mystical truth and, if there are mystical truths of reality, they
are obtained via mystical experience.

Both the negative and positive versions of infinity have mysticism in common—that which is
negatively or positively infinite is that which is infinite in the sense of transcending all limits, including the
limits and limitations of human reason. Hence, negative infinity and positive infinity are mystical forms of
infinity; they are states purportedly incomprehensible to reason and thus to logical conception [42].
Because these two types of qualitative infinity cannot be entirely understood with the use of logic, or
more broadly, rational thought, both negative infinity and positive infinity denote conditions or states of
gualities that are ineffable and so cannot be described in completely literal terms.

Positively infinite qualities may be described indirectly through metaphor or poetic language,
including that which is paradoxical. Examples of paradoxical language used as descriptions for the divine
nature include phrases like “dazzling darkness” [43]. The more mystical pronouncements of positive
theology tend to use “both/and” expressions to describe divine attributes, sometimes in a paradoxical or
logically ‘paraconsistent’ manner. For example, God is both x and not x—both light and not light
(darkness)—hence, dazzling darkness.

Negative infinite qualities are described in even more intellectually confounding ways, delving into
intentionally self-contradictory (i.e., paraconsistent) language to convey the ineffability of the divine, such
as claiming that having and not having limits can be neither attributed to God nor denied of God who is
“beyond being and nonbeing,” a claim about God from the Persian poet Nasir Khusraw (1004-1088) [44].
The more mystical expressions of negative theology tend to use “beyond x and ~x” or the equivalent
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“neither/nor” expressions to describe divine attributes, often in a paradoxical or paraconsistent manner.
For example, God is neither x nor not x—neither being nor nonbeing; God is beyond both, as Khusraw
had it.

Theologians are split over those who emphasize the positive and those who emphasize the negative
versions of qualitative infinity claimed to be characteristic of the divine as revealed in either mystical
experience or at least contemplation of the divine [45]. When God is said to be infinitely knowledgeable,
powerful, present, benevolent, etc., such attributes are held to be known of God only by revelation or
authority and understood only mystically as they are beyond words to describe in literal language [46].

1.4.4 Qualitative Infinity: To Be Continued...

We thus have two versions of qualitative infinity—negative and positive. Both are consistent with the
broader definition of qualitative infinity (“the condition of having unlimited quality”); both negative
infinity and positive infinity are refinements of qualitative infinity in general.

With that explication, we have most of what we need to know about qualitative infinity for now.
Beyond this chapter, qualitative infinity will receive scant mention until Chapters 25 and 26, where it is
covered in full. However, there is just a tad bit more to know about qualitative infinity until then, for
qualitative infinity bears relation to our final category of infinity: absolute infinity.

1.5 ABSOLUTE INFINITY

Some philosophers and theologians combine elements of quantitative infinity and qualitative infinity
together into a hybrid version of infinity. More specifically, they combine literal infinity (quantitative) and
positive infinity (qualitative) into a version of infinity called ‘absolute infinity’ [47] [48].

Absolute infinity is infinity in the sense of negating the finite in both quality and quantity, which entails
that to be finite has a fifth definition:

= finite: (5) having limited quantity and quality.

Absolute infinity is the denial of the finite in this fifth sense of the term—that is, to be absolutely infinite
is to lack both quantitative and qualitative limits.

We can get a clearer conception of absolute infinity by comparing and contrasting it with the use of
finite quantities to measure finite qualities. All qualities can be given quantitative measures, even if such
measures are largely arbitrary. To use an amusing example, consider a quality such as sex appeal. In the
1979 American romantic comedy film entitled 10, a man is asked to rate the physical attractiveness (sex
appeal) of a particular woman on a scale from 1 to 10. The movie had quite an impact on culture: men
and women have been using that scale to rate one another’s physical attractiveness ever since. The scale
of numbers used to rate attractiveness is, of course, arbitrary. We could just as well use a scale of 1 to 50
or 1to 100, and so forth. But now suppose we say someone is infinitely attractive. If we reasonably take
the word ‘infinitely’ to be a reference to quantitative infinity, we can interpret ‘infinitely’ in that context
as expressing the measure of the quality in question: attractiveness. So, to say of someone that they are
infinitely attractive is to say there is no finite scale of numbers that can measure just how attractive they
are. You might think that is the sort of thing that is meant by absolute infinity—a quality that is “infinite”
because its quality has no specifiable limit according to a quantitative measure. However, that is not
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correct. Just making a quality “infinite” according to a quantitative measure, as if put on a scale that goes
to infinity, is not what is meant by absolute infinity. Absolute infinity is not the same as applying a
guantitative standard for measuring a given quality. While quantitative infinity might be used as a way of
expressing an excess in the measure of quality (e.g., attractiveness, beauty, knowledge, wisdom, power,
etc.), that is not the case with absolute infinity.

To measure a quality, such as a divine attribute, with quantitative infinity is actually just another way
of expressing that attribute’s qualitative infinity, not its absolute infinity. Consider God’s attributes such
as God'’s knowledge, power, and benevolence. God could be said to know infinitely many truths, able to
accomplish infinitely many goals, and prevent infinitely many evils. Those are ways of expressing God’s
qualitative (positive) infinity in quantitatively infinite terms—however, that in itself does not express
God’s infinitude as an absolute infinity.

Absolute infinity is a type of infinity that expresses the positive nature of a quality that results from or
emerges from a limitless quantity. Suppose, for example, there is a sequence of numbers so quantitatively
great that it is not only complete and limitless in quantity (literally infinite), but also of such quantity that
the quantitative infinitude has a quality of its own that is positively infinite. And suppose that positive
infinity, emerging as it does from such limitless quantity, has no finite analogies. The positive infinity of
the sequence of numbers makes that sequence indescribable or ineffable. That would be an instance of
absolute infinity—a positive infinity from a literal infinity. [49] [50].

Now let’s again consider God'’s attributes, not just as positively infinite, but as absolutely infinite. For
God’s attributes to be absolutely infinite, they must be more than just brute quantities. It is not just that
God knows infinitely many truths that would make God’s omniscience an instance of absolute infinity, for
example. It is something more than that.

Typically, theologians consider each ‘divine attribute’ of God to be so excellent or supreme in quality
as to be a “perfection.” God has perfect knowledge, perfect power, perfect benevolence, and so on. As a
perfection, a given divine attribute is not just free of error but also qualitatively infinite. And, yes, that
qualitative infinity may also have a quantitively infinite aspect (like knowing infinitely many truths in the
case of God’s omniscience). But in addition, each attribute is a whole greater than and irreducible to any
quantitatively infinite degree of the attribute. That is, a divine attribute is “perfect” because it is positively
infinite (a qualitative infinity) by virtue of being greater than the quantitatively infinite features that the
infinite quality emerges from. God’s attributes, as perfections, are ‘absolutely infinite’ in that sense.

For example, God has absolutely infinite knowledge because God'’s positive infinitude of knowledge is
a result of God not only knowing infinitely many things but also because of the infinite quality—the
perfection—with which God knows those infinitely many things. There is something about the infinitely
many things God knows, all together, that makes God’s knowledge a positive infinity greater and above
the quantitatively infinite ‘sum’ of what God knows. It is the irreducibility of God’s qualitative infinity to
God’s quantitatively infinite features that presents an instance of absolute infinity. The absolute infinity
of God’s knowledge, for example, is a positive infinity emergent from and irreducible to the quantitative
infinity of what God knows.

Now suppose there are infinitely many—a complete and limitless quantity (a literal infinity)—of such
“perfections” and suppose that as a quantitative infinitude of perfections they together comprise an
additional, irreducible, positive infinity as a whole of infinitely many perfections—a perfect (positively
infinite) whole of infinitely many perfections, each of which is also positively and quantitatively infinite.
This perfect, infinite whole of infinitely many perfections may also be taken as absolutely infinite since it
is a positive infinite that emerges from the quantitative infinity of each, individual, positively infinite
attribute while also being irreducible to the collection of them. Thus, by both their individual and collective
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infinitude, in the sense of absolute infinity, the perfections (divine attributes) together create a further
absolute infinity that is emergent from them as a whole: the absolute infinity of the divine is a mystical
quality of being “all possible perfections” [51]. So that gives us yet another instance of absolute infinity.

Finally, suppose independent of each “perfection” (absolute infinite knowledge, absolute infinite
goodness, etc.) and independent of them as an absolute infinitude of perfections together, that God can
be absolutely infinite because God has some quantitative and qualitative “essence” beyond description.
That absolute infinity would be independent of any of God’s other perfections and so constitute God as
such an instance of absolute infinity—God, in this view, just is Absolute Infinity.

The term ‘absolute infinity’ is thus a term for any notion of infinity that is an integration of literal
infinity and positive infinity into a unique attribute of the divine, existing in addition to any other infinite
feature, whether qualitative or quantitative, and interpreted to be a mystical condition of absolute
perfection—either for God’s individual attributes (knowledge, power, benevolence, etc.) or for God as a
being.

Despite the ineffable aspects of absolute infinity, we can define some of its characteristics based on
the expositions of quantitative and qualitative infinity. Here then is a very simple definition:

= infinite: (6) having unlimited quality as a result of limitless quantity.
The noun ‘infinity’ can therefore be redefined for this usage as well:
= infinity: (11) the condition of having unlimited quality due to limitless quantity.
This definition for infinity also refines the first two definitions for infinity, as we can compare—

= infinity:
(1) the condition of being infinite.
(2) the condition of having no limit to a given measure.
(11) the condition of having unlimited quality due to limitless quantity.

If we consider a given measure to be one of quality as well as quantity, then here again we find definitions
for infinity that are complementary. Combining the content of both quantitative and qualitative infinity
provides another, clearer, idea of the noun ‘infinity’ in its absolute sense when the term ‘infinity’ is used
to refer to the property something has according to a standard of measurement:

= infinity: (12) the condition of being infinite by having unlimited quality from a lack of
quantitative limits in measure.

Definitions 11 and 12 are only for the absolute sense of infinity, or ‘absolute infinity’ as | will refer to it.
As with the qualitative versions of infinity, absolute infinity will not be my primary concern. While it
has its adherents, it is not the sense in which infinity is commonly used, which is my main focus.
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1.6 ASURVEY OF INFINITY

The schema of infinity presented in Figure 1.4 is my own way of categorizing various uses of infinity found
in philosophy, mathematics, and theology. It is not my intent to suggest that all or even most philosophers
would recognize this schema for the categories of infinity. There have been several different analyses of
infinity over the centuries and various thinkers have had various schemas for classifying various types of
infinity (some of the details are provided in Chapters 8, 23, and 25). Nevertheless, | think the schema of
Figure 1.4 captures the essence of the common uses of the term ‘infinity’ and its cognates.

INFINITY
|
| |
Qualitative Quantitative
Infinity Infinity
| |
| | | |
Negative Positive Literal Figurative
Infinity Infinity Infinity Infinity
| |
|
Absolute
Infinity

Figure 1.4: Absolute infinity combines the properties of positive infinity (a qualitative type of infinity) and literal infinity (a
quantitative type of infinity).

We've seen so far that infinity, as “the condition of being infinite” or “the condition of having no limit
to a given measure,” can be taken in three common senses: quantitative, qualitative, and the so-called
‘absolute’ sense. The last two types—qualitative infinity and absolute infinity—are together the ‘divine
infinities’ [52]. Hence,

= quantitative infinities: literal infinity and figurative infinity.
= divine infinities: qualitative infinity (positive and negative) and absolute infinity.

Of these various versions of infinity, the quantitative sense is the most common use of the term ‘infinity’
in colloquial speech and even in academic fields such as mathematics, physics, and cosmology. Typically,
when folks say something is ‘infinite’, they are talking in a quantitative sense, implying that something is
of an unlimited quantity—usually by magnitude or degree—and they mean it to be so in either a literal or
figurative sense. Because of that, the literal and figurative senses of quantitative infinity will form the
main focus of my case, with much less concern directed to the divine infinities.
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1.7 MAKING THE CASE

The case | will make against infinity is that it is an erroneous concept, whether conceived in the sense of
qguantitative infinity (both literal and figurative) or divine infinity (either qualitative or absolute).
Consequently, we should all avoid usage of infinity in favor of an alternative concept that is free of the
logical errors characterizing infinity.

1.7.1 The Charge Against Infinity and a Key Assumption of the Case

Because infinity implies logical inconsistencies, it is an erroneous concept. However, in charging that
infinity is an erroneous concept due to logical inconsistency, | am of course making an assumption—
specifically, | am assuming concepts should be logical. | am therefore assuming infinity should be a logical
concept if it is to be a concept that provides one with a reliable understanding of any subject to which the
word ‘infinite’ is predicated.

As earlier indicated, there are philosophers who take the contrary point of view; they make exceptions
to such a principle, asserting that some things are intrinsically paradoxical or logically ‘paraconsistent’
(able to violate certain logical principles) and that infinity is one of those paradoxical or paraconsistent
things. | disagree. | will address appeals to mysticism in Chapters 25 and 26, and more narrowly analyze
paraconsistent logic in § 25.4 and § 26.1. Until then, | will simply assume that any property claimed to be
true of something must not be conceived in such a manner as to imply logical contradictions or other
forms of logical inconsistency. If a property is claimed to be true of something but the property implies
self-contradictions or other logical inconsistencies, then the claim that something has that property is an
erroneous claim and should be rejected.

Infinity is such a property—infinity is a property commonly claimed to be true of certain collections
(for quantitative infinity) or certain attributes (for divine infinity), but the concept of infinity is erroneous
for it implies unresolvable logical troubles. Infinity, as a logically problematic concept, is not reliable for
understanding any given subject to which it is predicated (such when the term ‘infinite’ is used for
describing space, time, motion, matter, possibilities, attributes, or even certain quantities or collections).

1.7.2 The Trouble with Quantitative Infinities

Let’s start with a look at the quantitative types of infinity. On first inspection, both the literal and figurative
senses of infinity appear to be logically consistent, each on its own terms. It is therefore not uncommon
for infinity, in either the literal or figurative sense of the term, to be invoked for describing real-world
features, such as measures of space, time, and matter. But suppose this appearance of consistency is only
an illusion; suppose infinity, whether literal or figurative, turns out to be logically inconsistent [53]. That
does not mean literal infinity and figurative infinity are both inconsistent in the same way, but they may
both be inconsistent for reasons related to the concept of quantitative limitlessness.

1.7.3 Literal Infinity as Self-contradictory
One way to be inconsistent is to be self-contradictory. To be logically self-contradictory is either to hold

two contradictory statements in conjunction or to make a statement from which two contradictory
statements follow.
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As an example of holding two contradictory statements in conjunction, consider a statement like, “The
swan is completely white, and the swan is not completely white.” To be both completely white and not
completely white (in a literal sense, not in a metaphorical sense) is a self-contradiction.

As an example of having a belief from which two contradictory statements follow, consider a
statement like, “Pat is both a bachelor and a wife.” Saying that Pat is a bachelor implies that “Pat is a single
man and not a married woman” and saying Pat is a wife implies that “Pat is a married woman and not a
single man”—a single man and not a single man, a married woman and not a married woman; two
contradictory statements implied from the original statement that Pat is “both a bachelor and a wife.”

Now suppose the definition of literal infinity is self-contradictory. This would mean that to be
“complete and limitless” is a self-contradiction—a logical absurdity—like being a square circle or a four-
sided triangle [54]. A shape cannot be a “square circle” because a circle’s points are all equidistant from
its center while a square’s points are not all equidistant from its center. Similarly, a triangle has three sides
and not four, so being a “four-sided triangle” is both to have just three sides and not to have just three
sides—another contradiction. The self-contradictions are implied by the very terms. If the definition of
literal infinity is self-contradictory in this manner, then something can be complete but not limitless or it
can be limitless and not complete, but it can’t be both complete (which implies not limitless) and limitless
(which implies not complete) simultaneously. Since literal infinity is a condition of being both complete
and limitless, it would then have to be a self-contradictory concept. And since a self-contradiction cannot
refer to anything that actually exists, then it would follow that there cannot be anything literally infinite.
If this is true, then neither space nor time can be literally infinite; however vast the Universe is, it must
nevertheless be finite (limited).

1.7.4 Figurative Infinity as Inconsistent

Suppose as well that use of the figurative sense of infinity is logically inconsistent, but not in the sense of
being self-contradictory. Inconsistency is not synonymous with self-contradiction. If a concept is self-
contradictory, it is inconsistent but not all inconsistent concepts are self-contradictory. Figurative infinity,
| will argue, is an inherently inconsistent concept even though it is not self-contradictory.

As an example of an inconsistency that is not a self-contradiction, observe that people sometimes
have inconsistent views because they hold two contradictory beliefs, but not in conjunction. For example,
a person might believe at one time that no democratic country starts a war and believe at another time
that a democratic country started a war. Or a person might hold two contradictory beliefs (like “New
Year’s Day is a religious holiday, not a secular holiday” and “New Year’s Day is a secular holiday, not a
religious holiday”) while these two beliefs are not together implied by a single statement (such as, “New
Year’s Day is a holiday”). Perhaps a person holding the pair of contradictory beliefs only considered the
beliefs separately in different contexts and so does not notice how they oppose one another, or maybe
the person holds each belief at different times, vacillating between the two. Hence, a person is
inconsistent by holding these contradictory beliefs, but because the beliefs are neither stated nor implied
in conjunction, that individual’s pair of beliefs contradict each other but are not self-contradictory. We
simply say the person is ‘inconsistent’ because he or she holds two contradictory positions on different
occasions or in different contexts; it is only when the person makes the contradictory claims on the same
occasion or in the same context that we say a self-contradiction has been made rather than merely an
inconsistent position adopted [55].

In a similar vein, there are some concepts that are not logically self-contradictory, but they are
logically inconsistent—at least according to practical reasoning. Such concepts are prone to inconsistent
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use—at one time the concept is used to mean one thing, at another time it is used quite unintentionally
to imply another thing or, worse, to imply the exact opposite.

It might be thought that such is the case with contranyms (words that function as their own antonyms)
like the word ‘oversight’, which can mean either careful supervision or a failure to notice something.
However, contranyms as such are not prone to result in confusion; context and phrasing usually make
clear the intended meaning of the word (at least for native speakers of the language), such as when we
say someone “has oversight” (careful supervision) vice something “was an oversight” (a failure to notice).

In contrast to contranyms, though, there are some concepts that, while not having self-contradictory
definitions, are nevertheless prone to be used inconsistently even in the same context and so result either
in confusion or with misleading implications. Such concepts may be intended to mean one thing but are
all too often used in a way that unintentionally implies the opposite, even by the proponent of the
concept. Consequently, such concepts are misleading and so as a matter of instrumental/pragmatic
reasoning, such concepts should be avoided and replaced by less misleading ones.

This is the sense in which figurative infinity is inconsistent even though it is not self-contradictory;
figurative infinity is an inconsistent concept in that it is inherently misleading, prone to being confused
with the literal sense of infinity in certain contexts. The problem of figurative infinity’s misleading nature
is most noticeable in the field of mathematics.

For example, consider functions in mathematics with respect to infinity. A mathematician may say
that a mathematical function maps or associates numerical values with the members of some other set;
the function is said to “output” the values. Moreover, mathematicians sometimes refer to functions the
outputs of which have infinity as a limit [56]. Some functions assume there are “infinitely many” values
for the function to associate with members of another set. But what this means is less clear. It may mean
that if, by analogy, the function is a machine that outputs mathematical values on softcopy or hardcopy,
it would output the values persistently over time with no defined end (which implies a finite amount no
matter how long it continues). This is in keeping with using infinity in a figurative sense. However, if the
mathematician says there are infinitely many values for the function [57], then the mathematician implies
a literally infinite quantity of values [58]. That is, the mathematician ends up implying that the function
maps a literally infinite quantity of values—a complete and limitless quantity that exists all at once—to
another literally infinite collection. The adverb “infinitely” slips from infinity as a figure of speech for what
if carried out physically would be an ongoing (but actually finite) process over time to a literal descriptor
of a complete and limitless collection that exists all at once.

Itis in such contexts that figurative infinity may become confused with literal infinity. If this is so, then
to describe something as “infinite” in a figurative sense is to employ a term prone to misleading
implications. This is what | mean when | say figurative infinity is an inconsistent concept and should be
rejected as such. (See Chapter 24 for more details.)

1.7.5 The Trouble with Divine Infinities

The quantitative types of infinity are logically problematic concepts because they refer to non-zero
guantities that are supposed to be limitless. Literal infinity is logically self-contradictory if such
limitlessness does not cohere with quantitative completeness, as | will argue it does not. Figurative infinity
is logically inconsistent if the more metaphorical use of ‘limitlessness’ (taken as a condition of continuous
change in quantity) has too strong of a tendency to be confused with the limitlessness of literal infinity,
which | will argue is the case. Both quantitative forms of infinity may therefore have to be abandoned in
order to have a precise and accurate view of reality.
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Likewise, the ‘divine infinities’—qualitative infinity and absolute infinity—when taken literally are also
logically problematic in a manner that even appeals to paraconsistent reasoning and mysticism do not
overcome. Moreover, | argue that insofar as the divine infinities are not to be taken as literally implying
lack of limits per se, they become misnomers for finite qualities and are consequently prone to misleading
implications in a manner similar to figurative infinity.

My case will therefore be that none of these notions of divine infinity are intellectually supportable.
If there is a divine reality, it would be more accurate to describe it as finite. In Chapter 26 | will argue that
any theology aiming to be rationally persuasive is thus better off without proposals of divine infinity.

1.7.6 Debunking Infinity

| will present a case that exposes the erroneousness of infinity—the condition of being limitless—both as
guantitative infinity and as the divine infinities. Once again, my focus will primarily be on quantitative
infinity as that is the usual sense in which the term ‘infinity’ or its cognates ‘infinite’ or ‘infinitely’ tend to
be used. But in the interest of being thorough, | will close my case with a critique of the divine infinities
(both the qualitative infinities and absolute infinity) since they too suffer from similar logical problems.

As to the quantitative infinities, | argue both versions are logically erroneous—the literal sense of
infinity is self-contradictory while the figurative sense of infinity is misleading and prone to inconsistent
use [59]. Infinity in its conventional, quantitative sense | will show has no logical consistency. Infinity, both
in the literal sense of being complete and limitless in quantity and in the figurative sense of changing
“limitlessly” in quantity, is not a logically consistent concept. In its literal sense infinity has no basis in
reality and in its figurative sense ‘infinity’ is a misnomer that | will argue should be avoided, if for no other
reason than for the sake of clarity and logical precision. Consequently, if we want to apply our quantitative
notions to the real world, reason clearly about the Universe, and describe its nature accurately, we ought
to reject the use of infinity altogether.

Of secondary importance to my case are the divine infinities—qualitative infinity and absolute
infinity—the examination and critique of which | confine to Chapters 25 and 26. | will argue that, when
divine infinities are taken literally, they are logically problematic and so cannot be accurate depictions of
any purported divine being (paraconsistency or mysticism notwithstanding). When the divine infinities
are not taken literally, they are misleading in what they refer to. Divine infinity | conclude is a concept that
should be rejected due to its logical inconsistency.

What the quantitative and divine infinities share is the idea that something non-zero or non-empty
can be limitless. Insofar as limitlessness is to be taken literally, | argue it turns out to be self-contradictory.
Insofar as limitlessness is to be taken figurately, | argue it is a misleading misnomer for finite properties.
Either way, infinity is a flawed concept better left behind.

1.8 THE WAY AHEAD

In this introductory chapter, infinity was defined according to its general meaning in natural language and
distinctions were made between various types of infinity: quantitative infinity, qualitative infinity, and
absolute infinity with the latter two types of infinity categorized together under divine infinity. Until
Chapter 25, you can assume my use of the term ‘infinity’, unless specifically called out otherwise, refers
to one of the quantitative senses of infinity, and I'll try to be as precise as possible to avoid confusion.
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Part | of this book examines quantitative infinity, elucidating the concepts we need to properly
understand both of its forms: literal infinity and figurative infinity. Toward that end, we will begin by
examining the nature of quantity and the way in which we typically speak of infinity in its literal and
figurative senses. Since literal infinity and figurative infinity are both quantitative infinities, Chapter 2 will
define the term ‘quantity’ so that we have a clearer understanding of what it means to be quantitatively
infinite in these senses. Chapter 3 will then define the completeness that characterizes literal infinity and
the incompleteness that characterizes figurative infinity. Chapters 4—6 follow with an exposition of the
guantitative infinities, detailing how they compare and contrast both with each other and with concepts
such as finitude—both definite and indefinite. Chapter 7 will then support the definitions | offered for
both literal infinity and figurative infinity by showing how these conceptions of infinity are commonly
assumed, even in the technical discourse of mathematics, whenever the term ‘infinite’ is used.

Part Il will focus on literal infinity. Chapter 8 will provide further evidence that my proposed definition
for literal infinity captures the common understanding of infinity, both by scholars throughout history,
including mathematicians, and by the lay public. Chapter 9 will then show how infinity is mathematically
coherent in its symbolism and grammatically coherent in its natural language expressions of axioms and
theorems, but | will begin to make the case that literal infinity is not logically coherent, despite its
grammatical and mathematical coherence. Chapters 10-16 then present the main arguments against
literal infinity, proving it is a self-contradictory concept. In Chapter 16, | provide the reasons why
mathematicians are not greatly concerned with the logical contradictions inherent in the concept of literal
infinity and why they should be. Next, we examine the relationship between literal infinity and physical
reality. Chapters 17-21 argue that literal infinity is a condition that does not apply to anything in the real
world. Chapter 22 then presents some closing arguments against literal infinity by considering rebuttals
to my charges and countering each of them. | conclude literal infinity does not exist in reality and should
be replaced with the alternative concept of indefiniteness, which is a finite condition.

Part Il addresses figurative infinity. Chapter 23 provides a brief history of infinity according to its
figurative sense, adding more evidence that my proposed definition for figurative infinity correctly
captures another of the common understandings of infinity. In Chapter 24, | argue that figurative infinity
is a misnomer for serial indefiniteness and that it should be replaced by the use of various terms for
indefiniteness, both for the sake of precision and to avoid confusion with literal infinity.

Part IV moves beyond concerns solely with the physical Universe to explore the details of divine
infinity. Chapter 25 offers an exposition of how theologians talk about divine infinity, followed by a
historical overview of the divine infinities. Chapter 26 then provides a critique of the divine infinities. |
argue that insofar as qualitative infinity and absolute infinity can be conceived without contradiction, they
both reduce to misnomers for more mundane qualities that are actually finite. | then provide
counterarguments to apologetics for divine infinity, followed by a recommendation for theists to
reconceive the divine, however superlative, in finite terms.

The Conclusion then wraps up the book with a summary of previous chapters and offers some final
remarks on the implications of the case against infinity for common discourse as well as for fields such as
philosophy, mathematics, physics, cosmology, and theology. | end by addressing concerns regarding
prospects for immortality. As | aim to prove, all that is not void of properties—everything having
properties, everything that exists—is finite.
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CHAPTER 1 IN REVIEW

+ Infinity (as defined in ordinary, natural language) is the condition of being infinite; that is, the
condition of having no limit to a given measure.

«+ There are three main notions of what it is to lack a limit—something can lack a quantitative
limit, or it can lack a qualitative limit, or both. These ways of lacking a limit correspond to
the three main types of infinity:

o Quantitative infinity—limitlessness in quantity
o qualitative infinity—limitlessness in quality
o absolute infinity—limitlessness in quantity and quality

% The majority of my case concerns quantitative infinity, of which there are two types:
o literal infinity—the condition of being both complete and limitless in quantity
o figurative infinity—the condition of indefinitely changing in quantity

+ Both qualitative infinity and absolute infinity are the two ‘divine infinities’, which are
addressed toward the end of the case.

+ In making a case against infinity, | argue for the following verdict:

o Literal infinity is a self-contradictory concept and figurative infinity is used inconsistently
as a misnomer for a kind of quantitative indefiniteness (a finite condition).

o Insofar as the two divine infinities avoid self-contradiction, they are also misnomers for
what are actually finite qualities and are thus misleading uses of the term ‘infinite’.

o Where the concept of infinity is not self-contradictory, it is misleading and so use of
‘infinity’ and its cognates should be rejected as logically inconsistent.

o Quantitative infinity and the divine infinities should be replaced with more logical,
finitistic concepts, such as ‘the indefinite’ and ‘the superlative’.

o The rejection of infinity entails all that is, is finite.




PART I:
QUANTITATIVE INFINITY



[ THIS PAGE LEFT INTENTIONALLY BLANK. ]



2: THE NATURE OF QUANTITY

The case against infinity is mainly a case against quantitative infinity in both its forms—'literal infinity’ and
‘figurative infinity’. Literal infinity is the condition of being both complete and limitless in quantity;
figurative infinity is the condition of indefinitely changing in quantity.

To have a good understanding of these two forms of quantitative infinity, we should first ensure we
have a good grasp of quantity as such. Although we have an intuitive sense of quantity, and it may seem
an exercise in stating the obvious, it is worthwhile to lay bare some assumptions about quantity before
proceeding further.

This chapter will define the term ‘quantity’ in terms that are simple on the surface, complex under
the surface. Once we have ensured that we are making the same assumptions about quantity, we will
have the background needed to understand what it means to be “complete and limitless” in quantity
(literally infinite) or “indefinitely changing” in quantity (figuratively infinite). We will then be a step closer
to a firm understanding of the literal and figurative senses of ‘infinity’ and so in a better position to
examine where the logical inconsistencies are found in these notions of quantitative infinity.

2.1 DEFINING QUANTITY
| will define the term ‘quantity’ very simply:
= quantity: an amount of objects.
Just so there are no false assumptions, | will further explicate this definition. First, we’ll take a look at the

concept of object and some related concepts; next, we’ll examine the meaning of amount; and, finally,
we will see how these terms all work together in the concept of quantity.

2.2 OBJECTS AND COLLECTIONS
We should start by defining ‘object’:

= object: that of which a subject can be aware.
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The term ‘object’ in this sense does not necessarily refer to a material thing. Rather, an ‘object’ may be
substantial or insubstantial, material or immaterial, abstract or distinct, universal or particular. Objects
may be spatial, temporal, perceptual, imaginary, conceptual, etc. Properties and qualities, relations and
relationships, things, persons, places, events, ideas, concepts, and so forth, whether real or fictional, are
all ‘objects’ in the sense that they can all be in the awareness of a subject.

In this context, the term ‘subject’ is defined quite simply as follows:

= subject: that which may be aware of an object.

A subject can be a person, animal, or anything else that is able to be aware of. We won’t worry about
what the term ‘aware’ means; you can plug in your own intuitive understanding of that. The basic idea is
that subjects are those things that are able to be aware of objects and objects are of what subjects can be
aware of. That’s not to say that to be an object requires a subject to be aware of it in order to exist; rather,
it’s just to say that if something is an object, it has the potential for a subject to be aware of it.

The above definition of ‘object’ also allows for self-reference. A ‘subject’ (that which can be aware of
an object) can be regarded as an object—since we as subjects can be aware of other subjects, those
subjects may become the objects of our awareness. Hence, to be aware of a subject, such as another
person, is to make that subject into an object of awareness. | of course do not mean the person is an
‘object’ in some demoralized sense as if they are purely a material instrument; | simply mean they are an
object in the sense that they are a being of which we can be aware. So too, when we as subjects become
self-aware such as by thinking of ourselves, we become the objects of our own thoughts and therefore
we become the objects of our own awareness.

According to the above definition of ‘object’, all subjects are also objects, though not all objects are
subjects.

2.2.1 An Amount as Equal to a Single Object or a Plurality of Objects

The definition of quantity (“an amount of objects”) refers to objects (plural). Does this definition imply a
‘quantity’ is necessarily more than a single object such that what we call a ‘quantity’ cannot be of just a
single object? | don’t believe the definition commits us to that position.

The concept of quantity—of having an “amount of objects” —is about drawing a kind of comparison
to a plurality, even if only a hypothetical plurality. So, even where there is only a single object, we can still
say that we have an “amount of objects” since, of the plurality of objects there could have been, what we
doin fact have constitutes an amount, even if only of a single object. The quantity in such a case “amounts
to” a single object. Hence an amount of objects can be either a plurality of objects or just a single object.
If we have no object at all, though, then we have no quantity.

The subject of a hypothetical plurality brings up another point. Any plurality of objects, even a plurality
of objects that is purely hypothetical or conceptual, is a group of some kind—that is, the objects are
grouped together, even if only mentally. What constitutes a ‘group’ of objects | will leave rather vague. A
group can be physical, imaginary, conceptual, or some combination thereof. To group together objects
can mean to place them close together or to otherwise put them into mutual causal interaction, or simply
associate them with one another as parts of a whole in symbolic representation. So, grouping objects
together does not have to entail gathering objects into one physical location, but it can—it all depends on
context and interest.
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When objects are grouped in such a manner that the grouping allows for drawing comparisons with
other groups of objects, such as for comparing the quantity of objects in each group, the objects of each
group are then parts of a whole and the whole is called a collection. Another simple definition:

= collection: a group of objects.

Just categorizing objects as belonging to a group, whether the objects are near or far to one another,
whether they are all of a kind or not, means the objects belong to a ‘collection’—at least a conceptual one
if not an actual, physical collection.

Some objects exist on their own, others exist only as a part of a collection, and some objects may or
may not be part of a collection. But when establishing a quantity—an amount of objects—we are always
attending to objects as grouped in a collection. This is so even if the collection in question is merely a
mental conception of multiple objects of which we have in reality only a single object present on the
occasion. The conceptual group of objects is the ‘collection’ from which the “amount of objects” (quantity)
we have before us is but one real object, perhaps belonging to others that either do or could exist
elsewhere. Hence, an “amount of objects” can be just one object and need not be multiple objects.

All of that is straightforward. But notice a similarity in the definitions for quantity and collection:
qguantity was defined as an amount of objects and collection was defined as a group of objects. But an
amount of objects is not the same as a group of objects. The ‘amount’ is a way of denoting and
distinguishing the objects (such as whether we discern a sole object or many objects) while the ‘group’ is
the manner in which the objects are related to one another.

As for the objects themselves, each object (as a thing of which a subject can be aware) can be physical,
imaginary, conceptual, etc. Regardless of the type or types of objects grouped together, objects have
something in common with one another when they are grouped together: objects grouped together are
the components or members of the collection to which they belong. Moreover, even an entire collection
of objects can be regarded as an object in its own right.

2.2.2 Objects as Elements of a Collection

The most fundamental objects making up a collection are members called elements. However, there are
two different ways to think about elements:

= element:
(1) an indivisible, distinct object.
(2) a divisible, but undivided, distinct object.

Unless otherwise specified, | will assume ‘element’ according to the second definition. According to the
second definition, elements are treated as if they are fundamental. For an object to be an element, it
cannot be divided up into further members or parts and still be regarded as an element. However, even
as ‘fundamental’ members of a collection, elements need not be absolutely indivisible. Instead, an
element is merely considered as a basic unit without regard to any parts it too may have. Elements, simply
as such, are not divided (conceptually or physically), but they are divisible; they can be divided—at least
in principle. Hence, elements do not have to be absolutely fundamental or irreducibly simple; they are
merely treated as such for the purpose of considering their relationships to other objects and to the whole
of the collection(s) to which they belong. At least, that is how we may think of an ‘element’ according to
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the second definition of the term, which is what we shall assume unless otherwise noted (see § 18.5.8 for
use of the first definition with respect to space).

If an object that is regarded as an element at one time is later subjected to a process of division, the
object is no longer considered an element. Only an object that is both undivided and considered
fundamental is an element. Conversely, an object that has been conceptually divided by the discernment
of various parts may later be treated as a conceptually undivided object and thereby regarded as an
element.

While undivided, an element is regarded as ‘fundamental’ but is nevertheless an object that is possible
to divide. Many objects can be regarded as elements if they are considered in the abstract as
‘fundamental’. Some examples: the stars in a collection of stars may for some purposes be regarded as
the elements of that particular collection, the years in a collection of years can be the elements of that
collection, the ideas in a collection of ideas might be thought of as the elements of that collection, the
digits in a collection of digits can be the elements of that collection, and so forth. Stars, years, ideas, digits,
and all other objects can be further analyzed in terms of constituent parts or members; such objects are
not fundamental in an absolute sense. However, they may be regarded as fundamental objects in a given
collection if they are not subject to further conceptual distinction or physical dissection. So, in the abstract,
they can be considered as elements.

It should be noted that although elements are whatever is regarded for practical purposes as
fundamental, or basic, the terms ‘fundamental’ and ‘basic’ do not necessarily mean quantized, digital, or
discrete. Not all collections are made up of elements that are discrete; some collections have elements
that are continuous, such as vast expanses of space or time—as long as those expanses are each regarded
as basic units for the purposes of consideration, they may be referred to as the ‘elements’ in a collection
of expanses [60].

Moreover, what makes an object into an element of a collection is that the object is distinct from any
other objects in that collection. To be considered an element, an object must be able to be distinguished
as different from other objects in the given collection, and it must be regarded as one of the fundamental
members of that collection, something for which parts or portions are not an issue.

Now that we have a grasp of the fundamental concepts of object and collection, we should ensure we
understand the differences between the various kinds of collections which can be quantified, for some of
them will play an important role in the sections to come.

2.2.3 Collections as Aggregates, Multitudes, and Sets
We will take a brief look at collections such as aggregates, multitudes, sets, sequences, and series in order
to see both their similarities and their differences so as to make some distinctions that will become

important when we examine infinity [61].

= aggregate: a collection in which the members operate together as interactive parts forming a
whole.

A molecule is an aggregate of atoms, a cloud is an aggregate of chemical elements, a dune is an aggregate
of sand grains, and so forth.

= multitude: a collection the members of which are individuals of the same kind.
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A collection of people at a town hall is a multitude, a collection of animals at a zoo is a multitude, a
collection of symbols arranged together in a string is yet another multitude, and so on.

Both aggregates and multitudes share some common traits and some differences, both with each
other and with another kind of collection—sets. For instance, some aggregates and multitudes are
structured collections while other aggregates and multitudes are unstructured collections. Structured
aggregates like clouds, sand dunes, crowds, marching bands, and numerical strings, do not remain
unchanged if the arrangements of their parts change; change the arrangement of the constituent objects
and you change the form or structure of these aggregates. Or take a collection of celestial bodies such as
the Earth, the Moon, and the Sun. Clearly, when we regard this collection as an aggregate of real bodies,
the members of the collection cannot be rearranged in spatial position without physical consequence. We
may also say the same of certain multitudes. Suppose we have a multitude of boats sailing in random
directions at different speeds. They are not an aggregate as they do not operate together by interacting
with one another to form a whole. However, it is not necessarily the case that we can swap one boat for
another without changing the order in which they return to the harbor. Changing the order of the
members may change the whole of the multitude over time. Order matters for structured collections.
Unstructured multitudes and aggregates, however, can have their members altered in order without
consequence. Such unstructured collections belong to the category of ‘sets’.

A set, in the ordinary language use of the term, is a grouping together of objects of any kind (you can
have sets of planets, people, chairs, trees, symbols, ideas, etc.) in which those objects are regarded as
elements that may be arranged in any order without changing the properties that they have independent
of membership in the set or the properties of the group to which they belong. We will define the term
‘set’ thus:

= set: a collection of distinct elements for which order is irrelevant.

A set may have its members placed in order or no order at all—order is irrelevant to set-hood.

This definition for a set is what some logicians and mathematicians refer to as a ‘naive’—read as ‘19"
Century’—definition since it tells us what a set is without describing the process by which a set is formed
[62]. Mathematicians known as set theorists prefer instead to define the term ‘set’ according to either a
particular mathematical procedure for forming an abstract set or according to rules of ‘membership’ of
what does and what does not ‘belong’ to a set (often merely taken for granted in the axioms of the
mathematical theory) [63]. While the preliminary definition for ‘set’ that | have offered does not have the
kind of utility that modern set theorists prefer, neither is it logically contradictory and it seems to still fit
with what many professional set theorists assume to be the logical implications of set-hood [64]. Without
delving too far into the esoterica of that system of logic and math called set theory, it will serve our
purposes for the time being.

| therefore unapologetically adopt some modal words like “could” and “would” and “can” [65] and
simply say | will assume sets are collections not merely that could be formed according to a rule, but that
if formed would then have members that need have no particular order (and therefore no particular
structure). That is not to say if a collection has order that it is not a set, because it can be. It’s just to say
that order is not important to identifying a collection as a set. (In fact, we’ll later see in § 14.7.3 some
instances in which assuming an order or sequence for members of a set can be highly misleading.)

Further, sets can be unordered in one of two ways—absolutely or relatively. Sets that are relatively
unordered—unordered in a specific way—may either be sets of real objects in the real world or sets of
abstract objects that are only grouped conceptually. As an added nuance, sets that are absolutely
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unordered—sets that have no relevant order of any kind—can only be sets of abstract objects in a purely
conceptual world [66].

To see the difference, consider sets of real objects versus sets of abstract objects.

First, the real sets. Sets can be real wholes with real parts existing in the real world, regardless of a
mind representing them. Of course, this can be true for other kinds of collections—it can be true of some
multitudes and aggregates, like rain drops in a cloud, for instance—but it can even be true of some sets.
Take a collection of elements that is a real grouping (like a chess collection) composed of real objects (the
chess pieces). If we want to consider this collection to be a ‘set’, then we are unconcerned about any
order the objects may or may not have in the real world; the pieces can be in any order on the chess board
since a set is a collection for which order is irrelevant. So, to call a collection of real objects a ‘set’ is not
to say that the collection does not have any order in the real world, but only that such order is not relevant
for our considerations—it is ‘relatively’ unordered.

Now consider sets that are groupings of abstractions such as concepts, ideas, or representations such
as signs and symbols. Some sets of things like these are unordered collections that may even, as sets, be
represented by symbols. We may, for instance, have a set, S, as the set of symbols 4, b, and c.

The symbols in a set of symbols may, of course, refer to real objects. As an example, start by recalling
a collection of real objects, such the one mentioned earlier—the collection of celestial bodies consisting
of the Earth, the Moon, and the Sun. They all have in common the property of being celestial bodies, so
we can represent these celestial bodies in abstract terms by assigning a symbol, such as a letter, to each
of them: a small “¢” for the Earth, “m” for the Moon, “s” for the Sun, and a capital “C” for this whole set
of celestial bodies.

Mathematicians often depict sets using curly braces { } with the members of sets represented by small
case letters inside those braces. So, when the real collection is represented in symbolic terms as an
abstract set, C, the celestial bodies as members of C can also be represented symbolically as abstract
elements inside those curly braces: C = {e, m, s}.

Represented symbolically, the celestial bodies as members of an abstract set do not share the same
relationship between one another as they did even when they were regarded as members of a real set.
When we consider members of a real set, we simply disregard any order that may be there among the
objects in the real world. Were the real objects to change position, the order we are not considering may
suddenly become relevant, as with the gravitational organization of celestial bodies. But as members of
an abstract set the elements do not necessarily have to be arranged in any particular order; their positions
certainly do not need to correspond to the spatial locations of their physical counterparts in the real
collection of bodies making up the Solar System. Instead, we are free to represent them in any order.

As the order of C's members is arbitrary, set C expressed as {¢, m, s} is the same as {s, m, e}, which is
also the same set as {m, s, e}, and so on. The celestial bodies, considered as elements in an abstract set,
may be represented in any combination of positions with regard to one another and the differences in
their order do not change C’s properties. The elements can be rearranged in any order without changing
either their properties or that properties of the set to which they belong. This is what is meant by an
abstract set being ‘absolutely’ unordered; order makes no difference at all.

Whether real or abstract, sets always remain in some sense (relatively or absolutely) invariant in terms
of the properties of the collection we want to consider—that is, the properties that are relevant for our
consideration are the same no matter what order their elements are in [67]. The term ‘set’, unless
otherwise noted, will thus apply only to a collection having properties that remain invariant regardless of
the order of its members; this definition holds whether the set is a collection of real objects, an abstract
collection that merely represents real objects, or an abstract collection of purely conceptual objects.
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Since some aggregates and multitudes are unstructured and also qualify as sets, while others do not,
we see immediately that members of one kind of collection can also belong to collections of other kinds.
As indicated in Figure 2.1, some aggregates and multitudes are also sets, and some are not. Where
aggregates and multitudes overlap with sets, they are composed of members the order of which is
irrelevant to consideration. You can also have sets of aggregates or sets of multitudes, and you can have
aggregates of sets, as when subsets are parts of a greater set; then too, you can have multitudes of sets,
as when you may consider many different sets of symbols.

Moreover, as shown in Figure 2.1, some multitudes are aggregates and some aggregates are
multitudes. A hydrogen atom can belong to the aggregate of atoms making up a cloud of gas around a
star, and the atoms in the hydrogen cloud together form a multitude of atoms as well since they are all
atoms of the same kind. As these examples show, collections of different kinds are not exclusive; there is
some overlap between them in terms of membership in elements.

SETS

AGGREGATES MULTITUDES

Figure 2.1: A collection of relationships between three kinds of collection. Some objects can belong to more than one kind of
collection but not all members of one kind of collection are necessarily members of the others.

On the other hand, Figure 2.1 also shows that different kinds of collections do not completely overlap.
For example, not all multitudes are aggregates and vice versa. The people of New York City are a multitude
and form an aggregate of people as members in the same city, but not all multitudes of people are
aggregates of people; a thousand people isolated from one another are a multitude, but not an aggregate
as they do not operate together or interact in any way to form a whole. Conversely, a rider and a horse
may operate together as an aggregate, but do not form a multitude as they are different in kind—the
horse carries and does not ride, and the rider does not carry a passenger. Hence, the different kinds of
collections do have some distinctions and do not completely overlap in membership.

It is primarily sets rather than aggregates and multitudes per se that we will be concerned with,
though some examples that we will consider may qualify as being more than one type of collection. Even
so, we will need to attend to some differences between sets and other kinds of collections as well, such
as ‘sequences’, ‘successions’, and ‘series’.

To capture these differences, let’s consider a real-world collection of objects, such as a collection of
dominoes. Suppose the dominoes are thrown together in a loose pile, as shown in Figure 2.2. If we regard
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the collection as an aggregate, then of course the arrangement of dominoes can make a difference if
altered. However, if we regard the collection of dominoes as constituting a ‘set’, then we regard the
dominoes without concern as to what order they are arranged in. The dominoes can be arranged
symmetrically in any combination or scattered randomly with no discernible order at all, just as they are
in Figure 2.2, since a set is by definition an unordered collection.

Figure 2.2: A set of dominoes. As a set, the order of members—or the lack thereof—is unimportant.

When the dominoes are represented symbolically by letters or other characters—as in d for each
domino and D for the whole set—the symbols must be arranged coherently in strings and formulas for
mathematicians to make use of them. Even so, the order of the members in the set is unimportant since
a set is an unordered collection. So, we may represent the dominoes falling into any order within a given
string or equation. For example, a simple set of three dominoes might be represented mathematically as:

D ={d-, d:, d:}, or D ={d:, d:, d'}, or D ={d:, d-, d:}, etc.

This is primarily how mathematicians think of sets: as abstract collections of abstract symbols that
need not represent real objects and groups (and, even when sets are used to represent real objects, the
arrangement of their members is not important—insofar as the collections are sets—and so is given no
consideration). Mathematicians Karel Hrbacek and Thomas Jech, offer the following position [68]:

Sets are not objects of the real world, like tables or stars; they are created by our mind,
not by our hands. A heap of potatoes is not a set of potatoes. The set of all molecules in
a drop of water is not the same object as that drop of water. The human mind possesses
the ability to abstract, to think of a variety of different objects as being bound together
by some common property, and thus to form a set of objects having that property. The
property in question may be nothing more than the ability to think of these objects (as
being) together. Thus there is a set consisting of exactly the numbers 2,7, 12, 13, 29, 34,
and 11,000, although it is hard to see what binds exactly those numbers together, besides
the fact that we collected them together in our mind.
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When most set theorists think of ‘sets’, they consider them only as abstract objects that have no existence
except in the mind; a set of potatoes or set of water molecules is just a mental representation of such
objects as being together in a collection even if their physical counterparts are not. However, | will break
with set theorists here to allow the term ‘set’ to refer in a more general sense to any collection, whether
real or purely conceptual, for which order is irrelevant to our consideration. So, sets may be abstract
objects merely defined as having members or they may be real-world collections of objects such as
physical objects.

With regard to real-world sets, some such sets are collections that lack any specific order—yes, such
as heaps of potatoes—while other sets are real-world collections that have no relevant order, at least with
respect to the collection being regarded as a set. As an example of a collection with irrelevant order,
consider a chess set, not as a game but as a set; the pieces can be placed on the game board in the order
of their starting positions or arranged in any other order during play without changing the fact that the
collection of game pieces constitutes a set. The collection of chess pieces, as a set of chess pieces, is the
collection regarded without reference to the order of the pieces. The order of the pieces may be relevant
to gameplay, but they are irrelevant to the fact that they also constitute a set. A set can therefore be a
real-world collection, whether its members are ordered or not, so long as the order is either not specific
or relevant to consider.

So, sets can either be real-world collections or they can be purely conceptual collections like
unordered, abstract collections of symbols. However, | will endeavor to ensure that context makes clear
what sort of ‘set’ is being discussed as we go forward.

2.2.4 Set Theory and Notation for Sets

The term ‘set’ as used in set theory can cause some philosophical confusion, so we should attend to that
before proceeding.

You will notice that when we have less than two objects, we do not typically say we have a set in
ordinary, colloquial language. The word ‘set’ colloquially implies at least one thing is grouped with at least
one other thing; you ordinarily have to have at least two things to have a set. But set theorists and
mathematicians seem to use the term ‘set’ in reference to only a single object or even no objects at all.
They say that there are sets with only one member {x} or even sets with no members { }. They frequently
refer to a set having only one member as a singleton and a set with no members at all as the empty set or
null set.

It seems odd to suggest that a set, even as a conceptual abstraction, can have only one member or no
members and still be a set of something. After all, a real set—that is, a set of physical objects in the real
world of everyday experience—is a collection of things. And that is precisely how ‘set’ was previously
defined in § 2.2.3: “a collection of distinct elements for which order is irrelevant.” In ordinary language, a
‘set’ refers to a collection of more than one thing, but mathematicians seem to suspend that requirement
for collections that are sets. They instead distinguish sets from their members as if sets are entities that
exist in addition to whatever may be in them. As Fletcher pointed out, “a collection is not usually
distinguished from its members: for example, to fetch a pair of slippers it to fetch the slippers themselves,
not to fetch a third object, the ‘pair’” [69]. So too, a real set of something cannot be other than what
makes up the set.

The odd use of the word ‘set’ has consequences for the idea of singletons and the empty set. Since a
collection is nothing other than its members, then to have a collection with only one member or without
members is not to have a collection. Fletcher states that “a stamp collection with no stamps is no
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collection” [70]. Therefore, concludes Fletcher, to have a set without members is not to have a set, so
there can be no such thing as the ‘empty set’ [71]. Similarly, Fletcher argues, a set with only one member,
a singleton, is not a set—it is not a genuine collection at all, but just a solitary object on its own.

Fletcher is right insofar as how words like ‘set’ are used in colloquial speech: a set is nothing other
than its members and so a set with no members or just one member is not really a ‘set’ in the normal
sense of the word or even a ‘collection’ of any kind. It is therefore a bit misleading for set theorists and
mathematicians to adopt words like ‘set” and ‘collection’ from ordinary language and use them to describe
either a lack of elements or the presence of only one element.

Nevertheless, we can take a more charitable interpretation of what the term ‘set’ means in set theory
and adapt it to our previous definition of ‘set’ so that the mathematical concept of a ‘set’ fits our earlier
definition of a set as a collection. That way, a ‘singleton’ and the ‘empty set’ may each still be rightly
considered as an instance of set according to the previous definition: a collection of distinct elements. We
won’t have to change that definition of ‘set’, but we can qualify what the definition refers to when dealing
with sets represented in set theory and mathematics.

A ‘set’ as referred to in set theory and mathematics is indeed a collection of more than one thing
alright: it is a collection of braces that can contain any number of objects or even no objects at all. A ‘set’
in set theory and mathematics is simply a set of braces in the form of a pair of curly braces, { }. The set of
braces functions as a container for symbols.

Take the earlier example of dominoes symbolized with mathematical notation: {d-, d:, d:}. And
consider that a ‘set’ is a collection of distinct objects. But now we may ask: don’t we have two sets in this
example—the pair of braces as one set and the symbols d-, d:, and d: between them as another set?
Strictly speaking, we do. However, set theorists usually refer to the braces and everything within them as
all together constituting “the set” in question and for counting or comparing sets they ignore the braces
to concentrate on what is inside them. So, it's the whole thing of {d, d:, d:} that constitutes “the set” in
this example, though it is only the content between the braces that is used for comparison with other
sets. The sets of set theory and mathematics are thus sets of braces that can contain collections of objects,
typically symbols. Moreover, as a set, the pair of braces may contain multiple objects, only one object, or
no objects at all. Hence, {x, y, z} and {x} and even { } are all examples of sets.

A set of braces that contains no other symbols is called the empty set: { }. If the braces contain only
one other symbol, such as {x} or {1}, then the set of braces and the symbol it contains is collectively called
a ‘singleton’. A set of braces containing the empty set—{{ }}—also counts as a singleton since the inner
braces are a symbol.

Basically, since a pair of things is a collection, and a pair or ‘set’ of braces is a collection, then the ‘sets’
of set theory are still themselves collections—they are just collections in the form of pairs of braces used
to contain other collections of symbols, like numbers and letters.

It is true, however, that we can more abstractly represent sets with other notation such as when we
represent sets with letters like A, B, C, etc. as we did in the examples provided in § 2.2.3. Such notation
is simply shorthand for representing sets as curly braces with object inside of them, such as A = {x, y, z}.
The letter notations (such as A, B, C, etc.) are merely abstract symbols for sets, conceived as pairs of
braces along with the symbols they contain. Then too, sets may also be represented with other notation.
The empty set or null set, for example, is often denoted by a specialized symbol: @. The symbol @ is just a
placeholder for { }. (Incidentally, a singleton containing the empty set can also be expressed as {?}.)

Such notation will be useful in representing not only sets as such but also sets that are sequences. In
addition, this set-theoretic notation will come in handy for explaining the nature of numbers, which is at
the heart of our analysis of quantity.
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2.2.5 Sets and Sequences

There is a difference between sets (as well as aggregates and multitudes) on the one hand and other kinds
of collections, like sequences and series, on the other. To capture these differences, suppose we give the
dominoes a specific order. In that case, no longer do the dominoes comprise a ‘set’ pure and simple since
sets do not have to have ordered members. The dominoes presented according to an order may be
regarded as a set but need not be; they may just as easily be regarded as comprising an ordered aggregate
and/or an ordered multitude. Further, depending on how we organize the dominoes, they may also
constitute another kind of collection: a sequence, as shown in Figure 2.3.

Figure 2.3: A sequence of dominoes.

The term ‘sequence’ is defined as follows:

= sequence: a collection, the members of which are capable of being indexed as having either a
successor or a predecessor, or both.

In a sequence, a member with a successor but no predecessor is the first member, a member with a
predecessor but no successor is the last member, and a member with both a predecessor and a successor
is an intermediate member [72]. Figure 2.3 depicts dominoes marked with symbols (in this case,
representing numbers) indicating a first member, intermediate members, and a last member. Similarly, in
mathematical expressions, a group of symbols can be represented according to a sequence, as in the
example of D ={d-, d:, d:}.

Sequences differ from sets by necessarily having order to their members as an essential feature
whereas sets may either have ordered members or unordered members. However, the category
‘sequence’ overlaps with that of ‘set’ in that sequences are a kind of set, and a set may have its members
either in sequence or not.

Moreover, unlike a set, a sequence must be ordered so that change in the order alters the logical
implications of the collection, especially in a connotative or semantic sense, but also in terms of syntax.
For example, in terms of language, the order of the letters in SILENT carries different logical implications
than does the order of the same letters in TINSEL. The differences in semantics (meaning) between these
words ensure that they must have different syntax. The meaning of the word ‘silent’ identifies it in
grammar as an adjective (and in logic as a ‘predicate’) and the meaning of the word ‘tinsel’ identifies it in
grammar as a noun (and in logic as a subject) [73]. But even if the letters are treated mathematically rather
than grammatically, their order will carry different mathematical implications, as when they are treated
as variables in particular functions. Clearly, the order of the elements making up a string of elements like
letters or numbers is crucial if we are to consider the collection as a sequence rather than as a set.
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Sequences also need not be comprised merely of static arrangements. A sequence may be an order
of events occurring over time rather than a collection of symbols or material objects arranged altogether
at one time. So, any process, procedure, or progression of ordered events is also a sequence. Such
sequences are referred to as series.

2.2.6 Sequences and Series

Mathematicians think of a ‘sequence’ as an ordered list of numbers and a ‘series’ as the addition of each
number to produce a final sum. They define ‘series’ as the sum of the terms of a sequence [74]. However,
| think it’s a bit more accurate to say mathematicians regard a ‘series’ as a sequence of additions that
results in a sum. Given a sequence of terms {a, a,, a3, ..., a,}, a ‘series’ is the addition of those terms
together. A series may be represented as a1 + a, + as + ... + a,, for example [75]. So, if a sequence of
numbers such as 1, 2, 3, 4, 5 is expressed as a mathematical series in this sense, then it is written in the
form of sequential additions: 1 + 2 + 3 + 4 + 5 = 15. When a mathematician hears the word ‘series’,
the mathematician thinks of sequential additions equaling a final sum or of a similar function that
produces a final mathematical result. (In mathematics, series depicted with indefinitely many terms, such
as¥e+ %% +1/5+1/16+ ..=1areregarded as ‘infinite’ series even though they result in a finite sum.)

Use of the term ‘series’ for a sequence of additions is a confusing technical appropriation of the word
from ordinary language since the same word most often means something different:

= series: a sequence formed by succession.

That is an inherently temporal conception of series rather than an inherently mathematical conception.
Let’s examine the words in that definition—‘formed’ and ‘succession’—starting with the latter:

= succession:

(1) the condition of succeeding.

(2) the condition of having successors.

(3) asequence of elements that succeed other elements (“a succession”).
=  succeed:

(1) to be placed or occur one after another in sequence.

(2) to be subsequent or next in sequence.
= successor: an element that succeeds another element.

The opposite of succession is, of course, precession:

= precession:

(1) the condition of preceding.

(2) the condition of having predecessors.

(3) a sequence of elements that precede other elements (“a precession”).
= precede:

(1) to be placed or occur one before another in sequence.

(2) to be antecedent or previous in sequence.
= predecessor: an element that precedes another element.
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The terms ‘succeed’ and ‘precede’ can be slippery in meaning because some of the words that define
these terms (the words ‘after’ and ‘before’, respectively) have different, almost contrary, meanings
depending on whether the succession or precession in question is spatial, temporal, or both. For instance,
succeed means to occur after in sequence, but the word ‘after’ can mean either behind in spatial order or
later in temporal order. Likewise, precede means to occur before in sequence, but the word ‘before’ can
mean ahead of or in front of with respect to spatial order (as in, | stand before you) or it can mean earlier
in temporal order (as when one event happens before another).

There are other definitions for ‘succeed’ and ‘precede’ given above, but these too can be slippery as
they are also defined by words carrying multiple meanings. For example, ‘succeed’ may be defined with
words like ‘subsequent” and ‘next’ while ‘precede’ may be defined by words like ‘antecedent’ and
‘previous’—all such words which may be construed as referring to either spatial order or temporal order.

Succession and precession, then, are concepts that can refer either to the spatial or the temporal (or
both), which is why both the spatial (“placed”) and temporal (“occur”) variations of their definitions are
included above. It is succession, though, that defines series—a series is a sequence formed by succession;
precession being the reverse order in which a series is formed.

Now notice the other word in the definition of the ‘series’—the word ‘formed’. The word ‘formed’ is
a verb, necessarily implying time—the time it took for the succession to come to be. So with respect to
‘series’ as | use the term, to ‘succeed’ (or ‘precede’) indicates temporal rather than spatial sequence.
Series are sequences that are formed by succession and forming something by succession necessarily
happens over time. Series are inherently temporal; or, at least, they are products of time.

That the kind of succession defining a series is the temporal kind of succession fits with what it means
for one thing to ‘succeed’ another according to the first definition of ‘succeed’—“to be placed or occur
one after another in sequence.” To be placed (another verb) in spatial location is something that happens
in time and to occur is a temporal concept as well:

= occur: to happen as specified.
For any series, the succession making the series involves a succession of ‘occurrences’:

= occurrence:
(1) the condition of occurring.
(2) an instance of occurring (“an occurrence”)—i.e., an instance of happening as specified.

A series, being formed by succession (a sequence of occurrences during which the formation takes place),
is intrinsically temporal in nature. However, while ‘succession’ in the context of a series is one thing
occurring after another, the ‘series’ itself is the sequence that results from that temporal succession. That
is, the series may itself be temporal or it may simply be what happens in time.

A temporal series, for example, is a “series of moments.” On the other hand, we also refer to a ‘series’
as what “takes place” in time, such as a series of occurrences (e.g., actions or events), each occurrence of
which takes place during a series of moments.

Consider a collection of dominoes arranged in a row (in a sequence), falling one after another (in
succession) as shown in Figure 2.4. The successive falls, taken together as a sequence of falls, comprise a
sequence of occurrences formed by succession—i.e., a series. In this example, the order of symbols on
the dominoes is not what is in sequence; rather, it is the spacing of the dominoes that is in sequence as
well as the succession of falls—each fall being an ‘occurrence’, each happening in sequence.
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Figure 2.4: A row of dominoes in a sequence of falls that successively accumulate as a series of falls.

Figure 2.4 depicts a sequence of falls accumulating over time to comprise a series of falling dominoes.
Had the sequence of symbols given in Figure 2.3 accumulated one by one, that too would constitute a
series—a succession of symbols appearing in sequence along with the sequence of their appearances; two
overlapping series expressed by the same group of objects.

What | am referring to as a ‘series’, though formed temporally, need not have temporal intervals like
moments or events, or even actions like falls, that define the elements of its sequence. Yes, a series is a
sequence formed by a succession of occurrences that take place, but that does not mean what is called a
‘series’ must be the occurrences themselves.

Some series are not series of temporal occurrences like series of moments, nor need they be
occurrences of activity like the falls of dominoes, even though series of actions were formed by another
series—namely, the series of moments or events during which the actions took place. What is called a
‘series’ may instead refer to a sequence of objects that have been formed over a series of moments or
events or intervals of time. A series of books written over a series of years, for example. (For further
distinctions about time, see § 19.1.)

Now | should reiterate that mathematicians define terms like ‘sequence’, ‘series’, and related terms
like ‘succession’ differently than | have here. (However, the mathematical definitions actually complement
rather than contradict the more colloquial definitions | am using, as | will address further in § 3.11.1.)

Since | wish to stick with the more colloquial definition of series as a sequence formed over time by a
succession of occurrences, | will need to offer substitute terms for what mathematicians typically call a
‘series’. What mathematicians typically call a ‘series’ in their trade | will instead refer to as an accession:

= accession: a sequence of additions resulting in a final sum—what mathematicians typically refer
to as a ‘series’.

In mathematics, a sequence of subtractions can also be framed as a sequence in which negative numbers
are added, but if we wanted to capture a sequence of subtractions as such, we could use the term

degression to mean the opposite kind of arithmetical sequence of sums:

= degression: a sequence of subtractions resulting in a final difference.
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The reason accessions and degressions are complementary to series (as | defined ‘series’) is because
while accessions and degressions may be represented on the page all at once—

= example of accession: 1+2+3+4+5=15
= example of degression: 15-5-4-3-2-1=0

—nevertheless, their operations assume formation serially in the temporal sense. In practice, their
arithmetical operations are made over time. | had to type each of those characters out, one by one, after
all. Any mathematical function like addition or subtraction is a function that produces outputs in
succession, over time, whether by human or machine; so, the objects resulting from functions such as
addition or subtraction are themselves only constructed over time as well.

It is usually safe for mathematicians to ignore this fact in their practice. Nevertheless, at least some
mathematical accessions and degressions seem to be instances of series in the usual temporal sense of
the word.

Unless noted otherwise or clear from context, | will use the term ‘series’ in its usual temporal sense. |
will also assume that mathematical accessions (and degressions) are typically instances of series because
they form by succession over time, even if such a fact is ignored in mathematical practice.

2.3 AMOUNTS

Collections of any kind (aggregates, multitudes, sets, sequences, series, etc.) have a quantity. Quantity is
defined as an amount of objects. Every collection therefore has an amount of objects; but what is meant
by ‘amount’? Definition:

= amount: a value equal to a total.

This is a simple enough definition, and we all have an intuitive understanding of amounts. But we need
more than intuition; we need to be precise. To ensure we understand what it means for a collection to
have an amount of objects, we need to have a good command of what the definition for the word
‘amount’ entails. To that end, we need to elucidate the definition’s constituent terms—value and total.

The words ‘value’ and ‘total’ refer to numbers. We all know numbers when we see them and we have
used them throughout our lives, but we should take a closer look at the concept of ‘number’ in order to
avoid mistaken assumptions, for that is critical to a successful analysis of infinity.

So, let’s take another step back by starting off with an examination of ‘number’ as a concept. Once
we understand exactly what numbers are, and how numbers relate to one another, then we will have the
conceptual tools to better understand totals and values, and therefore what it means for a collection to
have an ‘amount’ of objects and therefore to have a quantity that might be “infinite.”

2.3.1 Numbers

Consider the following symbols:

1 2 3 4 5



70 Forever Finite Kip K. Sewell

We can consider those symbols in a couple of ways: as numerals or as numbers.

Numerals and numbers are not quite the same thing, though the ideas of each are related to one
another. A numeral is a kind of symbol, and ‘number’ is what a numeral represents. However, we
sometimes refer to the numeral itself as a number since all numerals have the property of representing a
number. For example, the numeral 1 is sometimes just referred to as the number 1.

Let’s define ‘numeral’:

= numeral: a symbol such as a word, a raised finger, a glyph, a token, etc. that represents a number.

A numeral represents a number. So what is a number? A number is a certain kind of property that every
numeral has. As a numeral is a symbol used to represent a number, and a number is a property of a
numeral, we can say that a numeral is a symbol that represents, at least in part, a property of itself. The
very symbols of mathematics are somewhat self-referential.

Number is a property of order and size that numerals have. We are all familiar with the Latin script
versions of Arabic numerals—1, 2, 3, 4, 5, etc. (which were derived from numerals that originated in India).
But the numerals in all numeral systems—whether a unary system or a positional system; whether Arabic,
Hindu, Roman, Egyptian, Chinese, etc.—share a few of the same properties: each numeral is a symbol that
has ordinality and cardinality. It is with these attributes that a numeral represents itself as a number.

Ordinality is the property that allows a numeral to represent itself in terms of order:

= ordinality: the unique position of a numeral relative to the other numerals in a sequence of
numerals.

For example, consider the sequence of Arabic numerals where the numeral 2 falls in position between
the numeral 1 and the numeral 3; the position of the numeral 2 relative to 1 and 3 (and all other numerals)
is 2’s ‘ordinality’ —its relative position in the sequence of numerals. The positions of the numerals in the
sequence, from first to last, are the ordinalities of the numerals.

The ordinalities (positions of numerals in a sequence) are often expressed as first, second, third,
fourth, fifth, etc. (or 1st, 2nd, 3rd, 4th, 5th...). In the list of numerals (1, 2, 3, 4, 5), the numeral 1 is in the
first position, so ‘1st’ is 1’s ordinality, 2 is in the second position, so ‘2nd’ is 2’s ordinality, 3 is in the third
position, so ‘3rd’ is 3’s ordinality, and so forth.

The numerals in those positions—in the first, second, third, etc. positions—are called ordinals. If | hold
up my hand and label each finger with a numeral, | could say of the second finger that it will be called
“finger 2”—in that case, the numeral 2 is the ‘ordinal’ of the second finger and ‘second’, or 2nd, is 2’s
ordinality. All the numerals in a sequence like 1, 2, 3, 4, 5, etc. denote ordinal numbers (or ordinals—see
§2.3.2).

However, it’s also correct to say that numerals expressed as their ordinalities are also ordinals; so,
when the ordinality of 2 is expressed as ‘2nd’, it is also correct to say 2nd is an ordinal. What we call an
‘ordinal’ can thus be a numeral according to either expression: 1 or 1st, 2 or 2nd, 3 or 3rd, and so on.

All numeral systems have ordinals and ordinality. Consider a simple unary system of numerals:

[, 11, III, IIII, IIIII, etc.
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Although this simple system of numerals uses the same base numeral—I—as a digit to form the other
numerals in sequence (like II, III, etc.), ordinality still applies: the numeral II falls between the numeral I
and the numeral III, for example.

Convention has standardized the numerals and their ordinal sequence. For countries in which English
is the primary language, the numerals are written by Latin script for the Arabic numeral system (which
includes, for example, the sequence 1, 2, 3, 4, 5, etc.) that we all know so well.

Because the sequence of the notation has been made standard, the numerals in the system retain
their same ordinality—their same positions in sequence—each time the system is represented, making
the system, as a conceptual tool, consistent from one use to the next. If we begin to represent the system
with the numeral 1, then 1 comes first (1st) and so 2 must follow second (2nd), 3 must follow third (3rd),
and so on (unless you are indicating the opposite order of the system: ..., 3, 2, 1). The ordinalities of the
numerals in the numeral system are hence conventionally ordered to be a common standard for
mathematical application.

Since each numeral corresponds to a specific, unique position in the numeral system, we can say that
each numeral has ordinality. But the ordinality of a numeral, as it falls in the numeral system, also
determines something else: the cardinality of that which a numeral represents. Cardinality is defined in
terms of size [76]:

= cardinality: the size of set represented by a numeral.

Each numeral represents the size of set. In the unary system of numerals, it is easy to see the size of the
set each numeral represents. The numeral I represents a ‘set’ with a single member, the numeral II
represents a set with a pair of members, and so forth.

However, while numerals represent the sizes of sets, the sizes of sets can be discerned independently
from use of numerals. For example, take a set and attempt to match the members of the set to the
members of another set in order to determine if there is equality in size between the sets. If a match can
be made, the sets are equal in size. If a match cannot be made, then that is either because the former set
is less than or greater than the latter set in size. Take, for instance, a pair of sets, each of which is a
singleton. We can match each tit-for-tat, so they are equal in size. Now take another pair of sets in which
one of the sets is a singleton and the other has a plurality of members. If we attempt to match tit-for-tat
the singular member of the first set to the plurality of members in the second set, we will find the former
is less than the latter because we will have a remainder for unmatched members left over in the second
set. We don’t even need to know how many members are in each set to determine if one has greater or
fewer members than the other, or if they each have just as many members as the other.

Mathematician Dr. Judith Roitman uses the example of a collection of people matched to a collection
of chairs: “We have a room with people and chairs. Suppose everyone in the room is sitting down. If there
are some chairs left over, we know without counting that there are more chairs than people” [77].
Similarly, Roitman points out, if there are no empty chairs, we know without counting the collection of
chairs and people are the exact same in size. On the other hand, if every chair is full and there are some
people left standing, then we know without counting there are more people than chairs [78]. “The chairs
can be in rows, a single line, in a circle, arranged as in a concert hall—it doesn’t matter. We do not care
about the arrangement, only whether every person has a chair or every chair a person” [79].

Attempting to match members between sets thus allows us to compare the ‘relative sizes’ of the sets
in terms of establishing which set is ‘bigger’ or ‘smaller’ or the ‘same size’ as the other. If each set in a pair
of sets has no more and no fewer members than the other, then the sets have the same cardinality—they
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have the same relative size that can be represented by a numeral. And of course, if a given set has more
members than another set, then the set with more members has a greater cardinality (it’s bigger); the set
with fewer members has a lesser cardinality (it’s smaller).

The same kind of matching can be done with sets of numerals. We can match any given set of
numerals with another set of numerals and compare their relative sizes. To see how numerals enable this,
we need to consider how numerals, as symbols, can represent sets—even sets of other numerals.

Numerals enable us to make this kind of representation via their ordinality and cardinality in the
numeral system to which they belong. Take the numerals in the numeral system we’ve considered thus
far. We can see that a particular numeral’s ordinality (order) in the system also indicates that numeral’s
cardinality. That being so, the ordinality of a given numeral indicates the size of a set of numerals that the
particular numeral in question is able to represent. Each numeral in the system can be used to symbolize
a set of numerals consisting of the sequence of numerals in the very same system, up to and including the
numeral doing the representing and thereby show us the size of numeral set the given numeral can
represent.

For instance, consider the simplest numeral system—that starting with the numerals 1, 2, 3, 4, 5, ....
The first numeral listed in the system’s sequence (i.e., the numeral 1) can be used to represent a ‘set’ of
numerals from the same numeral system it belongs to—the set that contains only itself since there are no
previous numerals in the system. So, 1 = {1}. In contrast, the second numeral in the numeral system
(namely, 2) can be used to represent a set of numerals from the same system, where that set includes
both the first numeral in the system (1) and itself (2). So, 2 = {1, 2}. The second numeral (i.e., 2) thus
refers to a larger set of numerals from the same numeral system than does the first numeral (i.e., 1)
because the second numeral includes another member of the system. Similarly, the third numeral in the
sequence can be used to represent a set of numerals from the same system that includes the first numeral
in the system’s sequence (1), the second numeral in the sequence (2), and itself (3). So, 3 ={1, 2, 3}. The
third numeral thus represents an even larger set of numerals than do the first and second numerals in the
same numeral system. This pattern can be repeated for all successive numerals in the standard sequence
comprising the numeral system:

1={1}
2=1{1,2}
3={1,2,3}
4=1{1,2,3,4)

5={1,2,3,4,5}

As this sequence shows, each numeral’s ordinality (1st position or 2nd position or 3rd position, etc. in the
left-hand column’s sequence) represents the numeral’s relative position in the numeral system while at
the same time each numeral in its ordinal place represents a unique cardinality (the size of a set—even if
the set is a set of numerals from the same numeral system), as shown by the right-hand numeral set
corresponding to each numeral listed at left.

From this we see that every numeral has both a unique ordinality and a unique cardinality just by
being a member of the numeral system. A numeral can have ordinality by virtue of what position it has in
the numeral system, and it can have cardinality by virtue of the relative size of set it is able to represent
within that system. In fact, each numeral may not only be considered as an ordinal number but also a
cardinal number (or cardinal—see § 2.3.2). For example, since the numeral 5 is an ordinal being by being
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in the place it has in the system (fifth), 5 is also a cardinal number by representing a set of objects with a
size unique to its ordinal place in the system. Which is easily seen by the set of numerals that 5 matches
from the very same system of numerals: 5 ={1, 2, 3, 4, 5}. We can thus think of ordinality and cardinality
as properties that are mutually related to comprise a single property that all numerals have simply
because they are the members of a numeral system.

Taking this point of view, we now have a definition for number:

= number: a numeral’s unique ordinality-cardinality relationship in a numeral system.
The preceding is a fairly formal definition of the term ‘number’. To rephrase it even more formally:

* number: numeral n has a property called ‘number’ if and only if n is a member of a numeral system
and as a member of a numeral system n has a unique relation between ordinality and cardinality
in the system.

Or, if you prefer a pithier, informal definition:
= number: a sequence-size relationship in a numeral system.

Along with these literal definitions for the word ‘number’ we have a pair of figurative definitions. The
figurative definitions fall into a special figurative sense and a general figurative sense:

= number: (special figurative sense) a numeral in a numeral system.
= number: (general figurative sense) a numeral considered in terms of either its ordinality or its
cardinality, regardless of appearing in or out of a numeral system.

Since each numeral is recognized as having a unique ordinality and cardinality—a unique ‘number’ in
the standardized sequence of a numeral system—the numerals themselves (e.g., the symbols 1, 2, 3, etc.)
in a numeral system are often simply referred to as ‘numbers’ [80]. This is what | mean by the ‘special
figurative sense’ for the term ‘number’. It is figurative because the symbol is literally a numeral rather
than a number, and it is ‘special’ in the sense of restricting its reference to numerals as they appear in a
numeral system.

An even more colloquial use of the term ‘number’ is what | call the ‘general figurative sense’ of the
term ‘number’, in which we identify or assign any numeral—whether it is depicted in its numeral system
or not—as a ‘number’. Although a numeral represents a number both according to the numeral’s
ordinality in a numeral system and according to the numeral’s associated cardinality, we need not
represent numerals only in a numeral system in order for numerals to be considered as numbers. Rather,
we can appropriate numerals from a numeral system and use those numerals as numbers in various
contexts. When we do, the numerals are ‘numbers’ in the general figurative sense of the term.

For example, numbers can be used solely with respect to their ordinality, as when we list an order of
procedures; this comes first, that comes second, the other comes third, and so on. Numbers can also be
used solely with respect to their cardinality, as when we compare the sizes of two collections—five apples
to three oranges. Then too, we can use numbers with respect to their cardinality for other purposes, such
as naming things or distinguishing them without regard for any necessary ordering. As one mathematician
pointed out, “We use numbers for this purpose all the time, on license plates for example. You might
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guess a chronological order, but it's unimportant. The main thing is to have a ‘primary key’ distinguishing
each item in inventory uniquely—a name, a code, a serial number” [81]. All of these examples are of
numbers used according to the general figurative sense of the term ‘number’.

Numbers, then, can be used for all sorts of purposes beyond their places in a numeral system; these
are just a few such purposes. We can also use numbers in expressions of many sorts from formulas and
equations to statements and even poems, as with the line from James Joyce's book, Finnegans Wake:
“Three quarks for Muster Mark!” However, it will primarily be the use of numbers in terms of comparing
sizes of collections—sets, series, and so forth—or the order of elements in sequences that will concern
us, along with related uses in mathematics.

2.3.2 Ordinals and Cardinals

Mathematicians do not always want to express numbers in terms of both ordinality and cardinality.
Sometimes, they want to consider numbers only in terms of either ordinality or cardinality, but not both.
In such cases, mathematicians may make use of ordinal numbers (or “ordinals”) and cardinal numbers (or
“cardinals”). Of course, all numbers are really both ordinals and cardinals as previously pointed out. But
in referring to a number specifically as an “ordinal” or a “cardinal”, we are simply implying that, although
every number represents a numeral’s ordinality (unique position in a numeral system) and cardinality (size
of the numeral system up to that numeral), it is not the case that both of these aspects are relevant to a
particular mathematical operation being performed.

If expressing the size of a collection is not the issue but only the order in which the members in the
collection are found, then mathematicians use an ‘ordinal number’ to represent the collection. If, on the
other hand, the size of a given collection (relative to other collections) is the issue and not the order of
the members comprising the collection, then mathematicians might use a ‘cardinal number’ to represent
the collection.

Incidentally, the term ‘cardinal number’ or ‘cardinal’ is often used synonymously with ‘counting
number’. But all numbers have cardinality. Just consider the numbers other than counting numbers that
depict relative sizes. For example, 1% is larger than 1 and smaller than 2. If | have one and a half pieces
of pie, and you only have one piece, | have more than you do—a bigger portion of the pie. So it seems to
me that rational numbers also have cardinality, even if they are not typically called ‘cardinals’. The same
holds for irrational numbers such as 3.14159..., which represents not just a place in the number line but
a quantity larger than 3 but smaller than 4. Hypothetically, one could have 3.14159... liters of water, for
instance. So irrational numbers have cardinality as well, even if they are not typically called ‘cardinals’.

The distinction between ordinal numbers and cardinal numbers becomes important when
mathematicians use certain procedures to demonstrate sequences or sizes of collections, including
infinite sets. We will return to the distinction between ordinal numbers and cardinal numbers when we
deal with so-called ‘infinite ordinals’ and ‘infinite cardinals’ later on in Chapters 13 and 14. (Incidentally,
we will even see examples of infinite ordinals with more than one cardinality and infinite cardinals with
more than one ordinality. Even so, infinite ordinals and cardinals are part of a numerical scale of their
own—one that also associates ordinality with cardinality, so the definition | stipulated for ‘number’ still
applies even to the dubiously-named infinite ordinals and infinite cardinals.) Until we come back to the
subject of infinite ordinals and cardinals, | will be referring to a numeral as a ‘number’ regardless of what
its particular ordinality or cardinality is, unless | need to address a finite numeral in terms of its ordinality
or cardinality alone.
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2.3.3 Number Scales and Systems of Numerals and Numbers

Since the numerals of a numeral system represent themselves as numbers, we can consider a numeral
system as filling the function of a number system—a system in which the numerals are used as numbers;
that is, as symbols with ordinality and cardinality. The two terms—'numeral system’ and ‘number
system’—are not quite synonymous since the former refers to the system of symbols and the latter refers
to the system of what those symbols represent; even so, the two terms can sometimes be used
interchangeably.

The numbers of a number system tend to be used for measuring and insofar as a number system is so
used, it is a scale of measurement. However, for the sake of clarity, | wish to make a distinction between
number scale and scale of numbers. A ‘scale of numbers’ can either refer to a number scale (a number
system as a whole) or it can refer to a shorter sequence of numbers appropriated from a number system
and used for making a measurement of some kind.

Let’s consider an example. 1, 2, 3, 4, 5 is a sequence of numerals appropriated from our Latinized
Arabic numeral system. The sequence can be regarded as a sequence of numbers appropriated from the
same system regarded as a number system. The sequence so appropriated is a scale used for measuring;
so we would say the sequence is “a scale from one to five.” That’s an example of a scale of numbers.

Scales of numbers can also be sequences of numbers fewer or greater than 5, of course, or even much
greater. But when a scale of numbers has indefinitely many numbers, then the scale of numbers becomes
identical to the number system from which it is derived—such a scale of numbers | will call a ‘number
scale’:

= number scale: a sequence of unique numbers represented by the sequence of unique numerals in
a given numeral system (i.e., a number scale is an instance of a number system).

Hopefully, | won’t confuse matters too much when | refer to a ‘number scale’ as a ‘scale of (particular)
numbers’ like the natural numbers or whole numbers. The natural number scale, for example, | will also
refer to as the scale of natural numbers when appropriate.

To elaborate on the idea of a number system as a number scale, consider any numeral system. The
further along the sequence of numerals, the larger the collection the numeral represents. Because each
unique ordinality of a numeral in a numeral system is also associated with a unique cardinality, the
cardinality must increase as ordinality progresses in the system and must decrease as ordinality regresses
against the direction of the sequence. If we consider just the first five numerals from the Latinized Arabic
numeral system, to proceed through the numerals from 1 to 5 is to progress in the sequence of numbers
from 1 to 5 and so increase in size; to proceed through the numbers from 5 to 1 is to regress in sequence
and so decrease in size. Since in each numeral system each numeral’s ordinality (position in sequence)
represents a unique cardinality (size of a set), and since numbers simply are the ordinality-cardinality
associations that numerals have in a numeral system, we can regard each numeral system as a number
system or number scale. | will refer to numeral systems as number systems or ‘number scales’ since that
is the most basic function of a numeral system.

| should also point out that a ‘number scale’ is not quite the same thing as a number line. A number
line is a graduated straight line serving as a graphical representation of numbers, whereas a number scale
need not be so represented.
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2.3.4 Defining New Numbers

The concept of ‘number’ has been defined and we have seen how each number is a property of a numeral.
Each particular numeral (e.g., 3) represents a number that is defined according to the numeral’s ordinality
and cardinality—its place in a number scale. But this raises the issue of how new numerals are invented
and thus what the process is for defining each new number.

There are various things we could mean by “defining a number” —that is, defining a particular number.
| propose that to define a number means one or both of the following—

a. Proposing a new numeral to represent a new unique ordinality-cardinality association—a new
number—in a number system.

b. Defining a procedure, operation, or function that outputs the number as a precise ordinality-
cardinality association that is represented by a particular numeral or symbol.

An example of (a) is the invention of 5 (the numeral) to represent a uniqgue number among the other
numerals (1, 2, 3, and 4) each of which represents a unique number in a number system.

An example of (b) is an operation called the successor function. In non-technical terms, the successor
function says for any number, add one more to get the next number in sequence and size. So, 4 + 1 = 5.

Mathematicians can use operations like the successor function (and incredibly more powerful and
complex functions than that) to define new numbers and extend the scale of a number system. If all we
had were the first four counting numbers, the successor function would allow us to make a number equal
to 4 + 1, the output of which we can create a new numeral for (in this case, 5)—thus also defining a
number according to (a) above. Mathematicians use various operations to invent new numerals with new
ordinalities and cardinalities—hence to define, and thereby invent, new numbers—and in so doing extend
the given number scale. As the new numerals are invented with new ordinalities and cardinalities, new
numbers are defined, and the number scale is extended.

For now, the important point is that we have numerals and numeral systems, numbers and number
systems (or number scales), and a way to define numbers for the number systems/scales. With that, we
are ready to do something with numbers we have already listed 1, 2, 3, 4, 5. Such numbers can be used
to enumerate.

2.3.5 Enumeration
Enumeration is a form of quantification:

= quantification: the process of quantifying a collection.
= quantify: to ascribe quantity.

Since to quantify is to ascribe quantity to something, and ‘quantity’ is an amount of objects, then to
guantify means more precisely to ascribe an amount of objects, most often to a collection or ‘set’ of some
kind, but series can also be quantified because quantification is a process. There are various forms of
quantification, various ways to quantify. Enumeration, while not the only way to quantify, is a means of
guantifying with precision.
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Definition:
= enumeration: the process of attempting to match numbers to objects.

To match numbers to objects is to ‘enumerate’. The word ‘attempt’ is included in the definition of
‘enumeration’ because not every collection of objects may be enumerable. Moreover, not every number
can be matched to an object (zero, 0, matches to no objects at all).

There are various methods to enumerate and various reasons for doing so. One reason to enumerate
a collection is to determine the size of a collection relative to some other collection. Another reason is
simply to sort elements into different groups. There are yet other reasons for enumerating, but mostly
we will be concerned with the size comparisons of collections.

The simplest form of enumerating is called tallying. Tallying can be used for sorting and/or for
determining how much of something there is. Tallying a collection for size can be performed by using a
series of identical marks (like straight lines) to represent the members of a collection, and thereby the size
of the collection tallied. This is how tallying was performed in Neolithic times, when our ancestors
represented the lowest numbers (1, 2, 3, etc.) as collections of simple lines, just as with the first three
Roman numerals (1, I, 1ll). Marks like these made it easy to represent the size of collections since each
mark matched a single element in a given collection. Our Neolithic ancestors tallied collections with marks
like these etched into bones, or ‘tally sticks’, in order to sort the collections by size, often for the purposes
of trade.

But the invention of unique numerals in a number scale was far more useful. To see why, consider
that we can also use a scale of numbers to enumerate what can be tallied. For instance, we can assign a
number to a collection having the same size as the cardinality of the number itself. We know that the
number 1 refers only to a single numeral (the symbol for 1 itself), so we can assign the number 1 to a
single element in a collection; the element being the numeral 1 in the collection of numerals. Similarly,
we know the number 2 refers to the numeral 1 and to its own numeral (2), so we can assign the number
2 to any collection with no less and no more than a pair of elements. We can repeat this process using the
remaining numbers in sequence.

Take a sequence of fence posts. Each number in the scale of natural numbers can be matched to the
set of numerals it represents, and the set of numerals can be matched tit-for-tat to the posts in a collection
of posts that shares the same cardinality:

number (time) numeralsets (space) real sets

1 - (1} - |

2 - (1,2} —»> =

3 - {1,2,3} - ==

4 - {1,2,3,4} - ==

5 - {1,2,3,4,5, > H

In this example, each number in the sequence of the scale is equal to the size of a numeral set,
whether the ‘set’ is a single numeral (e.g., 1 = {1}) or of multiple numerals (such as 2 = {1, 2}), and each
numeral in the numeral set is matched in turn to a single fence post in the set of fence posts. By this



78 Forever Finite Kip K. Sewell

procedure, a single number in the number scale can be used to represent the size of a set of objects like
fence posts.

Because we know that each number in the scale matches to a set of numerals, with those numerals
in the set listed in ordinal sequence to conclude with the same numeral matched to that of the number
cited, we can skip this intermediate step of matching the numbers cited to their corresponding numeral
sets before pairing the members of those numeral sets tit-for-tat with the object in a set of real objects
(e.g., the fence posts).

To make such a match, we do not typically have all the numerals we need simultaneously available
for the matching. Usually, we have to rely on time (which is often ignored in mathematics). For example,
when we seek to directly match a set of numerals to the whole of a real world set for sake of determining
the cardinality real set of objects, we use a method that relies on time. We use the procedure of citing the
numbers themselves in the order of their scale—e.g., “One, two, three, four, five”—applying each one
against a different object in the corresponding set, where the last number matched to an object is the size
of the matching set. Essentially, what we do is count—another form of enumeration.

Definitions:

= count: (verb) to successively assign numbers to members of sets according to the ordinalities of
the numbers in a number scale.

= count: (noun) the process or procedure of successively listing members of sets by assigning
numbers to them.

A count is performed by assigning numbers from a number scale to objects or collections of objects
(e.g., sets of objects) in such a way as to avoid representing the same object repeatedly, until every object
is assigned a number and no unassigned objects remain. The procedure of counting ensures that each
object’s assigned number is unique in the count [82].

The standardization of the number scale makes the process of counting reliable: no matter what
collection is counted the members are always counted with the same sequence of numbers. The
ordinalities of the numbers do not vary from one instance of counting to another. In a count of objects, 2
always comes after 1, and 3 after 2, and 4 after 3, etc. (unless one is ‘counting down’). So, counters cannot
arrive at a different final number during a count of the same objects in the same collection.

Convention did not standardize the scale of numbers arbitrarily—the ordinalities of the numbers are
ordered according to sequentially larger cardinalities. Each number used for listing an object during a
count represents sequentially bigger collections of objects as the count progresses [83]. Counting is simply
listing objects in a collection with numbers from a number scale until there are no more objects to list.
When we count to determine how much of something there is, each number is used to indicate the
cardinalities (corresponding sizes) of any collections counted up to the immediate number used. At the
end of a counting process, the count indicates the size, or cardinality, of a given collection. And that is the
essence of counting up a collection: the ordinality of the final number arrived at during a count of the
elements in the collection is used to represent the cardinality of the collection counted.

Suppose we count the fence posts by labeling each post with a number in the sequence as we go:
“one” for the first, “two” for the second, “three” for the third, and so forth. Since each post is matched to
a number, each number indicates an increasingly larger collection of posts counted up to that point. Once
the last post is counted, the final number we use is the number that represents the cardinality, or size, of
the entire collection of posts counted.
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Or take an even simpler example: counting all the fingers (to include the thumb) on a typical person’s
hand. 5 is the final numeral assigned in the count of fingers, so it is 5 that represents the size of the
collection of fingers on the hand; in mathematical lingo, 5 is the ‘cardinality’ of that collection.

The size of a collection is represented by a number’s cardinality, and that is in turn indicated by the
final number’s ordinality during a count of objects making up the collection. And it does not what the
number is, if it is the same number that would be the final number assigned during a count, its ordinality
represents the cardinality of the collection. In short, ordinality determines cardinality in a count.

Then too, cardinality also affects ordinality. Without differences in cardinality between collections
counted, all ordinalities would be the same; they would all have the same count of elements. Cardinality
(the size of a collection) can be used to determine the position (ordinality) that a numeral in a number
scale falls into, and therefore cardinality can be used to fix ordinality for the number that ends the count
of the objects in the collection—namely, the last position arrived at in the scale during the count. The
bigger the collection counted, the greater the cardinality and therefore the higher the ordinality of the
last number used from the number scale. So, these two concepts—cardinality and ordinality—are related.
Just as ordinality (from a scale) determines cardinality, so too cardinality can be associated with ordinality
(such as in a count).

Comparing the sizes of collections by count instead of by mapping or matching does not therefore
change our definition of cardinality. If one collection has a longer count of objects than another, the
collection with the longer count has more objects than the collection with the shorter count—this is
merely confirmed by comparing collections and finding that the collection with the longer count will have
objects left over when matched tit-for-tat with the objects in the collection of the shorter count [84]. The
collection of fence posts counted up to 5 is larger than the collection of posts counted up to 4 because
you can take each post in the 5-collection, pair it with a single post in the 4-collection, and still have one
post left over. The number 5 assigned to a collection by count thus still represents a collection larger than
does the number 4 when it is assigned to a collection by count.

Beyond using the simplest tally marks, enumerating anything depends on having a number scale.
Even the earliest forms of tallying in Neolithic times seem to have involved a rudimentary number scale
similar to the initial segment of the Roman numeral scale (1, Il, lll, etc.). Without a number scale, there
might be tallying or counting for certain purposes, such as sorting collections, but there would be no
enumeration in the form of counting up the members of a collection to determine its size. Number scales
are essential for any form of enumeration we are interested in.

2.3.6 Number Scales: Sets versus Series

In standard set theory, double-struck capital letters (N, W, Z, Q, R, etc.) are used to denote number
systems as sets of numbers. Suppose we take N to be the set of only positive numbers used for counting,
W to be the set both of the counting numbers and also zero (0), while Z is the set of both positive and
negative numbers and zero, Q is the set of numbers that can be expressed as fractions, R is the set of
those numbers that yield a positive result when multiplied by themselves, and so on. This isn’t exactly
spot-on for standard set theory, but close enough for our purposes.

The double-struck capital letters are not typically used in standard set theory to denote these various
sets of numbers as number systems or ‘number scales’ per se because systems and scales imply ordinality
(order) while sets are only about cardinality (size) regardless of ordinality. However, | disagree with the
set theorists about the nature of such collections. Contrary to standard set theory, it is my position that
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number systems (number scales) do not form completed sets of numbers but instead are series of
numbers that are always under further construction.

Assuming as much, we need to distinguish between two types of series: closed series and open series.
Definitions:

= closed series: a series formed by a succession that terminates.
= open series: a series formed by a succession without a determinate end.

A closed series, once it terminates, can be considered a set. An ‘open series’, on the other hand, is not
a set. Rather, an open series is a series that, if it depends on the action of some agent, may persist as long
as the agent desires and if it does not depend on an actual agent, may even continue without ever
ceasing—at least in principle (assuming there is no logical contradiction in the hypothetical scenario of
continuing without ever ceasing). The open series has no ‘determinate’ end—that is, no quantitatively or
mathematically specified end to the series, either in practice or also in principle.

An important distinction to keep in mind is that an open series is not a literally infinite series. An open
series is simply a series with no pre-established end. This can mean one of two things.

On the one hand, an open series may be provisionally open—it eventually ends but its end is not
preestablished or otherwise determined beforehand. Upon ending, the provisionally open series becomes
a closed series (ergo, a set).

On the other hand, an open series may be permanently open—it continues without ever ceasing. The
permanently open series is purely hypothetical: a series can, in principle, continue ceaselessly as long as
there is no logical contradiction in doing so; whether it could also do so in practice as well as in principle
depends on what properties the series possesses.

Regardless, an open series is not literally infinite because it is both never completed and it is never
without limit per se to its quantity of elements. An open series is of a finite extension that continues to
increase; it always has a “latest step” taken in the succession that stretches finitely back to the starting
point of the series, rather than a succession that has no limit at all (including no limit that increases as the
length of the series increases). So, an open series may be a series that continues to grow, but it is not
literally limitless; at each step along the way, it is finite no matter how long it goes on.

So too, | propose each number scale is an open series in the sense that each is in practice provisionally
open and, in principle, permanently open. There is in principle no end to the construction of a number
scale, even if we cannot actually continue construction in practice.

It follows that being in principle permanently open does not necessarily entail number scales are
literally infinite. Instead, number scales may just be open series in the sense that, even if the number of
numbers in each scale continues to accumulate without ceasing, there will always be a finite number of
numbers in each scale. The number scales are never both complete and limitless—never do they become
literally infinite.

That is, at least, the view | support. However, | will try not to beg the question by offering further
support for this view in § 2.3.7 below and as we investigate literal infinity in the chapters to come.

Regardless of whether the number scales are open series or infinite series, we do at least need some
notation in order to express the distinction between the standard set-theoretic notation of number scales
as infinite sets of numbers (N, W, Z, Q, R, etc.) and the view | support that number scales are open series
that always remain finite while under construction. With that in mind, | will borrow the double-struck
capital letters from standard set theory but add a superscript ‘clockwise gapped circle arrow’ (C') next to
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each letter in order to represent each number system as an open series, an inherently incomplete number
scale that is persistently under construction over time.

Thus, NC, WC, ZC, QC, RC, etc. denote number systems or number scales as incomplete, open series
rather than as complete, closed sets. Each of these symbols will therefore be shorthand to denote series
of numbers used as number systems or number scales, never complete, always being extended (at least
in principle).

However, when | need to refer to these scales as they are regarded in standard set theory, | will revert
to depicting them without the superscripted circle arrow (N, W, Z, Q, R, etc.) and call them ‘sets’ instead
of series, number systems or number scales.

2.3.7 Constructing the Numbers Scales

The numbers we have considered so far—those starting with 1 and proceeding on to 2, 3, 4, 5, etc.
according to scale—are what we all know to be the same numbers used for counting objects. These
numbers are, appropriately enough, the counting numbers. The symbol N© will denote the system of
counting numbers, or scale of counting numbers, which most set theorists usually regard as a set of
numbers. So, the collection of numbers used previously for counting the fence posts is the very same
collection of counting numbers that defines NC.

More accurately, the numbers depicted so far (1, 2, 3, 4, 5) are numbers from an initial segment taken
from the larger sequence of counting numbers, which is constructed over time as the ongoing series of
natural numbers. Hence, the numbers 1-5 are just an initial segment in the extensible and growing
sequence of N© since we all know there are more numbers to the scale of numbers that have already
been commonly depicted and used for counting and conducting other mathematical operations. As a
series, we N continues to grow as mathematicians define and depict larger numbers than have ever before
been created and defined.

Numbers are both properties of numerals (ordinality-cardinality associations) and what we call
numbers are numerals as symbols with ordinality and cardinality associations when in scale. But numerals
are symbols, and symbols are inventions we create and define. So, the scale of N© only extends as far as
anyone can (at least in principle) invent, or define, the numbers of NC,

To understand the implications of this, suppose no one ever before used a number higher than 5;
every quantity beyond that was just designated “many”. In that case, N© would be defined only up to the
number 5. The number 5 would be the highest counting number anyone would know. And in that
situation, the last ordinal in N© would be the 5th position, corresponding to the last listed numeral, 5.
Having the last ordinal of NC, the numeral 5 would consequently indicate the cardinality of N© itself—
five, and only five, counting numbers would exist in the scale of counting numbers.

To represent the cardinality of NC—which is to say, the series N© at a given snapshot in time during
its construction and so as an unfinished set at the time of consideration—I will use the vertical bars
typically used for the ‘absolute value’ of a number and apply them to N© as a number system. Hence,

= Let |[NC| represent the cardinality of NC as the set of existing natural numbers during a given
moment in the ongoing construction of NC as a series.

A similar definition holds for any other number scale as an open series under construction. For
example, the largest finite number for the number scale W at any given time would also provide the
cardinality for WC as such at that time, and which would be represented as | WC| = v where v is not just
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any whole number but instead is a placeholder for whatever the greatest whole number of WS would be
if we could determine it [85]. (As an aside, | would have used w for the variable whole number in WS, but
w looks too much like w, which the Greek small omega—a symbol for infinity to be discussed in § 5.4.8).

Since |NC| represents NC as having a cardinality, we can say NC, as a series of numbers under
construction, has a “largest number” at any given time—namely, whatever is the largest number defined
at the given time |NC| is considered. Moreover, any collection of objects having no more elements than
a number equal to | NC| would share the same cardinality as N© itself at that time. So, if at some time in
the past 5 had been the largest number defined for N©, then it would have been the case that |[NC| =5
at that time (for no one would have yet defined a larger number than that). So, during that time any
collection, X, that contained no more than 5 elements would at that time have had the same cardinality
as NC. Thus, it would have been the case that X = |[NC| = 5.

In the hypothetical fence post example, 5 was the last number used from NC for counting and it
matched the amount of fence posts, so there would then have been as many posts as counting numbers
in existence. If, on the other hand, there are more objects, like fence posts or anything else, in a collection
being counted than there are counting numbers, all we would need to do in order to count the left-over
objects is extend the scale of counting numbers by defining new, larger numbers in the sequence of NC,
making N© longer in sequence in order to accommodate all the objects that need counting.

Now imagine the objects in a collection we wish to count are not fence posts, but rather are numerals
in a collection of numerals (or perhaps they are numerals painted on fence posts, it doesn’t really matter).
Insofar as a numeral is a number, it may be used to enumerate. Insofar as a numeral is a numeral, it may
be enumerated. In other words, we can use numbers to count numerals.

Now imagine also that the collection of numerals we wish to count is identical to the scale of counting
numbers we have, but with an exception: someone has invented a new numeral with which to start off
the sequence. The extra numeral that begins the sequence we wish to count is the numeral zero or
‘naught’ represented by a cipher: 0.

So, the collection of numerals we wish to count, when sequenced, would begin with 0 rather than
with 1, and proceed through the sequence from there: 0, 1, 2, 3, 4, 5, etc. Let’s denote this collection of
numerals as the very same series of whole numbers: W,

Now suppose we treat the numerals of WC merely as objects to be counted. In that case, we would
begin counting the numerals in W< by listing each numeral in WS with a number from the scale of
numbers we typically use for counting, namely N©. Unlike W©, the sequence of NC begins with 1 rather
than 0, so we use 1 to begin counting the numerals of WC, starting with counting the first numeral in
WG, which is the numeral 0. Using the numbers of N in sequence to count the objects of W, we can
continue to match each counting number in N© to a single numeral in WC as we count through the
numerals:

numerals of NC numerals of WC

as numbers of N as numerals of W¢C
1 > {0} One numeral counted.
2 —»> {0, 1} Two numerals counted.
3 —»> {0,1,2} Three numerals counted.
4 > {0,1, 2, 3} Four numerals counted.
5 —»> {0,1,2,3,4} Five numerals counted.
6 - {0,1,2,3,4,5} Six numerals counted.
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In using the numbers of N to count the numerals of WS, we find that we have to extend the scale of N©
by another number in order to count all the numerals we previously depicted for W€. So, we increased
NC from 5 to 6. The number 6 now occupies a hew ordinality in NC—the 6th position—and because the
6th position is the last (latest) position of N©, 6 represents the new cardinality of NC as a whole. Ergo,
INC| = 6. And as the last listed number of NC was used for counting WC, which has no more numerals
to count, 6 also exhausts the count of WC at that time and so represents | W], the cardinality of WC.
Hence, we can say that 6 represents the ‘number of objects’ in WO, with those objects being numerals
themselves.
Here are the lessons of this hypothetical scenario:

= A sequence of numerals can be extended by creating new numerals and placing them in the
sequence of numerals.

= The numerals placed in sequence each have an ordinality that can be associated with a unique
cardinality, thus allowing the numerals to constitute numbers in a scale of numbers.

=  We can therefore define new numbers in the scale(s) and use them for enumerating more objects
when we run out of numbers with which to enumerate objects.

= Two scales do not have to have all the same numerals in order to share the same cardinality—the
scales can be the same size in terms of the quantities of their constituent numerals if all the
numerals can be paired tit-for-tat between the scales at a given time in which the scales are being
constructed.

The foregoing also indicates that, like NC, the sequence of WS constitutes not just a sequence of
numerals but also a scale of numbers, since each numeral in WS has the properties of both ordinality and
cardinality associated together in their sequence.

The numerals in WS obviously have ordinality. Given the scales as represented above, WS has the
same order of numerals as NC, aside from 0 in W€ and 6 in NC. The numerals in W€ are 6 as shown by
a count using the numbers of NC. So, |WC| and |NC| have the same cardinality with respect to their
numerals.

However, there are actually a couple of different cardinalities associated with WC in terms of how it
is represented in the comparison with N© above. There is the cardinality of WS as a series of numerals
versus the cardinality of WS as a scale of nhumbers. Cardinality is, after all, a property relative to the
collections being compared.

As an open series of numerals, WC has a cardinality of 6 at the time of measurement in the example
given (hence, |WC| = 6 numerals), just as shown by matching the numerals of WC to the counting
numbers of NC. But as a scale of numbers, WS has a cardinality representing the highest numerical value
of its own scale, and that is 5; hence, | WC| = 5.

The reason W as a scale of numbers has a cardinality of 5 and not 6 is in terms of its own numbers
is because of how the cardinalities of WCS’s constituent numbers are defined. Notice that WS starts with
0 rather than 1. The number 0 has a unique property not shared by any of the other numbers in either
WS or NC: 0 does not have the positive cardinality of an element, a cardinality of at least a single thing.
Recall that cardinality is the relative size of a collection as given by matching the elements of that
collection to the elements of another collection(s). We know that the cardinality of 1 represents a match
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of the numeral 1 to a single element, the cardinality of 2 represents a match of the numerals 1 and 2 to
a pair of elements, and so on. So, what element does the cardinality of 0 match to? No elements at all; in
fact, 0 does not even match to 0 as a numeral. The rest of the numbers in W point to actual elements;
to at least a single if not multiple elements. Because 0 represents no element, or no collection containing
an element, 0 adds nothing to the cardinality of WC as a scale of numbers. That ensures the cardinality
of WS as a scale of numbers is one less than the cardinality of NC as a scale of numbers. So, WC’s
constituent non-zero numbers end up sharing the same cardinalities as the numbers comprising N©. And
that means although there are six numerals in WC, the cardinality of WS as a scale of numbers is still 5.

This is illustrated by defining each of the numbers of W< by the earlier numbers in its own sequence.
Since there are no numbers earlier in the sequence of WC than 0, then 0 will be our only exception to
the aggregation of cardinality from prior cardinalities for the scale of WC.

2.3.8 Interlude About Nothing

Before proceeding, we should clear up some things about zero (0).

Recall that numbers refer to sizes of sets. We know 1 corresponds to a singleton—a set of a single
element. For example, 1 = {1}, or 1 = {0}, or 1 = {x}, etc. Likewise, 2 corresponds to a pair of elements:
2={1,2},0or 2={0,1}, or 2 = {x, y}, and so forth. So what does zero, 0, correspond to?

Nothing. Or you could say zero represents the empty set: 0 =@ = { }.

But now we seem to have a conceptual problem. If zero refers to a lack of something, such as to the
emptiness of the empty set, then zero seems to correspond to a set without size. The empty set, after all,
refers to a sizeless collection—at least where ‘collection’ or ‘set’ is the collection of that which acts as a
container for other collections. The confusion settles in when we use zero to indicate a collection such as
{ } but { } indicates nothing with size and there is no such thing as a “sizeless collection” in the physical
world. So, zero must refer to no collection at all, at least not in the physical world. And if it refers to no
collection at all, a set of nothing, is zero even a number?

As pointed out by Dr. Michael Huemer, professor of philosophy at the University of Colorado, Boulder,
“to have zero of something is simply to fail to have that thing...to have zero turtles is to have no turtles;
to have zero liters of water is to have no water” [86]. From the fact that zero can correspond to no real-
world, physical collection Huemer concludes zero must not be a number after all, at least not in the
original sense of the term since number is a property only objects can have [87].

However, we need not go that far.

We can indeed consider zero to be a property of an object and even a number of sorts. A numeral is
an object, and each numeral has ‘number’ as a property. Recall that a number is a numeral’s unique
ordinality-cardinality association in a numeral system. The numeral written in Arabic notation as cipher
(0) also has the property of a unique ordinality-cardinality association in a numeral system. So, cipher has
number as a property too. That number is zero. And since cipher is an object that has the number zero as
its property, zero is indeed a number.

For zero to be a unique ordinality-cardinality association in a numeral system, we must be able to
show what that association is. Zero as an ordinality does not present a problem since it designates cipher’s
first position in the system of whole numbers: 0, 1, 2, 3, .... That covers ordinality for zero. But what about
cardinality?

It is true that cardinality is size, zero as a numeral symbolizes a condition in which there is no size to
something, and so in that sense zero refers to no cardinality and so has no cardinality. That’s why N© and
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W as scales of numbers can have the same cardinality for their numbers even though WS has one more
numeral (namely, cipher or 0) than N as a series of numerals under construction.

However, if we widen our conception of cardinality to denote any outcome to a size measurement,
then in that loose sense zero does have a cardinality because zero refers to the outcome of a measure
that is less than the size designated by the number 1. You can think of zero as having ‘cardinality’ as a
measurement outcome held by an ordinal even when the ordinal is not positive: 0 < 1.

So, we can still regard zero as a number in the respect of being the association of a unique ordinality
(first whole number) with a unique cardinality (less than any positive whole number in the system of whole
numbers). Zero can, with a charitable interpretation of cardinality, still fit our definition of a number.

Second, we can also regard zero as a property of another object—the empty set, { }. Zero is the
property of something, such as the set of braces, being empty instead of containing an object or collection.
If there is nothing between the pair of braces, there is nothing between the set of braces. That empty set
has no collection of symbols between the braces that comprise the set and it is the presence of any
symbols in the braces that non-zero numbers correspond to. Since the empty set contains no collection
of symbols, that is why it is equal to zero. So, zero can indeed still be a number by being a property of an
object—the object is the set of braces and zero is the property of the emptiness of that set as a container.

True, unlike other numbers, zero maps to nothing. Then again, we could say zero maps to the area
that lacks the presence of something specific, like the area between braces lacking symbols or the
emptiness of a box when we say the box contains zero objects. Unlike Huemer then, | do not see an
inconsistency in saying that zero (0) is a number even though zero cannot be mapped to a physical object
like a fence post or to a collection of objects like multiple fence posts.

Zero is still a property; it is the property of an object, such as a container, being empty. We simply
regard zero as depicting the emptiness in the empty set—the emptiness between the pair of braces that
contains no other symbols—or the emptiness of any physical container. And, of course, zero is the
property of cipher as a number with a unique ordinality and as the indicator of a particular measurement
outcome for size (cardinality, relative to other cardinalities). So, zero still qualifies as a number.

That covers zero as a number, but that still leaves zero as an index.

Huemer raises an interesting point: saying zero maps to a lack of something in the physical world
might be taken as falsified when we say that “the Greenwich Observatory has a latitude of 0°” because
“this obviously does not indicate it fails to have latitude, nor that it lacks any other relative quality” [88].
Similarly, “a certain ice cube has a temperature of 0 °C. But this does not indicate that the ice cube lacks
temperature, lacks heat, or lacks anything else relevant” [89]. Huemer also points out, however, that these
are not uses of zero as a number but uses of zero as a numeral (e.g., cipher) for the purpose of indexing.
This is a good distinction to keep in mind. We should avoid attempts to make zero as a number correspond
to physical objects or collections of such; if zero, as a number, refers to any condition in the physical world,
it refers to the condition of missing or lacking something as when a container lacks some relevant object.

With those caveats about zero attended to, we can return to the construction of number scales as
extendible sets.

2.3.9 Construction of Number Scales Continued...

We now have zero representing no elements at all or representing the emptiness of the empty set if you
prefer, as the base of WC. Further construction of WS proceeds by defining the number 1 in WC as
representing only a single object, the sole element of the singleton. We had also defined the number 1 in
NC as representing only a single element, but let’s define 1 in W< as representing a single element in a
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different way than we defined 1 in NC. Rather than having the number 1 representing the numeral 1 as
it does in NC, for WC let’s define 1 as still representing a single element, but it will represent the numeral
(vice number) we already defined in WC: the numeral 0. So, for WS, we thus define 1 = {0} where the 0
in the brackets indicates 0 as a symbol. That is, in the scale of WS, the number 1 is equal to a set having
only one element—the numeral known as cipher and denoted 0.

We can continue to define the higher numbers by reference to sets of the lower numerals using the
same process [90]. So, we define the numbers in WS as follows:

}
}

b N =R O
Il
e o o o )

R

0
0
0
0
0

Notice that each non-zero number in W¢ still corresponds to a ‘set’ (pair of braces) the numeral
contents of which have the same cardinality as the same number in N©. Now that we have our numbers
in the scale of WC defined, we see that, although there are more than five numerals in WC due to the
inclusion of 0, the cardinality of WS as a scale of numbers is still equal to 5 since the number 5 is equal to
the set of numerals 0—4 in the scale of WC. Moreover, just as with N©, we can match the numbers in W
to corresponding sets of numerals or other elements, like our fence posts, with the only exception being
0 since it represents the empty set but not an element [91]:

0={}

1={0} - |

2=1{0,1} - H

3={0,1,2} - 4

4=1{0,1,2,3) - H=H
BN e

5={0,1, 2, 3,4}

Although the numbers shared by N© and WC are defined differently with respect to the numerals in
their scales, the numbers in NC and non-zero numbers in WO refer to the same sizes of numeral sets.
Hence, the shared numbers of NG and W both have the same cardinality and so refer to the same sizes
of collections measured in the physical world (real sets):

NC defined WC defined real sets
0={}
1={1} »>  1={0} - |
2=1{1,2} -+  2={0,1} —» H
3={1,2,3)} -+ 3={0,1,2} - ==
4={1,2,3,4} -+  4={0,1,2,3} - HHH
-+  5={0,1,2,3,4} -+

5=1{1,2,3,4,5}
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Although NC€ is the scale of counting numbers, we can likewise use W€ to count the numerals of N¢
just as we used N© to count the numerals of WC. But in so doing we find some key differences to counting
with NC,

For example, remember that we had previously defined NC up to 6, but WC only up to 5. So, in using
WP to count NC, we would have a count only of N©’s first 5 numerals:

we NC

\AAAA

In order to count all of N€ with the numbers of WC, we would have to extend the scale of WC to
include the number 6 just as we extended NC to include 6. In so doing, we could use W€ to count the
entire collection of NC:

we NC
0

1 > 1
2 > 2
3 > 3
4 > 4
5 —» 5
6 —*» 6

We also see another difference between using N© and using WS to count a collection: all the defined
numbers of NC can be used to count the depicted numerals of WS, but not all the defined numbers of
WC are used to count the depicted numerals of NC.

When we used NC to count WC, we used every number in NC to count every numeral of WC. We
therefore found that N© and WC had the same cardinality for their collection of numerals (they both had
6 numerals at the hypothetical time upon which those numerals were the greatest invented: |NC| =
|WC| = 6), despite that their respective numerals had different corresponding ordinalities: NC’s highest
numeral was 6 in 6th place while WC’s highest numeral was 5 in 6th place (and then once we extended
WS by adding a 6 to it as N© has, then WC’s highest numeral became 6 in the 7th place of W©C).

But if we use WC to count NC, we do not use every number in WS for counting all the numerals of
NC. This is because we do not use 0 to count anything—0 can only refer to the empty set, @, since 0 does
not match to the element of a set. And because NC does not have a representation of the empty set, such
as @, then 0 has no reference to a numeral or set in NC,

The use of WC for counting thus shows that, while cardinality is a relationship of matching members
between sets in order to ascertain their relative size, counting only indicates cardinality where non-zero
numbers are used. Consequently, using WC instead of N to count does not really differ in process. A count
of the number of fingers on a hand still comes up with 5; each number matches no more than one finger
on the hand—0 is matched to no fingers at all. But as most counts don’t start with 0, we will stick with
regarding NC as the scale of counting numbers.
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As another aside, not all mathematicians use the same set of symbols for these scales of numbers.
That is because, in part, there is more than one system of mathematics. There is general mathematics
(which includes elementary arithmetic, algebra, calculus, geometry, etc.) and then there is transfinite
mathematics (or the transfinite theory of numbers) which overlaps with set theory. (Transfinite
mathematics and the transfinite version of set theory together comprise the transfinite system—see also
§13.1).

Most mathematicians in the tradition of set theory, and especially the transfinite system, refer to the
system of counting numbers not as a series, NC, but as a set: N. In the transfinite system, N is the set of
natural numbers. Any quantity that is ‘transfinite’ is a quantity greater than any natural number in N (that
is, = N); ergo, the transfinite is that which is a literally infinite quantity, yet not a quantity so great as to
be equal to absolute infinity (see 88 1.5, 25.3).

In general mathematics, there is also the system of whole numbers, which | denote as the series WS,
but that is not standard notation. If the mathematician practicing standard set theory were to refer to the
system of whole numbers as being distinct from the natural numbers, the mathematician would not
denote the system of whole numbers as | do (i.e., W) but rather as the set W.

However, that too would be atypical since standard set theory and transfinite mathematics have a
contrary tradition: the ‘whole numbers’ of general mathematics are instead referred to as ‘natural
numbers’. So, set theorists and those practicing the transfinite system do not typically refer to the whole
numbers as such. Consequently, transfinite mathematicians and, more broadly, set theorists typically use
N to symbolize the set of counting numbers along with zero instead of using the symbol W.

In fact, they don’t make much use of the natural numbers as ‘counting numbers’ and so do not often
refer to this number scale without zero. In standard set theory, you won’t tend to find references to ‘the
whole numbers’ at all and you probably won’t see the symbol W for that reason.

But | prefer a more classical approach, and so I'll break with the tradition of transfinite mathematics
and standard set theory by defining the natural numbers as the scale of counting numbers, which starts
with the number 1 and proceeds incrementally in sequence. | will therefore use the symbol N© for the
scale of natural numbers as only the counting numbers, beginning with number 1. | will also keep the scale
of whole numbers as beginning with zero, which is then succeeded by the sequence corresponding to that
of the natural numbers. Hence, the whole numbers shall still be denoted by WS, just as we used
previously.

Historically, NC (the number scale, not the symbol) was invented first, followed much later by the
invention of zero and its assignment in the same scale (i.e., WC). But set theorists have shown that a
number system such as the system of natural numbers can be formed entirely from scratch by use of a
mathematical technique known as the ‘successor function’.

The word ‘successor’ is just what it sounds like, and in mathematics a ‘function’ is a rule-based relation
between a set of inputs and a set of outputs with the property that each input is related to a single output.
Numbers go into the function and new numbers come out expressing the size of the collection.

The successor function can be used to generate all the numbers starting with zero and proceeding to
ever larger ordinality and cardinality.

To understand the successor function, start by considering a set, W, as containing a single element.
We will denote the element as v (as consistent with § 2.3.7). We'll use the letter S for “successor of” and
the symbol U for the union of two sets. Set theorists might express the successor function this way: the
successor of set Wis the set S(v) =v U {v}.
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From the application of this principle, we get a sequence of IV sets. Considering numerals to be
symbols for sets, we can apply the successor function as S(v) = v + 1 to numerals and thereby generate
all the numbers—natural and whole—previously defined [92].

If we further consider W to be an initial instance of |WC|, then we can express the same thing this
way:

a. Letov be awhole number in the sequence of the scale W©C.

b. Let 0 (zero) be the first vin WO,

c. Let0={}= 0 = all sets having no elements. There is only one such set: the empty set (or ‘null
set’ in some systems).

d. Ifvisawhole number, then let its successor (v + 1) equal the next whole in sequence.

e. (v+1)=n.

f. Letn be a natural number in the sequence of the scale N©.

g. Now repeat steps d through f to the sequence begun with conditions a-c.

The procedure can be represented like so:

WS v+1 N¢
0—+>0+1

4 S
1-+»>1+1 1

& TS
2»2+4+1 2

&
3»34+1 3
&
4 »44+1 4
4 TS
5%5+1 5

4~ T
6> (etc) 6

Or, just for short: 0, 04+1=1,1+1=2,2+1=3,3+1=4,44+1=5,54+1=6, etc. Whatever number you
leave off with, just add one to it and you can make the sequence of numbers one number bigger, whether
for the whole numbers or the natural numbers.

As the process of using the successor function shows, our early ancestors could have started with the
idea of the empty set, labeled it with 0 as the first whole number, and used the successor function to
derive the scale of whole numbers, and therefore the scale of natural (or counting) numbers as a
consequence. The ordinality of the highest natural number calculated (6) would still express not only the
cardinality of the set of defined natural numbers {1-6} up to and including the latest natural number (6)
derived but also the cardinality of the set of all the numerals {0-5} represented by the highest whole
number (6) as well. So, the successor function preserves the logic of how numbers relate to one another
in scale.

The use of the successor function to define the numbers from zero and up is not how numbers were
originally invented. Our early ancestors in Central and Southern Africa started with the equivalent of
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natural or counting numbers, at first expressed as simple lines etched into tally sticks about 30-40,000
years ago, and no one fully developed the idea of zero as a number until around the 5™ Century CE
(Common Era) in India [93]. Even so, our early ancestors could have started with zero, had they the
concept of an empty abstract set, and used some expression of the successor function to derive all the
numbers from there based on sets of preceding numbers; only simple logic and a finitistic version of set
theory are needed to provide us with the number scales. In fact, starting the scale at zero is the basis for
how set theorists define ‘sets’ today. Alas, brilliant ideas always seem simple in hindsight.

Now, obviously, what | have so far labeled N© and WS are scales of numbers that do not actually end
with the number 6. The portrayal of N as consisting only of the set {1-6} and W€ as consisting only of
the set {0-6} was an example used to demonstrate a few points with respect to numerals in a number
scale.

Namely, the following points:

= A numeral’s ordinality indicates its cardinality. These properties of a numeral are purposively
correlated with one another by virtue of a numeral’s membership in a numeral system, and the
interrelationship of a numeral’s ordinality and cardinality in the system is precisely what makes
the numeral constitute a number and the numeral system constitute a number system or, as | like
to call it, a ‘number scale’.

= A numeral’s cardinality represents sizes for sets that can be counted, at least in principle—this
includes mathematical sets of numerals or numbers.

=  New numerals, and thus new numbers, can be invented. The number scales extend only so far as
numerals and their numbers are, or can be, invented by following mathematical operations such
as the successor function.

Having these points established, we can begin to consider the continued construction of N¢ and WS,
These scales can be extended as far as we like, even indefinitely (whether they can be extended infinitely
is another issue). Consequently, each new extension of the scales makes N© and WC into new sequences
of numbers that replace the previous, shorter versions of NC and WC. As we all know, the scales of N¢
and W have each been extended beyond 5 to include more numbers, like 6, 7, 8, 9, and so forth for N
and 7, 8, 9, etc. for W€,

Let’s suppose only numbers up to 9 have been invented so far. Let’s also consider N and WS not as
series but instead as primitive sets of numbers (N and W) with only the numbers depicted so far. At first,
N was {1-6}, but it was extended to the sequence {1-9} with the invention of 7, 8, and 9 while the first
instance of W was {0—6} but was then extended to the sequence {0-9}. In which case, we could say that
N as {1-9} has replaced N as {1-6} while W as {0-9} has replaced W as {0-6}. With the scales of
numbers becoming extended, we see the scales as larger sets of numbers replacing smaller sets of
numbers. Hence, number systems, or number scales, need not be regarded as the complete sets (N and
W) after all. Rather, the systems of the naturals and wholes can instead be considered as extendable
series of sets of numbers. It is this construction process of building new, larger sets of numbers from what
were smaller sets of numbers that shows the number scales can be regarded as extensible, open series of
numbers (N€ and WC).

As we continue to construct new numbers for these scales, we begin to see that the successor function
alone is not sufficient for showing us how to invent and represent ever higher numbers on the number
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scale because, each time you need to depict a new higher number on the scale, you need a new symbol
for doing so. And, clearly, creating a unique digit for every number that could be invented is not a very
practical way to build a number scale and ever greater sets of numbers.

Instead, combining digits together from the Arabic base digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) into different
combinations is far more advantageous than concocting ever new symbols for numeral digits of greater
scale. Ancient mathematicians learned to combine the base digits in a ‘positional system’ of numbers
along with the successor function to represent ever higher numbers like 10, 11, 12, and so forth, up to
higher numbers. When unique two-digit combinations run out, as when we reach 99, we can repeat the
positional system of numbers and use the successor function to extend the two-digit combinations to
three-digit combinations, moving from 99 to 100, 101, 102, etc. In short, just think of the highest number
you can, and you can always use the positional system and successor function to make a new number
with a value of one number bigger.

Hence, building the scales of NC and WC with the positional system and successor function applied
to the Arabic base numerals shows that the single digits of the lower numerals can be combined into ever-
larger sequences of digits to form ever-larger numbers (e.g., 1,001 and 1,002 and 1,003, ...). Once the
scales of N© and WC are under construction using such techniques, ever higher numbers in the scale can
be created by just this procedure.

Combining digits is useful for forming new numerals and thereby representing new numbers in a
number scale; consequently, combining digits is also useful for enumeration, which is simply the
assignment of numbers to collections. Ever-higher numbers on the scale, with ever more digits, represent
ever-larger collections of numerals, and so can be used to represent ever-larger collections of objects to
be measured.

2.3.10 Calculation and Computation

The simplest way to assign numbers to collections is to enumerate the members of the collections by
tallying or counting. But tallying and counting are best used for collections that are relatively small. For
large collections, there are easier ways to enumerate. In contrast to counting the objects of a collection
by listing them one by one, we may instead calculate the size of the collection.

To calculate is to use a function for outputting a number that can be assigned to a collection. Use of
the successor function is an example of calculation in which there is one input (a single digit) and one
output (the next number higher). More complex calculations involving addition, multiplication, etc. make
the job of enumeration much simpler for large collections.

We might also compute the size of the collection, where ‘compute’ simply means to use an effective
procedure, such as an algorithm, for counting or calculating. Depending on the kind and size of collection,
calculating and computing are often quicker and easier than counting the objects individually.

We all know the basic operations of elementary arithmetic which allow us to calculate or compute
with numbers, so we don’t need to explore that subject here. The important thing to note is that we build
the scales of numbers to enumerate collections of objects in the world, collections of concepts and ideas,
and even collections of numbers themselves—anything we can consider a collection or group of ‘objects’
can be enumerated. And as we construct higher numbers with which to enumerate objects and
collections, numbers can be combined by various means of enumeration, from tallying to calculating to
computing, in order to create a total that stands for the number of objects enumerated in a given
collection.



92 Forever Finite Kip K. Sewell

2.3.11 Total
The term total can now be defined:
= total: a number equal to an exact or approximate sum.

A collection has a total if the elements in the collection can be numbered and the numbers are added
together to give an exact sum. Other means of calculation can be used to yield a number equal to a total.
For example, when numbers are multiplied together, the result is a product rather than a sum, but the
product is equal to a sum that could be produced by addition. In that sense, multiplying numbers of
members together to account for all the members in a collection still produces a total. And, of course, we
can represent a collection as being diminished or split up into smaller collections by subtracting or dividing
the numbers that represent subsets of the collection in order to arrive at new totals, which are still exact
sums of yet smaller numbers. In the context of subtraction, a total is an exact difference and in the context
of division, a total is an exact quotient. Products, differences, and quotients may all be considered as
different kinds of totals which are all equivalent to sums of elements.

2.3.12 Totals for the Number Scale

We can use various methods of enumeration to yield totals for numbers on the number scale itself. After
all, each number higher than 1 in the scale of natural numbers is equal to a sum of previous numbers [94]:

NC©
1=1
2=1+1
3=2+1
4=3+1
5=4+1

6=5+1

(And of course, for each number higher than 2 in the natural numbers there is more than one way to sum
lower natural numbers into higher natural numbers.) The higher we develop the scale of natural numbers,
the higher the sums of all numbers developed and the more combinations of sums equal the largest
numbers.

Moreover, the higher the sums of the numbers in the scale, the higher the total number of numbers
in the number scale. If 7 were the highest number ever invented, 7 would be the total of the number scale
itself; if 8 were the highest number ever invented, then 8 would be the total of the number scale; if 9
were the highest number ever invented, then 9 would be the total of the number scale; and so on, up to
the highest number invented to date. With, of course, each highest total reached to date exceedable
tomorrow.

As each new, higher natural number is invented, the natural number scale gains a new, higher total
of numbers. Number scales are not ‘sets’ of numbers that are finished once and for all. Rather, number
scales are inherently temporal series of numbers with a total number of numbers that grows over time.
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We need to therefore make a distinction between two different kinds of total: a standing total and a
running total:

= standing total: a total that is constant—a total that is the final total for a collection.

® running total: a total that is continually revised to take account of members added to or deducted
from the collection for which a total is calculated—a total that continuously increases or decreases
in value.

Number scales, as inventions, are series of numbers, each of which has a running total equal to the
highest number so far conceived at the given time for that series. Scales like N© and WC are ever under
construction with new, running totals that increase in value with the continuous invention of numbers.

2.3.13 Calculating Totals for a Number Scale

We can, of course, use various mathematical means to extend the scale of natural numbers in order to
have numbers that can be used to enumerate any collection we come across in the real world, provided
we have a means of determining how much is in the collection. Since we started by defining 0-9 as the
base numbers, we can extend the scale by repeated use of zero to create a scale by tens: 10, 20, 30, ....
We can use operations like addition, multiplication, exponentiation, and so on to create yet higher
numbers [95]. Take the use of exponents. To represent the number of times that 10 is multiplied by itself,
we can use an exponent—a number represented in superscript next to the base number (in this case, 10)
as in 102, which represents a 1 followed by two zeros (100): a hundred. Either through multiplying ten by
itself repeatedly or through using exponents we can arrive at increasingly large numbers—thousand (103),
million (10¢), billion (10°9), and so on. These and other techniques (see §8 4.26—4.2.9) allow us to build the
number scale with ever-higher numbers, unto the exhaustion of our resources.

2.3.14 Values and Variables

There must be some “highest number” invented to date, but whatever number we name, we can’t be
certain someone hasn’t exceeded it. We can say that there must be such a number, but we do not
necessarily know its mathematical value.

The concept of mathematical ‘value’ is key to understanding quantity, for quantity was defined as an
amount of objects, and ‘amount’ was defined as a value equal to a total. We know what a total is. But
what is a ‘value’?

We often encounter situations in which we don’t know how much is in a collection (like the number
of trees in an orchard) but we do know how much is in some of the subsets in the collection (like the
number of trees in one row and the number of rows). If we know how much is in each of the subsets of a
collection, we can perform a calculation to capture the size of the entire collection with a number (like
the number of trees multiplied by the number of rows for the total number of trees). When we seek to
find a number for the total of the collection, we are using some known numbers for subsets to determine
the mathematical value that will represent the collection as a total.
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In mathematics the term ‘value’ has many meanings, especially when used in combination with other
terms; there is place value, absolute value, etc. When | use the term ‘value’ in a mathematical context |
mean a numerical value:

= value: a constant number that can be specified.

This definition for value has two terms that need elucidating: ‘constant number’ and ‘specified’. Let’s take
a look at each. First, let’s start with what it means to ‘specify’:

= specify: to identify, refer to, or describe a distinct object.
The term ‘distinct’ should also be defined:
= distinct: able to be distinguished as different from other objects of reference.

To specify is to refer to one thing in particular as opposed to something else in particular. In this sense,
one way to specify a number is to identify or refer to a particular number, like 5, as opposed to any other
particular number, like 2 or 3. | will begin by using the term ‘specify’ in this sense (which is similar but a
bit different from how mathematicians use the term ‘determine’.)

There are different senses of the term ‘constant’—I will use the term here in its mathematical sense
to mean a constant number, which is a numeral that has a specific ordinality and cardinality in a number
scale. Any given number identified by a specific numeral in a number scale is a ‘constant number’. Some
examples: 0, 1, 2, 13, 502, or any others that do not increase or decrease in digits, or swap some digits
for others, may all be considered constants.

A ‘value’, then, is simply a constant number that is specified, or distinctly referred to, from other
numbers.

Suppose we know a collection has a cardinality larger than a second collection, but smaller than a
third collection, but we don’t know how many members make up the collection. In such cases, we
sometimes speak in very general terms of ‘large’ or ‘small’ numbers without specifying exactly what
number we mean; we don’t use a particular numeral for designating the number of members in the
collection. Sometimes we don’t even know what general cardinality a number should have—whether
large or small. When we refer to a number but cannot specify what constant it is, we refer to the number
as a variable. Basically, unspecified numbers are called ‘variables’. More precisely:

= variable: a symbol representing an unspecified, but specifiable, number.

The symbol for a variable represents only a number in an abstract, general sense rather than in the
particular sense of a ‘constant’ number. The symbols used for variables are placeholders that represent
these unspecified numbers. Mathematicians often use letters, upper or lower case, in distinct fonts for
variables. For instance, a lower case ‘x’ can be used to represent a variable—an unspecified number. If we
want to represent a different, but still unspecified number, we can use a different variable, like ‘y’.

A variable represents an unspecified, perhaps unknown, number. However, a variable such as x or y
could be given a value of 0 or 1 or 2 or 3 or any other constant number. To determine a constant number
that can be used in place of a variable is to determine a ‘value’ for the variable.



Part I: Quantitative Infinity Ch. 2: The Nature of Quantity 95

Regardless of the particular numbers we plug into the equation for iy and x, these same variables can
also be used in a variety of expressions because the values assigned to those variables can vary from one
mathematical expression to another—hence the term ‘variable’.

This is an important distinction: a variable is not necessarily a number representing a value that
changes over time like a bank account balance. Some variables can represent values that change over
time but not all variables represent values that change with time. Rather, the term ‘variable’ only means
a generic symbol that may have one value in one expression, a different value in another expression. So,
variables may represent values that change in time, but need not—it is their use that changes.

We can use variables in a variety of circumstances. For instance, perhaps we have a collection of
gemstones, but we don’t know how many gemstones there are in the collection. We want to find out the
total of the collection. But the total is an unknown, and therefore unspecified, number. Hence, we have
no constant number to represent the total number of gemstones and so the collection’s total can only be
represented by a variable. In order to find out what the total must be, we need to remove uncertainty
about what ‘value’ the collection needs to be given for an accurate measurement. That means we need
toremove the variable that labels the collection in terms of its size and replace the variable with a constant
number that accurately designates a total for the collection’s members.

Variables are used throughout mathematics, such as in mathematical equations. In expressions like
equations, variables are positioned where constant numbers are needed in order to complete the
expression while no constant numbers are presented. For example, take the equation y = 2x — 3. We
need to specify what the values for y and x must be to make the equation a complete and understandable
expression. Not just any constant numbers will do for values; we need specific constants that make the
expression consistent. In mathematical expressions like the equation y = 2x — 3, the variables are
removed by identifying constant numbers that can replace the variables without losing consistency in the
expression.

Mathematicians often make a distinction between ‘free variables’ and ‘bound variables’, but such a
distinction will not be needed for our purposes.

The process of replacing variables with constants is what is meant by specifying values for variables.
When the variable is replaced by a constant number, the constant number is identified or ‘specified’ for
the variable. When we can specify constants to replace y and x, and those constants give us a consistent
expression, we will have found ‘values’ for iy and x—values that i and x should have in the equation to
make the equation a consistent expression. If the replacement results in a consistent expression, the
expression is ‘solved’.

2.3.15 Specifying Values for Variables

Now | need to make a caveat: as | said, to specify a number is to identify or refer to a particular number
as opposed to identifying some other number. This is true, but not the whole story because that kind of
specifying is distinguishing between constant numbers already known; specifying a constant number for
a variable is a bit different than merely drawing a distinction between known constants.

One way that values are specified for variables is by applying mathematical functions or operations
on the variables that replace the variables with constant numbers in the mathematical equation. It is in
this manner that the rules for mathematical operations, when properly implemented, allow the
calculator—whether person or machine—to specify a value for a variable. ‘Specifying’ a value is, in this
sense, assigning a value to a variable rather than discovering a value that is “already there” in disguise as
the variable.
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For example, in the equation 5 = 2x - 3, the term x is the variable, the value for which we need to
specify in order to solve the equation. Applying the rules of algebra, the variable x can be replaced by the
constant number 4. As we identify x to be 4—more precisely, replace x with 4—we then solve the
equation: 5 = 2(4) - 3, which is correct. So in this case, we can ‘specify’ that 4 is the constant number to
be identified in place of the variable x, and this is simply to show that 4 is the ‘value’ for x. Similarly, in an
equation such as 3 X 2 = x, a value for x can be specified or ‘solved for’ by applying the operation of
multiplication to 3 and 2. The operation identifies 6 as the correct value to assign for x. It is the operation’s
assignment of the constant numeral 6 to x, or again more precisely, the replacement of x with 6, that
makes x ‘identical’ to 6 as when it is expressed, x = 6.

2.3.16 Specifying with the Grammar of Mathematics

When identifying values for variables, mathematicians sometimes describe the result with statements
like, “The value of x is 6.” We must be careful not to misunderstand this way of speaking; we don’t specify
the value of a variable the same way we specify the identity of a person.

When | ask for the name of a company’s Chief Executive Officer (CEO), there really is someone specific
in that role even though | do not know who the CEO is. When | seek the value of a variable, on the other
hand, it is not necessarily true that the variable already has a value | don’t know about. In the former case,
the ‘variable’ (the CEQ) is actually a particular individual (like, say, Alice) all along; in the latter case, the
variable (x) is assigned a particular identity (6); that is, the variable is replaced by a numeral, such as 6, in
the process of a mathematical operation. So, it was not that x was really 6 all along the way that the CEO
was really Alice all along. Specifying 6 to be x is thus not like specifying that Alice is the CEO.

This would be more straightforward if our use of natural language were more precise. Part of the
confusion is a consequence of grammar with respect to mathematics. Once we understand the grammar
of mathematics, the confusion dissolves.

We can take an expression like “The value of x is 6” as short for a longer statement: “According to the
mathematical rules, the value of x is 6.” Expressing x’s value this way implies that x gets its value of 6
upon execution of rules, which is correct, rather than x having been 6 all along, which is not correct.

Then too, consider that some sentences of declarative form are actually imperative sentences. For
example, the sentence “We’re finished” is declarative in form, but in function it can be imperative, as
when “We're finished” means “Stop talking.” So too, a sentence like, “According to the mathematical
rules, the value of x is 6,” or more briefly, “The value of x is 6,” may be declarative in form but imperative
in function. In fact, sometimes mathematicians use imperatives like, “Let the value of x be 6” (though
imperatives like these are usually a part of mathematical proofs). So, “The value of x is 6” can be taken as
an imperative expression with a meaning such as, “6 shall be the value for x,” rather than implying 6 was
really the value of x all along. The variable x shall be 6 because the variable x must, by the deductive
constraints of mathematical rules, be assigned the value 6 in order to create a consistent mathematical
expression and so to make an accurate claim about the number of elements in any collection x refers to.

The longer way of speaking (“According to the mathematical rules, the value of x is 6,”) or the
imperative way of speaking, “6 shall be the value for x,” is much clearer in intent than the briefer way of
speaking—“The value of x is 6.” Part of the confusion is with our use of the English words like ‘is’ and ‘of’
in place of words like ‘shall’ and ‘for’. The sentence “6 shall be the value for x” implies that we use a
mathematical operation to assign a specific identity to a variable that has no identity of its own, while to
say instead, “The value of x is 6,” might be mistaken to imply that x was really 6 all along, we just didn’t
know it before we solved the equation, which isn’t necessarily the case, especially if no one wrote the
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equation with the intention that x would be 6. However, saying 6 ‘is’ the value ‘of’ the variable can mean
instead that 6 is the only number x can be because the mathematical rules do not allow x to be replaced
by any other number. And that is perfectly accurate to imply. Since using ‘of’ rather than ‘for’ can be
misleading, however, saying “for’ is simply more precise.

We need not worry about correcting each other’s grammar with regard to variable identity as long as
we realize that specifying the value ‘of’ a variable does not necessarily mean the variable has an unknown
value in the sense of having one, lying undiscovered before anyone assigns a value to it. We should just
remember that are really specifying a value for the variable.

2.3.17 Unspecified Isn’t Always Unspecifiable

Though a variable simply as such is an unspecified, abstract number—a mere x or y for instance—a
variable is never absolutely unspecifiable. Every variable is at least in principle able to be specified, even
if it is not in practice specified. That’s not to say every variable is specifiable in practice; there may be
some that we cannot actually assign a number to. But even if we cannot do so in practice, a variable is
nevertheless a number able to be specified in principle.

So even if no one actually assigns, or due to lack of computing power can actually assign, a value to x,
we can still give x a value if circumstances were different, and that possibility is what makes the variable
x a ‘number’, albeit an unspecified number. In other words, if a given variable represents a total for a
collection, it represents a (relatively) specifiable—though not necessarily a specified—number.

Hence if a variable, like x, is used for representing a total, then x must be specifiable as a constant
number. We must be able, at least in principle, to solve for x even if we can’t really do it in practice. If we
can solve for x, if we can find a constant value for a total, then we have an ‘amount’ of something.

2.3.18 'Finding’ and ‘Having’ Amounts

There are yet more ways natural language plays a role in expressing mathematics. Math isn’t always a
matter of speaking literally.

Sometimes we say we will “find the amount” of something when we enumerate, but we don’t literally
“find” an amount of something because things in the real world don’t have amounts the way they have
parts; collections don’t have amounts you can find the way you would find objects.

As a mathematical value, an amount is an invention we use for the purposes of measurement,
especially when we need to enumerate the size of a collection. When we say that we “find” an amount
“of” something, that’s really a figure of speech—a way of stating that the collection we measure is labeled
with an amount as a result of the measurement; what we’re actually doing is using numbers as descriptive
tools to assign amounts to collections, rather than using numbers for discovering amounts as if they are
features of nature.

To say, for instance, that Earth has x amount of sand is really to say that there is some specifiable
number we can assign to the collection of all grains of sand on Earth. Or to say there is x amount of stars
in a galaxy is to say that there is some specifiable constant number that we can accurately assign to the
collection of stars in the galaxy as its current variable total. It is not really to say that the collection of sand
grains or collection of stars as such has some property called an ‘amount’. (In fact, no collection literally
has this property unless we’re talking about a collection of numbers.) Rather, we often speak
metaphorically as if such collections “have” an amount as an intrinsic property we can “find.”
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The metaphor is useful because saying that there is an amount of something, like an amount of sand
grains on Earth, or an amount of stars in the Milky Way Galaxy, is to imply that we could, in principle at
least, calculate a constant number and assign that number for representing the size of the collection. Even
if that number can’t be specified—even if we can’t know the “value of x” or, more precisely, assign an
accurate “value for x” in practice—we could at least do so in principle.

If we could enumerate the sand grains or stars to come up with a total, we could then apply that
number to the collection of stars for a match between the number’s cardinality and the size of the
collection; the value for x amount of stars would fit the collection. It doesn’t really matter that for practical
reasons we cannot actually count all the stars in a galaxy or all the grains of sand on every beach on Earth.
If those stars or sand grains were not to move about, and if we had enough time and interest to do so, we
could count them. These are examples of collections that are countable in principle even if they are not
countable in practice, so such collections do “have” amounts in a figurative sense, albeit variable
(unspecified) amounts that in practice we may only be able to estimate.

For a collection of something to have an ‘amount’ is for the collection to have a value representing
the relative size of the group of objects making up the collection. The amount assigned to the collection
is a value (a specified, constant number) equal to a total, which is a number equal to an exact sum of
enumerated objects in the collection.

We now have an explication for the term ‘amount,’ defined as a “value equal to a tota
is a particular, constant number that we can specify as an exact sum of objects in a collection.

IH

An amount

2.4 QUANTITY MADE CLEAR

From the foregoing analysis, we now have a better idea of what the word ‘quantity’ means when defined
even so simply as “an amount of objects.” A quantity is an amount (a logically and mathematically possible
value equal to a total) of objects (where ‘object’ denotes anything of which a subject can be aware). Hence,
in more precise terms, a quantity is a logically and mathematically possible value equal to a total of
anything of which a subject can be aware.

2.4.1 The Definition of Quantity and its Implied Self-Reference

An ‘object’ is anything we can be aware of. But we can be aware of numbers. So, those too would qualify
as ‘objects’. Since a quantity is a logically and mathematically possible value equal to a total of objects,
and numbers are objects, then there are quantities of numbers as well as quantities of other objects. To
have a quantity of numbers shows the self-referential nature of mathematics, for quantities are expressed
in numbers, the objects of mathematics. To have a quantity of numbers is to have a number of numbers.

But do not worry: this self-reference is not vicious. We saw earlier how we can consistently use
numbers even for counting numbers, as in the example of the natural numbers used for counting other
numbers such as those in the scale of whole numbers. The self-reference implied by the concept of
guantity is quite consistent, and it can even be useful.

2.4.2 Quantity has Plurality in its Definition

And yet, we need to be careful with such self-referential implications of our definitions so as to avoid any
question begging. For example, notice as well how the definition of quantity refers to the plural of the
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word ‘object’—a quantity is an amount of objects. But suppose there is only one object. If quantity is
defined as an amount of objects (plural), then how can only one object be a quantity? That is, if there is
only one object, how can there be an “amount of objects” (objects, plural) and so a quantity equal only
toone (1)?

As indicated in § 2.2.1, this may be more of a linguistic problem than a philosophical one. Consider
how the term ‘amount’ was defined: “a value equal to a total.” A total is a number equal to an exact sum.
Take the sum of 0 and 1, which is 1. There you have a collection of objects—the numbers 0 and 1—which
together constitute more than one object (ergo, a plurality), and the value of those numbers when
summed is the total of 1. Hence, 1 qualifies as a logically and mathematically possible value equal to a
total—i.e., an amount; namely, the amount which is the total of 0 and 1 as mathematical objects. Even
one object is thus “an amount of objects” —a quantity.

Another way of putting it is this: when we think of quantity as an amount of objects (plural) then, we
should not think ‘amount’ is the objects; rather, we should think ‘amount’ is from the objects. An amount
is a value equal to a total, which may be of only one object or of even none at all, as when we say a given
total is equal to zero. The “amount of objects” (the quantity) can be one, or even none, as the result or
implication of considering many possible objects. That is to say, quantity is derived from some process of
quantification from a plurality—the plurality of possible objects we consider in our process of quantifying.
So when we quantify, we are considering many but the quantity that results from the consideration may
be multiple, singular, or even none.

While the definition of quantity (“an amount of objects”) may refer to ‘object’ in the plural, there is
no question-begging problem. We can continue to regard quantity as “an amount of objects” even if the
guantity in question is one (1), as in one object, or zero (0), as in no object or objects. For quantity is an
amount, and the amount in question is the result (value equal to a total) of considering a plurality and is
not necessarily identical to the plurality considered. That is to say, a quantity is simply the answer to the
qguestion: how many?

2.4.3 The Moral from Defining Quantity: Nested Assumptions

As the foregoing, lengthy explication of quantity shows, even a simple, self-consistent definition assumes
quite a bit. The definition of ‘quantity’ assumes the definition of amount, which assumes the definitions
for total and value, both of which assume the definition of number, which assumes the concept of
numeral, which assumes the ability to enumerate (match numerals as symbols to) objects in collections—
a form of quantifying. This nesting of assumptions with respect to what we call ‘quantity’ is good to keep
in mind for, as we’ll see, many of the logical problems involved with the main topic of this book—infinity—
are found in the assumptions underlying its very conception.

2.5 IMPLICATIONS OF QUANTITY FOR INFINITY

The definition of quantity has direct bearing on the concept of infinity. To be quantitatively infinite is to
have a limitless quantity—a limitless amount of objects that can be enumerated. Since quantity assumes
the ability to enumerate the objects in a collection, an infinite collection must in some respect have no
limit to the enumeration of its objects.
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2.5.1 Enumeration Without Limit

To say a collection is somehow limitlessly enumerable may have more than one meaning. For there are
two different notions of quantitative infinity—the literal sense and the figurative sense.

Literal infinity is the condition of being both complete and limitless in quantity. Figurative infinity is
the condition of indefinitely changing in quantity, which implies inherent incompleteness.

So, if a collection is quantitatively infinite, it either has a completed enumeration that expresses a
complete quantity of objects despite their limitlessness (literal infinity) or the collection must have its
members indefinitely enumerated to ever-larger totals, the collection always being incomplete in quantity
with the enumeration of its members never complete but instead continuing to grow through time
“without limit” (figurative infinity).

2.5.2 Limitless Quantity as a Problematic Concept—Trouble for Infinity

The case against infinity is, in part, the case that a collection cannot be quantitatively limitless—either in
the sense of lacking a quantitative limit while nevertheless being complete or in the sense of lacking a
guantitative limit by virtue of being incomplete in quantity. As we’ll see in the pages to come, the former
implies logical self-contradictions; the latter is simply a misleading characterization of progressions that
always remain finite. Either way, quantitative infinity will be shown to be an inconsistent concept.

CHAPTER 2 IN REVIEW

R/
0.0

The case against infinity is mainly a case that infinity, as a quantitative concept, is either

inconsistent or logically incoherent.

Since infinity concerns quantity, a definition of quantity is needed for conceptual clarity.

« Quantity is defined simply as “an amount of objects,” which, if more than one, may exist
together in a collection.

« If a given collection is conceived of as having, either figuratively or literally, a limitless
amount of objects, then the collection is infinite.

+ The case against infinity is therefore mainly an argument that a collection consisting of a

limitless amount of objects is at best an inconsistent notion and at worst a logically

incoherent concept.
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3: QUANTITIES COMPLETE AND INCOMPLETE

A literally infinite collection is not just a collection that is limitless in quantity, it is also complete in
guantity. Conversely, because a figuratively infinite collection is an indefinitely changing series, it is
intrinsically incomplete in quantity because it never has a standing total of members no matter how much
it grows.

But what are completeness and incompleteness, particularly with respect to collections having
quantity? | will attempt an answer to this question with the aim of providing a clearer understanding of
both literal infinity and figurative infinity.

3.1 ON DEFINING COMPLETENESS AND INCOMPLETENESS

How should completeness and incompleteness be defined? Dictionaries provide at least two types of
definition: lexical definition and technical definition. Let’s consider each for defining our terms.

These types of definition overlap somewhat, but there are differences. A lexical definition is a
definition explicating the meaning of a word according to how it is commonly used. For example, the word
‘power’ in everyday discourse means the ability or capacity to do something. By contrast, a technical
definition is a set of statements that explicates the specialized use of a word by an academic field or
industry, or professional organization; the explication makes technical communication between subject
matter experts succinct and unambiguous. For example, the word ‘power’ has one technical definition in
physics and another in the study of law. A physics dictionary may define power as the rate at which work
is done or energy is transferred [96]. Physicists may then use mathematical formulas to calculate ‘power’
according to their technical definition. Meanwhile, a legal dictionary may offer a different technical
definition of power as the right or authority to take an action or accomplish something [97]. Lawyers might
then specify a list of acts that constitute ‘power’ according to their technical use of the word (like
executing documents, contracting, taking over title, transferring or exercising legal rights, etc.).

A word such as ‘completeness’, or its cognate ‘complete’, may also be defined either lexically or
technically. The same goes for ‘incompleteness’ and its cognate ‘incomplete’. Completeness and
incompleteness may mean one thing in ordinary language and may mean something quite different when
used technically by a particular field of study. | will draw upon both kinds of definition for defining
completeness and incompleteness.
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3.1.1 Completeness and Incompleteness in Mathematics

Our main topicin this section of the book is quantitative infinity, and quantitative infinity is a main concern
of mathematics. Consequently, in defining completeness and incompleteness for a better grasp of
guantitative infinity (both literal and figurative), we should proceed with the mathematical view of infinity
in mind, being careful to distinguish it from nonmathematical views of the same.

Mathematicians have their own vocabulary, much of which consists of words borrowed from the
ordinary, colloquial discourse of natural language, then redefined with technical meanings intended to
narrow their scope of application for precision. The words ‘complete’ and ‘incomplete’ are such words. In
mathematics, the words ‘complete’ and ‘incomplete’ are used in various technical senses within various
systems and theories.

Take what it means for a mathematical object, such as an abstract collection or set of numbers, to be
‘complete’. What mathematicians consider ‘complete’ in a technical sense according to a given
mathematical system or theory may contradict what we would ordinarily call complete according to a
lexical definition for completeness.

Moreover, the technical definitions for a term like ‘complete’ are so diverse among mathematical
disciplines that what constitutes ‘complete’ in a given mathematical system or theory may even contradict
what it is to be complete in a different mathematical system or theory. As Dr. Andre Kornell, professor of
mathematics at the University of California, Davis points out, “Completeness is not a formal notion, and
there are conceptual models for which the word ‘complete’ might sensibly be interpreted to opposite
effect” [98]. In mathematics, there is no agreed-upon technical definition for ‘completeness’ or ‘complete’
that cuts across all mathematical disciplines.

Any definitions for completeness and incompleteness intended to apply in the various contexts of
mathematics are therefore not going to please all mathematicians. With that in mind, | must point out
that the definitions for completeness and incompleteness | will put forth are not meant to be particular
to any given mathematical context—to any given system, procedure, function, technique, etc.

The definitions for completeness and incompleteness will cover the kinds of collections or quantities
mathematicians would typically assume them to hold for, regardless of the particulars of a given
mathematical context. The completeness or incompleteness so defined | take to be that which is typically
assumed by mathematicians even while their mathematical formulas and procedures are based on more
narrow, technical senses of such terms. So, the definitions for completeness and incompleteness will be as
agnostic to context as possible, but without losing relevance.

This will ensure that the completeness of literal infinity is explicated according to its common meaning
as assumed in any mathematical function or operation—the meaning it has beneath the formalism of
mathematical expressions. Likewise, the incompleteness of figurative infinity must be explicated by its
common meaning for any relevant mathematical function or operation, a meaning that holds regardless
of how infinity is figuratively presented in the formalism of mathematics.

To help ensure the case | am building against infinity avoids bias, the definitions for completeness and
incompleteness will be defined without assuming any particular application to infinity. The definitions will
be general enough to apply to any kind of collection or quantity—whether finite or infinite.

| also wish to ensure the definitions for completeness and incompleteness do not mischaracterize how
these words are used beyond mathematical contexts where quantitative infinity is referenced. So, the
definitions will apply independently of how one might use the terms ‘complete’ or ‘incomplete’ with
respect to any particular field of study. | intend the explications of completeness and incompleteness to
be common among as many contexts as possible but without undue vagueness.
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3.1.2 A Common Conception of Completeness and Incompleteness

WEe’'ll begin with a lexical definition of ‘completeness’ offered in ordinary, natural language. That
definition, whether refined further or not, | will refer to as the literal definition of ‘completeness’ and the
condition to which it refers as literal completeness. Its denial is literal incompleteness.

After lexically defining literal completeness, | will offer a more precise definition of ‘complete’ to
reduce as much as possible any lingering vagueness in the notion of completeness. From there, we will
also be able to discern why some collections are literally incomplete.

Despite the context-agnostic flavor of the definitions | pursue, the ultimate point to all of this is a
better understanding of completeness and incompleteness as these properties apply to quantitative
infinity—both literal infinity and figurative infinity. Since literal infinity implies the given collection is
literally complete as well as literally limitless while figurative infinity implies a given series that is literally
incomplete while being figuratively limitless, we need definitions for literal completeness and literal
limitlessness that do these concepts justice.

The following sections will define completeness in detail prior to defining incompleteness as its denial.

3.2 COMPLETENESS DEFINED

Because we have to start somewhere in order to understand what it means for an infinite collection to be
complete as well as limitless in quantity, | suggest we begin with a lexical definition for completeness,
then refine what ‘complete’ means with a precising definition (a more precise version of a lexical
definition), and then use that precising definition as a standard by which to judge various technical uses
of the term ‘complete’ in mathematics in order to evaluate how straightforward or misleading they may
be with respect to descriptions of collections, whether finite or infinite.

So, to kick things off here is a very simple lexical definition of the word ‘completeness’:

= completeness: the condition of being complete.

The definition refers to the adjective or logical predicate ‘complete’ which in ordinary, colloquial discourse
has a variety of meanings and is often used as a synonym for other words (e.g., whole, entire, finished,
full, total, etc.). However, we can be a bit more precise than offering synonyms.

The word ‘complete’ is a word that typically refers to a property of a collection of some kind (such as
a group, aggregation, multitude, set, sequence, series, etc.) or an object of thought that can be analyzed
as a collection. Assuming as much, we can propose a precising definition for ‘complete’ that fits how we
ordinarily think of what it means for a collection to be complete:

= complete: (1) having all members necessary to be representative of a given class.

Though this definition for ‘complete’ may sound a bit technical, a little reflection will show this definition
fits how we ordinarily think of collections called “complete” in everyday discourse.
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3.2.1 Completeness is About Membership

If something is complete, then whatever else it may be, it is a collection. Every collection is made up of
members. The human body, for example, is made up of members such as the body’s organs. That’s not to
say a human body is nothing but a collection of members; only that it is a collection with respect to having
members. If the body is complete, then it is complete as a collection. What we regard as ‘complete’ can
only be so if it is a collection and, as such, is made up of more than one member.

3.2.2 Completeness is About A Collection Representing a Class

The members of a collection are objects related to one another in some fashion. For example, take a
collection that is a group of objects in which the ‘objects’ are people. The people in one group may have
a “works with” relation between them while the people of another group may have a “plays with” relation
between them. Collections the members of which share the same type of relation with each other are
called classes. We will define ‘class’ rather loosely:

= class: a collection of objects sharing the same type of relation(s).

For example, laborers, technicians, politicians, soldiers, etc. are all examples of collections of people
sharing the same type of relation: they work with one another. Golfers, bowlers, gamblers, role players,
etc. are all examples of collections of people that share a same-type relation: they play with one another.
So, here we have two different ‘classes’ or people. We can also imagine a class of a more familiar variety:
a collection of people sharing a “studies with” relation—a school class.

As another example, take collections of objects used to perform work. One collection of such objects
is the class of objects known as ‘tools’ while another collection of such objects is the class of objects we
call ‘machines’. The difference between the two classes is the type of relations shared by the objects in
the respective classes. There are collections of objects used to perform work via manual manipulation—
objects with that type of relation belong to the class of objects known as tools. There are also collections
of objects used to perform work automatically—objects with that type of relation belong to the class of
objects known as machines.

We can then further categorize classes of objects into sub-classes of objects, such as machines into
classes of various types—vehicles, appliances, etc. To do so, we must be able to define what type of
relations among the objects of collections distinguish them from other objects among different collections
under the same overall class. For example, of the class of numbers, consider the collection of numbers
used for counting. Such numbers share the “counting with” relation. So, the counting numbers can be
regarded as a class of its own—or, more precisely, a sub-class of the class of numbers.

Even counting numbers can be sub-classified. If we consider “has ordinality” to be the relevant
relation between the objects of that collection, then the number 1 is of the same class as any other
number in the counting numbers (which begins with the number 1). But if we consider only the relation
of “follows next” to be the relevant relation for numbers in the scale of counting numbers, then we can
say 1 is not in the same class as any other number in the scale of counting numbers because 1 does not
follow next after a number in that scale.

Without getting into much further detail, the important point here is that a given collection must be
representative of like collections—a collection must be an instance of a class—if it is to be regarded as a
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complete collection. Being an instance of a class is not a sufficient condition to be complete, but it is a
necessary condition to be complete.

3.2.3 Completeness Requires All the Necessary Members

To be complete, a collection must have all the members necessary to be representative of its class. In this
context, the word ‘all’ means each and every. For a collection to have ‘each and every’ necessary member
implies the collection has those members that, together as a group without exception, are necessary for
the collection to represent a class. If a collection has only some of the necessary members, then it does
not have all the necessary members it needs to be representative of a class.

Let’s consider an example. Take an object made up of smaller objects, each of which fit togetherin a
particular way with one another. For example, a puzzle in which the puzzle pieces must all fit together in
a particular way. The smaller objects (e.g., puzzle pieces) share the relation “fits together” with one
another. In this example, we’ll call the smaller objects sharing this relation the ‘parts’ that make up the
larger object. Because the object is made up of parts, the object can be regarded as a collection in which
the parts are members. In this example, of the parts comprising the object, the parts must have the “fits
together” relation in order for the object that has the parts to be itself a member of a given ‘class’ of
objects (for example, the class of objects known as puzzles).

Moreover, of the parts comprising a given object, at least some will be necessary for the object to be
representative of a given class of objects, even if some of the parts are not. Of those parts that are
necessary for the object to be representative of the given class, all of them (that is, each and every one of
them) must be in the object for the object to be regarded as ‘complete’. To make this less abstract,
consider the example of a motor car. A car is an object, but it is also a collection of members. Some of the
members are themselves objects sharing the “fits together” relation. Those members are the car’s parts—
e.g., its frame, seats, wheels, etc. If the parts share the “fits together” relation in a certain way, we can
say the parts make up the object as a collection of parts and that the object is thus an instance of a ‘class’
of objects of a particular type—namely, the class of objects we know as ‘car’.

Of the parts that are fit together, at least some of them are necessary for the object they comprise to
be representative of a car—that particular class of objects. If all (each and every one of) the necessary
parts are in the given car’s collection of parts, then the car may be a complete car (though, there may be
other ‘members’ that are not parts but are also necessary—see the next section below).

So, a given car (the object we can point to) as a collection of parts must have all (each and every one)
of the parts necessary for that collection to be representative of the class ‘car’ in order to be considered
complete. If not all the parts necessary for the object to be representative of the class of object known as
‘car’ are included in the collection making up the object, then the object (the car in this case) cannot be
complete. The object can still be a car, but it won’t be a complete car. If wheels are a necessary part, then
without wheels the object we perceive can still be a collection of the class ‘car’ since it still has parts
related in the particular “fits together” ways they need to be part of a car, but it is not a complete car—
wheels would be necessary for the object to be a complete ‘car’ by that conception of car.

Moreover, we can apply this same stipulation for completeness to sub-classes as well. For example, if
the given car (an object of the class ‘car’) is to be complete, it must have all (each and every one of) the
wheels that are necessary for the car to be presentative of the class of car it is. Consider that if the car of
a particular class of cars has four wheels, then for the car in question to be a complete car, it must have
all four wheels. That is, each and every wheel that the car needs to be representative of a car of its class
must be present as part of the collection of parts comprising the car or the car will not be complete. (As
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an obvious caveat, wheels alone are of course not sufficient to make a car complete; other parts are also
necessary. And the same goes for particular parts of many other collective objects.)

3.2.4 Members Can Be Relations As Well As Parts

So far, we have only considered parts as examples of ‘members’ in a collection comprising a given object
like a car. But when we consider an object as a collection, the parts are not the only ‘members’ of the
collection because the parts have certain relations between them, like how the parts fit together. It is not
just the parts that make the object a collection of a certain class but also how the parts combine and relate
to one another. We can consider the relations between the parts to also be among the ‘necessary
members’ of the collection that make that particular collection an instance of a given class.

Hence, to be complete, a collection requires ‘all’ the necessary members, including the relations
among the parts. For the example of a car, it is not just the parts of the car alone that make the car
‘complete’ because, as a collection, the car is more than a collection of parts, it is also a collection of
relations. The relations among the car parts, such as how all of them fit together, are also members of the
car as a collection. And all the necessary relations of a given type must be included in the car if the car is
to be representative of the class of object it is—that is, if the car is to be complete. The same holds for
any type of collection or collective object: to be complete, it must be an instance of a class because it has
the members (both the objects sharing particular types of relations and the relations themselves)
necessary for representation of that class and all the members must be included.

3.2.5 Necessary For Completeness—Membership Vice Condition

It is true that what we call ‘complete’ depends on how we define the class to which a collection belongs.
If we wish to change convention and define ‘car’ in a way that wheels are not necessary as parts, then the
wheels also do not become necessary as members of a collection of parts making up a car (maybe a given
model of car, but not a car in general), and so an object might still be a “complete car” even though it has
no wheels or even if it has wheels that are unattached.

Even without such a change in conventional definition for a collection, some members we might find
in a collection may not be necessary for the collection to be complete. A collection of the parts included
in what we call a ‘car’ may not be necessary for the car to be complete as a car—for example, you can still
have a complete car without having a bumper sticker. Including a bumper sticker would not violate the
necessary conditions for the car to be complete, but any “extra” members (unnecessary members) are
not part of the car as a complete car; rather, they are extraneous to the car that is complete without them.
The same is true for anything we wish to regard as complete—when we construe it as some kind of
collection, we can see if there are any extra or extraneous members; if there are, such members are not
what would make that thing, as a collection, complete. Similarly, suppose we have an extra object to
replace an object taken from the complete collection in order to make it complete again, like a spare tire
for the car. The extra objects are not a part of the collection as a complete collection, even if they are of
the same class as objects in the collection, like the other tires on the car.

Before continuing, | should make a distinction. Philosophers sometimes use the terms necessary
conditions and necessary members. There is a difference between ‘necessary conditions’ on the one hand
and ‘necessary members’ on the other hand. Having necessary conditions is not the same thing as having
necessary members.
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To have the necessary conditions does not in itself entail that something is complete. To be adult,
male, and unmarried are necessary, and together sufficient, conditions to be a bachelor. But that does
not mean a given unmarried, adult male is a complete bachelor unless we are saying something humous.
Rather, to say something is complete is to imply it has necessary members, which in turn implies that the
thing that is complete is being regarded as a collection of some kind, such as a group, set, sequence, or
series.

The ‘members’ that together make a collection (simply as a collection) complete can be members of
any sort, such as physical objects, relationships between objects, properties, conditions, ideas, etc. In the
bachelor example, the collection to which we refer is a collection of conditions. If we are talking about the
necessary conditions for being a bachelor, we might refer to those conditions as a set of conditions. And
if they are a complete set of conditions, then each of those conditions is necessary as a member of the set
of conditions needed for a person to be a bachelor. It isn’t the bachelor we are referring to as complete;
it is the set of conditions needed to be a bachelor—each of those conditions is a member of the set of
conditions needed to be a bachelor and if all those conditions are present for a given man, then the set of
conditions is complete for that instance.

So, what is necessary for completeness is a matter of membership to a collection: to be complete, a
collection requires all the necessary members.

3.2.6 Completeness in Overview

From these considerations, we now have a definition of the word ‘complete’: “having all members
necessary to be representative of a given class.” That covers how the word ‘complete’ is used across a
variety of contexts with respect to collections. This notion of completeness applies whether we are
speaking of a physical collection like a set of chess pieces, or an abstract collection like a set or series of
numbers, a collection of conditions, or even a collection of steps forming a process. When all the
members—each and every one—for a collection are necessary to fit the collection’s class and all those
members are indeed together in the collection, then the collection can be accurately regarded as
complete.

3.2.7 Synonyms for ‘Complete’

In the definition of ‘complete’, the word ‘all’ is important to note: for a collection to be complete is for
the collection to have all members necessary to be representative of a given class. If the members are all
necessary for the collection to be representative of a given class, then it is “all” together that the members
make the collection complete. Those members may be objects, properties, relations, conditions, etc., but
regardless of what they are, they all together are needed to comprise a complete collection. The word
‘all’ (meaning each and every) in the definition of ‘complete’ thus carries certain implications. The word
‘all’ is a quantifier that in the definition of ‘complete’ implies the collection in question is—

=  whole

= entire

= finished
= full

= total
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In fact, these conditions are often used as synonyms for ‘complete’, just as you'll find in any dictionary
of common language. However, a little analysis shows that these words, though often used as synonyms
for ‘complete’, also have usage that is not strictly synonymous with being complete; the word ‘complete’
is often used differently than each of these other words.

To ensure we say exactly what we mean when we say a collection is infinite in the literal sense of
being complete as well as limitless, we need to adopt the more precise way of defining ‘complete’ and
avoid using other terms as synonyms unless we make ourselves clear that we are only speaking loosely.
Instead of using ‘whole’, ‘entire’, ‘finished’, “full’, and ‘total’ as synonyms for ‘complete’, we can regard
each of these alternative words as capturing distinctive features of completeness.

3.2.8 Criteria for Completeness

We can use the meanings of the synonyms for ‘complete’ as criteria for determining whether or not
something is complete. Wholeness, entirety, finish, fullness, and totality are each a condition that by itself
is not sufficient for something to be complete; rather, all of them together are necessary for something
to be complete. If a given collection has all the necessary members to be representative of a given class,
then the collection will be whole, entire, finished, full, and it will be a totality. Only if all such conditions
obtain for a collection will that collection be a complete collection.

We can therefore create an even more formal definition for ‘complete’ like so:

= complete: (2) a given collection is complete [i.e., has all members necessary to be representative
of a given class] if and only if the collection is whole, entire, finished, full, and total.

This second definition thus complements the previous precising definition. To say something is complete
is to imply that if we consider it to be a collection made up of parts or members, it has all the members
necessary to be representative of a particular class. That being so, we further imply its parts or members
form a whole, entire, finished, full, and total collection.

We can begin to see the differences between these conditions for completeness by using some
precising definitions for them, to which we will now turn.

3.3 WHOLENESS

Wholeness and entirety are often considered synonymous, but not always. | distinguish them so that we
can consider each condition on its own. Definition:

= wholeness: the condition of being whole or of being a whole.
To say that something is ‘a whole’ (noun) is similar to saying it is ‘whole’ (adjective):

= whole: (noun) a divisible, but undivided, collection of objects.
= whole: (adjective) to be divisible but undivided.
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For something to be whole (adjective), is for it to be divisible but undivided. This sounds similar to our
definition for ‘element’. However, whereas an element is a divisible, but undivided, distinct object, a
whole (noun) is a divisible, but undivided, collection of objects [99].

3.3.1 The Divisibility of Wholes

Wholes are divisible but undivided; however, this needs some clarification because there are different
senses of the term ‘divide’. By ‘divide’ | do not necessarily mean the mathematical operation of division,
although it can play a role. To divide a collection is to remove at least some of the logical relations among
the members of the collection such that the collection is no longer representative of the given class.

A collection may be divided analytically, as when we distinguish parts (conceptually mark the whole
into sections called ‘parts’) without mechanically changing the relationships between any parts that are
in the whole. This is often done to reckon the number of times the collection contains subgroupings, as
when the number of subsets within a set is calculated. (And, of course, there is mathematical division,
which is another instance of dividing analytically.)

A collection may be divided mechanically, as when we dissect a whole into parts (physically split the
whole into separate units). To mechanically ‘divide’ a collection is to separate members or groups of
members in the collection from one another.

In the context of considering a collection to be a whole then, to ‘divide’ is either to distinguish parts
analytically and attend only to those parts or to dissect into parts mechanically. If a collection can be
divided in either sense but is not in fact divided, then it is considered as a whole or to be whole.

So, if something is literally whole, it may have parts, but the parts are together and you are not
considering the parts as objects separate from the rest; the parts are divisible, in the sense of being
distinguishable or dissectible, but actually undivided in either sense. To consider a person as a whole, for
instance, is not to attend to any of the parts making up a person. That’s what it means to be ‘whole’ in a
(somewhat) more precise sense.

Wholeness cannot be applied to elements as such. As pointed out earlier, once an element is divided,
it is no longer an element but considered to be a collection containing members. Suppose, however, that
we don’t actually divide the element either analytically by distinguishing parts within it or mechanically
by dissecting it into parts, and yet we regard the element as something that could be so divided. In that
case, the element still ceases to be an element and becomes instead a literal whole—a divisible, but
undivided, collection. Something is an element only if it is regarded as a fundamental object rather than
as a collection of objects.

3.3.2 Wholeness as a Matter of Context

There is no single type of relationship among parts that confers the property of wholeness upon the
collection to which they belong. For example, take an object such as a circle. A circle may be divisible in
the sense that the curve of its closed line can be divided such as by a break or gap, and so long as there is
no such break or gap the circle is divisible but undivided—it is whole.

Now suppose we give the circle a property allowing it to splitinto 16 circles, each the same size as the
original circle like a stack of coins spread around into a circle. In Figure 3.1, the first image (image A)
depicts such an initial circle, which is a ‘whole’ circle because not only is its curve divisible, but there are
no divisions along its curve. In addition, this circle has the property of being able to divide like a cell into
further circles (images B — F) but is not divided in image A, which is why the circle at A is whole.
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The interlocking circles of image B do not comprise a ‘whole’ in the sense of being consolidated into
a single circle like in image A. However, the circles of image B do form a ‘whole’ ring comprised of
interlocking circles; the ring of circles in image B is divisible into a collection of circles that do not interlock
(as in images C-F). But since they are in fact still interlocked and so undivided as a collection of the
interlocking type, they still comprise a ring of that type and therefore they still form a whole according to
that standard.
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Figure 3.1: An example of wholeness as context relative. Collections of objects (A-F) can each be considered ‘whole’, or to
constitute a ‘whole’, depending on what is considered ‘divided’ for the context of the collection in question.

Likewise, a ring of non-interlocking but touching circles (image C) can be considered ‘whole’ in the
sense that while, as such, it is divisible into circles that do not touch each other (image D), they are in
image C still in contact to form a solid ring of that type. However, the circles of image C also do not form
a ‘whole’ in the sense of an interlocking ring, as in image B, let alone a set of circles consolidated into a
single circle as in image A.

Moving on, the ring of non-touching circles in image D can be considered a ‘whole’ ring of circles
because it too is divisible such as into halves (image E), but it is not so divided. And, of course, we can
consider image E to be a ‘whole’ composed of two halves of the previous ring of circles divisible but not
divided into separated parts as in image F. But even the collection of circles in image F can be considered
a ‘whole’ collection of circles if all the circles are present, their relative positions unimportant, and yet
they still form a single collection.
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The examples from Figure 3.1 illustrate that what constitutes a ‘whole’ is a matter of context because
what is considered “divided” or “separated” depends on how you want to define those terms, which is
likewise a matter of context. What kind of logical relations one has in mind among the parts determines
if the collection in question is or is not a whole collection.

If, for example, the parts of a collection of spatially extended shapes or bodies must be touching one
another but do not, then the collection is not ‘whole’. But if only the presence of all the parts is important
and not their mutual touch, then the collection can still be whole.

The same is true for the wholeness of a quantity. What constitutes a whole quantity of membersin a
collection depends on what quantity belongs to the same count and what quantity belongs to some other
count.

When considering the wholeness of quantities, though, there is one nuance to keep in mind. It has to
do with division. To be whole is to be “divisible but undivided,” and yet there are different meanings of
‘division’” and so a whole can be divisible in various ways. For example, consider the following
mathematical ‘sentence’, which contains a series of mathematical divisions:

3,125+5+5+5+5+5=1

Though each dividend from left to right is divided by a divisor, it is the series of mathematical divisions
(+=5-+5=+5-+5=5)thatis itself undivided within a single mathematical ‘sentence’. However, while the
series of divisions may itself be undivided, it too is in a sense ‘divisible’; for we could also divide (that is,
separate) the series of mathematical divisions itself into two series of mathematical divisions, each in its
own sentence placed in sequence—

(3,125 +5+5=125),(125+5+5+5=1)

—demonstrating that the original series of mathematical divisions was itself originally a whole—it was
undivided, yet also divisible. After dividing (separating) the original series of (mathematical) divisions into
two smaller series of divisions, and thereby making two resulting sentences, we can regard each series of
divisions either as an independent series of divisions in its own sentence or as two parts of a sequence of
divisions belonging as parts of a whole sentence that is equivalent to the original sentence.

Which goes to show that what constitutes a ‘division’ is in one context is not what does so in another
context; so too, what is regarded as being whole (“divisible but undivided”) in one context would not
necessarily be called “whole” in another context. And because wholeness is context-dependent, and
completeness implies wholeness, any collection we consider a complete collection must also be a ‘whole’
collection according to some criterion of wholeness, which remains purely relative to context.

3.3.3 Wholeness and Completeness

Despite the context relativity of wholeness, if a collection is complete, then it is whole according to some
relevant criterion of what it means to be whole. Conversely, a collection is not complete if it is not whole.
Moreover, a collection that is considered only in terms of some of its parts and not all of its parts (i.e., a
divided collection) is either not considered complete or not considered with respect to completeness.

Then again, just because something is whole does not mean it is complete. Wholeness does not by
itself imply completeness; a collection can be whole without being complete.
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A beam of light issuing from a light source is an uninterrupted stream of photon particles (a kind of
collection). At every location it travels through, the beam is ‘whole’ as it extends onward. But as the light
source continues to shine, it causes the beam to lengthen its reach as the beam advances into space, thus
adding more particles to the length of the beam. Since the beam can continuously add more particles (the
elements of the collection), the beam is not ‘complete’ because as a collection of particles the beam
continues to accumulate more particles (it is not finished forming) in the beam’s length. Hence, the beam
can be whole (it is undivided) without being complete.

3.3.4 Wholeness and Completeness in Mathematics

Mathematicians use the term ‘complete’ in various technical senses, some of which imply wholeness,
some of which do not. And even when wholeness is implied by these specialized senses of the term
‘complete’, the word ‘whole’ is not necessarily used, nor is wholeness necessarily recognized as such.

For example, consider the mathematical concept of a metric space. A metric space is a set in which
the distances between all members of the set are defined. Geometries can be considered metric spaces—
there are fixed intervals in such spaces and the elements can be arbitrarily close to one another. To be
‘complete’ in the technical sense used by the mathematician is for the metric space to be ‘entire’ (see the
next section) and for the metric space to be ‘whole’ (having no divisions, separations, breaks, or gaps in
the sequence of the metric space).

However, mathematicians don’t typically use the term ‘whole’ to capture the feature of metric spaces
lacking gaps. Instead, mathematicians say a metric space is ‘complete’, although they use that term in
technical senses as defined by the mathematical schemas of Augustin-Louis Cauchy (1789-1857) and
Richard Dedekind (1831-1916). A Cauchy complete space and a Dedekind complete space are very similar:
they both describe a metric space lacking measurable “gaps” between elements. Such metric spaces
constitute whole spaces, but not necessarily complete spaces in the literal sense of completeness.

For Cauchy completeness, the metric space lacks gaps by virtue of having a sequence of elements that
“converge” —that become arbitrarily close to one another according to mathematical operation [100]
[101]. A Cauchy complete space would not be considered as complete according to the literal definition
of completeness, which requires a collection (e.g., a sequence, series, set, etc.) to have the properties of
being whole, entire, finished, full, and total.

A so-called ‘Cauchy complete’ metric space may be a space that is ‘whole’ and ‘entire’ as defined here,
but the same metric space could lack the other properties such as ‘finish’ and ‘fullness’. To be ‘complete’
in Cauchy’s sense of the term may fit a narrow mathematical scheme, but that way of being ‘complete’
does not necessarily meet all the completeness criteria offered earlier. Moreover, Cauchy completeness
does not generally apply across other mathematical schemes, nor does it always apply to collections
considered infinite.

Literal infinity assumes a limitless collection is also a literally complete collection—that is, ‘complete’
in the sense defined earlier—to be whole, entire, finished, full, and total. And as mathematicians
frequently claim certain collections are literally infinite, Cauchy completeness cannot be what even
mathematicians tend to mean by something being “complete.” At best, the ‘completeness’ of Cauchy may
apply as a misnomer to a figuratively infinite (ergo, literally incomplete) function applied to a metric space,
but Cauchy completeness cannot apply to a literal infinity and does not apply in a general sense across
mathematics, let alone to other contexts.

A similar assessment can be made of Dedekind completeness (see § 3.6.2), which is also a form of
wholeness for a metric space, and perhaps fullness, but does not meet all the completeness criteria.



Part I: Quantitative Infinity Ch. 3: Quantities Complete and Incomplete 113

Since ‘Cauchy complete’ and ‘Dedekind complete’ are rather misleading terms, | will stick to using
terms like ‘whole’, ‘entire’, and ‘full’ as | define them in this chapter with regard to collections lacking
gaps—such terms are less misleading. | will reserve ‘complete’ for that which has not just wholeness and
perhaps entirety or fullness, but also finish and totality as well.

3.4 ENTIRETY

Entirety is often used synonymously with wholeness, but let’s distinguish these two conditions for clarity.
Definitions:

= entirety: the condition of being entire.
= entire: (1) missing no elements.

In order to make explicit what it is to be missing no elements, we can restate the definition of ‘entire’ with
a criterion for determining whether a given collection is or is not entire. So here is the definition of ‘entire’
stated a bit more formally:

= entire: (2) a given instance of a collection, C, is ‘entire’ if and only if it is logically possible to
determine that no member is missing from the instance of C.

3.4.1 Entirety in Set Theory and Mathematics

Now let’s consider how we might use this definition of ‘entire’ in the context of set theory and
mathematics. First, we need to add some more detail to the criterion for entirety by considering C as a
set and its members as subsets of elements. To say collection C is entire, as in “the entire collection,” is
to imply the following conditions are met by C:

1. Ccan berepresented as a set.

As a set, C is non-empty—C has at least one member within it. Example: C = {M}.

3. Every member, M, in C is itself either an element, e, or more than one element, or a subset of
members (whether a subset of elements or a subset containing further subsets).

4. Atleast one member of Cis not itself an empty set.

There are no missing members in C.

6. For any non-empty subsets [s] in C, the non-empty subsets in C are missing no members.

N

U

The notation is a bit nonstandard, but the point remains the same: any collection consistent with
conditions 1-6 should be considered an ‘entire’ collection.

For example, suppose C is the set of the first five whole numbers and we are given C in the following
form: {0, 1, 2, 3, 4, 5}. Clearly, if that is C, then C meets the first condition: we can represent it as a set.

Cis also certainly not empty as it has six members. So, the second condition is met.

Each number in Cis an element and they can be grouped into subsets, so the third condition is met.
Furthermore, even if we consider 0 to be the empty set, then there are still non-empty members in C;
namely, 1-5. That meets the fourth condition.



114 Forever Finite Kip K. Sewell

Now we need to know if C is missing members—either subsets or elements. Suppose we consider a
single non-zero element, e, as one of C's members. Suppose as well that e is the number 4. According to
the criteria, if 4 were missing from C, then C would not be the “entire” set of 0-5. But 4 is not missing
from C as can be plainly seen: {0, 1, 2, 3, 4, 5}. In fact, C is missing no elements from 0 to 5. If instead we
were to have considered subsets, the same conclusion would have been reached. For instance, if [s] is the
subset [2, 3] and that subset were missing from C such that {0, 1, 4, 5}, then that too would have meant
that C is not “entire.” But no subsets are missing from {0, 1, 2, 3, 4, 5}. The fifth and sixth conditions are
therefore met.

As you can see, if C is supposed to be the set of numbers from zero through five and we are given C
as the set {0, 1, 2, 3, 4, 5}, then we can say we have the entire set—or the entire collection—of numbers
that we are supposed to have according to the conditions given. That’s an example of entirety.

3.4.2 Entirety in the Real World

We need not confine ourselves to set-theoretic or mathematical examples of entirety. The conditions a
collection needs in order to be ‘entire’ can be met in real, physical collections as well as mathematical
collections.

As an example of an entire collection of real objects, consider again a chess set with all its game pieces.
We defined entirety as not missing any members. So, to be an entire chess set, it cannot contain any less
than 32 game pieces. If the set is missing at least one piece, for example, it is not the entire set. And if the
set is missing a piece, then it could include another piece and so must not be a complete set.

3.4.3 Testing Entirety With Wholeness

The terms ‘entire’ and ‘whole’ are often thought of as synonyms because the conditions are closely
related. They are not the same, but we can test for the entirety of a collection by violating the wholeness
of the collection. To be whole is to be undivided. By ‘dividing’ the collection in some sense, we might find
whether or not the collection in question is an entire collection.

We might divide a collection in either a conceptual manner or in a physical manner. We divide in a
physical manner when we mechanically separate the parts of the collection in an act of dissection, and in
a conceptual manner by analytically distinguishing the parts from one another.

Once we distinguish parts in the collection, the collection may be ‘whole’ in the sense of being
undissected but not whole in the sense of being unanalyzed since we did indeed divide the collection in a
conceptual manner—we were not looking at the collection as a whole. Even so, we may go on to refer to
the collection as ‘whole’ if, after having distinguished parts as individual members in the collection, we
once again attend to the collection in a conceptually undivided manner—we once again look at it “as a
whole.”

Hence, we again conceive of it as unqualifiedly undivided—a literal whole. While analytically making
the division of the collection, however, we can attend to the parts as distinguishable members, and in so
attending see if all the parts are there or if some are missing—that is, see whether the collection is entire
or not. If our test shows that a member of the collection is missing, then the collection is not entire.
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3.4.4 Gaps Indicate Lack of Wholeness and Possibly Lack of Entirety

Returning again to mathematics for another example, consider a sequence of numbers. If there is a
missing number somewhere between the first and last member in the sequence, then the sequence has
a “gap.” The gap divides the sequence into two, indicating it lacks wholeness in certain sense, but the gap
also shows that a member is missing; so the given sequence is not the entire sequence.

And if the sequence is not entire, then it is not complete.

It is here again that mathematicians sometimes use the terms ‘Cauchy complete’—a technical sense
of completeness. To be Cauchy complete is for a sequence to be entire: no elements in the sequence are
missing. Nevertheless, it would be less misleading to use the term ‘entire’ instead of ‘complete’ for
describing a sequence as missing no elements since there is more to completeness than entirety, just as
there is more to completeness than wholeness.

It would therefore be more accurate to say that if any collection (sequence or otherwise) is not entire,
then it is not complete. Like wholeness, entirety is a condition that a collection must have for it to be
complete, and like wholeness, entirety is not sufficient for completeness.

3.5 FINISH

To be complete, a collection must not only be whole and entire, but it must be finished as well. Here too
we must be a little careful with our terms because ‘finish’ is sometimes considered synonymous with
‘fullness’, but | will draw a distinction between these conditions. First, we’ll take a look at what it means
to finish a collection and then in the next section we will see what it means for a collection to be full.

The finishing of a collection has to do with bringing the collection to a ‘conclusion’ with respect to the
collection’s quantity of members. A process may change a collection’s magnitude by increasing or
decreasing the plurality of members in the collection. A change to the collection’s plurality changes what
any count of the collection’s members would yield. When some process that changes the plurality of
objects in the collection ceases to change that plurality, the collection has a concluding number of
members, or a ‘finish’, to any count of members comprising the collection. We can therefore define the
term “finish’ with respect to the quantity of members in a collection:

= finish: a concluding, non-zero number of members.

We'll now proceed to take a closer look at what it means to finish a collection. In so doing, we'll first
consider what it is to finish a finite collection before addressing the subject of what having a “finish’ means
for an infinite collection.

3.5.1 Two Kinds of ‘Finish’

When we say a collection of some kind is finished, we may have in mind two different kinds of collections
and two different ‘finishes’. In terms of collections, on the one hand we have C, a given collection being
changed in quantity, and on the other hand we have S, a series (a collection of events or steps) that
actively changes the quantity of members in C.
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When a coin collector pours coins into a jar, there are two collections of relevance: the collection of
steps (S) in the pouring process—such as a series of coins falling into the jar one after another—and the
collection of coins (C) in the jar. So, we need to keep in mind that in addition to the two kinds of
collections, there are two different finishes: there is the finish to the process that changes the quantity of
coins collected and there is also the finish of the collection’s quantity of members; for instance, there is
the finish to the coin-pouring process (a collection of steps in sequence) and then there is the collection’s
finished amount of coins in the jar.

The two finishes are not the same; just because Cis finished doesn’t mean S is finished. Suppose the
coin collector does not stop pouring coins into the jar until after the jar runs over with excess coins. The
jar’s collection of coins was finished (the jar had a concluding number of coins) before the series of steps
in the pouring process was finished—the excess coins simply spilled over, adding nothing to the ‘finished’
amount of coins in the jar’s collection.

Similarly, when a process diminishes or reduces a collection’s size, we must again distinguish between
the finish of the collection and the finish of the process that changes the quantity of the collection. When
a collection is reduced to zero members—like when we take every coin from the coin jar—the collection
cannot be called ‘finished’ because the concluding number of members must be some non-zero amount
for the collection to be a “finished’ collection. A coin jar with no coins is hardly a finished coin collection.
However, the process of removing the members from the collection, such as taking the coins from the jar
is “finished’ (has a concluding number of steps) over whatever particular number of steps it took to remove
the members. On the other hand, when the work (S) is finished, there is no more work to do, even if the
product (C) is unfinished.

Not only must collection C have a non-zero number of members in order to be finished, but the
process that changes C’s quantity of members inherently has a non-zero amount of events in the series
that changes C’s size. This holds no matter what sort of process of change we consider—scheming up the
collection, building it, removing parts, or otherwise altering its number of members. In terms of
mathematically constructing collections, for example, it takes a number of steps for the mathematician to
construct a given collection, whether it’s conceiving of a set or writing down a series of variables.

The number of steps it takes to change the size of a collection need not be many; for some collections,
achange in size can be concluded in just a single step. For example, stamping the first ten natural numbers
on a sheet of paper will conclude the construction of that set in just one step (or just defining a set might
do it: C = 10). For C to be ‘finished’ as a collection means only that whatever steps are needed to
construct C must be finalized. It is even logically possible for there to be a collection, C, without any steps
taken that yield its quantity of members. Such a scenario implies C has always existed for as long as there
has been time to exist, and with that quantity of members. In which case, C was always ‘finished’ as a
collection.

The notion of finish is related to the notion of being entire. Whether C is increased or decreased in
size, C is “finished’ only when it has a concluding number of members. The collection has a “concluding
number of members” when the process working to change the quantity of the collection has ceased to
make the collection any larger or smaller, such as by including or removing further members to the
collection, because the collection has achieved entirety—it has the quantity of members it needs to be
representative of a given class. Similarly, the process of quantitatively changing a collection, C, is itself
‘finished’ only when no further steps are included in the process’s series of steps, S.

In some cases, C and S are one and the same—a series, for instance, is itself a kind of collection and
might grow or diminish in its constituent number of events or steps—but often C and S are considered as
two different collections. In brief: whatever collection we have—an aggregate, multitude, set, sequence,
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or series—the collection in question is ‘finished’” when no more elements are included into it or taken
from it because the collection becomes the entire collection.

If a collection is finished, it is not necessarily complete. If | have finished exercising while leaving out
one of my usual exercises, my collection of exercises for the day may be finished but that collection is left
incomplete because | left some exercises out (I did not perform the entire collection of exercises).

Conversely, if a collection is complete, it is necessarily finished. A tank that is a complete tank of fuel
is a tank that is a finished tank of fuel; if a tank of fuel is a finished tank of fuel, then it has a concluding
amount of fuel. However, if the tank is complete, that of course does not mean the driver is finished
pouring fuel into the tank as the driver can attempt to fill the tank to excess, but it does mean that the
tank as such is finished being filled—the tank is finished as a tank of fuel.

3.5.2 Completeness Requires Finish

If a collection is not finished, it cannot be complete. If it is complete, then it must be finished. A complete
collection is “finished’ in at least two respects: it is finished in terms of the process by which it is formed
(i.e., the series of steps by which the collection is formed), and it is finished with respect to having a
concluding quantity of members making up the collection. The latter is determined by a mapping or
counting of the elements that comprise the collection.

However, just because a complete collection is a finished collection, both in terms of concluding its
formation and in terms of having a concluding element for an enumeration of its members, that does not
mean the collection is “finished’ in every way its members relate to one another. For example, the notion
of ‘finish’ need not apply with respect to the arrangement of members in a collection. There are some
completed collections that have a non-zero number of members and yet these collections cannot be
considered finished in terms of how their members are arranged because the arrangement of their
members has no first member and no last member, no beginning and no ending member, no starting
member and no member that finishes the collection.

For example, if the members of a collection are arranged in a circle or ring, the collection need not
have both a first and a last member, need not have both beginning and ending members, need not have
both starting and finishing members—at least, not in terms of the arrangement of members. Consider a
ring of stones like the circle of dots portrayed in Figure 1.1 of § 1.1.2. Go either way around the ring of
stones, for example, and you never come to stone that is the first or last stone, a beginning or ending
stone, a starting or finishing stone.

Even so, a circle or ring of elements can still be considered ‘finished’ in terms of how it was formed
and the quantity of elements of which it is comprised. In terms of the ring of stones, the multitude of
stones itself, by comprising a ring, has no first and last member with respect to the arrangement in which
they were laid, and therefore no start or finish to that order, but the process of laying the stones did have
a start and finish, a first and last step, even if accomplished all in one step by a party of workers. And we
may establish another kind of order for the arrangement of stones, without moving a single stone, by
counting the stones. The counting process will start with a first count of 1 and a finish at a last count, s,
which totals the stones. In fact, as the middle circle of Figure 1.1 in § 1.1.2 shows, a circle can be given a
point that functions both as the start and finish to a sequencing of its members with the sequence
extending all the way around the curve of the circle, finishing where it started. So, even a ring, though
having no first or last member, no beginning and no end to its curve, no start or finish to its multitude of
members, may as a collection of members still be matched to a description of the order that does have a
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first and a last member (its count), established by a process (the act of counting) that has a start and a
finish.

In order to be complete then, collections must have the properties of being whole, entire, full, and
total, but they must also be finished in formation and be enumerable, at least in principle, to a finished
count or mapping of members making up the collection. In terms of being finished, the ring of stones in
our example was finished with respect to being formed in a single step, and we can show the ring has a
total number of members (another completeness criterion) with respect to a finished count of the
members making up the ring. Finish is, therefore, still one of the properties that makes even a collection
with a ‘finite-unbounded’ arrangement of members into a complete collection.

3.5.3 A Completed Series is a Finished Series

Every collection contains members. But the members in a collection do not necessarily have reciprocal
relations between them, such as reciprocal logical implications. For example, consider the members
making up a series or sequence. The order of those members, from previous to next, do not necessarily
have reciprocal implications.

If any series or sequence has a first member, then it need not have a last member. For example, if a
process has a first member, we can imagine without contradiction the process continuing without a last
member (at least, without a “last” member in the sense of a final, concluding member that permanently
finishes the process). Similarly, if series or sequence has a beginning, we can imagine it continuing without
ending (again, in the permanent sense of finishing with a final, concluding member). So too, just because
a series or sequence has a start, does not mean it will ever finish. A series or sequence without a first,
beginning, or starting member but not last, ending, or finishing member is simply an unfinished series or
sequence.

However, an unfinished series or sequence is not a complete series or sequence. To be complete, the
series or sequence must have a finish and must be finished. The criterion of “finish” must be met by any
collection if it is to be ‘complete’.

Recall that to be complete means a condition of having “all” members necessary to be representative
of a class. To have “all” the members of a collection means there must be some last member to count or
some last step in a collection of steps that finishes the collection and thereby establishes that all the
necessary members are in the collection.

For example, suppose we wish to consider a collection of events or steps making up a process we
desire to call ‘complete’, like a process of dividing a pie into pieces. Of course, the pie is no longer complete
if it’s divided, but the process of dividing the pie can still be completed. To complete the division of the
pie into pie pieces requires all the needed divisions to take place. If there is no last operation in the series
of divisions, then there is no such thing as all the divisions and therefore no completion of the dividing
process because there must be more divisions to come that are not in the collection of divisions. To have
all the steps of a series implies a last step in a series. And if the series is finished, it requires a last step to
finish it.

Moreover, a reference to ‘all’ the members of a collection implies there is a ‘last’ member to count in
a count of the collection’s members, and a last member to count implies a finish to the counting process
(even if the collection itself is not finished). A collection can only be considered ‘finished’ if its members
can be counted to a non-zero, concluding member.
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3.5.4 Infinite Collections Must Be Finished to Be Complete

I should note that some philosophers and mathematicians might concur with this analysis insofar as finite
collections are concerned, but with respect to infinite collections many would disagree that ‘finish’ is a
necessary criterion for a literally infinite collection to be ‘complete’. However, the mathematician Georg
Cantor (1845-1918) and set theorists following in his tradition disagree. Cantor, for example, referred to
infinite collections as “finished” [102]. The concept of infinity in its literal sense is that it’s a condition of a
collection as somehow finished with a concluding quantity, a totality, despite having limitlessly many
members, despite continuing “without end.”

In Chapter 10 (see § 10.4) | will have more to say about how literally infinite collections are finished
collections. For now, | will simply assert that, finite or infinite, if a collection is to be complete, it must be
finished.

3.6 FULLNESS
A complete collection is also a full collection. Definitions:

= fullness: the condition of being full.
= full: (1) unable to include additional members of the same class without changing the parameters
of the collection.

Something is full if it can appropriately be regarded as a collection and, as a collection, it is unable to
include additional members that would have the same class (type of relation) as members already
comprising the collection. A full collection is a collection that is “unable to include additional members of
the same class” because including more of the same members would change the parameters of the
collection. In other words, including more would change the conditions that determine how the members
are related in the collection.

The ‘parameters’ of a collection may be a matter of logic or a matter of nature. Hence, a collection
may be “unable to include additional members” for either logical or physical reasons.

Perhaps the members in the collection are related as a matter of logic and to include more such
members would violate the logical relations defined by the parameters of the collection. For example, the
collection of degrees comprising the latitude of a hemisphere cannot include more than 90 degrees
without changing the logical relationship between the degrees and redefining the parameters of what
‘latitude’ means for a hemisphere. Recall the example of the chess set, which cannot include more than
32 game pieces without changing the parameters (which, in this case, are the rules) of the game. Or
consider a passcode, which may be limited to a fixed number of characters. A user cannot create a
passcode consisting of a string of characters longer than the character limit without changing the
parameters of the passcode.

On the other hand, perhaps the collection is unable to include more members without changing
parameters because the parameters are physical parameters, and the collection is in some way full of
physical objects. In which case, the collection can have no more unless we change the physical parameters
of the collection, like making the collection into part of a greater collection. A full pot of beans cannot
include more beans unless we add volume to the container holding the bean, thereby changing its physical
parameters.
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Similarly, consider a tank of fuel and note how fullness is related to the notion of ‘finish’. A tank that
is a full tank of fuel can hold no more fuel. If you have filled the tank but find that it can indeed hold more
fuel while you continue pouring fuel into the tank, as if the tank is a balloon being stretched as it is filled,
that would mean the tank is not a full tank of fuel. In such a case, that would, in turn, imply what is
considered the set of parameters for the tank (e.g., the size of the tank) is changing; if the parameters of
the tank are changing to accommodate more fuel, then the tank does not have a full amount of fuel in it.
Only if the tank is finished being filled in the sense that it can hold no more fuel is the tank a full tank of
fuel. Of course, in the case of the tank of fuel, we are only considering the fuel to be a “collection” in the
sense that the tank has its fuel portioned such as with a fuel gauge, but the principle is the same.

In all these examples, the given collection is a “full’ collection because the collection cannot include
additional members of the same class without changing the parameters of the collection. When a
collection is unable to include additional members in the same class as other objects in the collection, it
is a full collection. If a collection can include more of the same members but does not, in fact, include
those members that it could have included, then the collection is not full. This captures how we ordinarily
think of something that is full.

Given the foregoing qualifications, we can stipulate a more formal definition for the term ‘full’ like so:

= full: (2) a given collection, C, is full if and only if no additional element of the same class of elements
in any non-empty subset of C can be included either as the member of any subset in C or to the
entirety of elements in C without changing the parameters of C.

We can now relate our conception of fullness to completeness by noting how something we wish to
regard as ‘complete’ is something that is also full. Since we often use the word “full’ with respect to
containers, this seems easy to do: a full pot of beans, a full tank of fuel, a full cup of coffee, and so forth
are examples of full containers that might also qualify as complete if they meet the other completeness
criteria. We also used examples of a full chess set, a full hemisphere, and a full passcode; these too, if full
of their proper members (game pieces, degrees, characters, etc.), may also be considered complete —at
least, provided they too meet the other completeness criteria.

But what about a single object we would ordinarily call ‘complete’ like a complete statue, or what
about a succession of events? As to a single object, it can also be described as full if we analyze the object
in terms of its parts and construe the parts as members of a collection. We may call a statue a “full statue”
if the artist is finished carving the statue according to plan, but if the plan changed—if there is more to
carve—then the parameters of the statue have changed and consequently we are not seeing the full
statue. The statue was therefore not complete—there are more carvings to be included. A single object
can thus be considered a collection of members and, as such, may be a full collection or a collection
unfulfilled.

As to a succession of events, just think of a full race to the finish line—if the race continues on past
the finish line, the parameters of the race have been changed; the race to the finish line was not the full
race and the race was not complete at the finish line as more steps in the race must be included with the
change of the race’s parameters.
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3.6.1 Fullness and Completeness for Collections of Numbers

Not all collections are full, of course. This is also true in mathematics where any collection of depicted
values assumes a purpose of representation.

For example, consider the integers. An ‘integer’ is any number that can be written without a fractional
component or decimal expression, which includes the positive natural numbers, their additive inverses
(negative counterparts), and zero. Take two successive integers, such as 1 and 2. Next, consider a
sequence of decimal numbers between 1 and 2, such as:

1,1.4,1.4137,1.414201, 1.4142139,V2, 1.4142136, 1.41421, 1.41428, 1.46, 1.5, 2

If this sequence depicts only the numbers that we want to survey between 1 and 2, then we can say the
sequence is the full sequence or a full collection of values. But this sequence of values depicts only a
sample of some of the known decimal values between 1 and 2. Suppose we intended the list of numbers
to include all known values between 1 and 2. In that case, the sequence as listed is not the full collection
of values because there are plenty more known values between 1 and 2 that we can include and depict
between 1 and 2. Let’s suppose we can continue to list yet more such decimal numbers within the
parameters of 1 and 2 until all known values are listed. Until if and when we list all the known numbers,
the sequence as depicted would not be the full collection of known decimal numbers between 1 and 2.

Even supposing we can list all the already-known values between 1 and 2, consider what happens if
our purpose is to represent the sequence as including not just those values between 1 and 2 known to
date, but all decimal values between 1 and 2 that anyone could ever list. That would entail our listing for
the sequence has the potential to include decimal values no one had previously written down before. In
such a scenario, our list of values depicted in the sequence would never in practice become a full listing
because at any time we could always expand the list yet further to include new values. So, in actual
practice, there would never really be a full sequence of decimal values between 1 and 2—the sequence
of depicted values will always remain inherently incomplete because we can always add to the list.

That covers prospects for having a full list of depicted values between 1 and 2, and a full list of in-
practice depictable values between 1 and 2. But what about the full list of numbers that also includes
numbers no one will ever depict, or be able to depict in actual practice, but nevertheless could depict at
least in principle?

So let’s consider those decimal values between 1 and 2 that include not just values depicted and
values able to be practically depicted, but also values we are able only in principle to list. Such values are
those we, counterfactually, would list if we not only had the interest but also the time and resources to
do so—time and resources we do not and will not have in reality. If inclusion of in-principle values between
1 and 2 must also obtain in order to have a full list of values between 1 and 2, then the decimal values we
can potentially list in practice between 1 and 2 would certainly not be the full list because it is still logically
possible for the list to include values no one will ever, or could ever, know in actual practice. However,
suppose we consider the purely logical possibility of a full list of decimal values between 1 and 2 in the
sense that any list of decimal values we could potentially at some time depict between 1 and 2 (like the
above example) has the logical possibility of being further expanded by including values no one will ever
or could ever list in practice but could in principle. In that sense, the full listing is not the listing we have
depicted in practice; rather, the “full listing” is the list we can only in principle depict.
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3.6.2 Fullness in Mathematics

These distinctions for fullness have bearing on how some mathematicians use the term ‘complete’. There
is a technical use of the term ‘complete’ in mathematics for describing the set of decimal values between
successive numbers. That technical form of completeness is ‘Dedekind completeness’, which we met
earlierin § 3.3.4 [103].

Dedekind sought to define the completeness of a set of values as one in which no “gaps” are present
in the sequence. In a ‘Dedekind complete’ set of values between any two numbers, there are so many
intermediate decimal numbers that one could never list them all in practice. If the set of Dedekind
complete numbers between any two integers can be fully listed at all, the full list can only be obtained in
principle. However, a Dedekind complete sequence of decimal values between any two numbers includes
not just all quantities of values able to be listed in principle, but it also includes too many values to be
listed even in principle—in fact, a Dedekind complete sequence is conceived of as having “infinitely many”
values [104].

Itis not clear that a non-zero set of numbers the members of which are unable to be listed in principle
is logically coherent. But assuming it is, there remains a problem with the term ‘Dedekind complete’ for
describing it. The term is a misnomer since a Dedekind complete set does not satisfy all the completeness
criteria. (A term such as Dedekind continuous would be more apt) [105].

Moreover, even if a Dedekind complete set is a full set of numbers, it is not a set that can be assigned
a standing total. At the risk of grossly oversimplifying the concept of Dedekind completeness, consider
again two successive integers such as 1 and 2. Because a Dedekind set of decimal numbers between any
two numbers includes too many values to be listed even in principle, there is no such thing as a total
number of decimal numbers between 1 and 2 or any other numbers you can name, no matter how close
in value they are. So, even if we want to consider all the decimal numbers between 1 and 2 as constituting
a ‘full’ set, it is a set without a total. For example, no matter how close to 2 a decimal number less than 2
is, there is always another decimal number (e.g., 1.999999...) just a bit closer to 2 in value—you can never
arrive at a total number of decimal numbers between any two numbers.

As you can see, the implication of Dedekind’s notion of a ‘complete’ set is rather like Cauchy’s notion
of ‘complete’. Dedekind just had a different way of expressing his technical version of completeness using
a mathematical technique of ‘cuts’ in a number line, which we won’t worry about as the details are not
important for our purposes.

Without a total to a Dedekind set, the full Dedekind set cannot be a complete set; its fullness is a
necessary condition for its completeness, but not a sufficient condition. A Dedekind set of decimal
numbers between any two numbers such as between 1 and 2 must have a total as well as fullness to
count as ‘complete’ in the ordinary language sense defined earlier (see also the next section explicating
totality). So, to say the numbers between 1 and 2 are ‘Dedekind complete’ is rather misleading. ‘Dedekind
full’ might be a more appropriate term, but it is still not clear that it makes sense for a “full” collection to
have too many values to list even in principle.

The Dedekind set example for use of the term ‘complete’ in mathematics shows that we must be
careful to distinguish different uses of the word ‘complete’ in mathematics. Even while the use of the term
‘complete’ in mathematics may sometimes cohere with the usual lexical and precising definitions of
completeness, there are times mathematicians say something is ‘complete’ that does not match
completeness in the ordinary sense. They sometimes use ‘complete’ in specialized, technical senses and
these senses can be misleading if they contradict what we normally take completeness to imply, such as
the fullness of a collection.
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As we saw earlier, Cauchy completeness is another example. ‘Cauchy completeness’ is a misnomer
for ‘complete’ in our ordinary use of ‘complete’ because Cauchy completeness also does not satisfy all of
the criteria for completeness in the precise sense of the term. ‘Cauchy completeness’ applies to collections
that lack fullness. A ‘Cauchy complete’ sequence is not a full sequence; it is a sequence that only converges
near, or approximates, another value and so can always include more values. So, this is yet another reason
why a ‘Cauchy complete’ sequence is not a complete sequence in the precise sense of completeness, and
it too is a misleading term. ‘Cauchy whole and entire’ would be more accurate since the kind of sequence
it refers to is claimed to have no gaps and be missing no elements, even though it could always include
more without changing parameters and so is never full.

For such reasons, | find all the mathematical definitions for ‘complete’ to be very misleading; it seems
to me that mathematicians should have used a different term than ‘complete’ for describing orders of
numeric series or elements since we usually take a complete collection to be a finished and full
collection—neither of which apply to ‘Cauchy complete’ collections and both of which dubiously apply to
‘Dedekind complete’ collections.

3.7 TOTALITY

A complete collection is a collection with totality, but the word ‘totality’ can be a bit slippery. In
contemporary set theory, totality has various technical meanings involving orders and relations between
sets. For example, the term ‘totality’ may simply mean that for any two elements in a set, either one is
greater or equal to the other, or vice versa. But that technical conception of totality is not the kind of
totality that has bearing for quantitative completeness across multiple contexts, for there are contexts in
which none of the members of a given collection have either = or < relations and yet we would say the
collection is both quantitatively complete and a totality. So, instead of such a narrow, set-theoretic notion
of totality, we need a more general, but still quantitative, concept of totality that is implied by what we
usually think of as needed for a collection (ordered or not) to be complete.
Some possible definitions—

= totality:
(1) the state or condition of having a total (i.e., having an exact sum).
(2) that which has a total (e.q., a collection that has a sum).
(3) the state or condition of being total (i.e., being a whole and entire amount).
(4) that which is total (e.g., a collection that is whole and entire in amount).

Of these definitions, we need to know what kind of totality is implied by the completeness of a collection.

The third and fourth definitions of ‘totality’ reiterate the properties of wholeness and entirety, but
with respect to having an amount (a value equal to a total). But completeness is more than wholeness
and entirety with respect to the amount of members in a collection.

Completeness implies totality in the sense of the first two definitions of totality: a complete collection
has totality (first sense) because it is a collection with a total. The collection can be accurately assigned a
number equal to an exact sum of numbers. For a collection to be ‘a totality’ (second sense) is for a
collection to have a total, a number equal to an exact sum of numbers.

Moreover, for a collection to be complete, it must have ‘totality’ in the first two senses but for a
collection to have or be such a totality is not necessarily for the collection to be ‘complete’ because the
collection may not be whole. A collection that is not whole may still have a total. A collection of books
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divided in half can still be totaled—two groups of books added back together will make one collection of
books. The collection still has totality in the sense of having a total even if it is not the whole collection.

Then too, a collection may have totality and yet not be a ‘complete’ collection because it may be only
a partial collection rather than an entire collection. That is, the elements that are in the collection can still
be totaled even though the collection is not entire and therefore not complete. A collection is not ‘entire’
if it is missing elements. Despite missing elements, the collection can still have totality in the sense of
having a total, but the collection cannot be complete. For example, a pearl necklace may be missing a
pearl, but we can still count the pearls that are in the necklace and arrive at a total. The necklace has a
totality of pearls, but not an entirety of pearls and therefore it is an incomplete necklace.

A collection can also have a total regardless of whether or not it is finished. A collection that is
unfinished and therefore incomplete, may also still have a total as when the collection constitutes a series
of changing values. For example, a bank account always has a total holding even if the total holding
changes with each transaction; collections like the bank account have a variable total or a running total;
a total that changes, showing that totality does not necessarily indicate finish.

A collection can therefore still have totality without being whole, entire, or finished.

But here we must make another distinction that has to do with our normative procedures for
identifying collections as having a totality of members. We need to distinguish between the totality a
collection does in fact have and the totality a collection should or ought to have [106]. If we define a
collection in terms of having a value greater than zero—a positive value it should or ought to have—and
yet the sum of elements in the collection we do have is equal to zero, then the collection lacks the total
required. But that does not mean the collection lacks totality per se; rather, the collection is not complete
by virtue of missing elements, being able to have more elements, and not being finished, but it still has a
total number.

Having a total number brings up an important point. A total may be equal to an exact sum, but that
sum need not be specified. That is, the total need not be in the form of a known, constant number you
can write down. For finite collections, the total of a collection may be represented by a variable, and the
variable would need to be assigned a value via calculation or computation in order to specify what number
the total equals.

For example: 3,795 X 5,286 = x. Here x is the variable—the unknown total. So, having a total does
not necessarily mean the value of the total is known prior to calculation; perhaps a constant number for
the total is not specified and needs to be determined by a mathematical operation. However, an
unspecified total is not an unspecifiable total. Having a total means that a constant number can be
specified for the value of the variable representing the total, at least in principle.

The definition of totality also allows that even a collection with no members at all still has a total—an
exact sum; namely a total equal to 0 (zero). As long as the collection can be given a constant value, even
if that value is 0, it has totality. So, an empty or null set does have totality.

For now, let’s stick to totals having non-zero values just to keep things simple. To have a total with a
non-zero value means the collection is, at least in principle, countable. To be countable to have the ability
to be counted to an exact sum. In order to be able to count all the members of a collection, a count of the
collection requires a first member to count and a last member to count, even if the two are the same
member. Without a first member to count, the count cannot occur for a count is always a count from a
first number to a last number, and without a last member to count, the count cannot be finished at a last
number. A count must be able to finish at a last number because the last number counted is equal to an
exact sum, which is what a total is.
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As mentioned previously, aside from collections with a ‘standing total’ representing a constant
number of members in the collection, there are some collections that grow or diminish in size over time,
with a ‘running total’ of members. When we enumerate the members of a series that is continuing to
grow or diminish, the concluding, or ‘last’, member counted is not an absolutely last member in terms of
representing a ‘final’ member after which no more members will ever be added to the collection. Instead,
the series has a running total of members. Even so, the series, as a collection, still has a ‘last’ member in
the sense of having a member that captures the size of the collection at the time of the count—a finish to
the process of counting the members (rather than a finish to change in the number of members counted).
And when a collection can be assigned a specific, constant value that captures its size at a given time, the
collection has totality. Hence, even an unfolding series has a totality.

Any collection with a non-zero value of only one member is also a collection with a conclusion to its
count of members. In the case of a collection having only one member, the first member and the last
member are the same member—the count of members in the collection is over in one step.

All of this has bearing on completeness: if a collection is a complete collection, it is a collection that
must have totality—a total that can, at least in principle, be reached by a count of the members, first to
last. Moreover, to be complete, the collection’s total must be a standing total rather than a running total—
the collection’s total must have a value in the form of a constant number assigned to it as a sum or product
of its component members.

A collection with a running total of members is an unfinished and therefore incomplete collection.
However, a collection with a running total may still be considered complete in a narrow sense. But a
collection with a running total of members can be considered a complete collection when we consider the
collection to be ‘complete’ as it is at a given time (something not often taken into consideration in the
‘tenseless’ formalism of mathematics). Taking time into consideration, we must consider the latest total
in the running total to be our standing total for that time, defining the total for the collection. Without
the ability to assign a definite time marking a finish to any possible count of the collection, a collection
with a running total of members is not a complete collection.

There is one caveat | should point out with regard to a collection’s completeness requiring a total
count of members. In order to be complete, any collection must contain members able (in principle) to
be countable to a total, but it is also true that a collection can be complete without having both a first
member and a last member with respect to the order in which its members are arranged. A complete circle
of stones has no first stone and no last stone in its closed curve of formation and yet the circle is complete
(see Figure 1.1in § 1.1.2).

However, to be complete a collection must have both a first and last member to a count of the
members, at least in principle. For example, as a complete collection, the circle of stones must, among
other things, have members (stones) able to be counted to a total. We can perform such a count by
arbitrarily selecting a stone from the circle by which to begin a count of the stones until the last stone is
counted and we thereby arrive at a total. If a count of members in a collection cannot, even in principle,
be given a standing total (as opposed to a running total) from a count of its members, then the collection
is not a complete collection. It is an incomplete collection—perhaps an incomplete collection with a
running total, but still not a complete collection.

Be that as it may, | can just hear protests that | have not considered collections that have too many
elements to count, even in principle. In other words, limitless collections. Why can’t limitless collections
also be complete?

We will explore limitlessness in the next chapter. Until then, note that a limitless collection is a
collection that cannot be given a total, even in principle. A limitless collection is, therefore, a collection
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without a total and, without a total, a collection does not have the property of totality. Without totality,
a collection cannot be complete by our earlier definition of completeness.

That totality is required for completeness, if correct, does have implications for how terminology is
used in mathematics. For example, a collection that is often said to be ‘Dedekind complete’, such as the
set of all decimal numbers between any two integers, is rather misnamed because the number of numbers
in the Dedekind set between any two integers, such as between 1 and 2, is said to be limitless [107]. But
if there is no limit to the number of numbers between any two integers like 1 and 2, then such conflicts
with the completeness of the same sequence of numbers because completeness requires totality. Even if
we grant the number 2 is a quantity toward which all the numbers added from 1 on up through all the
most incremental of the decimal numbers, that does not give us a total number of decimal numbers
between 1 and 2 if such are limitless. And without such a total, the collection of decimal numbers cannot
be complete. So here again, ‘Dedekind complete’ becomes a misnomer for what should be considered, at
best, ‘Dedekind full’ or perhaps ‘Dedekind continuous’.

In brief, totality is required for completeness. If a collection has no totality, it has no total and if it has
no total, it cannot be complete. Conversely, completeness requires totality; no complete collection lacks
a total.

3.8 APPLYING THE COMPLETENESS CRITERIA

We now have a much clearer idea of what it means for a collection to be complete: to be complete implies
having the properties of being whole, entire, finished, full, and total. Now that completeness is sufficiently
defined, we can use the definition’s constituent terms (wholeness, entirety, finish, fullness, and totality)
as criteria by which to assess whether a given collection is complete or incomplete.

The criteria help show the way in which a collection can be made complete over time, and the way in
which collections complete in themselves can be added together to form a series, even a series that is not
itself complete. The criteria for completeness also enable us to investigate the number scales, such as the
scale of naturals and the scale of wholes (N© and W©), to see what it is to have complete sets of numbers
from those scales. That in turn will give us an indication of what it means for a collection to be ‘infinite’ in
the literal sense of being complete in quantity as well as limitless in quantity.

First, let’s apply the properties of wholeness, entirety, finish, fullness, and totality as criteria to a
collection and see if the collection in question fits the definition of completeness. As an example, consider
a ‘complete’ segment of whole numbers like the set of numbers we considered earlier—the first six whole
numbers in WC; that is, {0, 1, 2, 3, 4, 5}.

Incidentally, despite their name, the whole numbers of WC do not necessarily have to do with the
property of wholeness as earlier defined. It is true that you can imagine a positive number from W<, such
as 1, being divisible (for example, 1 can be divided into halves: 0.5 and 0.5) and yet not divided prior to
the operation of division upon it. In that regard, | suppose 1 can be considered a number “divisible but
undivided” and so aptly called a ‘whole’ number. On the other hand, 0 (zero) is a whole number too, but
0 is not divisible. So, the term ‘whole number’ is a bit misleading. Regardless, the name ‘whole number’
struck, so we'll roll with it—at least, for the positive numbers and zero as belonging to the same scale of
numbers.
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Anyway, applying the criteria of completeness to {0, 1, 2, 3, 4, 5}, a set of whole numbers from WC,
we find that:

= The setis ‘whole’. The set is not divided or separated into two or more sets such that the set no
longer has the necessary members to represent a given class.

= The set is ‘entire’. No subsets are missing. If a subset such as [2, 3] were missing, the set would
not be entire, but no subsets are missing. And no elements are missing; if a single number, such
as 3 or 4, were missing, the set would not be the entire set but all numerals representing numbers
0-5 are present.

= Thesetis ‘finished’. The process of constructing the sequence of numbers (0-5) is all done, leaving
a concluding number of numbers in the collection: 6.

= The setis ‘full’. No more numbers, like 6, 7, 8, etc., can be added to the set without changing the
parameters of the set as being a set of only the first six whole numbers.

= The setis a ‘totality’: 6 represents the total—the exact sum—of numerals in the collection and 5
represents the total with respect to the cardinality of numbers making up the collection.

Since the set is a whole collection that is also an entire, finished, full, and total collection, it is a complete
set of the first six numbers in WC,

The criteria for completeness entail that any collection that would be called ‘complete’ must be a
collection that is not separated into two or more subsets so as to lack members necessary to represent a
given class (wholeness), the collection is not missing members as subsets or elements (entirety), the
collection has necessarily reached a concluding amount at the close of any process that builds it up or
reduces it in size (finish), the collection cannot contain any more members of the same class without
changing its parameters (fullness), and the collection is able to be assigned a constant number for the
number of members it contains (totality). That is what it means for a collection to be complete.

3.9 INCOMPLETENESS

Any collection that does not meet one or more of the completeness criteria is not a complete collection.
To lack wholeness or entirety or finish or fullness or totality, or any combination of those properties, is to
lack completeness. The following sub-sections provide some examples of how a collection may be
incomplete.

3.9.1 Total But Neither Whole, Nor Entire, Nor Finished, Nor Full

Collections with non-zero totals lacking in wholeness, entirety, finish, and fullness are incomplete
collections. Consider a puzzle for which all the puzzle pieces are not joined together. The puzzle is not
whole because its pieces are ‘divided’ or separated from one another such that they lack the necessary
relation of fitting together, the puzzle is not entire because there are pieces left out, the puzzle is not
finished since there are more pieces to put in, and the puzzle is not full because more pieces are able to
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be put in without changing the puzzle’s parameters. And while the puzzle may have a total number of
pieces put together, lacking the other conditions makes the puzzle, as a collection of pieces, incomplete.

Even an empty set has a total—namely, a total of zero. In that sense, an empty set can be considered
a ‘totality’ (defined as the state of condition of having a total) if we allow a “total of zero” to count as a
totality.

But because an empty set has no members, it does not have ‘finish’ as a property at all—there is no
concluding non-zero number of members. The empty set also lacks wholeness since it is not divisible and
it lacks entirety because it is missing elements to enumerate. The empty set lacks fullness because, as a
set, it could include at least one element but has none. Because of these conditions, the empty set is
necessarily an incomplete set.

3.9.2 Total and Finished But Neither Whole, Nor Entire, Nor Full

A published book with pages ripped out is a good example of a collection (of pages) that is both a total
collection (it has a number of pages) and a finished collection (it is published). But the book is not whole
because it is divided from its pages, and it is not an entire book because it is missing pages. Moreover, the
book is not full since the missing pages could be included without changing the parameters of the cover.
Because the book lacks wholeness, entirety, and fullness, the book is therefore incomplete.

3.9.3 Total and Whole But Neither Finished, Nor Entire, Nor Full

Imagine a ring of beads. There is a total number of beads, satisfying the totality condition. When one bead
is lost from the ring, the ring seals up. In one sense, the ring is still whole (undivided) since it is still a ring
without gaps or divisions; in another sense, the ring is divided from the bead that was lost from the ring.
Let’s suppose the bead is not just removed but ‘poof’ —it no longer exists. In that case, the parameters for
the collection allow us to consider the ring of beads, as a collection of beads, to be ‘whole’ despite the
loss of the bead. Even so, the ring is not the entire collection of beads since it is missing the bead it lost
and it is not the finished collection of beads since we must add a new bead back in for the collection to be
entire and to be equal to its original total. Moreover, the ring of beads is not a full ring of beads in the
sense that we could include another bead back in and not change the parameters of how we had defined
the ring of beads. This goes to show that being ‘whole’ and having a total is not enough: without being
finished, entire, and a full set of beads, the collection of beads forming the ring is incomplete.

3.10 ON BECOMING COMPLETE AND ON REMAINING INCOMPLETE

Some collections start life as complete and end life as complete; others begin life incomplete but end life
complete, some start as complete but end as incomplete, and yet others start incomplete and end
incomplete. In short, some collections are defined by completeness from the get-go, while others gain or
lose members as they are formed or reduced. All of these ways in which the completeness of a collection
either remains constant or undergoes changes have something in common: the completeness of a
collection transpires over a series of events or steps.

The term ‘series’ was defined as a sequence formed by succession. The members of a sequence can
be events over time, like the successive ticks of a clock, or the members of a sequence might instead be
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successive steps in a process, like the steps taken to follow a recipe or to play a song. Sequences of
successive events or steps like these are examples of series.

Another example of a series is one in which the members of a sequence are events or steps in which
there appears an object or collection of objects. For example, we might have a sequence of steps in which
books are gathered, with each step in the sequence adding a new book to the sequence until the sequence
ends. Then again, we might have a sequence of entire book collections that are formed over time (like the
collection of Tolkien books followed by the collection of Tolstoy books); if so, we have another kind of
series—a series of collections.

Whether we have a sequence of steps in which a new element is added to a collection or a sequence
of steps in which a new collection is added to a sequence of collections, a series is formed. In the former
instance, we have a series forming a collection; in the latter instance, we have a series of collections
forming. To take the previous examples, as more books or book collections are added to the sequence
collected, a series is formed and may come to completion.

These examples raise an important distinction in the way different kinds of series undergo change:
One way is for a single collection of objects to undergo change over a series of events, while another way
is for a sequence of new collections to appear over the successive events of the series.

Suppose we look at the members of a series with each member being a single step in a process. And
suppose at each one of those steps there appears a collection of objects. In that case, each step in the
series might correspond either to an event in which a change occurs in a single collection over the steps
of the series or perhaps each step in the series corresponds to an event in which a new collection appears.
In the former case, we have a single collection in which new members are added over a series of steps
until the collection becomes (possibly, but not necessarily) completed. In the latter case, we have a series
of new collections being born one after another.

As an example of a series in which a single collection becomes complete over a sequence of steps,
consider a tin for baking muffins. The tin may potentially contain six muffins. It doesn’t matter in which of
the cups a particular muffin rests—the muffins may be in any order, so we can regard the collection of
muffins as a set of muffins.

Of course, the collection of muffins is only loosely speaking a “set” in the mathematical sense since
the cups in the tin are themselves physical rather than symbolic and are relatively ordered rather than
unordered, but this caveat should not detract from the collection being regarded as a ‘set’ in a loose sense
for the purposes of the example.

Suppose the tin only contains one muffin with five empty cups (as in Figure 3.2). If use the
mathematical idea of a ‘set’, then we can regard the tin as either a complete ‘set’ of one muffin or an
incomplete set of muffins in which six muffins would complete the set. Let’s define a complete set of
muffins as six muffins—a full tin. With that in mind, having only a single muffin in the tin makes an
incomplete set, so we need to add more muffins to the tin until the tin is full and we have a complete set
of muffins.
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Figure 3.2: A muffin tin holding a set of muffins that has only one muffin as a member.
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Next, let’s suppose that we begin adding muffins, one by one in no particular order, to the muffin tin.
Let’s define a complete series in this example as a series of steps in which muffins are added to the tin
until the tin can contain no more muffins. The series is complete when the muffin tin becomes full. In the
last step the tin contains a complete set of muffins, while over the first five steps in the series the set of
muffins is not complete (as in Figure 3.3).
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Figure 3.3: A complete series of steps in which an incomplete set in the first step of the series becomes a complete set in the
last step of the series. In this example a ‘set’ is a real, physical set rather than the abstract set of the mathematician; however,
abstract sets could likewise start as incomplete and become complete over a series of mental steps.

Sets are often thought of as complete, but the muffin tin example shows that we can consider a set
as incomplete if it is missing members, and we can make that same set complete or incomplete over a
series of steps. When there are no more steps for the series to take in completing the set, as when the
muffin tin becomes full, the series of steps itself is also completed; a complete series in which an initially
incomplete set is made complete in the last step of the series.

Now let’s consider the contrary—an incomplete series of complete sets. Suppose, for example, we
have a series of sets in which each set has a number of rabbits as members. We'll start with a set
containing only one rabbit and then replace it with a set containing two clones of the first rabbit. The set
of two rabbits is then replaced by a new set of three clones of the first rabbit, and so forth to create a
series of increasingly larger sets (see Figure 3.4).
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Figure 3.4: Anincomplete series of steps in which each step is a set that is complete in itself. Once again, the example is meant
to represent real, physical ‘sets’ rather than abstract sets, but abstract sets may also accumulate over a series of mental steps.

The rabbit example differs from the muffin example in certain respects. For one thing, we are not
considering a single set changing over a series of steps as we did in the muffin example, but rather a series
of individual sets with new sets replacing old sets as the series of sets progresses according to a sequence.
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Also, unlike in the muffin example where a single set in the series was defined upfront as incomplete
without a total number of members equal to six, the rabbit example defines a set as incomplete if it lacks
a total equal to the sum produced by the successor function from the previous set in the sequence. Step
3 would be incomplete if it only contained two rabbits, for instance. As each new set is generated, the set
in that step is complete for that step if it follows the pattern of the successor function. Hence, as the series
begins with a set equal to only one rabbit (0 + 1 = 1), that set is complete in itself. As the series goes on
to form new versions of that original set, each new set in the series is also a complete set as is. We have
a series of complete sets rather than a single incomplete set being made complete over a series of steps
as in the muffin example.

There is also another significant difference between these examples: unlike the muffin example, in
which the series of steps had a defined end (six steps to make a complete series and a competed set of
muffins), the rabbit series has no defined end. The series in Figure 3.4 is depicted with only six steps, but
since there is no defined end for the series, the series of rabbit sets can continue to add new sets of
rabbits. This entails that the series is incomplete because it is not finished and not full: there is not a
concluding set of rabbits in the series and another new set can be included in the series according to the
parameters of the series.

We therefore see at least two different ways in which to regard completeness with respect to sets
within series:

1. A set may be incomplete but formed over a series of steps until it possibly becomes complete.
Such a series—a series in which a set begins as incomplete but can be made complete over a
succession of steps—is an example of what | call a ‘closed series’.

2. Asetmaybe complete asis, perhaps as just one complete set in a series of complete sets. Because
the series as such has no defined end, the series is not finished; rather, the series remains
incomplete as long as a succession of steps can continue to add new sets. Any incomplete series
of sets is an ‘open series’.

The foregoing examples are not the only ways a series can be ‘open’ or ‘closed’. For example, a ‘closed
series’ need not contain a set of objects brought to completion. If each step in the closed series
corresponds to some change in the quantity of objects contained in a given set (like adding muffins to the
set of muffins), then although that set can possibly be completed over a specifiable number of steps, the
closed series can also end without completing a collection of objects. After all, we could have stopped
adding muffins to the tin at Step 5, leaving the tin one member shy and the set of muffins unfinished.
Further, a series could be closed by taking its steps in the opposite order—for example, by removing
muffins from the tin one at a time until they are all gone. In that case also, the series closes with an
incomplete set. We should also keep in mind that a closed series need not be a complete series in terms
of the steps it takes. A closed series is simply a series that has a fixed and specifiable number of events or
steps within it, regardless of whether or not it contains a complete sequence of steps.

A qualification about ‘open series’: an open series need not be a series of complete sets only. An open
series could be an incomplete series of incomplete sets—as with one unfinished project after another—
or an open series could be an incomplete series containing an incomplete set that changes in quantity
over time. For example, we might have a set of rabbits continue to multiply into an ever-larger set of
rabbits—an incomplete set growing over an inherently incomplete series of stages. What makes an open
series ‘open’ is that it always remains incomplete as a series, without a defined end in terms of taking new
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steps or adding more events to its sequence; the sets of objects within such a series (like the rabbits) may
themselves be either complete or incomplete. The rabbit example shows us the former—each set of
rabbits in the series is complete, as is, while the series itself remains incomplete since it is open to new
sets of rabbits being added to the series.

While there are other ways that collections can be complete within open and closed series, the two
primary examples we have considered—the muffin example (a closed series that completes a set) and the
rabbit example (an open series of complete sets)—will suffice for defining our terms.

3.11 SERIES

In § 2.2.6, | distinguished between ‘series’ and ‘accessions’ (the latter being a mathematical “series” —
summed sequences of numbers). An example of an accession is a; + a, + as +...+ a,. The same accession
may be expressed via an index of summation, like so:

n
i=0

The term ‘accession’ is sometimes used in colloquial speech to refer to an increase that is temporal in
nature, like a collection growing larger. However, | believe this is also true of mathematical accessions—
the terms are written out in sequence or run with the command of a computer program, so they are
instances of series in the temporal sense of the term.

Still, it is true that the mathematical notion of a ‘series’ (an accession) is atemporal in the sense that
it makes no reference to the formation of a sequence by a succession of consecutive steps as does the
ordinary use of the term ‘series’. And in a sense, this is the strength of the mathematical approach. ltis a
strength in that it allows us to quantify the successive events or steps making up a series in order to
accomplish tasks without attending to time. However, in another sense, it can also be a weakness of the
mathematical approach in that it often misleads into thinking that what is represented as being added
together is static when it is actually dynamic. All mathematical accessions are outputs that occur in time,
whether the time such takes is taken notice of or not.

3.11.1 Static or Dynamic?

Because accessions—or ‘series’ in the mathematical sense of the term—are sequences of additions that
equal sums and a sum corresponds to a set of mathematical objects, you might suppose an accession, or
mathematical series, is a static object—an ‘ordered set’ of members all of which are contemporaneous
with one another, grouped together into a total (a sum) that does not change. This common assumption
is based on the notion that a sum indicates a final set of terms or mathematical objects, irrespective of
the consecutive steps taken to produce the whole of the series. So, when mathematicians define the term
‘series’ in terms of a sum, that definition might seem to imply that a series must be a static object.
However, this is not the case in the real world.

Every series—a series of baseball games, a series of television programs, a series of school years,
etc.—is dynamically formed with a succession of events or steps and is merely represented in some static
form. For example, in Figure 3.4, the rabbits at Step 6 appear consecutively after Steps 2 through 5 and
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so are not really contemporaneous with the rabbits at Step 2, though it can appear that way simply
because the images of these steps have been represented on the page side-by-side for convenience.

Take a snapshot of a series in formation, such as the series of falling dominoes in § 2.2.6, Figure 2.4,
and the series may appear “static” in terms of the frozen event captured. Even so, the series need not be
considered as a static set in the sense of having its successive steps there “all at once,” independent of a
formation process.

If a series is “static” at all, it is only static in the sense of being represented at a particular event or
step during its formation or having its steps all represented at once side by side. It's really the
representation of the mathematical series that is static, not the series itself.

For this reason, in 8 2.2.6 | distinguished a series as something temporally dynamic from the static
representation of a sequence of elements added together (an accession), which mathematicians typically
call a ‘series’. An accession is “static” in the sense of being a representation of elements added together;
after all, there they are on the page altogether:

M+ a+as+ ...+ a,

Still, they were thought of and typed down, one after another in time. An accession is thus an example of
a series in the usual sense: a sequence formed dynamically, over time.

This is certainly true of a mathematical object like a; + a, + as +...+ a,, the terms of which must have
been invented or produced over consecutive moments of time. We can refer to a; + a, + as +...4+ a, as
an ‘accession’ to express that it is a mathematical object, or we can refer to it as a ‘series’, which is to say
each a, represents a term appearing in temporal succession even if the series as a whole is represented
as an accession with all the a, next to each other on the page in static form.

The dynamic nature of even a mathematical accession becomes apparent in the fact that not only are
new terms added as the accession is formed, but also the mathematical value of the accession changes
successively as the new terms are added. The sum of members in the accession changes as the succession
of steps forming accession proceeds. Thus, the accession as a series in the usual, temporal sense of the
term has a running total—a succession of sums—until if and when the accession ends as a series, yielding
a final sum.

The lexical definition of series thus applies regardless of mathematical context; a series is a sequence
formed by succession regardless of how ‘series’ is defined or measured mathematically. An accession is
simply an example of a series in that it is an object formed over time, and it may also represent a series in
that its terms may symbolize objects or events that appear over time, like the members of the series in
Figures 3.3-3.4.

3.11.2 When a Sequence is a Series

By using the term ‘series’ to indicate temporal succession and using other terms like ‘accession’ and
‘degression’ to represent sums and differences for mathematical sequences, it follows that any sequence
formed over time is a series. So, what mathematicians usually call a ‘sequence’, a sting of terms separated
by commas (a1, a,, as, ..., a,), may itself be a series in the temporal sense because it is formed over time,
the terms appearing one after another. (I suppose | could have typed the elements of the series in any
order, inserting some prior to others, but that would just mean they appeared by a different order than
in which they are represented—they still constitute a series with respect to time.) We may therefore refer
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to the sequence a1, ay, as, ..., 4, or to the accession a1 + 4> + as +...+ a, as a ‘series’ in that the elements or
terms are created over time.

Unless otherwise noted or apparent from context, when | use the term ‘series’ | will mean the term
in the lexical sense as implying temporal succession, but it will remain true that any of the events or steps
in the sequence of a series can be totaled into a “static” sum or set of elements, at least as far as the series
is formed up to the moment in time that it is measured.

3.12 SUMMING COMPLETE AND INCOMPLETE SERIES

A series can be summed with or without being complete. A closed series, for example, has a defined
number, or definable number, of members—a number equal to a sum of members—that represents the
total members of the series. That total may represent the closed series at some point during its formation
or when the series is finished.

If the closed series has a new object that appears at each step in its sequence, then the closed series
has at each moment in its formation a sum of terms representing the objects that have appeared so far.
The series will also have a sum of terms representing all of the objects collected when the series as such
ends. In the example of the muffin tin, we can label each muffin placed in the tin with a number and sum
the muffins added to the tin along the way, and then draw a final sum of muffins when the tin is full.

Let’s continue with a closed series formed by increasing membership. Not only may the sum of steps
and the sum objects at each step increase during formation of the closed series, but also the closed series
will have a mathematical sum of members comprising any collection that appears at any step along the
way regardless of whether or not the series as such is complete or contains a complete collection of
anything. Consider a closed series of steps in which the muffins are added to the tin, but with one cup left
unfilled—the series ends without being finished and without a complete set of muffins. Here we have a
sum (5 muffins in 5 steps) without a complete series (6 steps) and without a complete set of muffins
(defined as 6 muffins). Here we have an example of a closed series with a sum—a sum of steps and a sum
of the muffins, but without completeness when the series came to a close as a final, incomplete set.

An open series, on the other hand, is always incomplete as a series and so has only a variable sum of
members. That is, the open series has a sum as a ‘running total’—a sum that is updated as the series
undergoes further change in the quantity of its members. Because the open series has no defined end,
the open series has no final sum to its sequence of members; it only has a sum of members so far, at a
particular time. The open series has no final sum of members either in terms of its events/steps or the
collections of objects/terms composing its sequence. The “last” member of an open series is represented
by a variable and, as such, it is always subject to change in value.

As an example, we have the series of rabbits; as a series that is ‘open’, it is necessarily incomplete in
the respect of having a continuously changing sum. Another example of an open series is a series of issues
published in a news periodical still going to press. The series of publications is not finished, and therefore
not complete, but there is a sum of issues published so far.

So, a closed series has a final sum of events or steps regardless of whether or not it is complete while
an open series also has a sum, despite being inherently incomplete, though in the form of a running total.
These examples illustrate that, although open and closed series have sums, just having a sum does not
entail completeness. The ability to be summed, at least in principle, is a necessary but not sufficient
condition for the completeness of a series.
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3.13 COMPLETENESS, INCOMPLETENESS, AND INFINITY

If to have a sum is necessary for a series to be complete, this would seem to have implications for what it
means to be quantitatively infinite. Summation, as an implication of completeness, also has implications
for both literal and figurative infinity.

3.13.1 Literal Infinity as Complete

Literal infinity is the condition of being complete as well as limitless. A literally infinite collection is not just
limitless in its quantity of members, it is also a whole, entire, finished, and full totality—the latter property
implying a total equal to a sum. Since to be complete implies having a sum, and to be literally infinite is to
be complete as well as limitless, then a literally infinite collection must in some way have a ‘sum’ for the
whole of the collection despite the limitlessness of the members in the collection. And if the literally
infinite collection is a series brought to completion—which is to say, a complete set—then it would seem
the collection as a completed infinite series must have a ‘sum’ of members that is limitless in mathematical
value—an infinite number.

However, some mathematicians deny there is such a thing as an “infinite number” or an “infinite sum”
and instead promote the notion that literal infinity can be a quantity alright, even a complete quantity,
but not one equal to a sum. What it would mean for a quantity not to have a sum is difficult to comprehend
(if it can be comprehended at all), and we will need to explore further what it means further in the
chapters to follow.

3.13.2 Figurative Infinity as Incomplete

Figurative infinity, in contrast to literal infinity, is much easier to comprehend with respect to series and
sums. To be ‘infinite’ in a figurative sense is simply to be an open series, a series that is inherently
incomplete and continues to grow in quantity indefinitely but always remains finite at each step of the
way no matter how long it goes on. A figurative infinity is a series that can be summed at any given time,
but that sum is only one in a running total of increasing sums because a figurative infinity is never
completed. It is best to think of figurative infinity as the condition of having a ceaseless series of sums
with no final sum that halts the series.

3.13.3 Enumerating Completely and Incompletely to Infinity

Both kinds of infinity—the literal and the figurative—are quantitative conditions of collections. For a
collection to have a quantity is for the collection to be enumerable. So, both literally infinite collections
and figuratively infinite collections must be ‘enumerable’ collections, even if not in the same way.

The literally infinite collection is enumerable in the sense of the collection having a quantity of
members that can be completely enumerated, despite the limitlessness of the collection. The figuratively
infinite collection is enumerable in the sense of the collection having a continual series of new, finite sums
for the collection—a running total that at any given time enumerates all the members of the collection
for that time. Such a collection does not cease and so is, metaphorically speaking, ‘limitless’. A figuratively
infinite collection is thus a series that is always incompletely enumerated.
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In the next chapter, we’ll examine more closely what it means to use a scale of numbers to enumerate
all the way to infinity, both for literal infinity and figurative infinity.

CHAPTER 3 IN REVIEW

+« An infinite quantity is a limitless amount of objects comprising a collection. The collection
may be either complete or incomplete but must be in some sense ‘limitless’ to be infinite.

% To be complete entails the given collection is whole, entire, finished, full, and total. Any
collection that does not meet one or more of the completeness criteria is not a complete
collection. For example, to lack wholeness or entirety or finish or fullness or totality, or any
combination of those properties, is to not be complete.

« Literal infinity is the condition of being a collection that is complete as well as limitless in
guantity. Since to be complete implies having a total, and to be literally infinite is to be
complete as well as limitless, then a literally infinite collection must in some way have a
‘tota'—an infinite number—for the “sum” of the whole of the collection despite the
limitlessness of the members in the collection.

+«+ Figurative infinity is simply the condition of being an open series, a series that is inherently
incomplete (never finished, full, or having a final sum). The open series continues to grow
in quantity indefinitely but always remains finite at each step of the way no matter how long
it goes on. An example is a figuratively ‘infinite’ series of finite numbers of which there is
no “infinite number.”

« An infinite quantity is therefore a quantity that is limitless either in the sense of being

complete (literal infinity) or intrinsically incomplete (figurative infinity).




4: ON ENUMERATING TOWARD INFINITY

Mathematicians distinguish between two different kinds of infinite collections: those that are enumerable
and those that are not. We'll save the notion of infinite collections that are not enumerable until § 13.10.
In the meantime, this chapter will examine infinite collections that are enumerable and explore what it
would mean for an infinite collection to be enumerable.

4.1 ENUMERATION TO INFINITY IS A MATTER OF SCALE

To enumerate is to assign numbers to objects, such as objects in a collection. However, to enumerate an
infinite collection means different things depending on whether the collection is literally infinite or
figuratively infinite.

If the collection to be enumerated is literally infinite, then it would take a number system that is itself
literally infinite to enumerate it. And that enumeration can be brought to completion.

If, on the other hand, the collection to be enumerated is a figuratively infinite series, then it only takes
a figuratively infinite number system to enumerate the members of the series as the series continues to
grow. In that case, the enumeration will never be brought to completion because there will always be
new members to count with ever newly invented numbers to count them.

How we would be able to, at least in principle, enumerate an infinite collection depends on what it
means for a number system to be infinite. We have two options:

= A number system is a figuratively infinite series of numbers—the scale of numbers is indefinitely
constructed over time (e.g., N©).

= A number system is a literally infinite set of numbers, the numbers being all there together in the
set at once (e.g., N).

If a number system is infinite, it must be one of these. It cannot be both.

4.1.1 Interpreting Number Systems as Infinite

So how do we interpret number systems—are they literally infinite sets or are they only ‘infinite’ in the
figurative sense of series that grow indefinitely longer?

If number systems are literally infinite sets (e.g., N rather than N©) that mathematicians discover (as
portrayed in standard set theory), then the number systems are complete sequences of numbers that we
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can, in principle, use to enumerate all the members of other infinite collections. Hypothetically, an infinite
collection of fence posts may be completely numbered with an infinite set of unique numbers.

But there are two different ways that a literally infinite collection may be considered infinitely
‘enumerable’ and the choice between them depends on what it means to have a literal infinity of numbers
to use in enumeration.

On the one hand, a literally infinite collection may be regarded as having members that are completely
enumerable to an infinite number with no limit to the amount of digits expressing it as a sum; by that
view, an infinite collection has a limitless sum or infinite sum of members.

On the other hand, some mathematicians say that even if the natural numbers are infinite, there is
nevertheless no such thing as an ‘infinite sum’ or ‘infinite number’—they see literally infinite quantities
as quantities not equal to sums, and not totals in the finite sense of the word. They may say infinities are
collections with limitlessly many, or infinitely many, members but they would not call such quantities
infinite numbers or infinite sums. In that point of view, to be literally infinite is not to be ‘enumerable’ in
the finite sense either.

If, to the contrary, number systems are not literally infinite sets of numbers but instead are only
figuratively infinite number scales (e.g., NC rather than N) as in a nonstandard version of set theory, then
the number systems always remain incomplete as finite, open series that can only be used to enumerate
as many members in a given collection as there are numbers invented to date. And if we are enumerating
a figurative infinity with those numbers, then we are enumerating the members or steps of an open series
that may never complete no matter how high a finite number we invent. A figurative infinity is therefore
a series that is ‘enumerable’ in the sense that the enumeration of the members comprising the series
must remain incomplete as the series grows indefinitely. There is no infinite sum of the members in the
series and there is not ‘infinitely many’ members of the series in the sense of a complete and limitless
quantity; rather, there is just an ‘infinite’ (i.e., indefinite) series of sums.

We may attempt to enumerate a collection by a literally infinite set of natural numbers or by a
figuratively infinite natural number scale. Mathematicians have regarded number systems according to
both points of view: as inherently incomplete, open series (figurative infinities) and as completed sets
(literal infinities).

4.1.2 Enumerating with Figurative and Literal Infinities of Numbers

First, we’ll consider number systems as inherently incomplete number scales—open series of numbers
that mathematicians continue to construct ever longer, with ever greater numbers invented. This
interpretation of number systems will prove consistent with figurative infinity (though | believe that term
is a misnomer as | will argue in Chapter 24).

After that, | will explicate how most mathematicians regard a number system to be not a figuratively
infinite series of numbers but rather a literally infinite set of numbers; either a set with an infinite sum of
numbers or simply an infinite “multiplicity” of numbers that is somehow not a sum at all. I'll briefly address
each of these options for portraying a number system as literally infinite.

We will then be able to return to examining the notion of using those number systems to enumerate
collections as infinite. | will elucidate the way in which mathematicians conceive of number systems as
sets that, at least hypothetically, can be used to enumerate infinite collections (including infinite
collections of other numbers) without any need for counting out, calculating, or computing the elements
in the enumerated collections.
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4.2 NUMBER SCALES AS FIGURATIVE INFINITIES

We'll start with number systems as figurative infinities. Figurative infinity is a property or condition that
can plausibly be attributed to number systems as number scales, based on what we know of them and
the numbers they contain.

8§ 2.3.1-2.3.9 offered an analysis of what a number is. A number is a numeral’s unique ordinality-
cardinality association in a number scale. Since a number is the property of a numeral—which is a kind of
symbol—then to have a number, you must have a numeral. But as symbols, numerals are inventions.
Scales as sequences of numerals—and therefore of numbers represented by the numerals—are therefore
also inventions, making the numbers themselves inventions. If numbers and number scales are inventions
that we make rather than objects that exist “out there” waiting to be discovered, the idea that number
scales are only figuratively infinite rather than literally infinite begins to make sense...

4.2.1 AnIncomplete Process

Each number scale, as an invention, must have as many numbers as there have been invented numerals
with defined numbers. But the number of numbers that a number scale has could continue to grow as
mathematicians invent new numbers. Numbers scales could, at least in principle, continue to be made
longer indefinitely. Figurative infinity is the condition of indefinitely changing in quantity. As inventions
that are able in principle to be indefinitely extended, number scales can indefinitely change in the quantity
of their constituent numbers. That feature makes number scales at least figuratively infinite even if not
literally infinite.

As a figurative infinity, each number scale would, metaphorically speaking, have “no limit” because
there is no final number as a standing total for a number scale. In another sense though, number scales
at any given time do have a limit in the form of a “largest number” invented to date, even though the
scale can be further extended when new, larger numbers become invented. In either sense, number scales
are intrinsically incomplete, open series ever under construction [108].

Recall that series (open or closed) can be summed, showing them to have a totality of members. It
doesn’t matter whether the members of the series are steps in a process or instead are objects, or
collections of objects, successively appearing. The members can be summed up—given a total—and so
they can be ascribed the property of totality however they are arranged to comprise a series. This is true
for series of physical objects, like muffins or rabbits, but it is also true for series of mathematical objects.
Even number scales, like NC or WC, are series the members of which can be summed. We can at least in
principle if not in practice, arrive at a total of members (numerals or numbers) for the series as a whole,
and totality characterizes sets of members within these series as well.

But what kind of totality?

If a number scale were a closed series (like a muffin tin filled up with muffins), then it could be
regarded as a complete series and given a standing total—a mathematical sum that ends the series and
caps it off for good as a final sum, the number of all numbers period. This would make the scale not just
a completed series of numbers but also a complete set of numbers since all the numbers could be
represented side by side in a single collection.

However, if a number scale is an open series, then this is not possible—not even logically possible—
because a number scale would have no absolutely last number that yields a final total for the scale in
question. No number scale would be a completed set with a final sum; number scales would be finite at
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all times, but they would be an incomplete series of sums—or, you could say they would constitute a sum
that changes over time.

This is because number scales would be processes in which the sum of steps taken (or in this case the
qguantity of numbers created for the number scale in question) always changes—even if the steps taken,
or numbers invented, continue “to infinity” in a figurative sense. A figuratively infinite number scale is one
that is never finished forming—it is inherently incomplete; as such, it is limited at each step of the way.

4.2.2 Extremes

One kind of limit is an extreme. Even number systems, or number scales, can have at least one extreme.

For example, if the system of natural (counting) numbers is literally infinite, then it has one extreme—
the beginning of the scale, starting with 1. However, if the system of natural numbers is a figuratively
infinite number scale, then it has two extremes—the beginning of the scale and, due to the
incompleteness of the scale, whatever the “largest” number at any given time is (even if that number can
be succeeded with the invention tomorrow of a new, bigger number).

Assuming all number systems are figuratively infinite number scales, it follows that every number
scale has a limit in the form of a running total of numbers, and that totality means the number scale in
qguestion has a limit in the form of an ‘extreme’. Given that assumption, we should be clear on what it
means for a number scale, and indeed any collection said to be ‘infinite’, to have ‘extremes’ and what it
does not mean.

First, what it does not mean: necessary constancy. Some extremes are constant, but not all extremes
are constant in form; some extremes may change over time. This is the case with number scales, which
continue to be constructed in the form of open series as mathematicians invent larger numbers. But
because there is an, albeit temporary, largest number in a number scale at any given time, the scale in
question does have an extreme, even if a temporally variant one.

Second, what it does mean: having an extreme means having some type of extreme, for there is more
than one type. Definitions:

= extreme: (noun; plural—‘extremes’) an extremity or extremum.

(adjective): the quality of having or being an extremity or extremum.
= extremity:  (noun; plural—‘extremities’) that which is either minimal or maximal.
=  extremum: (noun; plural—‘extrema’) a minimum or maximum.

To the casual reader, the definitions for the words ‘extremity’ and ‘extremum’ appear to say the same
thing, but actually they don’t. While all extremities and extrema are instances of extremes, it is also true
that an extremity is not necessarily an extremum. The two are not synonymous; it’s just that there is more
than one way to be extreme.

We also have a few more distinctions: extremity is defined by the terms minimal and maximal while
extremum is defined by the terms minimum and maximum. These are also similar sets of terms, but
‘minimal’ is not synonymous with ‘minimum’, and ‘maximal’ is not synonymous with ‘maximum’. The
relationship between these types of extremes is illustrated in Figure 4.1 and their categorical overlap is
illustrated in Figure 4.2.
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Figure 4.1: The types of extremes. A minimum is the least minimal element; a maximum is the greatest maximal element.

EXTREMITIES
A

MINIMAL MAXIMAL

MINIMUM MAXIMUM

TS

EXTREMA

Figure 4.2: Overlap among the types of extremes. All extrema are extremities, but not all extremities are extrema.

4.2.3 Extremities: Minimal and Maximal

Mathematicians have particular definitions for these terms from which we can draw [109]. Consider
extremities that are:

= minimal: (adjective) the value for which nothing is less.
= maximal: (adjective) the value for which nothing is greater.
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We can state these definitions more formally when considering a collection, C, containing elements with
different values. We’ll use the variables x and y, which can be given specific values in C. Let’s consider x
as a minimal or maximal value, compared to another value, y, in the collection C:

* xisminimal if and only if, for all y in C, y cannot be less than x.
* xismaximal if and only if, for all y in C, y cannot be greater than x.

The best way to see what it means to have minimal and maximal elements is to consider sets from
the perspective of order theory. Order theory is a branch of mathematics that investigates how members
of collections precede or succeed one another in sequences. There are two basic kinds of sequences
studied in order theory—partially ordered sets, or posets for short, and totally ordered sets, or chains for
short. Both kinds of “sets” (which are actually sequences according to definition) have members that
precede or succeed other members. Order theory studies the ways the members (especially, elements)
are ordered in posets and chains [110].

Posets are sequences in which members of the sequences are paired and preceded by other pairs of
members. Posets are only “partially ordered” in the sense that not every pair of members has to be related
(see Figure 4.3).

{a, b} {a, c} {b, c}

{a} {b} {c}

Figure 4.3: An example of a poset. The set is only “partially ordered” since subset {a, c} is related neither to {a, b} nor {b, c},
both of which are unrelated to each another. The subsets at top are maximal; the subsets at bottom are minimal. We can imagine
repeating this pattern with more boxes on the top and bottom rows, perhaps indefinitely. The question remains if such can be done
infinitely.

Posets each have at least one member that is an extremity—either minimal or maximal. Figure 4.3
provides an example of a poset with multiple extremities, some in the form of minimal members and
some in the form of maximal members. The top row of members in Figure 4.3 is composed entirely of
maximal members, and the members in the bottom row are all minimal elements.

Notice that none of the members in the figure is an extremum—a ‘minimum’ or ‘maximum’—even
though the members in the rows are extremities. Some posets, like that depicted in Figure 4.3, may in
principle be constructed to have indefinitely many extremities. Whether they can in principle have
infinitely many extremities in the literal sense of ‘infinite’ is another question (one I’'m inclined to answer
in the negative).
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4.2.4 Extrema: Minimum and Maximum
We can define the kinds of extrema like this:

=  minimum:
(1) noun; plural—‘minima’: an element or value less than any other.
(2) adjective: less than any other; the least possible.

= maximum:
(1) noun; plural—‘maxima’: an element or value greater than any other.
(2) adjective: greater than any other; the greatest possible.

Or, more formally:

* xisaminimum if and only if, for all y in C, y must be greater than x.
* xisamaximum if and only if, for all y in C, y must be less than x.

Basically, a minimum is the least element or value in a totally ordered collection—no element in the
collection can be lesser in value. A maximum is the greatest element or value in a totally ordered
collection—no element in the collection can be greater in value [111].

In Figure 4.3, neither {a} nor {b} nor {c} is less than the others on the bottom row, so none of them
is a minimum. Likewise, neither {a, b} nor {a, c} nor {b, c} is greater than the others on the top row, so
none of them are maximum. This shows that a set or sequence can have several minimal members without
a minimum and several maximal members without a maximum.

On the other hand, minimal elements and minima are not entirely separate categories; a minimum is
a kind of minimal element even though not all minimal elements are a minimum. So too, maximal
elements and maxima are not entirely separate; we can say that a maximum is a kind of maximal element
even though not all maximal elements are a maximum.

Minima and maxima can be found in some posets and in some totally ordered sets, or ‘chains’. A chain
is a set—actually a sequence by our earlier definition of ‘sequence’—in which every pair of elements is
related, or “totally ordered.” Though mathematicians refer to chains as sets, chains can also be series
(sequences formed by succession).

As an example of a chain, consider this set of elements:

{a<b<c<d<e<f<g<h<i<j<k<I<m<n<o<p<q<r<s<t<u<v<w<x<y<z}

This is an example of a ‘chain’ of elements in the form of an alphabet of values. In this chain, there is a
minimum (a) since there is no relation before the first depicted element and a maximum (z) since there is
no relation after the last depicted element.

A chain can have at most one minimal element and at most one maximal element. The minimal
element will also be the least element and the maximal element will also be the greatest element. In other
words, because a chain has no more than one minimal element, that element is the minimum and because
the chain has no more than one maximal element, that element is the maximum. Any chain in the form
of a definite, closed series or sequence is necessarily finite and always has a least element (minimum) and
a greatest element (maximum).
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The question for our purposes is whether a number system, such as the scale of natural numbers or
the scale of whole numbers, is or is not a chain. If there is for the given number system either no such
thing as either an absolutely last number or an absolutely first number, a number beyond which no further
numbers can exist even in principle, then the answer is no—the number system is not a chain, for there
is not both a minimum and maximum to the number system. If there is both a minimum and maximum
number to a number system, then the answer is yes—the number system is a chain. The question as to
whether or not number systems are chains, whether they have extrema (a minimum and a maximum),
we can answer with respect to how numbers come to be in such systems.

4.2.5 The Variant Extrema of Number Systems

For a collection to be complete is for the collection to have a finish, fullness, and a totality, any of which
implies the collection has ‘extrema’—both a minimum and maximum value. So, if a number system begins
its existence as a complete collection of numbers, then the number system would from the start have
extrema as a consequence of being a finished, full, totality.

However, if number systems are continuously constructed ‘number scales’ that are only figuratively
infinite, then they are necessarily incomplete. Any extreme(s) they may have at any given time must be
only temporary in what is a running total of numbers for that instance of time in which the scale in
question is considered. For example, if N€ is figuratively infinite, then N© has a “highest number” at any
given time, but that extremum must be a variant maximum rather than a constant maximum, the latter
of which would be a standing total rather than a running total.

Once again time becomes an issue: a variant maximum for a collection at a time is also a maximal
quantity with respect to the collection as a series that changes in quantity over time. A constant maximum,
to the contrary, remains a maximum for the life of the collection.

Moreover, as incomplete, open series, some number scales need not have a minimum in the sense of
a constant minimum. So when | say a number scale “has no maximum” or “has no minimum?”, it is only in
the sense of a constant maximum or minimum | am referring to—not to lack of extremum per se, unless
otherwise specified.

For example, consider a sequence that has a minimum but no (constant) maximum. Such is the scale
of natural numbers— NC. In NC, the number 1 is the minimum and there is no maximum:

1,2 3,456,789 10, ..

A maximum is “a value greater than any other;” if we take that definition as implying a constant value, a
standing total, then N© has no maximum because N is an open series with a running total, and a running
total is not a constant value.

On the other hand, suppose we do not want to consider N as an open series but instead want to
consider the phrase “all the natural numbers” to mean a set—a kind of snapshot of the state of N© at any
given time during the ongoing construction of NC. If that is the case, then we can consider N© to have an,
albeit temporary, ‘maximum’ in the form of the greatest number yet defined for N© at the present time.
In that sense, NC does indeed have a maximum of sorts. As discussed in § 2.3.7, that ‘variable maximum’
can be denoted by a symbol such as |NC|.

Most mathematicians don’t consider the system of natural numbers to have a maximum in this way
because time usually does not figure into their view of sets [112]. We assuage such concerns to a degree
by pointing out that the ‘variant maximum’ is simply a ‘maximal’ value with respect to the formation of
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NC over time. Nevertheless, that rests on a view of mathematics in which math is regarded as an
invention, a construction carried out in time, which is not usually addressed in mathematics.

Regardless, let’s keep going with this line of thought and consider the status of extrema for a similar
sequence of the smallest numbers. An example of a sequence that has a maximum, but no minimum is
the scale of negative numbers. We can think of the negative numbers as a number scale that is the
counterpart to the scale of natural numbers and denoted it as —NC. In —NC, the number —1 is the
maximum and there is no minimum since —N© is also an open series:

.,—10,-9,-8,-7,-6,-5,-4,-3,-2,-1

A minimum is “a value less than any other;” if we take that definition as implying a constant value, a
standing total, then —N© has no minimum because —N€ is also an open series with a running total of
negative numbers, and a running total is, again, not a constant value.

However, if we want to consider “all the negative natural numbers” as constituting a set at a given
moment in construction, then we can consider —N© to have a temporary ‘minimum’ in the form of the
least number yet defined for NC at the present time—a variant minimum ( or ‘minimal’ for the series)
rather than a constant minimum. Here again, time plays a role in our assumptions, while it is usually not
given consideration in mathematics.

Now | should qualify that the negative numbers are not usually regarded as a scale of their own (i.e.,
—NCO). Instead, mathematicians think of the negative numbers as belonging to the ‘set’ of integers,
denoted as Z, but which we can denote as the series of integers: ZC.

An ‘integer’ is any positive number (1, 2, 3,...), any negative number (..,—3,—2,—1), or zero (0). The
scale of integers, ZC, therefore includes natural numbers (N©), their negative counterparts (—N©), and
whole numbers (WC) since 0 is included in Z€ as well.

Consider ZC as a constructed sequence with no minimum (since —NC has no minimum) and no
maximum (since NC has no maximum):

.,—10,-9,-8,-7,-6,-5,-4,-3,-2,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ..,

ZC has “no minimum” and “no maximum” only in the sense that Z€ is here considered as a growing scale.
That is, Z€ has neither a minimum nor a maximum in the sense of constant numbers, standing totals. Only
if we consider “all the integers” to mean |ZC|, which is to say all of ZC at a snapshot in time—only then,
considered as a set with a temporally variant cardinality having a specific value at a given point in time
during its construction does Z€ have a minimum and a maximum (albeit still a variant minimum and a
variant maximum). On the other hand, as a series rather than as a set at a moment in time, Z€ has minimal
and maximal numbers but no minimum and no maximum.

These examples of extrema illustrate the two different ways to regard scales of numbers: (1) as a set
in the form of a sequence that, at any given time, consists of definite, defined numbers—but only those
numbers invented to date; and (2) as an open series with new numbers under construction over time.

As a set, a number scale will have only a variant minimum and/or a variant maximum; as a series, a
number scale need not be considered with respect to having a minimum and/or maximum (though it does
indeed have such in variable form) as it may not be considered relevant. And yet, as a series, a number
scale without regard to such extrema will be indefinite (finite) rather than infinite because there is always
a running total of defined numbers in the scale.
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By lacking a constant extremum or extrema, a series of numbers comprising a number scale is finite
with only a running total of members. Each scale of numbers can be considered to have extremities
(minimal and maximal values) in the context of time: the running total of members indicates the scale in
question has relevant extrema during any step of its construction, even if the scale, as a series, has only
variant extrema. The scales are all indefinitely long, open series under construction.

4.2.6 Number Scales are Under Construction

If the numbers in number scales such as N© (or WC), ZC, etc. are constructed serially, toward ever-larger
numbers, it follows that whatever the highest number is, it will correspond to the largest numeral
invented. But scales of numbers are never finished inventions. Number scales are always being increased
as new, higher numbers are invented with the use of the various mathematical functions, operations, and
procedures for outputting new numbers or otherwise defining them. Consequently, there is no final
number that finishes a number scale. And since there is no final number that finishes a number scale,
number scales are not closed series or complete sets.

However, while there may be no ‘last number’ in the sense of a number that even if only in principle
halts the number scale, still the number scale has a “largest number” ever invented at any given time.
That is, a kind of ‘running total’—a total that is continuously replaced by a new, larger, finite total. With
respect to the scale of natural numbers, N (and of course WC) has a new total every time someone
exceeds the largest finite number ever invented. It is admittedly true that a number scale has a “last
number” in the sense of having a number that is the highest number calculated so far, though such a
number is not “last” in the sense of being a final number that finishes the scale once and for all. A number
scale has no “last number” in the sense of a defined constant number that finishes the scale because the
scale is always under construction, with new numbers being defined for it by mathematicians.

4.2.7 A Variant Maximum—the Largest Number

Somewhere in the world, someone must have mathematically defined the largest number to date. And,
no, infinity is not that number (in fact, some mathematicians say infinity is not a number at all—see
Chapter 5). By “largest number,” | mean the largest finite number. And by such a number being
“mathematically defined” | mean what some mathematicians refer to as a well-defined number.

Mathematicians have various ideas as to what “well-defined” means for a number, but in general a
‘well-defined number’ is an unambiguous, unique value able to be used consistently in mathematical
expressions [113].

Well-defined numbers include all the numbers from the scales we have considered so far. For
simplicity, we can consider those in the scale of whole numbers from 0 on up to the largest whole number
a function is able to output as a growing series of digits that eventually end with a final digit. (That does
not mean the function has to halt; it just means the outputted number has a final digit. Perhaps the
function keeps indefinitely churning out larger numbers until killed.) So imagine an ideal computer able
to output all the base digits in the sequence of a finite number, no matter how arbitrarily large the
number. Of course, no such computer can really exist, for there are limits to the series of digits that any
computer can output, and mathematicians already have well-defined (finite) numbers that dwarf those
limits. However, in principle there could be such a computer—one easily able to output even the largest,
well-defined finite number ever conceived.
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| have no idea what that number is, but there is an online community of academics devoted to
cataloging and inventing ever larger numbers. They call themselves googologists and their online
encyclopedia is the Googology Wiki. Googologists define a variety of huge numbers, each larger than the
last. However, even the googologists themselves are not in agreement as to which number is the largest
finite number defined to date [114].

Regardless of whether there is a clear winner for largest finite number defined or not, let’s suppose
someone has invented a finite number with a value that, at least in principle, can be fully expressed only
in a terminating series of base digits output by some function. Even though such a number may be too
large to write out in actual practice, if it could in principle be written out, it would have a final digit and so
constitute a finite number. But since we can’t represent it that way, we need a variable or some kind of
symbol or abbreviation for it.

With that in mind, | will refer to the largest definite number as d*, pronounced “dee-star” [115]. The
‘d” in d* is for ‘definite’, as in definite number:

= definite number: a logically coherent, mathematically well-defined number.

A ‘definite number’ is a number that is not only mathematically well-defined but also logically coherent
(i.e., the function able to output such a number is not based on any logically incoherent assumptions). The
star symbol (%) in the superscript of d* is to indicate that the value of the largest definite number at a
particular time is subject to replacement by a different number of greater numerical value at a later time.

Think of d* as a placeholder for any definite number the value of which exceeds all definite numbers
previously conceived—

» Letd* be the variable representing the largest definite number ever conceived up to the present.

d* is a temporal variable.—that is, ¥ is the largest definite number so far. Of course, once someone has
conceived the largest definite number to date, the value of that number can once again be exceeded
tomorrow by the value of another definite number defined by some more powerful function. Hence, what

was d* yesterday may not be d* today, and what is d* today may not be d* tomorrow.

Because d*’s value is not constant, | am going to use d* as a generic variable for whatever to date is
a number equal to any naive extension of the largest known number able to be defined using

mathematical functions [116]. Hence, expressions such as d* + 1 or d* x d* and similar naive extensions
simply reduce to a 4* since they do not change the definition for whatever is the largest number to date.
Regardless of which function is used to define the latest value for d*, the number for d* is always finite:

at any given time, d* represents the largest definite number that, if it could be written out, would still be
a finite number, no matter how large it is.

One implication of d* being the largest definite number conceived up to the present is that we know
numbers scales such as NO and WS must go up at least to d* and, just to be clear, 4* is technically not

an absolutely final number for the number scales, for there is always another new d* as long as there are
mathematicians proposing new, largest definite numbers. Hence, the number scales are openly
extensible, at least in principle.
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4.2.8 Taking Leaps Toward d*

Mathematical operations with which you may be familiar (multiplication, exponentiation, etc.) make it
much easier for mathematicians to extend a scale like N© further, increasing the latest value of d*. But
there are much more powerful functions than those that extend the number scale.

Consequently, the numbers leading up to d* are too long to list in actual practice. In his book entitled
Billions and Billions, the late astrophysicist Carl Sagan provided a comparison between the US names for
large numbers, what each number looks like when written out, how each number is denoted according to
its exponent notation, and how long it would take to count to each number, starting from 0, at a rate of
one count per second, night and day [117]. Sagan’s comparison includes the following:

=  Thousand: 1,000 103 17 minutes

= Million: 1,000,000 106 12 days

= Billion: 1,000,000,000 109 32 years

= Trillion: 1,000,000,000,000 1012 32,000 years

= Quadrillion: 1,000,000,000,000,000 1015 32 million years

Fortunately, we have computers that can count much faster than the rate of one count per second,
and processing speeds continue to improve. Currently, a moderately fast computer can count to a trillion
in just under an hour—what might take you or me 32,000 years to achieve, provided we could live that
long and really liked counting. Counting to a trillion, and thereby representing the whole scale of N© up
to a trillion, is easily achievable for today’s computers.

However, the hill gets steeper from there because there is a maximum computing power beyond
which no further computations will be able to depict all the digits of a natural number that we can define
by exponentiation. Some computer scientists believe that the limit to the number of digits able to be
outputted by any computer capable of physically existing may be as small as just over 1015 (a quadrillion)
digits [118]. | don’t mean that a computer cannot produce a 1 followed by 15 zeros, because that is easy
for it to do; rather, | mean a computer will never be able to produce a list of all the natural numbers, in
sequence with all digits outputted, up to 1015 or, more precisely, up to 1,125,899,906,842,624 prior to

exhaustion (breaking down). Needless to say, there will never be a complete listing of numbers up to d*.
4.2.9 Gaps in the Sequence of Calculated Numbers

Not only is each number scale an incomplete, open series, but they are also each an unfinished sequence
with many gaps. The sequence of any given number scale is riddled with gaps because we cannot in
practice list out all the numbers up to a quadrillion, let alone beyond that. So, when we go on using
exponents and other means to bypass counting for the purpose of creating new, higher natural numbers,
not all the numbers in the sequence of the number scale have ever been explicitly depicted. Many
numbers have never been actually calculated, computed, or otherwise represented by anyone. The
sequence of all numbers that have ever been depicted to date has plenty of values left out between lower
and higher values. True, all larger numbers are more inclusive of lower numbers, by definition, but that is
only an implication rather than an explicit representation—it is an inference about the lower numbers not
represented rather than an explicit representation of them. While such unused numbers fall under the
umbrella definition of a number, they have never really been brought into actual existence at any time. If
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we were to have a list of all numbers ever counted, calculated, or computed, there would be plenty of
gaps in our historical record.

That’s not to say a number scale such as NO does not have a running total, d*, after all. Every number
scale has a temporally variable d*, but for a number scale to have any total at all, even a running total,
does not necessarily mean all the lower numbers were counted or calculated.

There was a time in ancient history when one billion was the highest number anyone had ever
calculated or defined; until then, no one had counted out numbers up to one billion. Such numbers as one
billion were at least initially beyond what anyone had previously counted. By using techniques like
exponentiation instead of counting to invent higher natural numbers, ancient mathematicians extended
the scale of natural numbers, but the scale began to (historically speaking) have ‘breaks’ or ‘gaps’ in its
sequence as new, higher numbers continued to be invented without all the lower numbers being counted
out or otherwise invented first. Contrary to Dedekind, the real ‘real number line’ does have gaps—gaps
of numbers uncalculated and merely implied. Number scales are only whole and entire in an idealized
conception of them.

Our modern exponent notation was invented in the 17" Century. But at some time in ancient history
an Indian mathematician used powers of ten to come up with the highest number at the time: a billion
(109). Suppose before one billion was invented, no one had counted out or calculated any of the numbers
between 106 and 10° (one million and one billion); suppose no one had ever counted out all the numbers
one by one, and no set of people had represented all the numbers between 10 and 10° up to that time.
Historically speaking, NC, as a human invention, would have had a break in its sequence at that point in
time; a break between one million and one billion left by a gap in the sequence established in the count
from 1 up to 1,000,000—break—1,000,000,000. Surely by now every number between one million and
one billion has been represented many times over during the course of history by various people in various
places and times, but since up to that time no one had ever counted them out or ever calculated anything
in between a million and a billion, the number scale as an abstract historical artifact was missing numbers,
so to speak, in the sequence of NC as it was constructed over time. The missing numbers were never
invented for the first time until others later came up with the numbers in their own calculations and N,
as a historical sequence of established numbers, began to be filled in for N as a social construction.

If the history of numeric invention (at least, here on Earth) is to have a whole, entire scale of numbers
that have all been represented up to the highest number ever invented for NC, then those breaks need
to be filled in by various people at various places and various times collectively coming up with the missing
numbers until all the missing numbers are invented such that an ideal observer could survey them all.
Until then, the missing numbers in the progression of NC’s construction are just implied to be in NC,

Of course, it’s not as if the scale of NC is written out in some ledger somewhere, with a scribe adding
numbers to it whenever someone comes up with a new, higher number. Certainly, no one knows if all the
numbers have in fact been expressed between any large numbers depicted in any public record. However,
if we think of the scale of N© as a social representation of all the natural numbers that anyone has ever
come up with to date, surveyable by an ideal scribe, then NC as a representation must still be incomplete.
It is incomplete in part because all of the numbers that have ever been counted, calculated, or computed
do not include among them the numbers that have yet to be calculated—such numbers would fall in the
sequence between some of the larger numbers of NC if or when they are ever invented. From the
perspective of an ideal scribe, there would be gaps in NC where no one has counted or calculated. NC is
an invention under construction—an invention that is always incomplete, with plenty of gaps, created and
later “filled in” along the way. N is like a railroad track under construction, missing many rails along its
length.
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Given the limits of computing power, there must still be plenty of gaps in the depiction of numbers
between a trillion and a quadrillion. And we haven’t even touched on yet larger numbers that have been
invented for NC: quintillion (1018), sextillion (1021), septillion (1024), octillion (1027), and nonillion (1039),
just to name a few of the lower ones. Even if we manage to break the computational barrier for counting
out all the natural numbers up to a quadrillion, we will likely never create a computer with the capability
of counting all the way up to a nonillion without the machine burning out first [119].

Just to press the point home, recall that | mentioned the googologists—the folks who come up with
names for ever-larger finite numbers. The title ‘googologist’ comes from the name for one of the highest
numbers that has ever been named: the googol, the name upon which the popular search engine, Google,
is based. A googol is equal to 10190—a one followed by 100 zeros which, when written out, looks like this:

10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000,000

To get an idea of how large a googol is, consider that the observable portion of the Universe has about
1080 particles in it, which is orders of magnitude lower than a googol [120]. Needless to say, even if we
represented each numeric digit using a single bit for storage and each bit was physically expressed using
a single atom, listing all the numbers up to a googol would still far exceed the number of atoms in the
observable part of the Universe—even a computer with a storage capacity of that size is not enough to
count up to a googol.

Of course, we can conceive of yet higher numbers with use of repeated exponentiation and give large
numbers generated by that method of calculation names too. For example, we can raise a googol in power

to make the googolplex, which is 1010 or simply, 10%°°%€°, Just multiply ten by itself a googol number of
times and you have a googolplex—a one followed by a googol of zeros. Such a number staggers the
imagination, but it is actually quite puny compared to even larger numbers that mathematicians have
calculated. Larger than a googolplex is a number called Graham’s number, named after the late
mathematician Ronald Graham (1935-2020). Graham’s number is expressed as gs4, Which looks small in
notation but is actually much vaster than a googolplex.

The details of calculating large numbers like Graham’s number will not concern us; the point is that
we obviously cannot in actual practice define all the numbers for N© up to a large number like Graham's
number by writing out and representing each numeral successively since we’d need an impossibly
powerful computer to assist us in doing so and there simply is no machine that can provide the necessary
output. If we can’t produce a googol of digits, we certainly can’t produce a googolplex of digits let alone
Graham’s number.

Since no one has computed all the natural numbers up to Graham’s number (let alone going to yet
higher numbers defined by mathematicians), it is a truism that no one has depicted all the numbers there
could be in N© and so no one has ever or will ever exhaustively represent numbers for NC. Even so, we
can use the rules of computation to create just about any number for NC we need for most purposes,
whether it’s a number with 1066 digits, 10106 digits, 10°°°¢° digits, or whatever. And we could in principle,
list all numbers in NC up to the highest number invented, even if we can’t in actual practice.

However, in there is at least a Graham’s number of numbers in N© and that we can never count that
high can make it sound like the numbers are all “there” waiting to be counted. But that need not be so.
The numbers never depicted, never represented, are only potentials of the mathematical rules governing
the scale of numbers. We may say there are numbers far below Graham’s number that have never been
written out or calculated. But we should not think that implies such numbers exist “out there” waiting to
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be found. Rather, there “are” numbers never depicted and used below Graham’s number in the sense
that mathematical operations allow one to calculate lower numbers no one has calculated before. From
that point of view, number scales like N© do indeed have “gaps” —breaks in construction where no one
has ever depicted numbers that are merely implied to be in the scale. Number scales like N© are therefore
always incomplete in the sense of having many gaps where no one had ever actually calculated and
expressed a number between two known values—at least in an explicit manner.

4.2.10 Numbers: Depicted and Implied
All defined finite numbers fall into two categories:

= depicted numbers
= implied numbers

A number scale, such as NC, contains numbers that are defined and the numbers that have been defined
can be depicted—expressed or written out. For example, NC contains the following known subset of
numbers: {1, 2, 3,4, 5, 6}.

But when we want to show such numbers belonging to a larger sequence of numbers, such as the
scale of natural numbers, we usually follow the depicted numbers (numbers represented and recognized
in an expression) with an ellipsis, like so:

N¢=1,23,4,5,6,..

The ellipsis represents yet more numbers beyond those depicted. The numbers not depicted but to which
the ellipsis (in part) refers | will call implied numbers—numbers that are logically implied by the
progression of the numbers depicted.

In the above example, the ellipsis implies successive numbers like 7, 8, 9, 10—numbers we recognize
as suggested from previous depictions even if they are not depicted in the given sequence—so, the
numbers 7, 8, 9, and 10 are some of the ‘implied numbers’ for the given sequence above. The same is
true for all the natural numbers that have ever been defined beyond those.

Then too, consider the following sequence:

101,102,103, 104,105, 106, ..., 109, 1010,

Even if no one ever counted out any numbers between 106 and 109, and even if no one had ever seen a
depiction of numbers between those values, an understanding of the mathematical pattern of the
depicted numbers would allow one infer 107 and 108 as the undepicted numbers. Hence, those two
numbers are in the sequence implied numbers.

Suppose no one had ever written 107 but they had written 106, 108, and 10°. Everyone would still be
able to recognize 107 as 10 to the power of 7 when 107 is finally written, and ergo they would recognize
that 107 means ten million (10,000,000), and so is a part of the scale of natural numbers. Therefore,
everyone would also recognize where the value of 107 would fall in relation to the numbers already
known. They would know this because the number is calculable from known mathematical operations.

107, prior to ever having ever been written before, was an implied number—it was a number implied
by the numbers both smaller and larger than itself that have been depicted, because the definition of 107
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was implicit in the definition of the operation to produce it. And so its place and size in the number scale
would still be recognized if and when written.

Hence, the ‘implied numbers’ include the numbers that would lie in the “gaps” or “breaks” of the
natural number scale—they are not explicitly represented, but they are implicitly represented and so
easily producible. But if number scales are full of implied numbers—numbers only implicit and not
explicit—number scales are like chains with missing links; links suggested to be there but not explicitly so.
As an incomplete sequence of numbers, a number scale is like a railroad track with missing ties, or like a
fragmented manuscript pieced together with missing passages. In both cases we may be able to infer what
is missing, but the sequence is not explicitly defined all the way through. Once again, we have an
interpretation of number scales as intrinsically incomplete constructions.

4.2.11 Definite Numbers: Feasible and Unfeasible

As we continue to leap past implied numbers on our way up the number scale toward d*, we encounter
some definite numbers along the way so large that, even though a value for them can be calculated (for
example, gs4), the necessity of taking those leaps shows that there cannot in practice be a complete listing
of all the numbers in the scale leading up to those large numbers. We can depict some numbers, but not
all of them. So, both depicted and implied numbers can be categorized as either feasible numbers or
unfeasible numbers [121]:

= depicted numbers

o feasible depicted numbers

o unfeasible depicted numbers
= implied numbers

o feasible implied numbers

o unfeasible implied numbers

Definitions:

= feasible number: any number the value of which can, in practice, be reached by counting (whether
performed by human or machine).

= unfeasible number: any number the value of which cannot, in practice, be reached by counting—
not even by a machine.

Every feasible number has already been defined by mathematicians, and all the digits of any feasible
number can be written out, at least with any computer that is capable of being constructed and used for
that purpose in real life. Even if not every feasible number has in fact been counted up to, every feasible
number can be counted up to at some point in the future if the interest and computing resources are
provided. For that reason, the feasible numbers are computable in practice; a computer can count all the
way up to the largest feasible number.

Beyond the feasible numbers are yet larger numbers that have already been defined by
mathematicians and that can be written out or represented in abbreviated notation, such as by use of
exponents, but because they are so large no computer can count all the way up to them, listing out each
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number along the way with a string of digits. These large numbers are called the unfeasible numbers—
even the most powerful computer that will ever be built would reach exhaustion before reaching the
value of an unfeasible number by listing all the numbers up to it.

However, unfeasible numbers, while they cannot be counted up to in practice, are nonetheless
countable or computable in principle—if only we had a powerful enough computer, we could have the
computer ‘count’ (list numbers in consecutive order) all the way up to them; they are just ‘unfeasible’
because we cannot, in reality, do so in practice.

The following sequence contains samples of feasible numbers and some of the lesser unfeasible
numbers:

103,106,109, ..., 1021, 1024, 1027, 1030,

The sequence of feasible and unfeasible numbers as listed in the above example using powers of 3 are
categorized against depicted and implied numbers below in Table 1.

Feasible Numbers Unfeasible Numbers
Depicted Numbers 103, 106, 10° 1021, 1024, 1027, 1030
Implied Numbers 1012 1015, 1018

Table 1: A sample of categorized natural numbers from the sequence above. Whether depicted or implied, a quadrillion (1015)
is estimated to be the least unfeasible number.

The ellipsis used in representing the series of natural numbers (1, 2, 3, 4, 5, 6, ...) indicates a sequence
of larger numbers that includes the category of implied numbers, both feasible implied numbers and
unfeasible implied numbers. For example, the ellipsis at the end of the sequence 1, 2, 3, 4, 5, 6, ... implies
feasible numbers from 7 on up to n < 1015, which are all the defined numbers that a computer will ever
be able to sequentially list before reaching exhaustion. But the ellipsis in the sequence 1, 2, 3,4, 5, 6, ...
also implies the known unfeasible numbers such as 1015 on up to 10°°°¢° and beyond even that, up to the
largest-ever defined—d*. The category of unfeasible numbers implied by an ellipsis includes all numbers
larger than the feasible numbers that have been defined and depicted with notation, however
abbreviated they may be (whether by exponents, tetration, or the like). Such unfeasible numbers have
been defined by calculation, but they are not in practice ‘computable’ (able to be reached via counting,
even by a computer). Still, they are computable in principle, despite the fact that in practice no machine
will ever be able to count up to them.

Hence, the implied numbers, including both feasible and unfeasible numbers not depicted up to d*
as the largest number of NC yet, are denoted by the ellipses:

Nc=1,2,3,..,1010, .., 10%%, . ¢g, .., d*

Depending on what we wish the ellipsis to signify, the ellipsis may therefore imply all the natural
numbers up to d%, including the numbers only implicit in definition—for example, all the implied,
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unfeasible numbers that had never been explicitly represented between 109°°¢° and d*. But since we now
recognize d* as a genuine number (or hypothetical range of numbers), we can also regard d* as implied
by the ellipsis as when we write more simply 1, 2, 3, ....

Because mathematicians can always define new mathematical operations to generate yet higher
numbers than any that can today be defined in practice, the scale N© has the capability to include finite
numbers even higher than any number that might currently be identified as equal to d*. N© can be made
to include numbers higher than any number yet defined, even by the ‘googologists’ who compete to come
up with the highest “infinity scraping” number to date [122]. So, the ellipsis used in the sequence of N©
may additionally imply more than just the feasible and unfeasible numbers already defined.

The ellipsis may also be used to represent a sequence of even higher implied numbers—namely, the
unfeasible numbers not yet defined, including those beyond d* (which is the highest finite number up to
present, not the highest there ever will be):

NG =1,2,3,..,1010, .., 10%%, . ¢, .., d*, ..

For that reason, we may consider number scales, such as N©, to be inherently incomplete. Each
number scale holds plenty of potential for the construction of new, larger numbers never before
calculated—numbers higher, much higher, than a googolplex. It seems that for the largest number anyone
can define, another one higher can be defined even if not defined yet. A number scale, such as N© or WC,
seems like a tower being constructed ever higher, with no roof in the blueprint.

Then too, depending on the intent of the mathematician writing the ellipsis, the known feasible
numbers along with whatever unfeasible numbers will ever be defined (and either depicted or implied)
may not be all the numbers that the ellipsis is intended to represent. The ellipsis at the end of the
sequence may also be intended to denote larger numbers that will never be defined in practice and are
definable only in principle.

If that is so, then it would seem there is no greatest size for which a collection can in principle be
enumerated. However, even if greater numbers could be defined, albeit only in principle, such entails
that, at any given time, the number scale must ever remain unfinished in practice. The number scale is
thus always incomplete, even if it is in principle extensible to ever greater finite lengths.

4.2.12 Ellipses and Number Scales: An Admission of Incompleteness

Numbers like the googolplex, and larger numbers still up to d*, exceed any collection in the observable
universe we could wish to enumerate. Nevertheless, suppose we did want to consider an even greater
collection, one with a finite quantity of members so large that it surpasses any extension of d* dreamed
up so far. Unfortunately, surpassing d* means exceeding our current ability to calculate greater finite
numbers with any clarity. We do not and may not have operations to generate greater finite numbers
with mathematical precision. This has implications for number scales themselves; the larger that a scale
of numbers gets, the more it will fail us for quantifying increasingly large finite collections, let alone offer
us any precision for quantifying something literally infinite in size.

Number scales necessarily become vague in symbolism because the larger the scale, the more we lose
our ability to symbolize with precision. The best we can do is resort to symbols such as the ellipsis: .... We
find such use of ellipses with the number scales we have considered so far: N©, W, and Z°.
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For example, the limitation of the defined sequence of natural numbers in NC is represented by an
ellipsis to the right of d*, which indicates more numbers are possible to define beyond whatever value d*
has at any particular time. An ellipsis is required after * because there can be numbers defined beyond
whatever value d* presently has and mathematicians could in principle keep defining ever-larger numbers
indefinitely:

1,2,3,4,56,7,8,9,10, .., 10100, 106, 4% ..

With respect to using the numbers of NC to enumerate some large collection, X, of greater quantity than
d*, mathematicians could enumerate X if and when more powerful mathematical operations become
available. Until then, we would have no precisely defined numbers to enumerate X; hence, the ellipsis
after d*.

The same is true if we wish to quantify a negative balance equivalent to a size greater than d*. Like
NG, the scale of —N© also trails off with an ellipsis, but to the left:

o —d*, ..., —10%00° 10100, —10,-9,-8,-7,—6,—5,—4,—3,-2,—1

As with the positive naturals, we run into the same trouble; to the left of —d*, no further negative quantity
has been defined. So, quantifying X when X < —d* cannot be done in practice unless a more powerful
mathematical means to do so becomes available.

., —d*, .., —10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6, 7,8, 9, 10, ..., d%, ...

As you can see, the ellipses go both ways, which means again we are limited in what we can express about
collections less than —d* or greater than d*.

It is true that ZC, like WS and N© which belong to it, is an open series. All of these scales are
extensible. And that means we can invent new numbers for ZC beyond those we already have in order to
enumerate collections currently too large to quantify with our presently defined numbers. However,
greater/lesser collections than d*/—d* are possible to enumerate up to a point, beyond which we could
enumerate only in principle. And if we can enumerate larger collections only in principle, then we certainly
will not enumerate anything ‘infinite’ with precision.

4.2.13 There are Many Number Scales, All Incomplete Constructions

NG, WC, and Z€ are not the only number scales. Mostly it will be N© and WS that will concern us since
the negatives are simply counterparts to the numbers we count with, but | will occasionally make some
references to ZC and to some other number scales, some of which I'll introduce to clarity, namely the
following scales: QC, PG, AC, TC, RS, IC, and CC. Let’s take a brief look at these scales, starting with RS,
the scale of real numbers:

= real number: any number that, when multiplied by itself, gives a result that is necessarily non-
negative.
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For example, 5 is a real number since 5% 5= 25 (a non-negative result), and so is =5 (because a
negative multiplied by a negative is a positive: =5 x—5=25), and so is the number 0 since 0 X 0=0, which
is still non-negative. If any number multiplied by itself gives an answer that is not a negative number, then
the number multiplied by itself is a real number.

The scale of R® includes the scales of all natural numbers, whole numbers, integers, rational numbers,
and irrational numbers (see Figure 4.4).

/
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WC — Wholes

NC — Naturals

—5,—4,—3,—2,—1 (0|1, 2, 3 4, 5,..

RC — Real Numbers <
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Figure 4.4: The category of real numbers includes the rational numbers and the irrational numbers. The rationals include the
integers, which include the wholes, which include the naturals.

We can define rational numbers and irrational numbers thus:

= rational number: any number that can be represented as a simple fraction where the denominator
is not zero. For example, 1/, (or 0.5) and other fractions with non-zero denominators are rational
numbers. The rational numbers include all integers since a fraction with 1 as a denominator is
equal to an integer (2/1 = 2). The scale of rationals is denoted as Q©, for the ‘quotient’ series.

= [rrational number: a number that cannot be expressed as an exact ratio of two integers. One
example is pi (), which equals 3.14159..., where the ellipsis represents more values to be
defined. Another example is the square root of three (\/3), which like pi is also expressed with
indefinite decimal places (1.73205...) and one more example is Euler’s number (€ or 2.71828...).
There is no standard notation for irrational numbers, but we can follow the lead of set theorists
and denote the scale of irrational numbers as PC.
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‘Real numbers’ are used to solve real-world problems all the time, from adding up game scores and
designing space vehicles to predicting the weather and reporting stock market trends. But real numbers
have no more “reality” (and no less) in the colloquial sense of the term than any other kind of number.
Their name is simply a convention that serves to contrast them with a different kind of number that was
invented without any intention of being applied for solving real-world problems: the imaginary number.

Definition:

= imaginary number: any number that, when multiplied by itself, gives a result that is necessarily
non-positive.

An example of an imaginary number is V-1 because V-1 x V-1 = 1. Imaginary numbers also include
numbers such as 3i and 0.01i, where “i” means “imaginary,” since they result in negative numbers such
as 3i x3i=-9.

IMAGINARY
A
3i —+ " 4+ 3
2i —
1i —
T T T i > REAL

Figure 4.5: The imaginary number scale, as compared to the scale of real numbers. Both numbers can be combined (for
example, 4+ 3i) to form ‘complex numbers’, for which yet another scale of numbers can be constructed.

Like ‘real number’, the term ‘imaginary number’ does not denote numbers any less or more imaginary
than any other number—the name is just a convention. And despite that imaginary numbers were not
invented to solve real-world problems, it turns out they do indeed have applications to the real world,
such as quantifying alternating electrical currents and solving equations for signal processing in cellular
communication.

A scale of imaginary numbers can be denoted as €. The imaginary number scale can be represented
as the y axis of a Cartesian coordinate system, with the scale of real numbers as the x axis (see Figure 4.5).
Any point on the plane of both the x and y axes forms yet another kind of number: a complex number,
which combines real and imaginary numbers. The scale of complex numbers can be denoted as CC.

There are yet other kinds of numbers for which scales can be constructed, such as the algebraic
numbers (AC) and transcendental numbers (TC), but both are simply types of real or complex numbers,
so their details will not concern us. All we need is a basic understanding of the various number scales in
order to grasp what they have in common, especially with respect to their limits.
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Each of the number systems or ‘number scales’—NC, WC, ZC, QC, IPC, AC, TC, RC, I, and C have
some features in common.

For example, as inventions, each scale is an intrinsically incomplete construction. They are each
incomplete in the sense that there are always new finite numbers being invented for them. They are also
incomplete in another sense: if we could see every instance in which numbers from a particular scale have
heretofore been used on the planet over the span of history and compose a list of all the numbers ever
depicted from that scale according to the ordinality of the numbers in the scale, we would find many gaps
in each scale where numbers are implied but have never been explicitly depicted, calculated, or defined.
At any given moment in time, number scales are actually full of ‘gaps’ and hence incomplete in that sense.

Still, at any moment in time, the scale will be comprised of sequences of numbers explicitly
represented in definition or depiction but also those that are implicit and merely implied—large numbers
no one has ever depicted. During any given moment in which a number scale is used, the scale may be
considered a set of numbers for that moment. Hence, scales such as NG, WC, ZC, QC, RS, etc. are each
series but can also be considered sets (N, W, Z, Q, R, etc.) when time is abstracted out and we wish to
consider the scales as they are for a given moment in their construction and use.

We can denote such with vertical bars to imply the scale, as a series, is depicted during a snapshot in
time and so has a finite, variant maximum of numbers, a running total for all the numbers in it, and thus
a temporary cardinality for that particular time—e.g., | R®|. However, take note of the superscript C,
which indicates the scale is also a series ever under construction and is simply being denoted as a set
during a snapshot in time. For example, |R®| = R as a set for a given time, {.

Moreover, each number scale has either a constant minimum value in sequence and a variant
maximum value in sequence, or a variant minimum and constant maximum, or both a variant minimum
and variant maximum at any given time in the construction of the scale. For example, NC has the constant
minimum (namely, 1) but only a variant maximum as there is no final, largest number for the construction
of NC. Conversely, the negative counterpart of NC has a variant minimum (no final definition for a least
negative number) but a constant maximum of —1. And then there is ZC, which has both a variant minimum
number in sequence and a variant maximum in sequence. But no number scale—i.e., no number system—
has both a constant minimum and a constant maximum of numbers.

The numbers of a given number scale at any moment in time during construction have no final number
that halts their construction, at least not until human ingenuity is quelled for good. In fact, we cannot in
practice define a constant number as a final total of numbers in a number scale—a total that would finish
the given scale permanently.

So, none of the number scales are ever capable of having their numbers fully listed. The sequences of
known numbers comprising these scales of numbers trail off into ellipses past d* or its equivalent,
indicating that greater numbers can at least in principle be defined in order to capture yet greater
collections than 4* would allow.

All of these number scales as series are therefore necessarily incomplete; they are each ever
incomplete, open series. We are again left with the ellipses...

4.2.14 Number Scales as Open Series

If mathematicians go extinct one day along with the rest of us, and if there are no computers around to
compute, there would definitely be no one and no thing around to construct more numbers for N©, and
so NC’s highest invented number would be “the last number” in the sense that there would be no higher
numbers ever to be invented for NC. However, that still does not mean N© would be finished because if
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to the contrary there were still mathematicians and machines still around to make yet higher numbers,
NC could have continued to grow. In such a situation, N© may have a highest and last number made for
it practice, but such a number would only be the highest ever invented, not the highest there could have
been. In principle, higher numbers would still be possible for NC even if no people are around to invent
them in practice. So, NC may cease growing, but N© would still be unfinished as a series of numbers—
and it would remain unfinished. Rather than say a number scale such as N© has a “last number,” which
may be misleading, it is better to say that the number scale simply has a “provisionally highest number”
or “provisionally largest number” for any time referenced.

On the other hand, just because a number scale is never finished being constructed does not mean
that we should say the scale is at any time “endless” either, because that would also be misleading. Even
though a number scale has no “last number” in the sense of an absolutely final number, this does not
imply that a number scale has no end at all. Rather, a scale such as NC always has an end, it is just that
the “end” of the scale is always temporary, changing its total value when operations are employed to
make the scale bigger or when someone calculates a number that can be included in the scale as the latest
“end.” Each number scale has a series of ends, and each end is an instance in which a new, higher number
replaces the old end of the scale when the new number is invented. So, while it is not wrong to say a
number scale is “endless” in the sense that it continues to be extended, it is clearer to say the number
scale is ‘extensible’.

In short, there is no absolute last number or absolute end to a number scale, and that means the scale
is not a closed series or ever becomes a completed set in any final sense. We may speak of “the set of all
whole numbers” or “the set of all natural numbers” to indicate the cardinality of all the numbers taken
together in the given scale at a given point in time during the scale’s construction, but we cannot speak
of the scale per se as constituting a complete set. Number scales, as such, are open series—series that are
always extensible.

If we wish to point out the sets of numbers that are already defined in number scales, we could say
the number scales are open series of sets. The scales contain sets of defined numbers and a series of such
sets. The scales may contain new, larger sets of numbers at a later time because the scales can be
augmented with new numbers invented and added to them. The number scales are thus less like the
muffin tin and more like the series of rabbits in our earlier example—number scales are always able to
include more numbers and they are always being extended so long as there are people around to extend
them.

4.2.15 Number Scales as Incomplete Series

Recall from § 3.2.8 the completeness criteria: wholeness, entirety, finish, fullness, and totality. We can
now apply these criteria to assess number scales as either complete or incomplete.

Take the number scales such as NC or WC. Neither are whole scales because there are “gaps” or
“breaks” in the defined numbers of the counting numbers—portions between, for example, 1015 and 1030
that have never been counted out or calculated. That is not to say N© and WS cannot in principle be
made whole; it is just to say they are not whole.

Moreover, because these scales are missing defined numbers, they cannot be considered entire
scales.

We also know that N© (and each of the other scales) has a total because every number scale, even as
an open series, still has a total. At any time, the numbers that a number scale contains can, at least in
principle, be summed and so given a total. In practice, this isn’t possible, but in principle, a number scale’s
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component numbers can be summed up to the largest number in the scale invented to date. Since that
sum of numbers is only a sum of numbers invented to date, it is a sum in the sense of being a temporary
total or running total of numbers.

So there are actually three different running totals that number scales have.

First, there is the total by which the scale is in fact defined—this is the highest number that someone
has actually invented so far in the scale.

Second, there is the total number of numbers a number scale could in practice be defined as having—
this is the total that could be arrived at using whatever mathematical technique that will eventually be
invented to produce the largest, consistently defined number.

Third and finally, there is the total equal to the largest number able to be defined in principle—this is
the total that it is logically possible to arrive at if we were to never run out of physical resources for
defining new, larger numbers.

When we speak of a number scale’s total, or the “number of numbers” in a number scale, such as
“all” the numbers in NC, we must realize that we are speaking either about the total of the number scale
in fact, or the total of the scale that is possible in practice, or even the total of the scale that is possible
only in principle.

What number, then, is the true total of NC? There is no one answer. NC has a total according to each
one of these distinctions.

There is a total for NC in fact (its largest number to date—whatever that is), a total for N© in practice
(a number for which we now only have a variable because it is the number by which we may in the future
extend N©), and a total for N in principle (the total that we could extend N© to at some logically possible
time in a logically possible scenario, though it shall never be possible to do so in actual practice). Here is
the really important part: all three types of totals for NC are finite, running totals since we are always
extending NC’s number of numbers.

However, because a number scale such as NC is an open series with only a running total of defined
numbers, the scale in question is never finished, so the completeness criterion of ‘finish’ is a fail for
number scales.

Then too, because a number scale such as NC has some numbers only implied but not depicted
between any two large numbers like 1014 and 1015, number scales can always include more numbers
without changing the parameters defining the scale (say, 0 to d*), and that means the scale will never be
full.

Failure to meet the wholeness, entirety, finish, and fullness criteria implies that a number scale, as an
open series, is never a complete set with constant extrema and a standing total. Instead, each number
scale is an incomplete sequence with, at best, a variant extremum (or extrema) at each stage of
construction [123].

Number scales are in this view open-ended series; that is, series that always remain incomplete
because they grow indefinitely larger with construction. But because the number scales are open-ended
in the sequence of numbers they contain, they are inherently extensible as finite constructions.

We can define new, larger numbers for the series, extending the scales of numbers as we need in
order to enumerate collections currently too large to quantify with our presently defined numbers.
However, this too has its limits; there will come a point beyond which further definitions of greater
numbers to quantify greater collections will not be possible in practice as it would exceed our ability to
calculate. After that point, we could continue enumerating only in principle, which means again we cannot
approach quantifying an infinite collection with precision by enumeration.
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4.3 NUMBER SCALES - FIGURATIVELY INFINITE OR LITERALLY INFINITE?

Because each number scale is inherently incomplete, because the number scales are always under
construction, the so-called “last number” in a number scale, the “highest number” defined to date, has
no fixed value. The “number of numbers” in a number scale is always increasing as the number scale is
extended with the invention of new, larger numbers. Number scales, as incomplete series, have maximal
guantities of numbers but not a maximum quantity of numbers—at least, not qua series.

This has implications for our main subject—infinity—because a scale that is inherently incomplete
with only a running total of invented numbers is a scale that is only figuratively infinite rather than literally
infinite. In view of this, | will argue in Chapter 24 that ‘figurative infinity’ is a misnomer for serial
indefiniteness, so it would be best to say number scales are indefinite series rather than infinite series.

Most scholars would agree with me that figurative infinity is not the right term to use for
characterizing number scales. However, not because they think number scales are inherently incomplete,
open series as | contend them to be. Rather, they would instead say that number scales are not figuratively
infinite series, or indefinite series, at all precisely because they are (literally) infinite sets. In their view, the
ellipsis at theend of 1, 2, 3, 4, 5, 6, ... carries to a value well beyond d* and beyond any number that can
be calculated in practice; the ellipsis denotes not just an indefinite sequence but a literally infinite
sequence.

4.4 TWO VIEWS OF ENUMERATING THE LITERALLY INFINITE

If we take number systems as literally infinite, then they are not just limitless, but complete as well—
whole, entire, full, and finished totalities of numbers (see Chapter 3 for definitions and explications of
these terms). But having a totality of numbers—a total number of numbers—would seem to imply having
a quantity equal to a sum of numbers. Whereas to be limitless, in a literal sense, is to imply the inability
to be summed since a sum is a limit. So how can the natural numbers, as a set, have a quantity equal to a
complete sum of numbers and yet a limitless sequence of unique numbers, each of higher cardinality than
the last?

In answer to this concern, most mathematicians regard a number system, such as the natural
numbers, to be a literally infinite set according to one of two views. I'll call them Literal Infinity Option A
(or LI-A) and Literal Infinity Option B (or LI-B):

LI-A: There is a complete set, the quantity of members for which is expressible, at least in principle,
as a number with a limitless string of digits—an infinite sum of members.

LI-B: There is a complete set of limitlessly many members that together do not equal a sum, not even
one with a limitless string of digits.

4.4.1 Infinite Sums

LI-A follows from the very concept of quantity. To quantify a collection is to identify its amount of
members—a value equal to a total, which is a number equal to a sum. According to LI-A, a literally infinite
collection has a quantity because it has a sum, albeit one that is equal to a number with a limitless string
of digits (see Figure 10.1 in § 10.5).
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To express such a number would require some enumeration technique. There are various ways to
enumerate as we well know, such as by tallying, counting, calculating, computing, etc. All of these
techniques of enumeration are ways of quantifying—yielding a quantity, producing a total equal to a sum.
If there is such a thing as an “infinite sum,” then there must at least in principle be an enumeration
technique that would produce such. And since a sum is produced by adding up numbers that could be
counted out, then in order for a collection to have a sum and therefore a quantity, the objects making up
the collection must be able to be enumerated by counting all (each and every one of) them.

That does not mean the collection to be enumerated is necessarily countable in practice. Maybe we
don’t have a computer with enough power to help us calculate the members of the collection using
automated algorithms. But the members of the collection must be at least countable in principle—that is,
in some logically and mathematically possible circumstance—if we are to accurately say the collection is
enumerable and so is a whole with some quantity of objects.

The reasoning seems to be this: if a collection has a quantity, it is able to be enumerated, and if it is
able to be enumerated, then it is able to be counted to a final sum, even if only in principle. Because literal
infinity is a state of completeness as well as limitlessness, and completeness implies a quantity, then LI-A
entails that one can at least in principle enumerate the collection by counting all the members of the
infinite collection—all the way up to infinity. An infinite count, if it could be carried out, would be a final
sum of members expressible as a number with no limit to its sequence of digits. Maybe we can’t actually
express such a number except with shorthand symbolism, but an infinite sum must be achievable in
principle, assuming LI-A is correct.

4.4.2 Limitless Totality Without Sum

LI-B disagrees. According to LI-B, either infinity is not a number at all [124] or infinity may be expressed as
an ‘infinite number’ that is not like a finite number [125]. Either way, there are no infinite sums. And yet,
LI-B holds that collections can be complete as well as limitless.

According to LI-B, an infinite collection is not complete in quantity like a finite collection is complete
in quantity. While a literally infinite collection does have a ‘complete’ quantity in the sense of having an
amount of objects—a value equal to a tota/l—the collection is not complete in the usual sense of
completeness because the literally infinite collection has a ‘total’ in an unusual sense.

The infinite collection has a ‘total’ or ‘totality’ as a value equal to a sequence of sums but not equal to
a final sum as a maximum quantity. To count every member of a literally infinite collection is to never stop
counting; the counter never arrives at a final sum that is equal to a string of digits without limit. Instead,
the sequence of sums itself is what an infinite ‘totality’ means, and it is the limitlessness of finite sums
that must be captured in mathematical symbolism.

4.4.3 Both Views Problematic

Neither LI-A nor LI-B is obviously correct since there are conceptual difficulties facing both of these
options.

LI-A affirms a literally infinite collection as complete because a limitless collection has an “infinite
sum,” but itis not clear that a ‘sum’ equal to a constant number with limitless digits is a logically coherent
concept.

LI-B is also logically dubious. LI-B denies that a literally infinite set has a final, exact sum of members
but that position also does not make clear how the literally infinite set is a genuinely complete set. Its
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‘totality’, as a “sequence of sums” without an end to a count of members, is not clearly different from a
series of sums—the running total of what we typically think of as an incomplete series and thus a case of
figurative infinity rather than literal infinity.

We will next investigate how mathematicians respond to these problems, starting first with their
response to the concerns over LI-B, then those over LI-A.

4.4.4 Enumeration by Correspondence

Mathematicians adhering to LI-B reject the idea that LI-B implies merely a running total and not a
complete set of numbers. They retort that, while one cannot count up to infinity or produce an infinite
sum to demonstrate the completeness of an infinite set, there is another way to ‘enumerate’ all the
members of a collection that is literally infinite: by correspondence.
The term ‘correspondence’, in a mathematical sense, means the matching or mapping of elements
between two sets where one element in one set is paired with at least one element in the other set.
Correspondence can show whether or not each of two given sets has just as many elements, no
more and no less, than the other. If so, the members of one set (which we’ll call A) are “evenly matched”
with the members of a second set (we’ll call it B). Mathematician J.R. Maddocks explains [126]:

Evenly matched means that each member of A is paired with one and only one member of
B, each member of B is paired with one and only one member of A, and none of the
members from either set are left unpaired. The result is that every member of A is paired
with exactly one member of B and every member of B is paired with exactly one member
of A. In terms of ordered pairs (a, b), where a is a member of A and b is a member of B, no
two ordered pairs created by this matching process have the same first element and no
two have the same second element. When this type of matching can be shown to exist,
mathematicians say that "a one-to-one correspondence exists between the sets A and B.”

We saw a few examples of such one-to-one matching with the definition of cardinality back in § 2.3.1.
As another simple example, consider matching all the ‘digits’ (fingers, including thumbs) between the two
hands of a typical person. Imagine a person placing the thumb of their own left hand against their own
right-hand thumb, the index finger of their left hand against the index finger of their right hand and doing
the same for the remaining fingers. When there are no remaining digits, there is a one-to-one
correspondence of the digits on the left hand to the digits on the right hand [127]. The individual doesn’t
even need to know how many fingers there are in order to see that the two collections of digits match
evenly and are therefore the same (finite) size [128].

When two sets have their elements evenly matched in a one-to-one correspondence, mathematicians
refer to the sets as ‘bijected’; a bijection is a one-to-one correspondence of elements between sets.
However, if one set has greater or fewer members than the other set, then the sets cannot be bijected
because they are not evenly matched.

Between the disproportional sets, at least one element in one set will have to point to more than one
element in the other or have more than one element in the other set pointing to it. For example, suppose
set A has more elements than set B. In order to match all the elements in set A with those in set B, more
than one element in A will have to be matched to the same element in set B. This kind of relation is not a
bijection; rather, it is called a surjection.
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On the other hand, if there are more elements in B than in A and each element in A is matched with
only one element in B, with at least one element in B left over, then the sets are also not bijected; instead,
they are injected. Injection is thus a correspondence of elements between sets in which no element of set
A is paired with more than one element of set B but not every element of B is paired with an element of
A.

Injection, bijection, and surjection are all forms of correspondence, as depicted in Figure 4.6.
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Figure 4.6: Three types of correspondence.

Mathematicians may not agree whether or not an infinite collection can be counted to an infinitely
large number, but most agree that, at least in principle, a collection that is literally infinite can be shown
to be such by the procedure of correspondence. A collection that is literally infinite can be completely
enumerated by means of correspondence between that collection and the set of all natural numbers just
as one would demonstrate two hands to have the same number of fingers by matching them up.

If a collection is literally infinite, then either all natural numbers must biject with the members of the
collection or all the natural numbers must inject to the collection. Suppose in matching the members of a
collection to a list of all the natural numbers we could determine that there are as many members of the
collection as there are natural numbers or even more members of the given collection than natural
numbers. Either way, the correspondence technique, just on its own, would say the collection is literally
infinite because the natural numbers are infinite.

And yet, problems remain. There seems to be some question begging with LI-B’s attempt to define a
collection as infinite according to the correspondence procedure. Sure, a collection would be literally
infinite if it has just as many members as a literally infinite set of natural numbers, but do the natural
numbers themselves really constitute a literally infinite set? The foregoing exposition of building number
scales would say otherwise. So, even if the correspondence technique is a necessary procedure in order
to quantify a collection as literally infinite, it may not be sufficient since the assumption that number
systems are themselves infinite may not be a safe assumption.

4.4.5 Expression of Infinite Numbers by Symbolism

Now let’s return to the issue of LI-A. According to LI-A, infinite series are completable in principle and so
some numbers can be infinite numbers, such as a natural number with infinitely many digits. For
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supporters of LI-A, an infinite natural number is not like a finite natural number. An infinite natural
number, if it could be expressed, would in principle have a limitless string of digits. The idea of such a
number is plausible, they hold, because we need not be able in practice to write out such a number. Rather
than write out an infinitely long string of digits, we must instead rely on some other form of symbolism to
express an infinite number. Consequently, the infinite number of all natural numbers is just expressed
differently than any number in the set of natural numbers. The unique mathematical symbolism for an
‘infinite number’ is what expresses the complete quantity of any infinitely large collection. This goes for
infinitely large collections of numbers as well, including the set of natural numbers. We will explore this
symbolism toward the end of the next chapter.

4.4.6 Infinite Collections are Enumerated Indirectly

Both LI-A and LI-B for literally infinite quantities have something in common: mathematicians must
employ different techniques of enumeration and expression of quantity in order to either express (a) an
‘infinite number’ or (b) enumeration of the infinite without counting to up to an infinite number.

Instead of enumerating by counting, calculating, or computing, they ‘enumerate’ hypothetically by
correspondence, and instead of expressing an infinite quantity directly using digits, they express it
indirectly with specialized mathematical symbols. That is how mathematicians conceive the enumeration
of literally infinite collections.
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CHAPTER 4 IN REVIEW

< Number systems may be interpreted as figuratively infinite scales of numbers built over
time (e.g., the system of natural numbers as the scale N©). But number systems have been
typically interpreted by mathematicians as literally infinite sets of numbers available all at
once (e.g., the system of natural numbers represented as the set N).

« Number systems, as figurative infinities, are inherently incomplete, open series that are
always under construction. But many mathematicians contend that number systems are
not at all figuratively infinite series, or indefinite series, precisely because they are (literally)
infinite sets.

« If we take number systems as literally infinite, then they are not just limitless, but complete

as well—whole, entire, full, and finished totalities of numbers.

Completeness implies totality and totality means to have a total—an exact sum equal to a

number able to be expressed, at least in principle.

So, literal infinity implies the existence of an infinite total or “sum” in some respect.

The notion of an infinite total may be interpreted in two different ways—

o Aninfinite number—a number with infinitely many digits.

o A quantity that is an infinite ‘total’ without an infinitely large number.

Both options follow from the concept of literal infinity.

Both options imply that some enumeration technique is needed to express infinite quantity,

either as (a) an ‘infinite number’ or (b) enumeration of a given set as infinite by establishing

a correspondence between the members of that set and the set of natural numbers, which

is assumed to be literally infinite.
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5: ON PREDICATING THE FINITE AND THE INFINITE

Some mathematicians say there are ‘infinite numbers’ [129] [130] [131]. Others say there is no such thing
as an infinite number because infinity is not a number, even if it can be used as if it is a number [132].

But if infinity is not a number, then what sort of thing is it? The short answer: infinity is a (purported)
property—a quantitative condition some collections allegedly have.

Such collections include, so it is often claimed, collections of numbers. Sometimes infinity is even said
to be the property of certain kinds of numbers, for numbers themselves denote properties of collections,
even if only collections of numerals or other symbols.

When the property called ‘infinity’ is ascribed to a collection, the collection is said to be ‘infinite’,
thereby indicating that the cognate ‘infinite’ is not just an adjective as it is known to be in the study of
grammar but also a ‘predicate’ as known in the study of logic. Even in the language of mathematics the
term ‘infinite’ functions as a logical predicate.

Incidentally, when | say the term ‘infinity’ or one of its cognates like ‘infinite’ or ‘infinitely’ are
predicates, | do not mean merely in the grammatical sense, but rather in the /logical sense. In logic, any
verb or adjective is a ‘predicate’—a property or relation ascribed to a subject. The term ‘infinite’ is, more
precisely, a logical predicate of a particular sort: it is a kind of quantifier—a predicate indicative of
quantity. Just as saying ‘all’, ‘some’, ‘many, ‘few’, and ‘most’ are quantifiers, saying a collection has ‘finitely
many’ or ‘infinitely many’ members is to use a quantifier for the collection. Better still, the term ‘infinity’
and its various cognates are instances of a particular sort of quantifier—infinity (or any of its cognates) is
a quantifier for an unspecifiable quantity.

In this chapter, we will very briefly examine the nature of logical predicates and quantifiers. We’ll then
see what it means to predicate a collection as finite or as infinite. Predication, and symbols for logical
predicates, will be shown to be the means by which mathematicians express collections as ‘infinite’,
regardless of whether the collection in question can be ‘enumerated’ to infinity by counting, by
correspondence, or by some other technique. We’ll then see how infinity, as a term in language and math,
functions as a logical predicate—specifically, as a quantifier for unspecifiable quantity. But even though
the term ‘infinity’ is a predicate of sorts, in symbolism it is used as if it is a kind of number, returning us to
the question as to whether or not there really are ‘infinite numbers’.

5.1 PREDICATION BY QUANTIFIERS

In grammar, a predicate is the part of a sentence or clause (usually an adjective) describing something
about the subject of the sentence. For example, the noun ‘cat’ is the subject and the adjective ‘black’ is a
predicate in the sentence, “The cat is black,” because ‘black’ describes something about the subject of the
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sentence, which is the cat. In that example, the predicate is an adjective separated by a verb (such as the
words ‘is’, ‘are’, ‘was’, etc.), which is what makes the adjective a predicate. But adjectives are not always
separated from a subject by a verb. For example, there is no verb separating the adjective ‘black’ from the
subject in the sentence, “The black cat purred.” In that case, the field of grammar regards the adjective
‘black’ not as a predicate but instead as an attribute because the adjective precedes its noun. A predicate
is distinguished from an ‘attribute’, even for the same word, because of where the word falls in the
sentence.

In the academic study of logic, this grammatical distinction of place is unimportant to whether or not
an adjective is regarded as a predicate. In logic, the word ‘black’ is a predicate both in the statement “the
black cat purred” and in the statement “the cat is black.” Hence, terms like ‘predicate’ and ‘attribute’ as
used in the study of logic have different meanings than they do in the study of grammar.

Take ‘predicate’ as defined for the study of logic:

= predicate: a word that attributes a property to an object.

In the study of logic, the term ‘attribute’ is not used primarily in the grammatical sense but in a
different sense. In the above definition, a predicate attributes a property by affirming the object has the
property or denying the object has the opposite of the given property. For example, the word ‘limited’
affirms that something has limit as a property while the word ‘limitless’ denies something has limit as a
property—limitlessness being the opposite of having a limit. Hence, the term ‘attribute’ in the study of
logic is defined differently than it is in the study of grammar, as so indicated:

= attribute:
(1) noun: a property affirmed, or its opposite denied, as belonging to an object.
(2) verb: to affirm a property or deny its opposite as belonging to an object.

Moreover, to attribute a predicate to an object is to predicate (verb) the object. Definition:
= predication: the attribution of a predicate to an object.

Predication provides information about an object (e.g., the cat) such as what the object is, what the
object(s) is doing, or what property the object has (e.g., black). When | use the terms ‘predication’ and
‘predicate’ | will use them according to the logical rather than the grammatical senses of these terms, so
placement in a sentence or statement is unimportant to qualifying as a predicate.

There are many kinds of predicates and some of them can be used for quantities. Words such as ‘all’,
‘some’, ‘none’, ‘both’, ‘either’, ‘each’, ‘every’, ‘any’, ‘many’, ‘few’, ‘less’, ‘lesser’, ‘least’, ‘more’, ‘most’,
‘equal’, and so forth are all predicates that indicate quantity. As you can see from these examples, to
predicate a quantity is not to express an exact number such as 0, 1, 50, 1012, and so on. Predicates for
guantity express instead what the quantity is like rather than provide an exact amount. (However, some
predicates imply an exact amount. For example, ‘none’ implies zero and ‘either’ implies two.)

Even though predicates do not directly state exact quantities, we can nevertheless quantify a
collection indirectly by using a predicate to indicate that the subject in question does have a quantity and
to say something about what the quantity is, or should be, like. In fact, logicians refer to certain predicates
for quantity as quantifiers. In particular, two of the words listed above—‘all’ and ‘some’—are logical
guantifiers; they are given letter-like symbols for use in formal logic: V for ‘all’ and and 3 ‘some’. However,
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those are just two predicates that indicate quantity. In a looser sense, all predicates that indicate
qguantity—including predicates such as ‘each’, ‘every’, ‘few’, ‘most’, etc.—can be considered ‘quantifiers’.
Adopting this looser sense of the term ‘quantifier’, we can propose a definition:

= quantifier: a predicate that indicates an unspecified quantity.

A quantifier is a general indicator of quantity rather than a specifier of quantity.

Quantifiers can come in handy when an exact amount, the quantity per se, as not important. As long
as we know a collection has an in-principle countable number of members, then we know the collection
has a quantity, but it is not always necessary to actually count or calculate, or otherwise enumerate, a
collection in order to inform about the quantity of its members. In some contexts, we may simply want to
indicate that a given quantity is present or not, or that a quantity includes some members while excluding
others. Or we may want to indicate that a given collection has a different quantity of members than
another has without performing an enumeration of any kind. Instead of mathematically specifying a
guantity by exact amounts in such cases, we may describe the quantity of members in a collection by use
of ‘quantifiers’ according to the above definition [133].

There are at least two types of quantifier (which will be important in Chapters 13-14):

= membership quantifier: a predicate that indicates a range of inclusion or exclusion from a given
collection of unspecified quantity.

= magnitude quantifier: a predicate that indicates similarity or difference between collections of
unspecified quantities.

A ‘membership quantifier’ (sometimes called a ‘determiner’ in the study of grammar) depicts
members included or excluded from a collection not in terms of exact amounts but in terms of unspecified
quantity. Basically, a membership quantifier tells us how much or how little of something is being
considered in a general sense without providing a quantity to the collection under consideration.
Membership quantifiers include such words as ‘all’ and ‘some’ (the usual logical quantifiers), but also
words such as ‘none’, ‘both’, ‘either’, ‘some’, ‘each’, ‘every’, and so forth. These words are used to express
that a collection has some quantity of elements included or excluded from it. Examples of membership
quantifiers can be found in sentences like the following:

=  Some numbers have decimals.
= A/l humans are mortal.

Notice the statements do not tell us in any specific way how many numbers or humans there are; rather,
the statements just tell us in a general way about the range of things included or excluded from those
collections.

If we wish to consider the quantity of objects making up a collection relative to the quantity of objects
in some other collection or collections, we can use ‘magnitude quantifiers’ to describe the similarity or
difference in the sizes of the collections. Magnitude quantifiers are such words as ‘equal’, ‘less’, ‘lesser’,
‘least’, ‘more’, ‘most’, ‘little’, ‘littlest’, ‘great’, ‘greater’, ‘greatest’, etc. We use such magnitude quantifiers
when we describe a collection’s members as being ‘equal to’ or ‘less than’ or ‘greater than’ those of

another collection.
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Some examples of magnitude quantifiers:

= The amount of cars is equal to the amount of drivers.
® The multitude of sand grains on Earth is less than the multitude of planets in the Universe.
=  The number of children is greater than the number of parents.

We might also use predicates like the adjectives ‘small’, ‘smaller, ‘smallest’, ‘large’, ‘larger’, ‘largest’,
etc. as magnitude quantifiers to indicate the differences in magnitude between various sizes of collections
or quantities of objects in collections.

Membership quantifiers and magnitude quantifiers categorically overlap. There are some predicates
that function both as a membership quantifier and as a magnitude quantifier because they tell us not only
if something belongs to a given collection but also its magnitude relative to the collection. Such quantifiers
include adjectives like ‘single’, ‘couple’, ‘few’, ‘several’, ‘many’, ‘most’, etc. Examples:

=  Many people are called, but few people are chosen.
= Asingle member can influence several members.

In short, we may use quantifiers rather than numbers to express the quantity of members in a
collection, or at least give an indication of quantity.

Such quantifiers are primarily used in symbolic logic, the field that studies the expression of quantity
by quantifiers rather than numbers. However, as we’ll later see, the disciplines of mathematics and set
theory also use symbols for quantifiers—those symbols expressing sets or quantities as finite or infinite.

5.2 FINITE AND INFINITE AS PREDICATES

Since infinity is a denial of finitude, we’ll first look at the term ‘finite’ as a predicate for quantity, and as a
quantifier, before examining infinity as likewise.

5.3 PREDICATING AS FINITE

The word ‘finite’ as used in mathematics and set theory is given very precise, technical meanings. | will
ignore these for now. The word ‘finite’, as a word, is a predicate. And as a predicate, ‘finite’ does not
directly provide a number or quantity to a given collection predicated as finite. Rather, the word ‘finite’
tells us something about the number or quantity of the collection predicated as finite. The word “finite’,
when predicated of a collection, tells us the collection has a limit to its quantity, or number, of members.
Chapter 1 defined “finite’ in five different ways, all having to do with limit. Here they are again:

= finite:
(1) having a limit.
(2) having a limit to a given measure.
(3) having a limited quantity.
(4) having limited quality.
(5) having limited quantity and quality.
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These are complementary definitions, and they remain valid. But to fully grasp what it is that the predicate
‘finite’ describes of a collection, we need to have some clarity on what a ‘limit’ is.

5.3.1 Limit

Mathematicians have various definitions of the word ‘limit’, each pertaining to a branch of mathematics
such as geometry and calculus. In calculus, for example, a limit is typically defined as a mathematical value
toward which a sequence of elements or the output of a function converges. However, such is too narrow
for our purposes, so | will stipulate a precising definition for the quantitative sense of ‘limit’ that captures
how the term is used across several contexts in natural language, and even in mathematical contexts for
which natural language has some use:

= limit: a specifiability condition for a range.

Let’s unpack the constituent terms in this precising definition of ‘limit’—we need to define
‘specifiability’, ‘specifiability condition’, and ‘range’. Let’s start with the first two:

= specifiability: the property of being specifiable.
= specifiable: able to be specified.

Recall from §2.3.14 that to ‘specify’ is to identify, refer to, or describe a distinct object. Specifiability is
thus the ability to be identified, referred to, or described as a distinct object (where “distinct object”
means a given, particular object as opposed to some other object). Ergo:

= specifiability condition: a condition (feature or circumstance) that enables something to be
specified (identified, referred to, or described as distinct from other things).

Which leaves for our definition of limit the notion of ‘range’ [134]:
= range: a collection’s extent of elements.

So, to have a limit is to have a condition—in particular, a range (extent of elements)—that enables
whatever has the limit to be specified (distinctly identified, referred to, or described).

We are getting a clearer idea of ‘limit’, but it could be made still clearer. The term ‘range’ refers to an
‘extent’ of elements, so ‘extent’ must also be defined:

= extent: the measure of difference between values assigned.

A collection’s extent is thus the difference between quantitative values assigned to the elements of the
collection (for example, the mathematical difference between two points on a line, the difference
between a pair of numbers in a sequence of numbers, the difference between smallest and largest
volumes covering a cluster of elements, etc.). Any collection of some quantitative variety such as a
domain, field, scope, scale, dimension, distance, spread, reach, region, breadth, depth, etc. has ‘extent’
as one of its features. Moreover, a collection has an ‘extent’ of elements for the entirety of the collection
if the collection’s elements are able to be assigned values in an act of measuring the collection without
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leaving out any elements. Extent is a collective property of elements together, whether the collection is a
multitude, aggregate, set, sequence, or series. Even a series has an ‘extent’ of elements, at least in the
sense of a succession of events or steps that comprise it at the time of measurement. We can therefore
speak of the “range of a series” just as we can the range of any other kind of collection.

We might also speak of the ‘range’ of a purely conceptual collection that corresponds to nothing that
actually exists in the physical world. For instance, in mathematics, the term ‘range’ often refers to the
value of a set of variables such as a dispersion of statistics or an amount of values (like the difference
between lowest and highest scores).

Regardless of what kind of collection we are considering, we can put the above definitions together
for our concept of ‘limit’ by saying that a limit, as a “specifiability condition for a range,” is a feature or
circumstance of a collection that enables the extent (measurable difference between assigned values) of
elements in the collection to be identified as distinct from the extent of elements in any other collection.

There is one last term in this explication of ‘limit’ that needs further clarity: value. Limit is defined in
terms of range, range in terms of extent, and extent in terms of ‘value’; so what is meant by ‘value’?

That term has many uses (aesthetic, ethical, political, religious, etc.), but the kind of value that will
concern us most is ‘value’ in the mathematical sense. Until Chapter 25, the term ‘value’ will mostly mean
the mathematical sense of value since until then the kind of limits to be discussed will be mainly limits of
guantity rather than limits of quality.

That is not to say that qualities cannot be assigned values and therefore limits, for they certainly can.
But ‘values’ with respect to quality generally have a different meaning: a qualitative value is a specification
of desirability or worth (see § 1.4), whereas a quantitative or mathematical value is a specifiable constant
number (see § 2.3.14). So while something’s qualitative limits are the conditions that specify its
differences in desirability or worth (qualitative values) with respect to its properties, in contrast a
collection’s quantitative limits are the conditions that specify differences in the constant numbers
(quantitative or mathematical values) assigned to its elements. Since we are considering the limits of
collections, unless otherwise indicated we will be considering value, extent, range, and limit only in the
guantitative senses of these terms rather than in their qualitative senses.

Quantitative limits include such examples as ends, brinks, edges, borders, bounds, boundaries,
extremes, and totals. These are all examples of specifiability conditions for ranges (limits) that are
guantitative descriptors because they can each determine the ‘extent’ of elements making up the
collection in question via assigned numbers, which can be used to distinguish that collection’s extent of
elements from other extents. To elaborate on these examples, consider:

End. An ‘end’ is a condition that specifies the range of a sequence (such as the measure of a line or a
list) or a series (like the succession of steps it takes to count the members of a list) by pointing to the
first or last member in the sequence or series.

Brink. A ‘brink’ specifies the range of a sequence or series by pointing to the element or moment just
before a marked change or event.

Edge. An ‘edge’ specifies the range of a geometrical shape or body because it is a brink that results in
a change of angle.

Border. A ‘border’ specifies the range of an area by marking where the area is separated from another
area.
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Bound. A ‘bound’ specifies the range of a sequence beyond which extends more elements not in the
sequence (for the set-theoretic understanding of a bound, see § 11.2.6).

Boundary. A ‘boundary’ specifies the range of a collection by marking where the collection meets its
complement (elements not shared by another collection).

Extreme. An ‘extreme’ specifies a range either by the outermost mathematical value(s) of a
collection’s sequence or by the least/greatest amount of elements in the collection (see § 4.2.2).

Total. A ‘total’ specifies a range by providing the sum or product of all the elements in a collection,
where that sum or product can, at least in principle, be expressed as a constant number.

All of these specifiability conditions enable us to tell one quantitative range from another in a collection,
or the quantitative range of one collection from that of another collection. (There are other kinds of limits
too, but these provide all the examples we will need for this book’s examination of quantitative infinity.)

In some cases, conditions can specify different ranges in the same collection. For example, take a deck
of playing cards. The deck is the collection of elements; each card is an element of the deck. Each suit in
the deck—hearts, diamonds, spades, and clubs—is a different extent of the elements (the ranges of the
elements). Each suit in the deck, as a range, has specifiability conditions: a card of least value and a card
of greatest value with a quantitative scale of other cards between. So, here we have an example of one
collection, the deck, with multiple limits in it.

In other cases, conditions can specify different ranges between collections, allowing us to distinguish
one collection from another. A border specifies where the range of states forming the mainland of the
United States leaves off and the range of Canadian provinces begins, and vice versa. The border is a
specifiability condition for the ranges of these two collections—a kind of limit.

We therefore have several examples of features or circumstances that enable the extent of elements
in (or the range of) a collection to be identified as distinct from any other extent of elements (or ranges
of other collections)—that is, we have several examples of limits.

5.3.2 On Being a Limit and Having a Limit

Finitude was defined as “the quality or condition of being finite” and to be finite is “to have a limit.” From
the previous section, we now have ‘limit’ defined and examples of limits. From the definition of limit, we
see that to be finite is to have a specifiability condition for a range (extent of elements) in a collection.

That is not the only way to define what it means to be finite. Mathematicians and set theorists also
propose various technical definitions for what the word “finite’ means. However, their definitions tend to
be narrowly focused on mathematical contexts. | prefer to keep the definition of the word ‘finite’ to a
more general conception of being limited to fit a variety of contexts that may work across mathematical
disciplines and in other contexts as well. | believe the words ‘finite’ and ‘limit’ have been precisely defined
enough for that purpose.

But some questions remain. We sometimes say something has a limit and other times we say
something is a limit. So how is to have a limit different from being a limit?

Since a limit is “a specifiability condition for a range,” and since something can either have or be a
limit, then something can either have a specifiability condition for a range or it can be a specifiability
condition for a range.
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For example, to say that X “is” the limit of a collection is to say that X specifies the collection’s range
by distinguishing its extent of elements from that of any other collection. By contrast, to say collection Y
“has” a limit, such as a limit to the quantity of elements in Y, is to say that Y has a range of its own and
that there is some specifiability condition for Y’s range.

Let’s take an example of the first case in which something is a limit. A circle can be considered a limit—
it is a limit—because its shape specifies the range (extent of elements) that lies between the perimeter
and the center.

Next, consider an example in which something has a limit. Again, the circle will suffice. It’s also true
that a circle has a limit because the circle’s radius starts at a center point to the circle’s interior, which is
a disk, and ends at a point on the circle as the perimeter of the disk, with that end being the limit of the
circle. And, as noted earlier, we can always mark a point on the curve of the circle and then trace around
that closed curve back to the starting point—showing that the circle’s circumference, the extent of the
circle’s closed curve, has a limit even if the circle is without bound with respect to the directions along its
closed curve.

We are also not faced with a dichotomy of being or having a limit; something can not only be a limit
but also have a limit. The curve of the circle both serves as a limit (the perimeter) to all that may be inside
the circle and the curve of the circle has a limit in that its circumference has a limit to its measure.

But not everything serves as a limit while also having a limit; that is to say, something can be a limit
but not have a limit, or vice versa.

As an example of something being a limit while not having a limit, take the number zero. Zero can be
a limit to a collection of values but zero has no such limits of its own. As a constant number, zero is the
lower limit of the whole numbers—so, zero is a limit. But as a mathematical value, zero cannot be divided;
it has no condition within it to specify a range—it has no extent, or measurable difference, between
values. That is, zero has no limit because it is not a collection of anything (see § 2.3.8). Hence if we take
zero as referring to the emptiness of the empty set, zero refers to nothing with limit. And if we think of
zero as simply being the empty set, the same pertains: there is nothing in the empty set at all and so
nothing to specify a range (again, no limit) to the empty set simply as such. So, zero has no quantitative
limits of its own. Zero, then, can be a limit without having a limit.

Conversely, something can have a limit but not be a limit. Consider the set of all numbers in the scale
of natural numbers. As pointed out earlier, numbers are inventions. Where the sequence of natural
numbers leaves off at the highest ordinality produced so far during construction of the scale as a sequence
of numbers, the largest number is equal to the number of numbers making up the sequence taken as the
set of all the numbers at the time the largest number is defined. So clearly the set of all numbers in a given
number scale at a given time has a total—namely, the total that is the running total of the scale as an
open series, and that total is kind of limit. And yet, while the set of all numbers in the scale at the given
time has a limit (the running total), that series of numbers need not itself be a limit for something else.

There is, then, a difference between being a limit and having a limit. And yet, we also sometimes say
that something “is limited,” which is the same as saying it has a limit. These distinctions may sound like
mere wordplay, but they are in fact useful distinctions for how we refer to limits and lack of limits, and
they will become important as indicated in the next section.

5.3.3 Endless and Unbounded, but Still Limited

There are differences between the various kinds of limits—ends, edges, borders, boundaries, extremities,
and any other specifiability conditions for ranges. If something is limited in one sense, it may not be limited
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in another sense. Something might have an end but no edge, an extremity but no border, etc. Moreover,
there is a difference between being without a limit in any given respect (such as being endless) and being
without any limit at all.

As pointed out in § 1.1.2, just because something has no limit in the sense of being “endless” does
not mean it has no limit per se. For example, something can be without end or boundary and yet still be
limited in terms of size. All bounded things may be limited, but not all unbounded things are without limit.

Though that might sound paradoxical at first, a simple example should clear it up: once again, consider
a circle. Though a circle has no end or boundary to its curve, the circle’s circumference is still limited in
extent, and so the circle is still limited in size. The circle’s diameter has a range, and the points at which
that range intersects with the circle, as a perimeter to its interior disk, indicates the limit of the circle’s
size. The circle is thus “unbounded” or has “no end” (along its curve) and yet it is also limited (in terms of
its diameter or in terms of tracing the extent of its circumference). And this simple example shows that
just because something has no limits of one kind does not make it “limitless” per se.

5.3.4 Defining the Finite by Enumeration

If something can be without a limit of a particular type and yet still be finite, then what is it to be finite?
While something finite can lack a limit of a particular type, to be finite is still to have a limit of some kind—
it is still to have a “specifiability condition for a range,” just as explicated above. If we can in some way
specify the range of elements for a collection, we have a finite collection.

And we can specify the range of elements in a collection if the elements in the collection can be
completely enumerated. A collection can be completely enumerated, at least in principle, if the
enumeration would account for all the elements in the collection at a given time without elements
remaining.

So in addition to the five definitions of ‘finite’ in Chapter 1, here is another complementary definition
for the predicate ‘finite’, a definition that captures limit—a specifiability condition for a range—in terms
of enumeration:

= finite: (6) completely enumerable (at least, in principle) to a determinate amount.

We can consider that to be a more technical version of the third definition of finite, which is “having a
limited quantity.”

Some mathematicians object that certain infinite collections are also enumerable (enumerability was
explicated in § 2.3.5, § 2.5.1, § 3.13.3, and § 4.1.1). However, they are not using the term ‘enumerable’
in quite the same sense that | have thus far defined it. Instead, they are using the term ‘enumerable’ in a
technical sense of the term (see § 13.10).

In reply, that’s partly where the caveat “to a determinate amount” comes in for the above definition
of ‘finite’. A literally infinite collection may very well be in a technical sense ‘enumerable’, but the kind of
technical ‘enumerability’ characterizing a literally infinite collection does not provide a determinate
(quantitatively or mathematically specifiable) amount for the collection due to the collection’s
guantitative limitlessness (see § 5.4.2) [135]. In contrast, that which is finite is, in its own technical sense,
that which is able—in principle if not also in practice—to be enumerated to a determinate amount.

Assuming a determinate amount must be specifiable for a given collection C is to be finite, if we
cannot in principle completely enumerate C in this way, then C is not finite. | will therefore maintain that
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Cisfinite if and only if Cis able to be completely enumerated, at least in principle. (The following sections
provide further qualifications to finitude as a condition of complete enumerability.)

5.3.5 Mathematical Definitions for the Finite

The five lexical and precising definitions for the term ‘finite’, and even the sixth—the above technical
definition for ‘finite’—are broader than various definitions used in mathematics. Mathematicians
sometimes define the term “finite’ by particular procedures they can actually carry out to demonstrate
the limit of a collection (especially sets, sequences, and series). Such definitions are consistent within the
scope of particular mathematical disciplines, but they cannot capture what it means to be finite in a
general sense as they are each far too narrow.

For instance, the finitude of a collection can be demonstrated with mathematical procedures for
enumeration such as tallying, counting, calculation, and computation. Suppose while enumerating a
collection of non-zero elements we run out of objects to enumerate; we would have reached the limit of
the collection and so have shown that the collection to be finite.

It is a straightforward matter to demonstrate a collection is finite when the collection is small; just
enumerate the members of the collection by tally, calculation, or computation. But what of collections
too large to use such enumeration techniques? This is where enumeration becomes more a matter of
theory than practice; set theorists propose the technique of correspondence for collections too large to
count or compute in actual practice. A collection can, at least in principle, be shown as finite if it can be
enumerated via correspondence with a segment of the sequence of natural numbers.

Suppose the elements of one set can be bijected with a subset of natural numbers (or we could say
that the elements can be ‘injected’ with the set of all the natural numbers). And suppose we make S a
finite set of boxes. In that case, Scan be bijected with a subset of N©, but only injected with N© as a scale
that includes more numbers than the boxes:

1 2 3
| | |
This situation jibes with the concept of finitude as presented in transfinite set theory (see § 13.1).
Mathematicians and set theorists working with the transfinite system sometimes define ‘finite’ in a
technical sense as having a number of elements (for example, objects) capable of being put into a one-to-
one correspondence with a segment of the set of natural numbers, N, through a process of
correspondence [136].

Insofar as there are more defined numbers that we can use to enumerate the members of some
collection smaller or equal in size, the definition of ‘finite’ in the transfinite system holds up. But does that
definition necessarily hold as a matter of logic? Not necessarily.

There is no logical contradiction in supposing there can be more objects than defined numbers. If |
am correct that number is a property of numerals and numerals are inventions made for establishing
comparisons, then the scale of natural numbers only extends as far as anyone has ever depicted the
largest finite number at any given time. If that is so for number scales in general, then every scale of

numbers is an incomplete series with a running total of numbers, and that running total is finite because
every number scale has only a finite number of numbers defined at any given time. And if that is so, then

NC: 4 5

S:
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the question naturally arises: what if it is not the case that any finite collection must have fewer members
than the scale of natural numbers? Suppose instead there is a finite number of numbers compared with
a collection that has more elements than there are defined numbers. In that situation, it would not be
true that any finite collection necessarily can be corresponded to a defined segment (subset) of natural
numbers and only injected with the numbers of the whole number scale.

Suppose, then, that there is a collection with more objects than there are defined natural numbers to
match [137]. In order to enumerate the additional objects under such conditions, the scale of natural
numbers must be extended by defining new natural numbers—numbers not previously well-defined or
calculable by known mathematical methods for precisely expressing such large finite numbers. Until then,
we cannot say there is a one-to-one correspondence of natural numbers and objects in the observed
collection—at most, we can only say there is potentially a bijection of natural numbers to objects, once
new numbers are invented to match to the remaining objects.

Until we invent the new, higher numbers, there would be a collection greater in magnitude than any
known scale of natural numbers, and therefore greater than any correspondence one could perform with
the natural numbers. And yet, though the collection would have more members than any defined finite
number in the scale of natural numbers, the collection we wish to enumerate need not be literally infinite
after all. It could still be finite because it has the potential to be enumerated via a bijection with natural
numbers. That is, the collection would be finite as long as the natural number scale can be extended, at
least in principle, to capture the size of the collection.

This still holds true even if the collection being enumerated grows faster than the scale for
enumerating the members of the collection. Such a collection would still be a finite series because there
is a last member at each stage of growth to count even if that member is succeeded by yet new members
generated and that need to be counted.

So, while the definition for ‘finite’ in the transfinite system is technically correct—while a collection is
finite if it can be bijected with a segment of natural numbers—it is nevertheless misleading because it just
assumes that the scale of natural numbers must already be as large as, or even larger than, the collection
to be matched with a set of natural numbers. That is not necessarily a safe assumption if numbers are
inventions.

Instead, a collection may be considered finite if either its members inject with a segment of natural
numbers or if the sequence of natural numbers can, at least in principle, be defined so that all the numbers
in the numerical sequence biject with the elements of the collection in question. Looking at finitude this
way leaves open the possibility that we may need to invent new, larger numbers in order to make a
complete bijection of natural numbers to elements in the collection we wish to measure. As long as by
extending the scale of numbers we can enumerate all the elements of the collection, the collection is
finite.

The moral is that we should not confine our definition of the term ‘finite’ or our conception of finitude
to the technique of correspondence or the ability to establish a bijection between a collection and a
sequence of numbers. Instead, we should define finitude only according to enumeration in a more general
sense. That which is finite is that which can, at least in principle, be completely enumerated, whether by
tallying, counting, computing, calculating, or corresponding with a scale of numbers.

5.3.6 The Finite—Complete and Incomplete

To be finite is to be completely enumerable to a determinate amount. But as with the example of the fast-
growing collection, suppose the collection we wish to enumerate is not itself complete. Suppose it is a
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collection of replicating viruses, for instance—it grows as we quantify the collection. And suppose for any
measurement we make, there will be further growth of the collection. Such a collection is not complete
because it is not finished; it is an unfinished set or open series with a running total of members. As such,
the collection being enumerated is not “completely enumerable” in the sense of having a definite, final,
‘standing total’ (i.e., a particular and stable total that remains constant) for all its members.

Having a standing total is not what being “completely enumerable to a specified amount” requires.
To be completely enumerable is not necessarily to be enumerable with a standing total. Rather, to be
completely enumerable means able to have an enumeration completely account for the elements in the
collection when enumeration takes place.

Incomplete collections may still be regarded as finite if the collection’s totality of elements can, at
least in principle, be completely enumerated for a given moment in time. If the process of enumeration
finishes measuring the whole, entire set of elements and the enumeration concludes with a defined total
for the collection, then the collection is “completely enumerated” just as it is at the time enumeration
concludes.

It is the enumeration of the collection that needs to be complete, not the collection so enumerated.
Even if the collection continues to grow with a running total, we can consider enumeration “complete”
for that instance of enumeration as long as the enumeration of members captures that running total. So,
the collection being enumerated does not itself have to be complete in order for the collection to be
completely enumerated.

Let’s apply this distinction to another example. Imagine a cylindrical tower built of bricks. The base is
circular, the height is linear. Once the top of the tower is capped by a rooftop (without construction of a
taller extension such as a steeple or antenna and without inserting further layers of brick beneath the
rooftop), we’ll call the tower complete—it cannot be made any taller. Because the tower is capped, it has
an end (and so a limit) to its height; it is finite. But suppose the tower has no roof and instead has merely
an unfinished sequence of brickwork at the top. If construction has ceased, the tower stands as an
incomplete set of bricks, but it is finite nonetheless since all the bricks can be enumerated. The set of
bricks comprising the incomplete tower can be completely enumerated.

Now let’s consider the tower as a series rather than as just a set. Removing all physical constraints,
suppose that construction has not stopped and will never stop. For as long as there is time the tower will
always be made ever taller. In that case, because it is continuously under construction, being made ever
taller, the tower simply as such always remains incomplete—it is never finished. It is an ongoing process;
a series of bricks being laid “without end.” But even though the top of the tower is a sequence of brickwork
that continually grows higher, the tower always remains finite because it always has a limited number of
bricks from its base to its top at any time. No matter how many bricks are added to make the top higher,
no matter how high the tower becomes, there is always a countable number of bricks to the top. The
tower is ever incomplete but is always finite with a running total of bricks making it up. At any given time,
a complete enumeration of the bricks would capture that running total, even though, as a running total,
it will later be superseded.

But what about the number scales (for example, NC or WC)—aren’t they incomplete due to being
open series with new numbers always being invented for them? And if that is so, how can anything with
more numbers than those already invented be “completely enumerated” and so be finite?

Yes, the sequence of numbers in a scale of numbers such as NC is an incomplete, open series.
However, the numerical scales do not themselves need to be complete in order to be able to be useful for
completely enumerating collections that are, at any given time, larger than the number scales themselves.
That’s precisely because the scales do have the potential to be extended with new numbers.
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At one time, the largest number was no more than 10, but certainly larger collections could be
counted when numbers became available for them to be counted. Likewise, consider the number scales
used by our ancestors around 3,500 years ago, when there were no numbers invented as large as 1080—
the number of particles in the observable portion of the Universe. The set of particles comprising the
observable portion of the Universe was, even then, in principle completely enumerable, despite that no
invented scale of numbers went that high. The particles were completely enumerable because the scale
of natural numbers always had the potential to be extended as far as our ancestors needed it to be in
order for someone to put a definite number (108°) on the set of particles. Given an extended scale of
natural numbers, the of particles comprising the observable Universe could be completely enumerated
with a definite quantity; consequently, the set of particles comprising the observable portion of the
Universe must have been as finite for them as it is for us today. | am of course ignoring that the
enumeration is hypothetical rather than experimental—the important point is what would be found if the
enumeration by, say, counting all the particles could actually be carried out, and what would be found is
the determinate amount of particles once the scale of numbers is extended to cover all the particles in
the collection.

Any collection that, in principle, can be completely enumerated at a given time to a determinate,
definite amount, is finite. And it can in principle be so enumerated if the scale of numbers is, also in
principle, able to be extended that far. So, a number scale need not itself be complete in order for it to be
used to completely enumerate a collection that has a limit. Either the limited collection is smaller than
the set of defined numbers, or the set of defined numbers can be extended to match the collection’s
limits.

Then too, the collection so enumerated need not itself be complete in order to be completely
enumerated and thus shown to be finite. Many collections are incomplete, some because they are not
finished being constructed or formed, and yet what members they do have can be completely
enumerated as the collection exists at the time of enumeration; ergo, incomplete collections, whatever
their size, are finite collections.

5.3.7 The Finite Can Be Endless or Unbounded

Sometimes finitude is assumed to mean having an end or bound. But as previously pointed out (§ 1.1.2),
acircle is finite and yet it has no end or bound to its curve. A circle is finite due to its measure. Therein lies
finitude; the only “end” or “bound” there needs to be for something to be finite is the end or bound to
the enumeration or measurement process of the elements in the given collection.

It’s also sometimes thought that the scales of numbers like N must not be finite because they “have
no end” or “no bound” to the numbers they may contain. However, as noted in § 4.2.14, this too is
misleading. Number systems are “endless” or “boundless” not as sets but as processes. They are as
constructed number scales still finite at any given time as we continue to invent new numbers for them,
a process that is never finalized even unto the future extinction of the human species.

A number scale is like the increasing brickwork in the perpetually heightening tower. Since there is no
“roof” to the scale of natural numbers, for example—no highest number beyond which we cannot
continue to extrapolate—the scale of natural numbers is never complete. Instead, the scale of natural
numbers is like that never-finished tower. There is always one more brick that could be laid, always one
more number that could be calculated, but never a last one. Just as with the growing tower that is always
incomplete, so too the natural number scale can be continually extended but will always be incomplete.
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And because both the fictional tower and natural number scale are inherently incomplete, they both are
“endless” or “boundless” as processes under construction.

Moreover, although the growing tower and the natural number scale are both “endless” as processes
with a series of steps, the tower and the scale are always finite at any time—they each have an end in the
sense of having a highest element at the time of measurement. There are a limited number of steps to
the highest brick in the tower, and there are a limited number of values to the highest number in the scale
of natural numbers at any given moment. Whatever the distance the highest brick is to the base of the
tower, or the highest number in the scale of natural numbers is to the number 1, there are a finite number
of steps to the top at any time. No matter how long we go on building the tower or inventing new
numerical values, the steps are always countable and there is a highest definite number. Both are
processes containing a series of steps “without end,” but both are also limited as sets of elements since
they would be bounded by their highest element at any given time; so, both are finite. As a perpetually
constructing tower remains always unfinished but nevertheless finite, so the scale of natural numbers
remains always incomplete but finite.

Put another way, the natural number scale could be construed as terminating or ending wherever the
sequence of natural numbers currently leaves off —it would be finite in that regard since there is always
a highest number in the set that has been or that can be calculated for it at a given moment of
measurement. But the scale would also be “endless” as a series because its limit can always be extended
as long as there is time to do so and no final values have been or will be calculated. Thus, having a limit
that is “endlessly” extensible in this way merely means that the natural number scale is inherently and
always incomplete, not that it is ‘infinite’ in a literal sense.

If this analysis is correct, then once again, contrary to the definition used by some mathematicians,
the term “finite’ should not be defined as merely the ability to be put into a one-to-one correspondence
with just a segment of natural numbers. No, finitude would also be a property of the scale of natural
numbers taken either as a set at a given time in its construction (though, mathematicians usually don’t
consider the condition of time in relation to scales of numbers) or as an incomplete series (as categorized
in Figure 5.1) that is able to be completely enumerated to a specified amount at a given time in its
construction.

THE NATURAL NUMBER SCALE

If Finite... If Non-finite...
| |
Limited Not Limited
| |
As a Set As a Series

Figure 5.1: The natural number scale, interpreted as either finite or non-finite.
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This is not to say, of course, that segments of the natural number scale are not finite—far from it; any
sequence of defined numbers is finite. It is merely to say that the term ‘finite’ should not be defined in
too narrow of a sense as corresponding only to segments or sequences of natural numbers.

Rather, ‘finite’ also describes the scale of natural numbers as a series under construction if we take
the scale as being enumerable to a highest number for the instance of time in which it is enumerated.
While the number scale is an incomplete structure under construction, its numerals could in principle be
listed to a finish for that given time in its construction. At time T, the numbers would range ato p, at T,
the numbers would range a to g, at Ts they would range a to r, and so forth. Hence, at any given time a
number scale as a series is completely enumerable to a specifiable, determinate amount—the amount of
its running total of numbers. So, even number scales can be finite, limited, as series under construction.

5.3.8 'Finite’ as Predicate and Quantifier

Collections that have a limit, in the sense of a specifiability condition for a range, are those that can be
completely enumerated. If we can specify the range of members for a collection via enumeration of the
members in the collection to a determinate amount, then we have a finite collection. Basically, if you can
enumerate the members of a collection completely, it’s finite.

And to say of a collection that it is finite in this respect is to use the word ‘finite’ as a predicate.
Anytime we say there is a finite amount of something or that there is only finitely many of something or
simply that something is finite, we are using ‘finite’ as a predicate.

I suggest ‘finite’ is a particular kind of predicate: it is a quantifier of sorts. While there are membership
quantifiers and magnitude quantifiers, we may wish to widen the category ‘quantifier’ to include other
predicates indicating unspecified quantity. If so, we can consider a word like ‘finite’ to be a quantifier in
the respect that it is a word indicating quantity as a property, but without directly specifying a particular
quantity in the form of a number or mathematical formula.

While a sentence such as, “The number five is finite,” specifies a number (5), the predicate ‘finite’ in
the sentence is not indicating that something has that number; rather, it is ascribing a quantitative
property to the specified number. To say of the number that it is finite does not speak to its mathematical
value; rather, it tells us whatever is of that quantity is limited in the sense of being completely
enumerable—we can bring a count of whatever is of that number to an end, with no members left to
count. In that regard, the word ‘finite’ is a kind of quantifier—a predicate that indicates a quantity has a
given property; in this case, the property of being limited.

The importance of identifying ‘finite’ as a predicate, and more narrowly as a quantifier, is that it tells
us what infinity is. As ‘finite’ is a predicate, so is its negation—‘infinite’ is a predicate. And as ‘finite’ is a
guantifier of sorts, so too is ‘infinite’.

5.4 PREDICATING AS INFINITE

There is no number called ‘infinity’, at least not in the usual sense of ‘number’. It would be more accurate
to say infinity is a conjectured state or condition—a kind of property—that some collections are typically
claimed to have with respect to the quantity of members in them. Including collections of numbers and
even particular sorts of numbers (see § 5.4.7).

As infinity indicates a state or condition, to say there is “an infinity” of something is to imply the thing
referred to is a collection the quantity of which is infinite, where the adjective ‘infinite’ functions as the



182 Forever Finite Kip K. Sewell

predicate form of the noun ‘infinity’ for ascribing infinity as a quantitative property to the collection
described.

Even in mathematics, ‘infinite’ is a predicate. It does not tell us a quantity. It tells us something about
a quantity. To speak of “an infinite amount” is to make a statement about what kind of properties the
amount has rather than specifying an exact total.

5.4.1 Infinity as a Quantifier

To use the adjective ‘infinite’ is to use a predicate denoting a collection the members of which are so many
that the collection has ‘infinity’ as a property. Similarly, the adverb ‘infinitely’ is sometimes used to
describe sequences, series, or sets as having the property of infinity with regard to the quantity of their
members.

For instance, it is often claimed that the number of stars in the Universe is infinite, or that there are
infinitely many stars in the Universe, where the words ‘infinite’ or ‘infinitely’ are quantifiers—predicates
indicating quantity. With regard to the stars, to say they are infinite is to express something about the
magnitude of the quantity of stars; namely, that their quantity is of a limitless magnitude. Similarly, it is
sometimes claimed that the number of future days is infinite, or that the future is infinitely long—‘infinite’
and ‘infinitely’ are again quantifiers expressing something about the quantity of events in the sequence
of events to come—that such a quantity is without limit. Hence use of ‘infinite’, or ‘infinitely’ in
expressions like “infinitely many,” is also just an instance of using a variant form of the word ‘infinity’ as a
quantifier.

Infinity—whether in the form of the adjective ‘infinite’ or the adverb ‘infinitely’—is therefore a kind
of predicate for quantities and not really a number as such. The use of the adjective ‘infinite’ in expressions
like “an infinite amount” and use of the adverb ‘infinitely’ in expressions like “infinitely many” are
instances in which word variations for infinity work like other predicate terms, such as ‘large’ or ‘great’ or
‘vast’ in describing the quantity of a collection’s members. And as with predicates such as ‘large’ or ‘great’
or ‘vast’, the adjective ‘infinite’ and adverb ‘infinitely’ do not designate a specific number, amount, or
guantity as such, but rather a property that some collections are claimed to have with respect to their
guantity of members.

To describe something with the adjective ‘infinite’ or to say it goes on ‘infinitely’ is to use ‘infinity’ as
a predicate for saying something about our ability to count the elements, members, or parts of that thing.
Such words describe the size or magnitude of a collection’s quantity as greater than either an in-practice
countable amount or even an in-principle countable amount. Once again this indicates that the terms
‘infinite’ and ‘infinitely’ work in a given expression as predicates for describing something about the
guantity of a collection; so we can say infinity functions as a quantifier.

However, whereas a quantifier like “many” or “a lot” may in principle be specified with an exact,
numeric quantity, infinity is a quantifier for a quantity that cannot be specified, not even in principle—
infinity is a quantifier for an unspecifiable quantity.

When the amount of members in a collection is so large that the members become limitless in
guantity, though still forming a complete set, then we have a literally infinite collection—a collection with
infinitely many, or an infinity, of members.

But that is only the literal sense of infinity. There is also a figurative sense of infinity.

When the amount of events or steps in an indefinitely changing process is so large that the events or
steps become seemingly limitless in quantity but are actually still finite, then we have a figuratively infinite
series—a series said to have “infinitely many,” or “an infinity” of, events or steps but in which the events
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or steps are really not limitless; they are actually limited but certainly greater than any scale we may
construct in actual practice. But they seem truly limitless as if no quantity can be specified at all for them
and so they are ‘infinite’ in a figurative sense.

Notice that the definitions for both literal infinity and figurative infinity (8 1.3.1) contain words like
‘limitless’, ‘complete’, ‘continuous’, etc., which are also predicates. The very definitions of literal infinity
as “the condition of being both complete and limitless in quantity” and figurative infinity as “the condition
of indefinitely changing in quantity” contain their own predicates used to describe a quantity of members
in a collection. Infinity is a predicate implying more predicates, and never stating an exact number.
Further, the predicates of these definitions are like the word ‘infinity’ itself, negative—they are denials of
something. After all, to be limitless is to be not limited and to be indefinite is to be not definite—both
denials just as infinity is to be not finite. To understand infinity as such thus requires an understanding of
the use of these predicates as well, along with an understanding of them as negations of their opposites.

5.4.2 Infinity as Limitlessness of Quantity

As noted in Chapter 1, infinity is most broadly defined as the condition of having no limit to measurement
or quantity, either literally or just figuratively. For mathematicians, a condition of lacking a limit, a
condition of ‘limitlessness,” often means something more technical.

Terms like ‘limitless’ or ‘unlimited’ or ‘without limit’ are used according to various theoretical and
operational senses, each of which is useful for certain mathematical procedures. However, we will
primarily be concerned with examining the general meaning of limitlessness as a term used for defining
infinity. We will again start with a lexical definition that captures how limitlessness is conceived
independently of how one might use it in a particular mathematical procedure.

To put it simply:

= limitlessness: the condition of being limitless.
= limitless: to be without limits or without a given type or instance of a limit.

To be (literally) limitless or “without limit” is to have no specifiability condition for a range—no end, no
brink, no edge, no border, no boundary, no extreme, no total, etc. If a more precise definition is needed,
we can draw upon what | will refer to as literal limitlessness and the literal sense of the word ‘limitless’:

= limitlessness: the condition in which a collection’s range is unspecifiable, even in principle.
= limitless: to have a range that is unspecifiable, even in principle.

The word ‘unspecifiable’ simply means unable to be specified. If a collection is limitless, then its range
(its measure of extent) of elements cannot be specified (described, identified, or referenced with
distinctness). Having an unspecifiable range of elements means the collection that is limitless is a
collection without measure, even in principle.

But wait—the definition for limitlessness sounds like the description of infinity when portrayed as a
quantifier for an unspecifiable quantity, which also implies immeasurability, even in principle. So is
limitlessness synonymous with infinity?

Not quite. While collections called “limitless” may instead be called “infinite” or vice versa, infinity is
not identical to limitlessness. Quantitative infinity comes in two varieties: literal infinity and figurative
infinity. Literal infinity has the property of completeness as well as limitlessness, making limitlessness only
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part of literal infinity, even if it is the key part. Then too, figurative infinity is a condition ascribed only to
successions—temporal series or processes—rather than to any collection that may be predicated as
limitless, and figuratively infinite successions are those that are only figuratively “limitless” at any given
time. Hence, limitlessness and infinity are not synonymous, though they are often used interchangeably
in colloquial speech.

5.4.3 Alternative Terms for 'Limitless’

Most mathematical texts do not use terms like limitless, unlimited, without limit, and having no limit, etc.
Instead, they refer to the conditions by which a collection has a limit or does not have a limit. But even
when a collection does not have a limit in a particular sense, they usually do not use the term ‘limitless’
outright. Instead, and as if to confuse the lay audience (though that is not their intention), they use the
term ‘limit’ in a specialized sense.

For example, in the transfinite system an infinite set of numbers is, despite being limitless in the literal
sense, nevertheless said to have a kind of ‘limit’. Specifically, infinite sets of numbers are said to have a
limit ordinal or a limit cardinal. The idea is that no matter what finite number you select, no matter how
far up the scale of numbers and no matter how great a size it denotes, it will always be prior to a limit
ordinal and smaller than a limit cardinal [138]. A ‘limit ordinal’ and a ‘limit cardinal’ are each rather like
an ideal limit toward which a process approaches but never meets, no longer how long it continues.

Still, we are also told number systems are complete sequences of numbers and they also have no last
number or no greatest number to them, which implies they are limitless in the literal sense of the term.
In which case, saying a number system such as N has a ‘limit ordinal’ or a ‘limit cardinal’ becomes logically
confounding even if it is mathematically straightforward. After all, if there is no last or greatest to them,
then they are limitless. And if they are limitless, then how can an ordinal or cardinal come after them?

This shows that mathematical definitions and logical implications do not always cohere. Perhaps one
way around that problem would in this case be to suggest that number systems are not sets but
incomplete scales under construction—e.g., not N, but NC. If that is so, then there is no problem with the
naturals, integers, or reals having some ideal limit—a limit ordinal or limit cardinal —toward which their
values “approach” as we continue to construct the number scales. For, the ideal limits to which values
approach would be merely finite numbers too large or too far along the given sequence to represent, and
so they really would be limits, nonetheless.

There is much to recommend such a view, for mathematical operations are not carried out without
limit anyway. It is only in theory that they continue indefinitely rather than in fact continue without limit
at all. See § 14.1.2 for examples of cases in which “limitless” operations are more accurately regarded as
indefinitely continuous operations (and even then, only in theory).

However, interpreting number systems to be inherently incomplete number scales that are under
construction would make them necessarily finite and so, at best, only figuratively infinite rather than
literally infinite. Mathematicians holding to the contrary that number systems are literally infinite must
interpret them as being both complete sets (e.g., N, Z, Q, P, A, T, R, I, C, etc.) and collections that are
limitless in their sequences of values (“no last number”) while somehow extending toward further values
that are indeed limits, such as ‘limit ordinals’ and ‘limit cardinals’, and yet without ever “reaching” them.
We'll return to this dubious position again in § 13.5.4-5 and § 13.11. Until then, | only note that such is
fine for mathematics, but whether it makes logical sense remains is questionable (see Chapter 14).

In the meantime, I'll stick to the use of the terms ‘limitless’ and ‘limitlessness’ as I’ve defined them for
continuing this exposition of infinity. Unless otherwise specified, those interested in the math of infinity
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can interpret my use of these terms as consistent with the claim that number systems have no last or
greatest number to them at all—an example of having a range that is unspecifiable, even in principle.

5.4.4 Distinguishing Limitlessness from That Which is "Without Limit"—Consider Zero

Because limitlessness is defined in opposition to having a limit, and it was pointed out in § 5.3.2 that zero
(referring to a condition of being without quantity) has no limit of its own, then we are in the rather
strange position of logically implying the adjective ‘limitless’ also applies to zero. As already pointed out,
we can’t specify a range for that which is designated as zero in quantity—not even in principle, because
that which numbers zero has no range to be specified. Zero refers to a set of no size (see § 2.3.8) and
therefore a set that has no end, brink, edge, boundary, extreme, or total of its own. So, according to our
definition of the term ‘limitless’, that which is zero must be limitless. And yet, we can symbolize zero as 0
or as the empty set { } and we can use zero as a constant number such as a value for a variable. We can
even say that zero is a total for some calculation. Isn’t it inconsistent, then, to say that zero is limitless and
yet say it is a total or a value for a variable?

The question rests on confusion of a variable’s value (such as x = 3) with the representation of a
constant number (such as 3) that is itself equal to a series of values (like 1+1+1). Zero can be used as the
constant numerical value for a variable (such as x = 0) without also being a set equal to a series of values.
If you prefer, zero can be the value of a variable because zero is a limit to non-zero numbers; however,
zero does not have a value in the sense of representing a set with a range of elements in it. While we
cannot specify a range for zero because zero has no limits to specify, zero can nevertheless be a limit of
other numbers, such as the lower limit of whole numbers. And this again merely means that according to
the definition of ‘limit’ we are using, zero can be specified as the value for something else even if we
cannot specify a range within zero, as if it corresponded to a set within which elements could be found.

Therefore, zero can be a total without having a total; zero can be a limit without having a limit. There
is then, no inconsistency with saying that zero is a limit and yet is “limitless” in the sense of having no limit
of its own. It is probably better, though, to say zero is “without limit” rather than call it “limitless.” A good
way to distinguish being limitless from being without limit is this:

= being limitless: to have a range that is unspecifiable.
= being without limit: to have no specifiable range.

5.4.5 Distinguishing Infinity from Afinity

There are different ways of being literally “without limit.” There are actually two different ways something
can be without limit: infinity and afinity.

Afinity (pronounced “ey-fin-i-tee,” and not to be confused with the word ‘affinity’) is a term | am
coining. Definition:

= afinity: The condition of lacking limits due to lack of quantity or due to emptiness.

Along with the word ‘afinity’ we can use related terms, such as ‘the afinite’ (a substantive noun, which is
pronounced “ey-fin-it”). The afinite will function as either a synonym for afinity, a reference to the concept
of afinity, or a reference to the category of all that is afinite (adjective) of which there is only one example:
the empty set (@).
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| propose afinity as a condition to describe the lack of limits to a state of absolute emptiness, without
regard to boundaries or borders of any kind. Although any set in set theory is really a set of brackets, { },
what those empty brackets are sometimes thought of as representing is emptiness as such. Absolute
emptiness, as represented by the empty set, is also associated with the number zero in general
mathematics [139]. In § 5.3.2 and § 5.4.4, we saw that zero can be a limit but does not have a limit of its
own—it denotes a condition of being without content to be limited. So, zero represents, quite literally, a
condition of being limitless (that is, without limit), even though zero functions as a limit to some finite
qguantity or magnitude. Both the empty set and zero, by virtue of the content-free state they represent,
may be thought of as representing afinity—they each denote no limits by the very virtue of the emptiness
they represent.

However, also as noted in § 5.4.4, neither the empty set nor zero are typically described as ‘limitless’.
We tend to use the word ‘limitless’ either in a literal sense to describe something assumed to have the
property of literal infinity or in a metaphorical sense to describe a process or series assumed to have the
property of figurative infinity or indefiniteness of process. We do not typically use ‘limitless’ to describe
the nature of zero or the empty set, even though the emptiness of the empty set (as an abstraction)
constitutes an instance of lacking limits. Think of it this way: if you have a condition in which there is no
such thing as ‘before’, ‘after’, or ‘next to’, then how is that different from not having a limit? For that
reason, the lack of limit to that which is merely a condition of emptiness should be termed ‘afinite’ to set
it apart both from literal infinity (which is limitlessness in the sense of a complete, non-zero quantity
beyond any limit) and from figurative infinity which is simply indefiniteness of series or processes.

Although both literal infinity and afinity are conditions of lacking a limit, literal infinity should not be
confused with afinity. Literal infinity is not the afinite because to be afinite is to be empty whereas literal
infinity is the condition in which a collection has non-zero elements and so is non-empty. Figurative infinity
should also not be confused with the afinite—that which has an indefinitely changing limit is not that
which is afinite. The afinite is thus without limit, but not like infinity is.

For that reason, it would be a good idea to keep with custom and not use the terms ‘limitless’ or
‘unlimited’ for the empty set or zero because such language would cause the empty set or zero to be
confused with traditional notions of infinity (and even indefiniteness when we use “limitless” in a
figurative sense). Instead, in response to questions as to the limits of zero or the empty set, we should
point out that zero or the empty set is “without limit” and indicate such by use of the term ‘afinite’, which
is another way of being non-finite (as depicted in Figure 5.2) rather than finite.

However, referring to zero as ‘afinite’ raises one curious issue: mathematicians often refer to zero as
“finite,” even though zero is in itself afinite because zero serves as a limit to finite quantities and
magnitudes. Zero is a finite number in the respect that it is a bound to other finite numbers.
Mathematicians also refer to the empty set as “finite” in the sense of being the foundational set and
lowest bound upon which all other finite sets are built in set theory, even though the empty set s, in terms
of its content, ‘afinite’ [140]. Nevertheless, zero, or the empty set, represents the afinite in content even
though it functions as a limit for other quantities and magnitudes.

You could therefore say that zero is both a non-finite number in one sense (cardinality) and a finite,
definite number in another (ordinality). Zero is non-finite in that it represents a set afinite in content—
the empty set. However, zero is finite in that it serves as a bound for the scales of positive and negative
numbers. In that respect, we can continue to regard zero as a part of general (finite) mathematics.
Likewise, the empty set is non-finite in that it is afinite in content but finite as a bound to sets in set theory.
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Figure 5.2: The non-finite categorized as either infinite or afinite with respect to subsets. A quantitatively infinite set may contain
the empty set but need not; either way, a set that is quantitatively infinite is a set the limitlessness of which is expressed over non-
empty subsets. In contrast, an afinite set is that which is “limitless” (more aptly said, without limit) by virtue of emptiness—the only
afinite set is the empty set. It’s not clear the empty set can have subsets at all, even empty ones, without the subsets themselves
being quantities and thereby making the empty set not empty, resulting in contradiction. But if the empty set does have subsets,
each empty subset must also be empty and so “without limit” or afinite by virtue of containing either no elements that are not empty
sets or simply nothing at all.

5.4.6 Limitlessness in Quantity

As with zero, the lack of a limit to infinity is about quantity. While zero is without limit by virtue of its
‘emptiness’ of quantity, infinity is the condition of being limitless or unlimited in the sense of a non-zero
range of elements that, nevertheless, cannot be specified. Limitlessness in the non-zero sense is a
condition we often hear claimed of the Universe: limitless space, limitless time, limitless matter, and
limitless energy (see Chapter 21 for further discussion of this topic). Such claims actually go back for
millennia. The ancient Greek philosopher Epicurus (342-270 BCE) stated that “the totality of things” is
“unlimited” both in the quantity of its atomic bodies and in its spatial magnitude [141]. Similarly,
mathematicians sometimes refer to non-zero quantities of numbers that are ‘limitless’, such as number
systems or decimal places in pi. But if we grant that something can both have no limit in quantity and be
non-zero, then what exactly does it mean to have a limitless, but non-zero, quantity?

5.4.7 Infinity as a Quantifier and as a ‘Number’

As pointed out previously, infinity is a condition or property, and it is predicated of things like collections
when we use the term as the adjective ‘infinite’. Though the word ‘infinity’ is a noun and not an adjective,
| will still refer to infinity as a predicate in the sense that it is applied as a predicate in its adjectival form
to certain collections. With regard to what kind of predicate infinity is, infinity is a quantifier for an
unspecifiable quantity.

But is an unspecifiable quantity itself a number? If so, then infinity is not just a term used as a
predicate to denote a property that some collections have; infinity also becomes the value for a kind of
number and can even be treated as if it is a number itself. This is partly right and partly wrong. Yes, infinity
refers to an unspecifiable quantity, but no—it is not itself a number. It can, however, be treated as if it is
a number in mathematics since some numbers are said to be infinite.

Certainly, use of the term ‘infinite number’ is widespread, even among mathematicians and other
academics in math-heavy disciplines like physics. Both have historically and recently referred to “an
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infinite number” of things, including an infinite number of numbers or an infinite number of mathematical
objects.

As a historical example, the Italian polymath Galileo Galilei (1564-1642) wrote in his 1638 book,
Dialogues Concerning Two New Sciences, that each mathematical line contains “an infinite number” of
points [142].

For some contemporary examples, consider the following (italics mine for emphasis):

= A 2015 primer for math students provided by the Mathematics Department of the University of
New Mexico states, “To write any irrational number in decimal notation would require an infinite
number of decimal digits. .6, for instance, is not an irrational number. Even though it has an infinite
number of numbers after the decimal place, it can be expressed as the ratio of two integers.

Namely, 2 and 3, as g =.6" [143].

= A 2015 paper on the science publication website arXiv claims that “methods borrowed from
physics can be used to ‘count’ an infinite number of points” [144].

= A2017 paper by Japanese physicist Kazuhiko Minami solves for an “infinite number of spin chains”
[145].

Such examples show reference to an ‘infinite number’ is alive and well. Mathematicians and other
academics frequently refer to an infinite number of things, whether those things are physical things such
as an infinite number of atoms, stars, galaxies, universes, etc., or purely conceptual things like numbers
or ideas [146] [147] [148].

But there are two ways to take such speech—literally or figuratively. On the one hand, to say a number
is an “infinite number” is to say the number, if written out, would have no end of digits. On the other
hand, some mathematicians hold that “infinite number” is a misnomer for “infinitely many” and does not
mean a genuine number. So, do we mean there are literally an infinite number of stars in the Universe or
decimal places in pi, or are there only figuratively an “infinite number” of stars or decimal places? If the
former is the case, then infinity is not just a predicate but a category of numbers—an ‘infinite number’
would be a number with a limitless string of digits. If the latter is the case, then when we say there is “an
infinite number” of something, all we mean is that there is infinitely many of it; infinity is a property
predicated of things and not really a category of numbers at all.

To complicate things further, the literal and figurative ways of speaking about infinite numbers can
both be applied to literal infinity. A literal infinity—a complete and limitless set—might be interpreted to
either have an infinite number of elements in the literal sense of a number having limitless digits or in the
figurative sense of a limitless string of finite numbers. However, a figurative infinity—a series that
indefinitely changes in quantity—may only have an “infinite number” of elements figuratively, and even
to say there are “infinitely many” elements in a series would be to use a figure of speech.

5.4.8 An Infinite Number as a Number that is Literally Infinite

According to the literal interpretation of infinite numbers, to say there is an infinite number of stars in the
Universe or an infinite number of decimal places in pi or an infinite number of anything else really means
that if you could write out a number that is infinitely large, then it would have a literally unlimited string
of digits where all the necessary digits are present because there are no missing subsets of digits, no gaps
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in the string of digits, any process that composes the digits for the number is finished, no more digits can
be included, and the string of digits does not loop back on itself in forming its sum. In other words, you
have a complete string of limitlessly many digits.

Alternatively, an ‘infinite number’ could mean a natural number as big as the literally infinite
collection to which the number refers. Hence, it would be a number that, if written out as a string of tally
marks (as when 10 is written out like IIlIII), would be written with a limitless string of tally marks, with
the tally marks corresponding one-for-one with the elements in the collection described. That is, if we
were to express a number this way for infinitely many stars, we would have a limitless string of tally marks,
with one tally mark per star, in which the complete tally corresponds to the complete collection of stars.
That’s not to say you couldn’t use the successor function to keep on increasing the infinite number from
there; rather it’s that the number is already limitless, as is, and the infinite collection is already complete
as a collection [149].

Infinitely large natural numbers are logically implied whenever a claim is made that a sequence or
series of natural numbers progresses “to infinity” in a literal sense. When, for example, 1, 2, 3, ... is implied
to be literally infinite, the ellipsis is implied to show the progression continues the sequence of numbers
to a complete and limitless amount of numbers. Since each successive number in the sequence 1, 2, 3, ...
is greater in cardinality than the prior number, the progression must reach a natural number, n, that is
infinitely great in size.

Such a number would have limitlessly many digits, as would be the case with, say, a 1 followed by a
limitless string of Os:

1,000, 000, 000, ...

If such a number were complete as well as limitless, then it would be an example of an infinitely large
number [150]. However, an infinitely large number need not begin with 1 or be followed by limitlessly
many 0s. An infinitely large number could also begin with any other base numeral, followed by a limitless
string of any other combination of digits. For example:

9,536,190, 023, ...

In fact, according to the logical implications of continuing the progression 1, 2, 3, ... up to infinity, where
“infinity” is literal infinity and not merely figurative infinity, there would have to be infinitely many
combinations of infinitely large numbers produced by a progression of numbers that becomes literally
infinite.

But there is no way in practice to specify which base number would be the first digit in a sequence of
limitlessly many digits (whether 1 as in a number like 1, 000, 000, 000, ... or a9 as in a number such as 9,
536,190, 023, ..., or any other base number). Moreover, we would be unable in practice to specify the
digits in each succeeding place for a “first infinite number.” So, we cannot say for sure which infinitely
large number with a limitless combination of digits would be the first infinitely large number reached from
the progression 1, 2, 3, ... up to a literal infinity. There is no way to represent such a number in digits.

Or take the idea of a ‘limitless quantity’ of objects in a collection where the quantity is a number equal
to a limitless sum of members. We might have a limitless accession (1 + 1 + 1 + ...) that is itself equal to
a sum. And yet the sum of that series, precisely because it is limitless in quantity, would be equal to a
number that has no possibility of being specified in digits. That is, the amount of elements in the collection
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would have to be represented by a constant number having a string of digits so large that its range, its
extent of elements, cannot be specified, not even in principle.
This is different from a very large number, such as a googolplex, which we can simply specify either

with shorthand (1010100) or, in principle, with longhand by writing it out (though, of course, not in actual
practice since there isn’t a big enough computer to do so). To the contrary, limitless quantity is
unspecifiable with a constant number—it is uncountable and incalculable not just in practice, but also in
principle. There is not even a logical possibility that an infinite number can be written out. We can’t use
iterated exponentials like 1019 to express an infinitely large number because an infinitely large number
would be equal to a limitless iteration of higher powers upon powers.

Variables are also not adequate symbols for representing infinity as a specified number. Variables are
used for representing coherently specifiable numbers such as reals and imaginaries up to d*. A variable
can, at least in principle, have a value specified for it by replacing the variable with a constant number. To
be literally limitless, on the other hand, is to be unspecifiable, even in principle. No variable can be replaced
with an exact number expressing a range without limit. Hence, the use of variables for representing
infinitely large numbers does not seem appropriate, and mathematical systems do not typically use a
variable, like 7, just on its own to represent an infinite number.

That is not to say infinity is never denoted by use of letters just as variables are so denoted. Far from
it. Mathematician Jailton C. Ferreira, for instance, proposes that there are indeed infinitely large natural
numbers and he uses N to represent only the set of finite natural numbers while he uses M to represent
the set of both finite and infinite natural numbers [151]. However, while mathematicians sometimes use
Latin letters as notation for the infinite, the use of such notation is unlike the use of notation for variables,
which denote specifiable numbers.

Most often, mathematicians use non-Latin letters to denote the order or size of the infinite quantities
that characterize these sets. An example of such is the small Greek letter omega (denoted as w), which
stands for infinite ordinality—that is, a literally infinite sequence of elements. Another symbol for literal
infinity is the Hebrew letter aleph (denoted as ), which stands for infinite cardinality—a set that is
literally infinite in size regardless of the order of its members. Both w and N represent literally infinite
sets, and so both symbols may represent an infinite number of elements, either in sequence or in size.

In addition to the use of Greek and Hebrew alphabetical letters to denote infinity, mathematicians
typically represent an infinite number with a specialized symbol. The most famous symbol for infinity
throughout mathematics is the lemniscate—the familiar “lazy eight” or “love knot” symbol denoted as oo,
first used in 1655 to symbolize infinity by mathematician John Wallis (1616—1703) [152]. The lemniscate
represents an infinite quantity—sometimes an infinite number of members in a sequence or series while
other times an infinite number of members in a set (a collection of members in no particular order).

The symbols for infinity (o0, w, and &) denote quantities not specified with digits. Still, it is important
to note that such symbols should not be confused with the use of variables which also denote quantities
not specified in digits. Variables indicate specifiable numbers—numbers able to be specified when they
are “solved for.” Infinity is not “solved for” like one would solve for a variable since the symbols for infinity
represent quantities that cannot be coherently specified, not even in principle, with digits.

In saying a symbol for infinity is not like a variable, | do not mean that we cannot solve for a variable
as being equal to infinity. We can specify that x is infinity such as with the expression x = co. | mean only
that symbols for infinity (for example, o) are not themselves variables.

Symbols for infinity operate differently than variables. Unlike a variable, infinity as co is not even in
principle replaceable with a specified number expressed with a string of digits. Mathematically speaking,
it may still be held that a symbol for infinity (e.g., ) would be replaced with a number having a limitless
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string of digits if the symbol could be coherently replaced with such, but since that is not so, we are simply
reliant on specialized symbols like o to represent numbers with unspecifiably long digits strings. For
instance, the expression oo 4+ co = oo can be taken as denoting that some number of an unspecifiably
large string of digits (o) plus some other number of an unspecifiably large string of digits (o) is equal to
some number with an unspecifiably large string of digits (o). Hence, co would be replaced with digits if it
could be, but it can’t, so it won’t; oo is thus not like a variable which can be, at least in principle if not in
practice, replaced with a number having a definite expression in digits.

Similarly, the other symbols for infinity (e.g., w and &) are not like variables in that they do not just
represent any value and they represent numbers unspecifiable with digits. But represent numbers they
do. The ordinal (w) and cardinal (¥X) are held to represent a literally infinite number. Take the expressions
1,2,3,..,wand 1, 2, 3, ..., X. Both expressions represent infinity as following other numbers in sequence
as if infinity (w or W) is itself a number that is part of that same sequence—an ‘infinite number’—and
merely one that cannot be given in multiple digits like 100.

Hence, the use of infinity (o) to make mathematical expressions like co + 0o = oo and the use of
infinity (w or N) for similar operations thus speaks to infinity as being a kind of number, even if such
cannot be written out with digits.

5.4.9 An Infinite Number as Figurative for Infinitely Many Finite Numbers

Another approach for dealing with our inability to write out or express infinitely large numbers is just to
say there is no such thing. Instead, we take references to so-called “infinite numbers” as merely a figure
of speech. The symbols like oo, w, and X are symbols for sets of “infinitely many” elements; that, and
nothing more. The elements can even be numbers. For instance, N would be a set comprised of infinitely
many (but all finite) natural numbers.

The distinction is between infinitely many on the one hand and infinite numbers on the other.
Transfinite mathematicians in particular usually deny the existence of infinitely large natural numbers, but
nevertheless say there are sets of infinitely many finite numbers (symbolized by oo, w, and &) [153] [154]
[155]. And while some mathematicians say it may be true that infinity is used in equations as if it is a
number (e.g., © + 0 = ), they are careful to emphasize that infinity is not really a number at all.

5.4.10 Figurative Infinity and Use of the Infinite Number Metaphor
We've covered use of the term ‘infinite number’ in its literal sense and in a figurative sense:

= |nits literal sense, an infinite number is a number that, if written out or tallied, would be infinitely
large—that is, composed of a sequence of digits that is itself complete and yet limitlessly long.

= |n its figurative sense, an ‘infinite number’ is a figurative term mathematicians use to mean
“infinitely many” members while holding there is actually no natural number that is infinitely
large.

But there is another sense in which the term ‘infinite number’ is figurative, and that is when it refers to
the amount of members in a series that continues to grow while remaining finite no matter how long the
series goes on.
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The latter figurative sense of infinity is commonly used with respect to mathematical operations. For
example, when some mathematicians refer to an “infinite number” of decimal places in pi, what they
mean is that we could keep on producing more digits for the value of pi; not that pi already contains a
literally infinite quantity of digits to find. There are even some scientists who also think of infinity in this
figurative sense. In the figurative sense of infinity, to say there is “an infinite number” of stars would be
to say the stars are actually finite in quantity at any given time but will keep populating the Universe
without end. However, such figurative uses of “infinite number” too often slip into the literal usage of the
term. (The topic of slippage will be further explored in Chapter 24.)

5.4.11 Symbols for Figurative Infinity

Just as the term ‘infinite number’ can be used in the sense of figurative infinity, so too can the
mathematical symbols for infinity. For example, some mathematicians and philosophers, following in the
footsteps of Cantor, believe the lemniscate (o) is used only for sequences regarded as figuratively infinite
rather than literally infinite [156]. However, this certainly has not been the case either historically or
contemporarily.

It is true that many mathematicians today often associate the symbol co with potential or figurative
infinity, but Wallis himself used the symbol oo to denote a complete and limitless collection, or at least a
progression that becomes literally infinite. We find literal infinity invoked in his 1656 book, The Arithmetic
of Infinitesimals, describing the circumference (i.e., the closed curve) of a circle as composed of “an infinite
number of infinitely short lines” and a cone as “composed of an infinite number of circles” [157]. Even
today mathematicians still sometimes use oo to represent a literally infinite sequence, series, or set [158].

The lemniscate may either represent a collection as figuratively infinite or as literally infinite,
depending on the intent of the mathematician. Regardless, if infinity as oo is used in a figurative sense, to
say “an infinite number” or “an infinitely large number” means only that the value represented by o is
constantly changing and is, at any time, beyond our practical ability to calculate or represent (but could
be produced in principle).

For example, we might take oo as representing an incomplete collection of objects that continues to
grow or divide beyond our ability to compute. The collection of objects grows so large, or divides to small,
that in actual practice we have no number to represent the value of all its members at a given time.
Though it is not genuinely a variable, oo is like a special kind of variable—one with no constant value, such
as a collection having a series of quantities produced by a function in calculus or an operation in algebra.

As a rule of thumb, oo is generally used to represent the figurative infinity of a function performed in
mathematics. However, it is sometimes ambiguous whether oo is figurative or literal. There are cases
where oo is used in a figurative sense to mean a continuously changing quantity such as in the increasing
number of iterations that a mathematical function goes through to produce an ever-increasing series of
decimal places for pi.

However, the symbol co may simultaneously imply the literal infinity of any collection measured by
the function—like there being all at once a literally infinite series of digits in pi for the function to uncover
(as if the digits are “already there” awaiting discovery). Hence, o is not always used consistently to refer
only to figurative infinity; sometimes literal infinity is implied for the collection calculated while figurative
infinity is intended for the steps or iterations taken in the calculating process itself.

| will attempt to make clear which sense of infinity—literal or figurative—is implied by mathematical
representations of infinity as we proceed.
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5.5 INFINITY AS PREDICATE: LITERAL AND FIGURATIVE

Infinity, as a linguistic term, is a predicate for indicating that something is considered a collection and, as
such, is in some sense limitless. A collection is predicated as limitless either in the literal or the figurative
sense. But even as a predicate of sorts, infinity can be symbolized and mathematically operate as if it is a
number, whether infinity is taken as literal or figurative.

Literal infinity, for example, can be symbolized (o0, w, N, etc.) for use in mathematical expressions.
Even though these symbols are for predicating a quantity as limitless, the symbols also mathematically
operate in a number-like fashion. In that respect, literal infinity in symbolic form not only predicates
guantities as limitless but can also be taken either as itself a kind of number—one of limitless size—or at
least as an indicator for a limitless multitude of quantities.

We've explored the difference between ‘infinite number’ as referring to a number of limitless digits
symbolized in shorthand (e.g., w or ), and as a figure of speech for a collection of “infinitely many” finite
numbers that may be symbolized as if they are numbers—the so-called transfinite numbers (w or X). The
symbols for infinity can be interpreted in either sense. | have so far left open the issue of which
interpretation of literal infinity is correct—infinity as a predicate for a kind of number (as in ‘infinite
number’) or as a predicate for a kind of multitude of elements (‘infinitely many’ finite numbers)—if indeed
either one even makes sense. We will return to this issue in forthcoming chapters.

That leaves open the question of figurative infinity. Figurative infinity is also a predicate for a kind of
guantity—a quantity that is a running total, a progression of totals that continues to accumulate.
Figurative infinity can also be symbolized, typically as oo, which is also used in a number-like manner.

However, c can be taken either figuratively or literally in certain mathematical contexts, so the
difference between figurative and literal infinity can be confused. This too is an issue that needs resolved.

CHAPTER 5 IN REVIEW
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As ‘finite’ is a predicate for quantity—a quantifier of sorts—so too is ‘infinite’.

Whereas the quantifier ‘finite’ indicates a given collection has a quantity that can be

specified, the quantifier ‘infinite’ indicates a given collection has a quantity that cannot be
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% To be infinite is different from being ‘afinite’, which is to lack specification of range by virtue
of being empty of members to specify. To be infinite, to the contrary, is not to be empty but
to have a non-zero quantity of members that cannot be specified.

« As finite quantities can be expressed with exact numbers or variables for such, so too
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6: DISTINGUISHING FINITES AND INFINITES

Literal infinity and figurative infinity are sometimes confused with one another, even by professional
philosophers and mathematicians. In fact, some philosophers try to destroy the distinction between the
two [159]. | don’t believe they are successful, but that is another issue. For now, | wish only to elucidate
the distinction between literal infinity and figurative infinity. | will accomplish this by further distinguishing
between two different forms of the finite—the definite and the indefinite—and then contrasting indefinite
sets and series with those that are literally infinite. | will then address figurative infinity as the serial form
of indefiniteness, thereby placing figurative infinity and literal infinity into stark contrast.

6.1 THE FINITE: DEFINITE AND INDEFINITE

So far, we’ve regarded finite sets and series and how they can each be either complete or incomplete.
Since there are real, finite collections constructed over time such as towers finished while others are left
unfinished or in ruins, the property of finitude characterizes collections such as sets (whether real or
conceptual), some of which are complete and some of which remain incomplete. And since there are both
closed series like alphabets and open series like number scales, we can also say finitude encompasses
series both complete and incomplete.

Yet completeness and incompleteness also need to be distinguished from a couple of related
categories—definiteness and indefiniteness. | have up to now mentioned numbers some of which are
‘definite’ and others that are ‘indefinite’, but the concepts of ‘definiteness’ and ‘indefiniteness’ were not
defined. It’s time to correct that:

= definiteness: the state of having defined or specified limits.
= indefiniteness: the state of having undefined or unspecified limits.

6.1.1 Defined vs. Definable, Specified vs. Specifiable

Both definitions make assumptions regarding definition and specification. That which is definite is that
which has defined or specified limits because such limits are definable or specifiable to begin with. We
have both the capability to define or specify the given limit and it is in fact defined or specified. For
example, the distance from Earth to the Moon, or the speed of light in a vacuum. Conversely, that which
is indefinite is that which has undefined or unspecified limits, but that does not mean such limits are also
undefinable or unspecifiable per se.
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Like definiteness, indefiniteness is a state of having definable or specifiable limits—limits able to be
defined or specified—it’s just that the limits happen to in fact be undefined or unspecified. For example,
the entire Universe (vice the observable part of the Universe we see with telescopes) may be of indefinite
size. Perhaps in practice we will never know what size it truly has, but in principle we could find out—if,
for example, we had a spaceship that could travel far and fast enough. The size of the Universe is at least
in principle definable or specifiable, even if in practice it is undefined or unspecified; until science can
show otherwise, we can say the Universe is of indefinite size.

Of course, some might say the Universe is not just of indefinite size but of infinite size. That is a subject
we will return to in Chapters 18 and 21; for now, the important distinction is this: indefiniteness, like
definiteness, is a finite condition. Indefiniteness, like definiteness, is a species of finitude.

But wait: didn’t | just say in § 5.3.4 that to be finite is to be “completely enumerable to a determinate
amount,” which is a specifiability condition? So how can something be indefinite (unspecified) and at the
same time be finite?

This is precisely where the distinction between being specified and being able to be specified
(specifiability) comes in. Indefiniteness is a finite state because it is the state in which the measure of
something is specifiable—for example, able to be completely enumerated to a determinate amount—
even if it is not so specified in actual practice. Ergo, indefiniteness is still a finite condition.

6.1.2 The Indefinite as Finite

Cognate nouns for definiteness and indefiniteness are ‘the definite’ and ‘the indefinite’. ‘The definite’ is a
substantive noun sometimes used as a synonym for definiteness and sometimes as the category of that
which is definite; naturally, ‘the indefinite’ is also a substantive noun and at times it is a synonym for
indefiniteness while other times it stands for the category of that which is indefinite. Both, | contend again,
are species of the finite.

However, some philosophers disagree; they instead equate the definite with the finite and draw
contrasts between the finite, the indefinite, and the infinite such that these three quantifiers are held to
constitute non-overlapping categories [160]. But that is incorrect.

The term ‘indefinite’ designates not a separate category that stands alongside the finite and the
infinite as something different and outside those two categories together. Instead, ‘indefinite’ refers to a
subcategory of finitude alongside another subcategory of finitude known as ‘definite’. Philosopher
William Fleming (1791-1866) explained as follows [161]:

The definite is that which the form and limits are determined and are apprehended by us.
That of which we know not the limits, [fallaciously] comes to be regarded as having none;
and hence indefinite has been confounded with the infinite, though these two must be
carefully distinguished. The infinite is absolute; it is that which has and can have no limit;
the indefinite is that of which the limits are not known to us. You can suppose it enlarged
or diminished, but still it is finite.

The example of the Universe as indefinite in size, vice infinite in size, is a good example. And such an
example raises another important distinction. Dr. Shaughan Lavine, a contemporary philosopher of
mathematics, also writes of the indefinitely large; however, Lavine defines the ‘indefinitely large’
differently than | do [162]. So, we should be clear about what it means for something to be indefinitely
large.
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Whereas Lavine uses the term ‘indefinitely large’ for any collection we might judge as having too many
members to count due to lack of effort or interest [163], | instead interpret such uses of ‘indefinitely large’
as mere hyperbole, an exaggeration. Lavine’s idea of the indefinitely large is not what | would call
indefinitely large; rather, what Lavine calls ‘indefinitely large’ | would simply call inconveniently large.

For example, in Lavine’s sense of ‘indefinitely large,” the number of grains in a pile of sand is
indefinitely large, but the number can still be calculated with exponents already defined and even counted
if one had the time and interest to do so. Whereas ‘indefinitely large’ quantities in the sense that | propose
are those finite quantities so large that no one has invented (and perhaps never will) a technique to define
or specify such quantities.

With respect to mathematical objects, there may be possible indefinitely large numbers in the sense
that there could be invented numbers larger than anyone has heretofore invented—Ilarger than any
previously defined or specified. So, mathematical values for many of Lavine’s ‘indefinitely large’ numbers
would therefore be far smaller than the value for a quantity | propose as indefinitely large. In the world
of mathematics, then, to be ‘indefinitely large’ in the sense | use the term is to be too large to specify with
any definite number—that is, with any number heretofore defined. (Likewise, to be ‘indefinitely small’
would be too small to specify with any definite number in the form of a fraction or decimal place
heretofore defined.)

With respect to measuring physical entities that might be indefinitely large, consider the Universe.
The Universe may be ‘indefinitely large’—so large no known quantity specifies the light-years of its
magnitude. In that situation, it’s not out of lack of effort or interest in measuring the Universe that it
would be indefinitely large, but rather out of our inability to compute its (finite) magnitude.

On the other hand, maybe the Universe is not that big. Maybe instead of being ‘indefinitely large’ it is
of unknown, but nevertheless finite size, because it is merely indeterminately large. In other words, too
large to specify not because no one has invented finite numbers that go that high, but because we merely
lack sufficient information to determine its exact size using any physical technique at our disposal. In
principle we might be able to make a determination, but in practice we cannot. In that situation, it is also
not out of lack of effort or interest that we would say the Universe is ‘indeterminately large’, but rather
out of practical capability to find out just how big it is.

Whether the Universe is indefinitely large or just indeterminately large is not something | will pursue
in this book. | will maintain in the chapters to come only that the Universe is not infinite in size owing to
logical problems with the concept of infinity. (See 88 18.2-4 and § 21.4 for more.)

6.2 THE INDEFINITE: COMPLETE AND INCOMPLETE

The distinction between the definite and the indefinite becomes important when we analyze how finite
collections are to be quantified with respect to their completeness. Some finite collections are both
complete and definite while some are complete but indefinite; then too, some finite collections are
incomplete but definite while some are both incomplete and indefinite (see Figure 6.1).

Figure 6.1’s categories illustrate two kinds of indefiniteness: (1) indefiniteness due to lacking a defined
quantity for a complete collection, and (2) indefiniteness due to lacking a defined quantity for an
incomplete collection.

The first kind of indefiniteness applies to any complete collection (aggregate, multitude, set,
sequence, or series) in which there is a limit to the elements with some of the elements remaining
undefined in quantity at any given time. This condition characterizes a finite collection that is a complete
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collection—complete because the collection in question is whole, entire, finished, full, and has, an albeit
unknown, total. Because the total is unknown, perhaps even unable to be known in actual practice, the
complete collection is in that respect indefinite. The total of an indefinitely large but complete collection
is such that we can only assign a variable that in principle, but not in practice, is replaceable with a definite
number. Though we do not know the total for the indefinitely large collection, the collection still has a
total-in-principle, along with the other properties of completeness.

QUANTITIES
|
| |
Finite Non-finite

|

| |
Complete Incomplete Infinite Afinite
|
Definite Indefinite Definite Indefinite

Figure 6.1: Quantities categorized by reference to the finite and the non-finite.

| said the first kind of indefiniteness applies to any complete collection, and that includes series.
However, if the collection is a series that has completed, then the series is finished forming over time and,
as such, it becomes thereupon and thereafter a static collection until if and when it ensues more change.
As a static collection, the series is simply a set, ‘multitude’, ‘aggregate’, etc. that is done forming, as when
a series is movies has completed production and the story ends.

The second kind of indefiniteness, that of an incomplete collection, can also apply to any kind of
collection—set, series, etc. With respect to an incomplete set, imagine a set in which the number of
members cannot be specified in practice, but that nevertheless could be specified in principle. And yet,
suppose the set is incomplete—it lacks members required to qualify as ‘complete’; it is an unfinished set.
Such a set would be an indefinitely large set but also an incomplete set.

As an example of an incomplete set, consider a tower indefinitely tall—its height is finite because
there are a finite number of bricks in it, but the height cannot in practice be specified because it is off the
scale of all known numbers. Imagine as well that this tower has no roof—it is left unfinished in
construction. Such a tower could be considered as an indefinitely large set of bricks, but an incomplete
set because it is unfinished. Such a set is an example of an incomplete-indefinite collection.

On the other hand, because such a set is incomplete, we might also interpret it to be a series still
under construction. That brings us to another way of expressing the second kind of indefiniteness—
something can be indefinite because, as a collection, it is a series the members of which are ever changing
in quantity, and so always incomplete. An incomplete, indefinite series is an open series in which not all of
the elements in the series at any time are enumerable in actual practice and there are yet more elements
adding to the series. The open series that is indefinite not only has so many elements we cannot count
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them in actual practice, but also the series is still getting new elements on top of those—the series is ever
incomplete beyond what we can actually count and so always has indefinitely many members.

For example, take our fictional tower that is built ever higher, having only a running total of bricks at
any time; but suppose the tower’s running total of bricks is itself unknown at any time because there are
too many bricks to count by any presently designed computer. The running total can only be expressed
by a variable rather than by an exact amount. The tower would be an incomplete-indefinite collection
because its quantity of bricks is off the known scale of numbers to count them, and the tower would also
be an incomplete-indefinite series because, as a series of accumulating bricks, that unknown quantity of
bricks (and the steps of laying them) is inherently incomplete as well as too large to specify in practice.

Now, if the tower, as an indefinitely growing collection of bricks, were to become complete, then the
tower would not be an indefinite series, but rather an indefinitely large set. Either way, the tower is not
infinite.

6.3 THE INDEFINITE: COLLECTIVE AND SERIAL

While indefiniteness is distinct from the infinite, another distinction that will be useful is the distinction
between two different kinds of indefiniteness: one | will call a collective indefinite and the other a serial
indefinite:

= collective indefinite: a collection in which the members, at an assumed time, all together comprise
an indefinite quantity.
= serial indefinite: a series that continues indefinitely.

A series is a kind of collection, one in which entities become members in succession rather than all at
once, but the term ‘collective indefinite’ refers more narrowly to collections such as multitudes,
aggregates, and sets—collections in which the members exist all together at once and have too many
members to compute in practice. The category ‘collective indefinite’ is therefore distinct from, rather than
inclusive of, the category of a serial indefinite.

Notice that the above definitions do not distinguish a collection, whether set or series, as being either
complete or incomplete. Hence to clarify, a collective indefinite can be either a complete collection or an
incomplete collection; however, a series that is a competed series also constitutes a complete static
collection, such as a set, and so is an instance of a collective indefinite, while an incomplete series is one
that continues to indefinitely grow in quantity of instances (objects, events, etc.) and so it is the
incomplete series that is the ‘serial indefinite’. Figure 6.2 represents these distinctions, which will come
in handy particularly for contrast to collections that may be taken either as literal or figurative infinities.

6.4 THE VARIETIES OF INDEFINITENESS

To draw a sharper distinction between indefiniteness and infinity, we need some vocabulary to
differentiate the different ways the collections can be quantitatively indefinite. These fall into two main
types: indefiniteness of proportion and indefiniteness of series.
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QUANTITY
|
| |
Finite Non-finite
|
| |
Definite Indefinite
| | |
Set Series Set Series
|
| |
Closed Open

v

Collective Serial
Indefiniteness Indefiniteness

Figure 6.2: Collective indefiniteness and serial indefiniteness. (1) A ‘collective indefinite’ is a collection having indefiniteness as
a property. As a set, the collective indefinite may be either complete or incomplete. As a series, if the collective indefinite is a closed
series, then it is equivalent to an indefinitely large set and so may be either complete or incomplete. (2) A ‘serial indefinite’ is a
series that has indefiniteness as a property of its succession of members. A series that has taken indefinitely many steps may
eventually terminate, and in so doing become an indefinitely large collection (e.g., indefinitely large set), or ‘collective indefinite’,
whether complete or incomplete. Such a series is protracted, but not a genuine ‘serial indefinite’. A serial indefinite does not
terminate; it is open—it never ceases to accumulate members or steps in its progression.

6.4.1 Indefinite Proportions
Definition:
= proportion: a comparative measure.

To describe the proportions of a collection is to describe how the collection compares to some other
collection(s) with respect to given measurements. We may say, for instance, that a collection is smaller or
larger than another, takes up so much or so little of another collection, or has elements that are closer or
further apart than those of another collection, and so on. Alternatively, we may simply use adjectives to
describe proportion like “huge” or “tiny.”

There are many different proportions that might describe collections. For now, we will stick to
descriptions of proportions that pertain to space. There are (at least) two different ways we might
describe spatial proportions—by magnitude and by distance. As shown in Figure 6.3, some collections
that are extended through space are indefinite in magnitude while others are indefinite in distance.
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INDEFINITENESS
OF PROPORTION

Indefinite Magnitude Indefinite Distance
| |
| | | |
(Indefinitely Large) (Indefinitely Small) (Indefinitely Far) (Indefinitely Near)
|
= Enormous = Minute = Remote = Proximate
= Immense = Minuscule

Figure 6.3: The varieties of indefiniteness in proportion that may describe spatially extended collections.

First, let’s consider collections in terms of their magnitudes. We already know of finite numbers too
big to count out—the unfeasible numbers. And we know of finite numbers too big to be represented in
anything but shorthand notation, such as the googolplex. In addition, there are finite numbers verging on
too big to be well-defined with any already-known mathematical function. Now think of numbers needed
to quantify finite collections even bigger than that—indefinitely large collections, which are collections off
any known finite scale of magnitude and yet they are not limitless in size.

Of course, since such collections are “off the scale,” we would need to extend our scale of finite
numbers in order to exactly quantify such collections. Fortunately, all the elements of such large
collections can, at least in principle, be computed because, in principle if not also in practice, we can create
well-defined functions for defining new definite numbers that would quantify what are for us currently
indefinitely large, but nonetheless finite, collections. If such new functions are made to capture the
quantity of such indefinitely large collections, we would also have in the process come up with a new
definite number, one larger than any previous definite number ever invented. Of course, once quantified,
the collection that was formerly thought of as indefinitely large would no longer be so. But there could be
yet larger collections that are still indefinitely large, even given the new awesomely large number we just
came up with. Once again, it would take an extension of the number scale to capture the size of such a
collection—in principle, even if not in practice, we can come up with a function to create more new, even
larger definite numbers, for such collections, to render them for us definite instead of indefinite.

All instances of collections for which we would need to extend the scale of defined natural numbers
in order to fully quantify a collection’s quantity of elements should be regarded as finite, but indefinitely
large, collections. Assuming such collections exist, the size of any of these indefinitely large collections are
such that they can be computed, albeit only in principle by an ideal computing machine.

However, for that ideal computing machine to represent how many members are in the collection
once it's done computing, the machine would have to output a numeral of some kind that represents the
definite number of members in the collection computed. Alas, if there is no robust function by which to
define that definite number, then even the ideal computing machine could not represent the quantity in
the collection it just computed. So, there must first exist a sufficiently robust mathematical function to
well define a definite number for the ideal computing machine to use for identifying how many members
are in the computed collection.
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We can therefore assume that some indefinitely large collections can be quantified only given the
future invention of a sufficiently robust algorithm or function—more powerful than we currently have—
that will be used for defining a definite number that an ideal computing machine could represent for the
size of the collection computed.

However, there would also be other indefinitely large collections, ones so big that we will never in
practice—no matter how far in the future—be able to come up with a function for defining a definite
number that large. Yet, in principle such a function and its definite number could be invented, and so we
can still say that in principle the ideal computing machine could represent the size of the collection once
its computation is completed.

In order to distinguish between these two different classes of the indefinitely large, | will draw on a
couple of words from colloquial speech and stipulate new, technical definitions for them. The words | will
use are enormity and immensity [164]. Both words are commonly used to simply mean “very big,” but |
offer definitions for these words that are narrower in meaning.

Stipulated definitions:

= enormity: the condition of being enormous.
= enormous: too large to be quantified without defining a new definite number.

= immensity: the condition of being immense.
= immense: too large to be quantified without a definite number definable only in principle.

A collection is ‘enormous’ if there are so many members in the collection that no definite number has
yet been invented that can specify the exact size of the collection, but in the future such a number may
be so defined. Once such a number is defined, the collection is no longer ‘enormous’; instead, it has a
definite size. Only collections of some indefinitely larger size (while still in practice computable) would
then be considered enormous.

Of course, in everyday speech we call much smaller things “enormous,” like my neighbor’s cat. Given
the definition for enormity | offered, the cat would of course not qualify as enormous. If we wanted the
new definition for the term ‘enormous’ to be the word’s colloquial meaning, then we would have to take
use of the adjective ‘enormous’ in relation to anything we physically observe as mere hyperbole. Ironically,
despite its vastness, even the observable universe is too small to qualify as enormous by this technical
definition of the term. So, calling the observable universe “enormous” would also be hyperbole! That
sounds odd, but we need a name for such an indefinitely large size and ‘enormous’ will have to do.

Now let’s consider immensity. Although the word ‘immense’ comes from Latin for “unmeasured,” to
be immense is not to be infinite. In colloquial speech, to say something is immense is merely to say it is
very large or very great but it is still implied to be of some finite size. That which is immense may be that
which is large enough that it has not been measured, but that is not to say it is immeasurable even in
principle, which is to be limitless in the sense of literal infinity. It is possible the entire Universe (beyond
even the observable universe) may be, in the technical sense, enormous or even immense while still not
being literally infinite.

Though ‘immense’ colloquially means to be very great in size, because the word comes from the Latin
for “unmeasured,” | believe we can safely use the word in a narrower, technical sense of being so large it
is off of any established finite scale of numbers, not definable in practice and yet definable in principle.
Like the term ‘enormous’, if we were to render the technical use of ‘immense’ as its literal usage in
colloquial speech, then we would have to take the use of ‘immense’ for anything we observe as hyperbolic
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for inconveniently big to measure. | believe that sense fits how the term ‘immense’ is most often used in
colloquial discourse, but | will instead use ‘immense’ in the technical sense | have stipulated for a class of
the indefinitely large (unless otherwise noted or clear from context).

On the opposite end of the size scale, consider aggregates, multitudes, and sets that are finite but
indefinitely small. Some such collections are too small to be expressed with definite numbers such as
known decimals or fractions, but they could eventually be defined with definite numbers in practice at
some point in the future. Other such collections are too small to ever be quantified by definite numbers
in practice but nevertheless have a finite size since their size can be mathematically defined with definite
numbers in principle. The former | term minute (pronounced my-noot) and the latter | term minuscule
rather than ‘infinitesimal’ (infinitely small). Stipulated definitions:

=  minuteness: the condition of being minute.
= minute: too small to be quantified without defining a new definite number.

= minuscularity: the condition of being minuscule.
= minuscule: too small to be quantified without a definite number definable only in principle.

‘Minuscularity’ is a word taken from William Faulkner’s The Town [165]. | am using ‘minuscularity’ as
a noun for designating that which can be regarded as minuscule. The adjective ‘minuscule’ comes from
the French for “small letter” and in colloquial speech simply means “very small.” However, | propose
‘minuscule’ to mean indefinitely small—so small as to be off of any finite scale of smallness, but still
definable on a finite scale in principle. The more colloquial use of the word ‘minuscule’ to mean merely
“very small” would be hyperbole by comparison.

Next, let’s consider objects that have indefiniteness of distance between them—either an indefinitely
large distance or an indefinitely short distance. Let’s start with a distance that is indefinitely large. We will
call such a distance remote. When something is remote, it has a definite relative position, just one that is
indefinitely far away. Here too caution must be exercised: to say something is ‘remote’ often means
something is “very far away,” such as beyond the horizon, but not an immense distance as the word
‘immense’ is defined above. We will have to take such uses of ‘remote’ as a figure of speech in order for
‘remote’ to designate that which is at an immense (indefinitely large) distance.

In contrast with remoteness, some objects have a minuscule distance between them. The objects do
not occupy the same space; they are not located at an identical position, so it is not that there is zero
distance between them. They are, however, so close together that no fraction we can express in actual
practice captures just how fine the distance of separation is between them. Let’s refer to such a minuscule
distance as a proximate distance.

This analysis, therefore, stipulates two more sets of definitions for common terms we can adopt to
designate indefinite proportions of distance:

= remoteness: the condition of being remote.
= remote: indefinitely removed or far away.

= proximateness: the condition of being proximate.
= proximate: indefinitely close or near.
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Immense, minuscule, remote, proximate: such terms demonstrate that there are plenty of terms for
describing magnitudes and distances that are indefinite in proportion but not literally infinite.

6.4.2 Indefinite Series
To further distinguish indefiniteness from infinity, we may need yet more vocabulary to denote the

various ways collections can be indefinite in temporal series rather than complete and limitless (infinite)
over time. The categories of indefinite series are outlined in Figure 6.4.

INDEFINITENESS

OF SERIES
|
| |
Indefinitely Long Indefinitely Short
|
| | | |
In Succession In Duration In Succession In Duration
| | | |
= Persistent = Protracted = Transient = Ephemeral

= Ceaseless = Perpetual

Figure 6.4: The varieties of indefinite series (in the temporal sense of the term ‘series’).

We will start by examining series as sequences formed by succession and then turn to series as
sequences that have duration.

Consider series that are indefinitely long—that is, series that are indefinite in the number of successive
steps or events they accrue. There are two ways a series can be indefinitely long; the series continues for
an indefinitely large number of successive steps but eventually terminates (as when a computer continues
calculating until exhaustion) or the series goes on without ever stopping (as with anything that is
immortal) [166].

To easily reference these conditions, we need to introduce two more terms. | propose the former
should be called persistence and the latter should be called ceaselessness:

= persistence: the quality of continuing toward an indefinite end.
= ceaselessness: the quality of continuing indefinitely, without ceasing.

With respect to persistence, we will need to distinguish the colloquial use of the term from the
narrower, more technical use | am stipulating.

Colloquially, when we say something ‘persists’, we are merely saying it continues to some undefined
end. One may persist with a hobby, persist with a career, persist with a relationship, etc. In all such cases,
a series ‘persists’ if it continues as long as desired but they all cease at some step or event, albeit one that
was not predefined at any earlier stage in the construction of the series. And in all such cases, when the
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series finally does end, it can be assigned a known, finite value (for example, a number of aggregates,
steps, years, etc.).

However, there is another way a series can persist: a series may from some assumed beginning
continue to an end that is an indefinitely large number of steps ahead of any step we denote. For example,
the lifespan of certain subatomic units of matter may be ‘persistent’ in this sense. We can imagine the
units of matter will ‘persist’ for a time indefinitely far in the future—a time so far in the future that we
cannot presently calculate the number of years owing to the limits of our current mathematical ingenuity
to define, yet at which the units of matter will finally decay or be destroyed. When they finally decay or
are destroyed, they will have persisted for a duration off of any scale of years we now have finite numbers
to express. If there are units of matter that will continue for such a length of time, they are units that
‘persist’ to an end indefinitely far in the future in the stronger sense of living for so long we currently have
no math to define the number of years they will be around, but they will eventually come to an end.

Persistence differs from literal infinity and so from the condition of a limitless series considered as a
complete set of steps, moments, or events, etc. Persistence has a limit in the form of an end—just an end
that is not defined before the persistent series is underway and while the series continues. The more
technical notion of persistence describes series that continue toward an end not only undefined during
the process in which the series continues forming, but toward an end that can be defined in future practice
only with some as yet unconceived mathematical operation. However, because the persistent succession
of events will indeed end at some finite step from the beginning, the series is not absolutely limitless or
equivalent to a literally infinite sequence.

Persistence is indefinite, but it also differs from ceaselessness.

That which is persistent has no pre-defined end, but it still eventually ends. That which is ceaseless,
on the other hand, is indefinite in a stronger sense: to be ceaseless is to go on without ever coming to an
end.

Persistence denotes the continuation of a series to an end that is not predefined but that becomes
definite upon termination (and in its more technical sense, to ‘persist’ is to continue to an end that is too
large to be expressed on any current scale of values, to an end indefinitely far in the future), but a
ceaseless series is never terminated and so cannot have a definite end or even an end at all in terms of
succession. A series is ceaseless if it continues ‘indefinitely’ in the stronger sense of going on without ever
ceasing (stopping or terminating) at any time.

Moreover, persistence differs from ceaselessness looking backward through a series as well. For
example, we can conceive of a series that has persisted for an indefinitely long time—from some time
indefinitely far in the past, a time off of any known finite scale to express and yet a time at which the series
began and so not infinitely far in the past. (It’s not necessary that such a time existed; we can still conceive
of such.) Since the series ‘persisted’ but no longer ‘persists’, such a series has come to an end. In contrast,
a ceaseless series that has been around for an indefinitely long time is a series that does not stop—it is
still going and will keep on going.

Just as persistence differs from sequential limitlessness and ergo the literally infinite, so too
ceaselessness not only differs from persistence in that it has no end, but it also differs from the
limitlessness of a literally infinite sequence of steps. Though a ceaseless series is one that lacks an end or
bound to its process of growth, the ceaseless series still has (at least in principle) a limit by virtue of having
a running total to its range of members at any given step in its growth, and so it is not a limitless sequence
and therefore different from a literally infinite sequence.

Whereas literal infinity has no limit at all, ceaselessness has an ever-changing limit. Moreover,
ceaselessness implies the series continues without stopping because it never becomes complete; one
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could say the series continues despite being always incomplete. Since ceaselessness is incomplete, yet
limited, in succession, ceaselessness differs from literal infinity, which is a condition that would make a
series complete as well as limitless in its number of events or steps.

We have thus far considered persistence and ceaselessness in terms of successions of steps or events
in temporal series. Let’s now turn to persistence and ceaselessness as notions that also apply to durations
of time. More specifically, persistence and ceaselessness are notions that can be applied to indefinite
durations of time.

An indefinitely long duration of time is either a duration that persists until an end that no established
value on any number scale expresses or a duration that never ceases because it is never completed. The
former we can call a protraction. The latter we may call perpetuity.

Stipulated definitions:

= protraction: a duration that persists.
= perpetuity: an indefinitely long duration in which events ceaselessly occur by succession.

A protraction is a finite period of time, just one so long that we can’t express how long it is. A process
or series that persists over a long time we sometimes call /lasting or say that it ‘has lasted’ or ‘will be
lasting’; but a lasting time is not necessarily a protracted time. A lasting time may have some definite end;
a protracted time has only an indefinite end. A protracted time is therefore a lasting period of time, but a
lasting period of time is not necessarily a protracted period of time because a protracted period of time
is indefinitely long in duration. However long a protracted period of time may be, it nevertheless has a
total amount of events that either have passed or will reach a total amount of events when it ceases, and
so a protracted period of time is a duration that always remains finite.

A perpetuity is a duration of time that continues into the future without ceasing because the future
is never completed. To be perpetual usually implies a ceaseless recurrence, renewal, or regrowth. But if
something lasts perpetually, then we call it permanent. (Although, sometimes the term ‘permanent’ is
more a figure of speech than a literal claim. As a figure of speech, ‘permanent’ means protracted to an
end that is not predefined.) Though unfolding ceaselessly, a perpetuity has a running total of events that
have passed at any step of the way and so a perpetuity is finite despite its indefinitely long duration.

Both a protracted amount of time and a perpetual amount of time are therefore not infinite amounts
of time in a literal sense. A literally infinite amount of time has a complete series of events, not an
incomplete series, and the infinite series of events is a quantity of events without limit rather than an
indefinitely large number of events that has an end.

The opposite of protraction is transience (or of protracted is transient). Stipulated definitions:

= transience: the condition of being transient.
= transient: occurring as a succession of ephemeral durations the total of which are less than any
increment of time measurable in practice.

An explosion may seem quick, but when watched in slow motion many successive events that took
place during the explosion reveal themselves. If the succession of events—no matter how many there
are—would add up to less than any measurable fraction of a second, that succession would be considered
‘transient’ by the above definition. In colloquial speech we of course refer to brief successions that take
longer than that as ‘transient’; but by the above definition, such use of the term ‘transient’ would be
hyperbole.
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In order for a series to be transient, each event in the series must be successive rather than
simultaneous and each must be ephemeral in duration. Stipulated definitions:

= ephemerality: the condition of being ephemeral.
= ephemeral: occurring with indefinite brevity.

Suppose a sequence of successive events comprising a series of events is indefinitely brief—the sequence
of events passes too quickly to be measured in practice, and yet can be measured in principle because the
duration of the sequence of events can be quantified with a non-zero number of successive events. Such
an indefinitely quick series of events is not instantaneous because it does not take place in no time at all
(measure zero for their duration); instead, it has at least two events—a beginning and ending—that are
not identical. And yet, the events in the series pass from start to finish so quickly that no scale can be
created in actual practice that captures the quickness with which the events pass. Such indefinitely brief
series of events will be called ‘ephemeral’.

Ephemerality differs from an infinitesimally short duration because ‘the ephemeral’ can be measured
in principle, whereas an infinitely short duration cannot be measured at all—an infinitely short duration
would be a non-zero duration but /imitlessly brief.

6.5 THE INDEFINITE IS NOT THE INFINITE

The varieties of indefiniteness are all distinct from literal infinity. To be indefinite is to be limited regardless
of whether that which is indefinite is a set or series, and whether it is either complete (with an unknown
limit) or incomplete (with a running total). In contrast, to be literally infinite is to necessarily be both
complete and limitless. The post-Enlightenment mathematician and theologian Bernard Bolzano (1781-
1848) stated that an “infinite plurality” (collection) has “absolutely no last term” in the sense of being
limitless rather than merely indefinite [167].

He also went on to describe literal infinity as a condition of being complete (a “whole”) in plurality as
well as limitless [168]. He stated that infinity can be found, for example, in complete sets of infinitesimally
brief moments in time and complete sets of infinitesimal ‘points’ in space, with those moments and points
themselves being limitless in quantity [169]:

..the multitude of moments which lie between every two moments a and 3, however
close to one another, and in the same way the multitude of points which lie between
every two points 2 and b however close to one another, is infinite.

Indefiniteness implies limits and either completeness or incompleteness; literal infinity implies
limitlessness and completeness.

Literal infinity is also a state or condition that is either greater than any ‘immensity’ or smaller than
any ‘minuscularity’ (if the infinitude is smaller, then it is infinitesimal). In terms of time or series, literal
infinity must thus be either longer than the ‘persistent’ and ‘protracted’ (which eventually end) while
being complete in succession (whereas ‘ceaselessness’ and ‘perpetuity’ never are) or shorter in succession
than the merely ‘transient’ without being simultaneous (of zero difference in terms of succession), or
‘ephemeral’ without being instantaneous (zero in duration).
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Literal infinity is also distinct from indefiniteness as a matter of scope. Bolzano pointed out that an
infinite plurality is “a plurality which is greater than every finite one, i.e., a plurality which has the property
that every finite multitude represents only a part of it” [170]. Literal infinity denotes a quantitative
condition of a collection that, conceived as a set, contains non-empty subsets of finite quantity, some of
which are definite in quantity, some of which are indefinitely large in quantity, and some of which are
proposed to be beyond even these—quantities altogether unspecifiably great. Literal infinity is inclusive
of indefinitely large quantity, just as indefinitely large quantity includes but goes beyond every definite
finite quantity (Figure 6.5).

Infinite

Indefinite

.\ | Definite / /

Figure 6.5: Literal infinity is typically conceived to include not only finitudes of definite quantity and those of indefinitely large
quantity, but also even greater quantities not specifiable even in principle.

6.6 THE INDEFINITE IS NOT INDETERMINATELY INFINITE

There is another conceptual distinction that should be made between the indefinite and the literally
infinite, though | bring this up particularly for philosophers familiar with Renaissance thought. To say
something is ‘indefinite’ or goes on ‘indefinitely’ is not to be uncertain about whether or not it is either
finite or infinite. Rather, to call something ‘indefinite’ or say it goes on ‘indefinitely’ is to imply that it is
finite but too large or small to be measurable in practice.

This position is contrary to that of the Renaissance philosopher, scientist, and mathematician René
Descartes (1596 — 1650). Although, | should first clarify that there are at least three different senses in
which Descartes thought something could be ‘indefinite’:

= indefinite as serially indefinite.
= indefinite as the indefinitely large.

= indefinite as indeterminately finite or actually infinite.

While | agree with the first two, | do not agree with the third. Let’s take them in order.
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First, Descartes called ‘indefinite’ that which most of his contemporaries called ‘infinite’ in the sense
of Aristotle’s notion of ‘potential infinity’. Descartes said that given a finite quantity, you can always divide
it further [171]. However, he refused to call a process that continues without end “infinite”. Descartes
used the term ‘indefinite’ instead of ‘potential infinity’ to describe such a process because he wanted to
avoid use of infinity in mathematics and physics altogether. Descartes was hence using the word
‘indefinite’ in one of the ways | advocate as well: the serially indefinite.

Second, by ‘indefinite’ Descartes occasionally meant the indefinitely large. For example, Descartes
said that the Universe “has no limits to its extension,” but only in the sense that it has “indefinitely
extended spaces” [172]. That is, the spatial expanse of the Universe lacks limits only with regard to any
boundary we might conceive or imagine. | take Descartes to mean that this kind of indefiniteness is what
I would call a ‘collective indefinite’ in quantity; applied to size, it is a reference to the indefinitely large.
He seems to have believed the Universe is actually finite but likely large beyond any conceivable boundary.

Third and finally, Descartes used the term ‘indefinite’ in a way | disagree with. He said the ‘indefinite’
also refers to something “indeterminate” —that is, something we cannot determine to be finite or actually
infinite. For Descartes, ‘indefinite’ refers to a collection that is either a finite collection of indefinitely large
size (a collective indefinite) or a collection that is actually infinite; we simply cannot tell which is the case
because our ability to measure is inadequate to the task of making the determination [173].

As an example, Descartes says the spatial expanse of the Universe fits the bill of being indefinitely
large in another sense: it is indeterminately finite or actually (literally) infinite. The spatial expanse of the
Universe might be limitless while having a complete set of places comprising its extent—it might be
actually infinite—but we cannot know that for certain. Space also might just be a collective indefinite of
places. Because we can’t be sure which is the case—infinite space or finite space of some indefinitely large
magnitude—Descartes recommends that we shouldn’t say the Universe is actually infinite; we should only
say it is ‘indefinite’. He made the same recommendation for all other quantities in mathematics and the
physical world that seem, or might be, limitless; they are all ‘indefinite’ [174] [175].

With that, we have covered the three uses of ‘indefinite’ Descartes offered. And what else do these
three uses of the term ‘indefinite’ all have in common? They are epistemic; they denote our lack of
knowledge about limits, or even if there are limits or not. That is quintessential Descartes—he was all
about doubt versus certainty.

Descartes’ notion of ‘indefinite’ stands in contrast to how the term ‘indefinite’ is used by other
philosophers, such as Fleming, Lavine, and even me. While we each may scope the indefinite differently
than one another, we might all agree that indefiniteness is a category of the finite and not a condition of
being in a lack of determination as to whether a quantity is finite or infinite, as Descartes held ‘indefinite’
to be in certain contexts. Moreover, | believe Fleming would have agreed with me, as would Lavine, that
‘indefinite’ is not a term that should be used for collections implied to be literally (actually) infinite,
whereas Descartes did just that.

Descartes’ promotion of using the term ‘indefinite’ | fully sympathize with, at least with respect to
replacing figurative uses of the term ‘infinity’ with ‘indefiniteness’ and denoting collections too large to
countin practice, or that can go on ceaselessly. Where | would correct Descartes is on his use of ‘indefinite’
to denote uncertainty about whether or not a collection is literally infinite. We need have no such
uncertainty, as | will show in debunking the concept of literal infinity in the chapters to follow.
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6.7 THE INDEFINITE CONTRASTED WITH THE INFINITE IN MATHEMATICS

There is yet another common confusion of literal infinity with indefiniteness that must be resolved.
Mathematicians have several technical definitions for infinity and infinite. In terms of performing
mathematical operations, the definitions are clear enough. But with respect to what the terms ‘infinity’
and ‘infinite’ mean from a logical point of view, the mathematical definitions may not be distinguishable
from other concepts that carry very different logical connotations.

For example, mathematicians sometimes define ‘infinite’ as a value that is “greater than any assignable
quantity” [176]. Sometimes mathematicians use another definition for ‘infinite’ that refers to a quantity
unable to be counted with a terminating sequence of natural numbers [177]. These technical definitions for
infinity are consistent with mathematical use, but in more general academic use and colloquial discourse
they are not semantically different from that which is indefinite, but still finite. Indefiniteness can also be
interpreted as fitting these mathematical definitions of infinity and the term ‘infinite’.

To be indefinite is to be too small or too large to be assigned a definite number, but still either (a)
assignable a definite number in practice as well as in principle or (b) assignable a definite number, albeit
only in principle.

Recall 4* as the variable for the largest number defined to date. A finite number higher than 4* would
have a value in the known number scale if it could be computed with current mathematical operations,
but because it cannot be computed with (at least current) mathematical operations, the value of such a
number is “off the scale” —that is, off of any known sequence of numbers in the scale of numbers that is
defined to date. A number with an indefinitely great value is therefore a number too big for anyone in
current practice to define with conventional methods, though not necessarily in future practice, and
certainly not in principle.

That is, some finite numbers that exceed the largest ever defined today (d*) may yet one day be
defined and so are only for now numbers of indefinitely large value. But there is also the possibility of
another type of indefinite number—a type of finite number that includes those numbers exceeding the
largest value of any number that will ever, or could ever, be defined in practice yet could still be defined
in principle. Both types of indefinitely large numbers are >d*, but both kinds of indefinitely large numbers
are finite.

Notice that this description of an indefinite number entails it is at least in practice “greater than any
[presently] assignable quantity,” even though it is still finite. As such, indefinite numbers are therefore
“unable to be counted with a terminating sequence of natural numbers”—at least with any natural
numbers defined so far—but they are still finite numbers.

Moreover, consider the periodic rationals and irrational numbers. They too are “unable to be counted
with a terminating sequence of natural numbers” —at least in the sense that they are incomplete numbers
and so there may always be more to count. That is, they are numbers that have series of digits that in
principle need not terminate growing, and so at any given time they have a countable quantity of digits,
but their totals of digits keep running as their sequences grow, and so such sequences can even be
construed as becoming indefinitely large (though still finite at any time) and in that sense unable to be
counted, at least in practice. Yet, finite the incomplete numbers remain.

Hence, these descriptions of off-the-scale finite values are consistent with the technical definitions
mathematicians gave to infinity. It is thus easy to confuse indefiniteness and infinity. And this confusion
is a problem because our conception of literal infinity is not supposed to be the same thing as
indefiniteness.
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However, we can distinguish infinity from indefiniteness not by the uncountability of the numbers as
such, but the way in which the numbers cannot be counted. Whereas an indefinite number is, among
other things, a number that cannot be counted in present practice but could be in principle, an infinite
number (in the literal sense of infinity) is a number that due to its limitlessness cannot be counted at all,
not even with a running total of digits, and not even in principle [178].

Moreover, the inability to count an indefinitely large collection is a matter of practice but not a matter
of principle; the inability to count an infinite collection is a matter of principle and not merely a matter of
practice. To be indefinite is to have an in-principle knowable, but in practice unknown, limit (and in some
cases, that unknown limit is variable in quantity); but to be literally infinite is to have a non-zero quantity
with no limit. Infinity doesn’t have a limit that is beyond calculation; rather, infinity is incalculable because
it is without a limit at all [179].

That is the difference between the indefinite and the infinite—with respect to considerations of limits
as such. However, if progressions of numbers are literally infinite sets, then they are also complete as well
as limitless. For instance, if the natural numbers are taken as a literally infinite set, N, then there is no
limit to the numbers in N, but they are also said to be ‘countable’ and ‘enumerable’ because N is also
complete as a set. This is a logically problematic issue for limitlessness seems to imply incalculability while
completeness seems to imply calculability, a problem we will return to in Chapters 10-14.

In contrast, progressions of numbers as indefinite series have no such problem. In the view that
number systems are not infinite sets but instead are indefinite series, number systems are invented
number scales comprised of the numbers that have been defined to date and under continual extension
as new numbers are invented. In that view, the scale of naturals is not a paradoxically complete and
limitless set (N) but an inherently incomplete series (NC) with a running total. A series such as NC is
calculable only insofar as new numbers are invented for N© and new numbers are always inevitable in
principle. No paradox arises if the naturals are an open series, NC, rather than an infinite set, N.

QUANTITY
|
| |
Finite Non-finite
|
| |
Definite Indefinite Afinite Infinite
ﬁkﬁ |
| |
Set Series Set Series
| |
Closed Open «<— Figurative Literal

Figure 6.6: An open (intrinsically incomplete) series—a serial indefinite—is synonymous with a series that is ‘infinite’ in a
figurative sense, whereas an indefinitely large set (or closed series, no matter how indefinitely protracted it was when it closed) is
not a figurative infinite.
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6.8 FIGURATIVE INFINITY AS SERIAL INDEFINITENESS

Quantitative infinity, in its figurative sense, is not a condition of being limitless per se but instead it is a
condition of having a limit that is always changing in measure. The figurative sense of infinity refers not
to a condition of being complete but rather of being forever incomplete, despite changing in quantity.
Figurative infinity is best defined as the condition of indefinitely changing in quantity.

Figurative infinity is a condition that applies not to certain completed sets but rather to intrinsically
incomplete series—series that are never completed because they never terminate in their progression. A
figuratively infinite series is one composed of an indefinitely changing quantity of occurrences. Figurative
infinity is thus the same as serial indefiniteness. A figurative infinity is the condition of being an indefinite
series (Figure 6.6), a series with no definite end but a series that is nonetheless finite at all times.

As figurative infinity just is serial indefiniteness, the notion that a number system such as the naturals
are indefinite series (NC) implies they can be considered as figuratively ‘infinite’ series. However, whether
‘infinity’ should be used as a synonym for that which is indefinite, even serially indefinite, is another
matter. Because mathematical definitions of infinity can confuse the infinite with the indefinite, we find
instances where the literally infinite can be confused with the figuratively infinite, a problem we were
trying to avoid. And a problem which we will return to in Chapter 24, where | will promote the use of the
term ‘indefinite’ over the figurative use of ‘infinite’ as a solution to avoid such confusion.

CHAPTER 6 IN REVIEW
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Finite quantities are either complete or incomplete.

Either way, they are also either definite or indefinite:

o definiteness: the state of having defined or specified limits.

o indefiniteness: the state of having undefined or unspecified limits.

% The indefinite is different than the infinite: the infinite is that which has and can have no
limit; the indefinite is that of which the limits are not known.

% There are two kinds of indefinite:

o collective indefinite: a collection in which the members, at an assumed time, all
together comprise an indefinite quantity.

o serial indefinite: a series the quantitative limit of which changes indefinitely.

Figurative infinity is serial indefiniteness.

If number systems (such as the systems of natural numbers, integers, real numbers, etc.)

are literally infinite sets, then they are complete as well as limitless.

< But if number systems are figuratively infinite series, then they are inherently incomplete

and so always finite: they are not literally infinite sets but instead are serial indefinites.
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7: SPEAKING OF INFINITE QUANTITIES

There are two different kinds of language we use to speak about quantitative infinity:

= natural language
*  formal language

Natural language is what we speak in our everyday, colloquial discourse. It is also what we use in artistic
discourse—such as poetry and the prose of literature—and what we use for some of the more academic
discourse in specialized disciplines (such as linguistics, history, philosophy, and so on). In contrast to
natural language, there is another broad area of discourse: formal language. Formal language is used for
symbolically representing ideas and concepts in technically precise forms of communication like codes,
formulas, proofs, axioms, theorems, and so on. Formal language is especially useful for making
calculations and measurements. Infinity can be defined according to either natural language or formal
language.

By contrast, there are two different kinds of language we use when speaking about qualitative infinity:

= formal language
= jnformal language

To make things even more confusing, the term ‘formal language’ has a different meaning when it is
contrasted with informal language. In that context, formal language is not the language of mathematics
and computer codes but instead the language of academic prose, journalism, political speeches, and the
like. Which makes that version of formal language a subcategory of natural language.

We will return to the formal/informal language contrast in § 25.1 when we review qualitative infinity.
Until then, I will stick to the natural/formal language contrast for the analysis of quantitative infinity.

7.1 INFINITY IN NATURAL LANGUAGE AND FORMAL LANGUAGE

The two definitions | supplied in § 1.3.1 for (quantitative) infinity—the definitions for both literal infinity
and figurative infinity—were given in natural language. Literal infinity was defined as “the condition of
being both complete and limitless in quantity,” and figurative infinity was defined as “the condition of
indefinitely changing in quantity.” These definitions for infinity express the conventional understandings
of infinity according to our ordinary, colloquial discourse in natural language.
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When mathematicians define infinity, on the other hand, they sometimes do so in terms of the formal
language of mathematics. They may use symbols for infinity (X, w, o), which serve as characters in the
formal language of mathematics, and such symbols may be used to define infinity in terms of
mathematical expressions, such as N £ X, which means N is by definition equal to . Other expressions
can be made from like formal language definitions; for example, n — oo and |2°| = ;.

However, mathematicians do not rely solely on formal language to express ideas and concepts about
infinity. Mathematicians make assumptions and draw implications about infinity that can be expressed in
natural language, and they also make explicit statements about infinity in natural language. With respect
to discourse on infinity in the field of mathematics, the uses of formal and natural language are not
mutually exclusive—you will find overlap in use of the two languages in mathematics.

For example, MathWorld, a mathematics website, defines infinity like so: “Infinity, most often
denoted as o, is an unbounded quantity that is greater than every real number” [180]. Clearly, this is a
natural language definition. However, the definition goes on to say, “Informally, 1/c0 = 0, a statement
that can be made rigorous using the limit concept” [181]. Although the definition says such an expression
is “informal,” the expression is still an equation in the formal language of mathematics. Moreover, the
definition then continues with further formal language expressions about infinity, the details of which will
not concern us. The point is that mathematicians do define infinity in natural language as well as formal
language, and often there is overlapping use of the two kinds of language just as this definition entry
shows.

Now you will notice the definition for infinity provided by a mathematics dictionary or by a resource
like MathWorld does not necessarily define infinity as | did when | supplied the literal and figurative
definitions for infinity. In fact, you will not find the definitions | provided for literal and figurative infinity
in any dictionaries of mathematics composed to date. You won’t even find them in common dictionaries
which cover colloquial usage of words. There is a reason for this.

‘Infinity’ has technical definitions in mathematics that differ from its lexical definitions in colloquial
speech. Any given dictionary will have several lexical definitions for the word ‘infinity’. The definitions for
‘infinity’ | distinguished as literal infinity and figurative infinity are not articulated in common dictionaries,
but | believe the definitions for those terms are lexical definitions insofar as they accurately articulate
common uses of the word ‘infinity’.

When in common discourse people say something is infinite and they mean it literally, they imply that
what they speak of is a collection and that as such it is complete and limitless in its quantity of members.
When people commonly say something is “infinite” in a figurative sense, they mean it just keeps going on
without stopping, even if it’s finite at each step of the way. So, the definitions for literal infinity and
figurative infinity are lexical definitions in that they express how the world ‘infinity’ is commonly applied
to collections.

However, the definitions for literal infinity and figurative infinity may also be considered ‘precising
definitions’ (see 88 3.1-3.2) insofar as the word ‘infinity’ is used for describing particular properties of a
collection according to particular contexts (such as limitlessness and completeness in a literal context or
merely ceaseless growth in a figurative context). Regardless, | will refer to the definitions provided for
literal infinity and figurative infinity as lexical definitions for infinity since | believe those definitions
capture what people assume the word ‘infinity’ means in ordinary, natural language.

In contrast to lexical definitions, especially as found in ordinary dictionaries, technical definitions for
infinity—some of which are in natural language, some of which are in formal language, and most often a
mix of both—are found in specialized dictionaries, such as dictionaries of mathematics and other
mathematical resources. Regardless, | prefer to start with the more lexical-type definitions of infinity in
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order to show what assumptions are typically made about infinity before proceeding to more technical
ground.

All the same, the two definitions for infinity | supplied in natural language characterize quite well how
the word ‘infinity’ is used, not only in colloquial speech but even in the specialized discourse of
mathematics. Mathematicians do indeed assume infinity is a condition of being complete and yet limitless
in quantity (the literal sense of infinity) or a condition of indefinite change in quantity (the figurative sense
of infinity). Notice the MathWorld definition of infinity as “an unbounded quantity that is greater than
every real number” can be interpreted either literally or figuratively. Perhaps infinity is a quantity “greater
than every real number” because real numbers are inventions of which we can always make more, in
which case ‘infinity’ is just a figure of speech. Or perhaps infinity is a quantity “greater than every real
number” because real numbers are already in a complete set that is itself “unbounded” in the sense of
being limitless. Even the technical definitions found in mathematics assume one or the other precising
definition for infinity | supplied: literal infinity or figurative infinity.

Let’s take a closer look at how infinity is defined with precision in natural language and defined
technically in the formal language of mathematics. From there we will see further evidence for how the
technical definitions found in mathematics assume, or sometimes imply, the precising definitions for
infinity | have already provided. As we’ll see, the precising definitions for literal infinity and figurative
infinity may therefore be understood as applying across any of the various contexts in which the term
‘infinity’ is used with respect to quantities, whether those contexts are of colloquial or academic
discourse.

7.2 ON LEXICAL AND TECHNICAL DEFINITIONS FOR INFINITY

Infinity is not explicitly defined in mathematics by lexical definitions so much as it is by technical
definitions. Moreover, there are also different kinds of technical definitions. Two common types in science
and mathematics are theoretical definitions and operational definitions.

A ‘theoretical definition’ explicates the specialized use of word according to a particular hypothesis or
theory. For instance, the word ‘intelligence’ may be defined according to a particular theory of mind
proposed in the field of psychology. That definition may differ from another theoretical definition for
intelligence proposed in psychology. And both of those definitions may differ from another theoretical
definition proposed in the field of computer science (as found in the more specialized discipline of artificial
intelligence). Likewise, there are various theoretical definitions for infinity found in both general
mathematics and the transfinite system.

In general mathematics, infinity may be theoretically defined according to the aforementioned
MathWorld definition or with a similar definition, like this one: “A ‘number’ which indicates a quantity,
size, or magnitude that is larger than any real number” [182]. If we turn to the transfinite system, we find
infinity according to different theoretical definitions. Transfinite mathematics and set theory also have
various theoretical definitions of infinity. For example, infinity can be theoretically defined as the
ordinality of a sequence of elements, or cardinality of a set of elements, greater than that of any natural
number in N. [183].

Moreover, mathematics and science often add precision to theoretical definitions with ‘operational
definitions’. An operational definition explicates the operations (independently repeatable procedures,
such as empirical tests or mathematical functions) that determine the conditions under which the word
applies.
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For example, a chemist may operationally define a functional group of molecular compounds, such as
the acyl group, as a compound group “formed by removing one or more hydroxy groups from oxoacids”
[184]. Typically, this is followed by a chemical formula showing the formation of the compound. Hence, if
the chemical operation is performed, the compound results according to the definition. So, we have an
example of an operational definition in the field of chemistry.

Mathematics too relies heavily on operational definitions for the words and terms it uses. We already
saw examples of this back in § 5.3.5 with respect to the word ‘finite’. We also find operational definitions
for ‘infinite’ and its cognates in set theory and transfinite mathematics. For example, Dedekind
operationally defined the term ‘infinite’ according to how a mathematician might determine whether a
collection is infinite or not: “a set is infinite if it can be placed in one-to-one correspondence with a proper
subset of itself” [185]. (What this definition means, and whether or not it makes sense is explored further
in §14.1.4, 88 15.2.9-15.2.12, and § 16.8.3).

The point is that in mathematics there are various theoretical definitions for the word ‘infinity’ and
various operational definitions for the term ‘infinite’ as expressed in formal language. In contrast, the
definitions for literal and figurative infinity | have provided are precising (but still lexical) definitions
articulated in ordinary, natural language—definitions expressing how the word ‘infinity’ is used in a
general, colloquial sense with respect to quantities, regardless of specific mathematical contexts or
operations.

Be that as it may, precising definitions are not necessarily so different from technical definitions that
none of them ever apply when the technical definitions are assumed. Indeed, despite their non-technical
nature, the precising definitions | offered for literal infinity and figurative infinity are assumed or implied
by most mathematicians, even as they refer to infinity according to its technical definitions in the midst
of engaging in mathematical procedures. The precising definitions for infinity are also assumed or implied
by most scientists and other scholars in their writings, as well as by much of the lay public. So much so,
that if anything is claimed to be “infinite” in a literal sense (regardless of a particular mathematical
operation involved) without assuming it to be both complete and limitless in quantity, then the claim that
it is infinite is false: it is not really ‘infinite’, at least not according to how infinity is conventionally thought
of in a literal sense. Similarly, if anything is claimed to be “infinite” in its figurative sense (again, regardless
of a particular mathematical operation involved) without assuming it has a finite quantity that ceaselessly
or persistently grows, then the claim that it is infinite is false according to how infinity is used in its
figurative sense.

7.3 ANSWERING OBJECTIONS TO LEXICAL DEFINITIONS FOR INFINITY

Some mathematicians might dismiss the lexical definitions of infinity as too crudely pre-theoretic to be of
practical use in their discipline. For mathematicians, terms like ‘infinity’ must be technically defined or
expressed in a way that allows them to be operationally used in functions, formulas, equations, and the
like. It is true that the literal and figurative definitions | offered for infinity do not (at least, not without
further explication) describe how infinity can be used for mathematical functions or other procedures.
However, the definitions were not intended for that. Rather, lexical definitions for infinity are intended to
capture only the tacitly assumed or implied literal and figurative meanings for the term ‘infinity’ and its
related forms (‘infinite’, ‘infinitely’, etc.), regardless of how the term is operationally used in particular
formulas and equations.
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This is similar to how the word ‘heat’ can be lexically defined according to its usage in natural
language, while that understanding of heat is still assumed regardless of how heat is theoretically defined
in physics, chemistry, or engineering and regardless of how heat is measured in those disciplines.

Consider a lexical definition for heat:

= heat: (lexical definition) the state of having or generating a relatively high degree of warmth [186].

This definition contains a subjective term, ‘warmth’, and a very imprecise description—“relatively high
degree” —so it is not scientifically useful.

To make the concept of heat more useful for conducting science, the term heat has been given various
technical definitions. For example:

= heat: (technical definition) the process of energy transfer from one body or system to another as
a result of a difference in temperature [187].

Or even more technically, according to theory:

= heat: (theoretical definition) the transfer of energy from one body or system (a transmitter) to
another (a receiver) that reduces the chaotic motion in the transmitter and raises it in the receiver.

Both definitions talk of ‘energy’ and ‘temperature’—technical and theoretical terms.

A prime example of ‘heat’ according to these definitions is a set of molecules chaotically bouncing off
one another but then calming down as their energy is transferred to another set of molecules, which
become more agitated as they receive the energy. Just think of boiling water in a pot cooling down (losing
chaotic motion) as the steam released from the pot (a form of energy) on a suspended tray of ice above
the pot then causes the water molecules in the ice to agitate (the molecules in the ice becoming more
chaotic), and the ice melts as a result of this transfer in energy. This is one of the ways heat can be
exchanged and there are a number of others. Heat can be exchanged radiantly, electrically, chemically,
mechanically, and so on.

In each case of heat transfer, heat is measured by changes in the temperature—the average kinetic
energy—of the sender (lowering) and the receiver (rising). And the measure of temperature is expressed
according to various scales: Fahrenheit, Celsius, Kelvin, and so forth. A chemist can then use such scales
to calculate the specific heat capacity of a metal, as given by equations such as the following [188]:

(125])/(2.40g)(182K) = 0287 K-1 g-1.

However, the way that heat is represented in this equation is not important for our purposes, nor is
the means of its measurement, nor is the scale of measurement used. The important point is that
regardless of how heat is technically defined according to a theory or how it is measured in physics,
chemistry, and engineering, those technical definitions of heat and its measurement assume the truth of
heat as lexically defined—the perception of having or generating a relatively high degree of warmth.

Moreover, the lexical definition of heat does not contradict the theoretical definition of heat. In fact,
the theoretical definition was designed to explain the phenomenon of heat as something understood
according to this lexical definition. Why are some things perceived as having or generating a relatively
high degree of warmth (heat by its lexical definition)? Because they reduce their own chaotic motion and
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raise it in the receiver by transferring energy (heat by its theoretical definition). The technical definitions
of heat thus assume the relevance and applicability of heat’s lexical definition.

All of this is a useful analogy for how the word ‘infinity’ is able to retain the relevance and applicability
of its lexical definition and even of its precising definitions (the definitions for literal infinity and figurative
infinity) regardless of how infinity is mathematically represented and used.

When mathematicians speak of a polygon of infinite sides, they are assuming literal infinity. Hence,
infinity retains its precising meaning as a state of completeness and limitlessness in quantity despite how
that condition might be represented and expressed in various theoretical and operational definitions in
mathematics, and regardless of the mathematical formulas and equations used to express infinity (we'll
take a closer look at these in later chapters).

Similarly, when mathematicians speak of iterations going “to infinity,” they often assume figurative
infinity. Hence, infinity retains its precising meaning as a state of continuous change in quantity despite
how change is represented or expressed in mathematical theories and operations (calculus functions,
transfinite progressions, etc.).

So regardless of how infinity might be technically defined and expressed in the formal language of
mathematics, even those so expressing infinity assume the accuracy of infinity conceived as literal infinity
or figurative infinity according to the precising definitions given.

And yet, some mathematicians might object to the use of a lexical definition for infinity altogether,
no matter how precise it is made in natural language. For instance, mathematician Tobias Dantzig (1884
—1956) had remarked that terms such as “finite and infinite, real and imaginary” have for mathematicians
“a quite specific and unambiguous meaning” while “to the philosopher who uses these terms as his stock
and trade they have also a very specific but an entirely different meaning” [189]. Dantzig went on to say
[190]:

No difficulty arises until the philosopher makes an attempt to present to the lay public
his analysis of the fundamental concepts of mathematics. It is then that the different
connotations attaching to such words as infinity or reality lead to hopeless confusion the
mind of the layman.

While Dantzig had a legitimate concern, it is not too difficult to overcome. As long as the philosopher is
aware of how mathematicians use terms like ‘finite’, ‘infinite’, ‘real’, etc., in the technical contexts of their
field, and does not misrepresent the technical use of these terms in mathematics, then the philosopher
not only can accurately present the mathematical meanings of these terms to the public but also logically
assess and critique the mathematical use of such terms. As we proceed, I'll do my best to distinguish
where mathematicians assume various theoretical and operational definitions for infinity of which there
are many peculiar to their trade.

Dantzig also overlooked that the various theoretical and operational definitions for terms used by
mathematicians do not always logically conflict with the lexical definitions for the same terms in lay
discourse, nor with more technical definitions found in other disciplines such as philosophy. In fact,
mathematicians may tacitly assume a term’s lexical definition even while using the term in the technical
contexts of mathematics. The philosopher merely points out that this is the situation for infinity.
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While engaging in certain mathematical procedures involving use of infinity as a term, mathematicians
typically assume infinity according to one of two conceptions:

= Infinity is a condition of completeness and limitlessness in quantity—the definition of literal
infinity, assumed in the transfinite system of mathematics.

Versus:

= |Infinity is a condition of indefinitely changing in quantity—the figurative definition of infinity,
assumed in general mathematics fields such as calculus.

Either precising meaning for ‘infinity’ may be tacitly assumed by mathematicians or implied by them, even
while performing mathematical operations and functions, just as such lexical meanings are assumed or
implied by non-specialists in everyday, colloquial speech.

7.4 INFINITY IN NATURAL AND FORMAL LANGUAGES

Technical disciplines like mathematics, symbolic logic, computer programming, physics, cosmology, etc.
are known for their use of formal language, but even they must use natural language to articulate the
meaning of mathematical terms expressed formally.

For example, let’s go back to one of our examples of an expression in the formal language of
mathematics that contains a reference to infinity: n — oo. This expression can be restated in natural
language as, “The sequence of numbers represented by the letter ‘n’ tends to infinity.” The natural
language translation of the formal language expression captures the meaning of the formal language
expression as a whole, while the natural language meanings for the expression’s individual characters or
terms are unstated and simply assumed or implied. So, the phrase “tends to infinity” is a natural language
translation of ‘— oo’, in which the meaning of ‘infinity’ is simply assumed or implied.

When infinity as X, w, or « is used in the formal language of mathematics, infinity is assumed to have
the meaning of some technical definition, like the technical definitions shown in previous examples. In
the expression n — oo, the symbol of infinity has a theoretical definition: a quantity greater than any finite
number. However, formal language expressions involving infinity, while assuming theoretic or operational
definitions, also tacitly imply one of the precising definitions for infinity. So the use of infinity in the
expression n — oo can be intended to imply either literal infinity (since to be “greater than any finite
number” the sequence of elements in n may be taken as ‘limitless’ and ‘complete’ in quantity) or figurative
infinity (if we take “greater than any finite number” to mean the ongoing construction of n as a series of
values that will surpass the value of any finite number we think up at a given time, though the series as
such is not really complete at any time and not literally limitless at any time). The theoretical or
operational definitions assumed for infinity during its use in the formal language of mathematics thus still
imply one of the precising definitions as well.

Nevertheless, some mathematicians resist any lexical definition for literal infinity by pointing out that
there are many different kinds of infinity used in mathematics, each having a different definition. As noted
earlier, the symbols for infinity (X, w, ) all represent infinity according to different technical definitions
(infinity in terms of cardinality, ordinality, function, etc.) relative to their operational uses in the formal
language of mathematics. But these “different kinds of infinity” are actually just different ways of ascribing
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the property of infinity as the term is commonly used to different mathematical operations, collections, or
numbers. The different ways of ascribing infinity all imply infinity to be either a quantitatively complete-
yet-limitless property (literal infinity) or an indefinitely changing process (figurative infinity). There are
various symbols and technical definitions for infinity that are used for various mathematical operations
and procedures, but their use all still assumes the same literal and figurative meanings according to
infinity’s precising definitions (again, similar to how the theoretical definition for heat has the same
underlying meaning in physics despite the different ways to measure it).

Consider, for instance, the ongoing construction of a sequence of numbers as represented in the
formal language of mathematics [191]:

fO)=1,F(1) =2,f(2) = 4, .

Here too mathematicians may represent the sequence with an expression such as n — . In more
technical terms, the expression means that the n™" member in the series is 27 and is said to “tend to
infinity” as n “tends to infinity.” What the expression “tends to infinity” means is up to the mathematician:
it can imply either the literal or figurative meaning of infinity regardless of the details of the mathematical
operation the expression is used to describe.

If we take “tends to infinity” literally, then the expression basically means that if the entire sequence
of numbers ever becomes complete, the numbers in the sequence become limitless in quantity; or, if the
sequence is actually complete, then the numbers in the sequence are actually limitless in quantity. This is
how the definition of literal infinity may be assumed or implied in the mathematical expression n — o
and similar expressions [192].

On the other hand, if we take “tends to infinity” figuratively, then the expression means that the
sequence of numbers represented by the letter ‘n’ continuously changes in the quantity of its members,
without a defined end. This is only figuratively ‘infinite’ because the sequence always has a highest number
generated at any time, and that highest number means the sequence is actually limited rather than
limitless, even as new numbers are generated for the sequence.

Once again, we see that oo in the mathematical operation n — oo refers to infinity but that “infinity”
can be interpreted as either literal or figurative infinity, quite independently of how the operation works.
The formal language expression of n — oo can be translated into natural language as “the value of n tends
to infinity,” where infinity is either assumed or implied to be literal or figurative infinity, depending on the
wishes of the mathematician.

There are other examples we can draw on as well. For instance, an equation in projective geometry
such as this:

ac+bB+cy=0

Wherein, a: :y are trilinear coordinates that represent the intersection of parallel lines on a point at
infinity [193]. Here too the reference to ‘infinity’ in the expression “point at infinity” can be taken either
literally or figuratively.

If we take the expression “point at infinity” literally, as it most often is in projective geometry, then it
is implied that the parallel lines of the coordinates eventually meet at a point, the complete distance to
which is limitlessly far away. The complete-though-limitless condition of these lines is an instance of
infinity in its literal sense.
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Some might object that in projective geometry the formal language does not really capture
limitlessness, but only indefiniteness of extension. On the other hand, to say there is a point “at” infinity
sounds like a particular distance toward which there is a completed progression. So, despite how infinity
is technically represented in the formal language of geometrical expressions, the infinity of the formal
language may still be assumed or implied to mean a quantitative condition of completeness and
limitlessness—literal infinity.

Alternatively, because the formal language of geometry is really only indefiniteness in operation, we
might instead take the notion of a “point at infinity” figuratively, as it is in ordinary geometry. In which
case, extending the lines to a “point at infinity” simply means that no matter what value the coordinates
are given, no matter how far we extend the lines, they never actually meet. To say the lines converge with
a point at infinity would then be to use ‘infinity’ in its figurative sense as implying that we can continuously
change the length of the lines, extending them ever further, and they are never brought to a point at
which they meet—not even one limitlessly far away. Rather, the lines simply continue without
intersecting. Again, this is only ‘infinity’ in a figurative sense because the extension of the lines is always
limited no matter how far we make them reach or what values we give to the coordinates. The procedure
of constructing the lines continues, but there is always a limit to the lines that have been constructed at
each step of the way.

Therefore, the formal language expression aa + bfi + cy = 0 for the convergence of parallel lines
has a natural language translation as, “The three parallel lines with the distances a, b, and ¢ converge to
a point at infinity,” and this translation in turn the mathematician either assumes or implies to be infinity
according to either the literal or figurative sense. The figurative sense better fits the operations of
geometry, which stresses the relative limitlessness of the lines but not their completeness. Arguably, the
literal sense fits the operations of projective geometry, which at least partially seems to suggest the
completeness of lines extended indefinitely in mathematical operation. But the choice as to which sense
of infinity applies all depends on the intent of the mathematician making the expression or on the
interpretation of the mathematician in construing the expression.

We can similarly translate other formal language expressions containing infinity into natural language
and again find in each case that infinity can be meant either literally or figuratively according to the
precising definitions. Some of these expressions include formal language representations for infinite sets
like,

[2°] = Ny
and representations of infinite amounts summed,
0 + 00 = 00

and infinite products,
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and infinite accessions,

=0

and so on. In each formal language expression, use of the term ‘infinity’ can be assumed or implied to be
infinity by either the literal or figurative definition (depending on the intent of the mathematician) when
the natural language translation of the expression is made.

Regardless of how it is symbolically represented or used in calculation, infinity thus has the same
underlying meaning. Even though different mathematical expressions may use different kinds of numbers
that are manipulated by different rules, the expressions all have in common that representations of
infinity, when translated into natural language, imply either infinity’s literal meaning (complete and yet
limitless in quantity) or its figurative meaning (continuously changing in quantity). Whichever of these
meanings for infinity is implied depends only on the assumptions or intent of the individual mathematician
making the given expression.

As to the various definitions of infinity stipulated in mathematics textbooks and dictionaries, these
theoretical and operational definitions typically describe either how infinity is used in particular
procedures (like extrapolating to a ‘point at infinity’) or what procedures can be used to determine
whether something is infinite or not (like being able to pair off one-for-one all of a given set’s elements
with some proper subset of its elements). Such theoretic and operational definitions in the field of
mathematics do not contradict my thesis that there can be articulated lexical definitions for infinity, the
meanings of which most technical definitions and uses in formal language assume or imply by their natural
language translations.

The precising definitions provided for literal and figurative infinity express what the concept of infinity
itself is assumed or implied to mean, regardless of the details in any particular mathematical procedure
referencing infinity. All of the usual mathematical expressions involving infinity, where presented either
in symbolic notation or in verbal definition, fit infinity’s literal and figurative senses as | have articulated
them. Mathematicians who see the natural language definition of literal infinity as of no relevance are in
fact assuming it in the very way they speak of infinity. To say there is a “point at infinity” or that something
goes “to infinity” or that there is “infinitely many” of something are all verbal expressions that typically
(though not always) mean literal infinity. On the other hand, if the mathematical operation said to be
“infinite” is a process imagined to ceaselessly continue without reaching an end, then that idea of ‘infinite’
fits the definition of figurative infinity. In which case, the mathematician is still assuming an ordinary,
natural language definition for infinity is as pertinent as any technical definition.

| shall therefore maintain that the precising definitions for literal infinity and figurative infinity
represent well how the term infinity is conventionally used, even by mathematicians and scientists using
formal language, because expressions in formal language can be translated into natural language, where
a choice of infinity’s precising definitions apply.
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CHAPTER 7 IN REVIEW

+« Infinity has lexical and precising definitions in natural language and technical definitions in
the formal language of mathematics.

+«+ The precising definitions for infinity capture the literal and figurative meanings of infinity in
its quantitative sense, and these neither contradict nor imply the technical definitions and
operational uses of infinity in mathematics.

< Just as the lexical definition of heat (as the state of having or generating a relatively high
degree of warmth) may be assumed or implied regardless of how heat is technically defined
and measured in the sciences, so too the lexical or precising definitions for infinity may be
assumed or implied regardless of how infinity is technically defined or expressed in the
formal language or mathematics.

% Use of the symbols for infinity (X, w, o) in equations all presuppose either the literal or

figurative sense of quantitative infinity.
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PART II:
ON LITERAL INFINITY
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8: THE STORY OF LITERAL INFINITY

Infinity is “the condition of being complete and limitless in quantity.” However, it should be emphasized
that historical scholars never defined infinity with this exact phrasing. Even so, | do believe the definition
correctly articulates the meaning of the word ‘infinity’ as the concept of infinity has been passed down
through the ages, at least inits literal sense with respect to quantity. In Chapter 23 we will examine infinity
according to its primary figurative sense, another version of quantitative infinity, and in Chapter 25 we
will examine qualitative and absolute infinity, which are theological versions of infinity. But literal infinity
| take to be the main sense of what infinity has been about from ancient to contemporary times.

8.1 INFINITY FROM PAST TO PRESENT

The earliest conception of infinity dates back to around 600 Before the Common Era (BCE). It’s unclear
who first proposed the idea of infinity. Depending on when the Isa Upanishad of the Yajurveda was written
(which most scholars believe originated somewhere between 1,000 and 600 BCE), the concept of infinity
may have originated in India. However, most scholars attribute the origin of the concept of infinity to the
ancient Greeks of around the same time period.

The ancient Greeks used the term apeiron (Gnelpov, pronounced in English as “d-peer-on”) for the
condition of being endless, boundless, indefinite, or without quantitative limit. It was a term applied for
guantities that had at least the appearance of no limit in measure, and so apeiron is usually translated as
infinity. The variant to apeiron means ‘the infinite’, though the English adjective ‘infinite’ is usually the
translation for the Greek cognate apeiros, which is also a Greek word sometimes used to indicate a
condition of being quantitatively or qualitatively ‘indefinite’ [194].

Strictly speaking, apeiron applies to anything that has no end of a given kind even though it is limited
in other respects. For example, the ancient Greeks described a circle as an instance of apeiron in terms of
its curvature even though it is limited in diameter. The term ‘apeiron’ (more precisely, apeiros) was also
used for what we would call ‘indefinite’ or ‘indeterminate’ since such things appear to be without limit to
measurement even though they are really finite.

For example, apeiron was applied to what we would today refer to as a fractal, a term designating
any shape comprised of self-similar patterns repeating across scales, like the spiral pattern of a seashell,
or a shape made up of irregularities in structure, such as the boundary of a coastline or the surface of a
crumpled cloth. Any instance of a fractal shape that we find in nature, like a seashell or a coastline, is
limited in size but the shape will be hard to define with precision and, in principle, the fractal pattern can
be constructed with no predefined end; fractals are in that sense ‘indefinite’ or, as the Greeks would have
said, apeiros—without any apparent limit in measure.
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The ancient Greeks thus regarded anything indeterminate—either due to being disorderly or due to
being unmanageably complicated—as an instance of apeiron. They came to apply the concept of apeiron
not only to closed curves or fractal objects but also to quantities that were so large as to be incapable of
exact determination, quantities so large they can’t be defined with known numbers—collective
indefinites. Then too, in some contexts, the ancient Greeks used the term ‘apeiron’ to describe something
finite as having unknown and changing limits that we cannot in practice measure—in other words, serial
indefinites.

In other contexts, apeiron referred to that which is not just indefinite in practice but even in principle;
that is, having absolutely no definable limit to the whole, entire, finished, and full amount. Which is to
say, a quantity of members that cannot be defined because it is limitless even while being complete, as
is. Hence, apeiron applied to what most English-speaking folks today call ‘infinite’ in the literal sense of
the term.

8.1.1 Infinity According to Anaximander

The earliest known references to apeiron are from the philosopher Anaximander (610-546 BCE). In the
philosophy of Anaximander, apeiron was the quantitatively complete and limitless state of the ‘arche’
(&pxn, pronounced “ahr-see”), the stuff out of which everything is made. Anaximander also held the arche
to be the ‘physis’ (duoLg, pronounced “fi-seez”)—the natural, prime cause of the Universe’s existence
[195] [196]. He further proposed the arche to be an instance of apeiron—that is, the arche is literally
infinite, both as the fundamental element of reality and as the ‘prime cause’ of the Universe’s existence
[197]. Since the arche is the fundamental stuff of which everything is made, Anaximander also attributed
apeiron, as the property of being literally infinite, to the Universe as a whole since the arche encompasses
all (the complete quantity of) worlds that exist throughout space and time. And since Anaximander held
the arche, and consequently the Universe, to be literally infinite, Anaximander named the arche Infinity
(i.e., the Infinite—or in Greek, the Apeiron (10 &melpov) [198].

That Anaximander knew about, and used, the concept of literal infinity would be considered
controversial according to some modern scholars. It is sometimes claimed that ancient Greek thinkers
sought to avoid the idea that some quantities might be literally infinite—both complete and limitless—
since they did not have a mathematics of the infinite. But this is not entirely true since it confuses infinity
as a quantitative concept per se with infinity as a quantitative concept used in mathematical operation.

It is true that early Greek mathematicians and philosophers like Anaximander proposed no
mathematical operations using infinity in the literal sense of the term, and so did not apply literal infinity
to geometrical measurements or add various infinite collections together. However, it is the opinion of
some translators of ancient texts that many ancient Greeks, in using the Greek words Gnelpot or @mnelpov
(apeiron as ‘infinite’ or ‘infinity’), often implied a literally complete and limitless condition for multitudes
of coexisting elements rather than simply a state of (finite) indefiniteness or indeterminateness.

Support for this interpretation of apeiron’s meaning can be found in the work of a scholar of ancient
Greek philosophy—John Burnet. He argued that what | have termed ‘literal infinity’ is implied by &nelpot
or dmelpov, as used in the works not only of Anaximander but of other ancient philosophers such as
Anaximenes (585-528 BCE). Burnet states that when Anaximander and Anaximenes described the
magnitude of the primal substance from which all the worlds of the Universe appeared, their use of the
term ‘apeiron’ meant literal infinity.
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As Burnet explained [199]:

We must picture, then, an endless mass...stretching out without limit on every side of the
world we live in. This mass is a body, out of which our world once emerged, and into which
it will one day be absorbed again...

..I have assumed that the word Gnelpov means spatially infinite, not qualitatively
indeterminate, as maintained by Teichmiiller and Tannery...the primary substance of
Anaximander was dmnelpov and contained all the worlds, and the word mepiéxewv
everywhere means "to encompass," not, as has been suggested, "to contain potentially.”

If Burnet is correct, then even as far back as Anaximander, infinity was regarded in a literal sense as a
condition of completeness and limitlessness that applied to multitudes (quantities) such as the multitude
of worlds throughout the Universe. They may not have had the mathematical tools to calculate infinite
sets, but they had a notion of what it would mean to be literally infinite.

8.1.2 Zeno and Infinity

It took another hundred years after Anaximander for philosophers to propose that infinity had logical
implications for geometry and the measurement of collections in nature. The philosopher Zeno of Elea
(490430 BCE), for instance, applied the concept of (literal) infinity to finite portions of space and time.

Zeno was among the first to propose that any finite measure of distance (like the length of a stadium)
contains a literally infinite quantity of points, that any finite measure of duration (like the time it takes to
run the diameter of the stadium) contains a literally infinite quantity of instants, and that all finite
measures are themselves part of a literally infinite magnitude [200]. Some scholars misinterpret Zeno as
believing only in figurative infinity and not in literal infinity, but if Zeno had no conception of literal infinity,
his famous paradoxes involving motion through infinite quantities of points in space and instants in time
would have been much ado about nothing. (We will take a closer look at one of Zeno’s paradoxes in
Chapter 20.)

As with his contemporaries, Zeno did not propose calculations directly involving literal infinity, like
adding infinite sets together. Mathematical operations involving literal infinity did not occur to the
scholars of this day; they considered literal infinities to be beyond any direct calculation. At best,
mathematics could only indirectly imply the literally infinite with figuratively infinite (indefinite)
progressions. However, Zeno did make use of figuratively infinite progressions, like dividing a line in half,
then dividing one of the half-lines in half again, and repeating this process indefinitely. He used such
figuratively infinite progressions to imply the existence of literally infinite magnitudes. Literal infinity was
assumed to be implied by our potential to carry out operations “without limit”—that is, implied by our
potential to carry out operations either indefinitely (“without limit” in a figurative sense) or without any
limit at all. If we could at least in principle ceaselessly carry out a mathematical operation like dividing a
line into ever smaller units, this potential was thought to imply the existence of a literally infinite number
of points making up the line. Zeno thus understood very well what infinity meant in its literal sense.

| therefore maintain with Burnet the interpretation that the ancients commonly regarded infinity as
a literally complete and limitless condition of multitudes or collections. It may be that they simply had no
conceptual tools to directly manipulate or calculate literally infinite collections with mathematical
operations or functions; so instead, they relied on figuratively “infinite” progressions as a means to
logically imply the literally infinite.



230 Forever Finite Kip K. Sewell

8.1.3 Socrates and Plato Had a Different Take on Infinity

However, the foregoing does not mean the ancients were unanimous in their convictions as to how
infinity, or apeiron, should be regarded. Some ancient philosophers used apeiron to mean only a condition
that is indefinite or indeterminate (figuratively infinite when applied to processes or sequences) rather
than a condition that is complete and limitless in quantity (literally infinite). However, the writings of Plato
(427-347 BCE) recorded that Socrates (~469-399 BCE) used the term ‘apeiron’ or ‘infinity’ to clearly mean
literal infinity when he discussed multitudes and the diversity of things that we see in the world around
us. In Plato’s Theaetetus, Socrates speaks of an “infinite multitude” of motions and an “infinite number”
of unnamed perceptions humans possess [201]. Socrates made many other references to literal infinity,
such as those depicted in Plato’s work Philebus [202]. Nevertheless, Plato, the star pupil of Socrates,
believed literal infinity belongs only to the ‘world of appearances’ and not to the ‘real world’ of
mathematical Forms beyond our sensory perceptions (see 88 16.2.2-16.2.3 and § 16.2.6) [203] [204].

8.1.4 Aristotle’s Potential Infinity and Actual Infinity

It was Aristotle (384-322 BCE) who explicitly distinguished between the two different senses of
guantitative infinity. Aristotle coined the terms actual infinity and potential infinity. In Aristotle’s view, the
Universe was never created. So, the past contains, in some sense, an actually infinite collection of events
that have already elapsed. All other infinities, including the “infinity” of future events, are only
“potentials” [205]. In our terminology, Aristotle’s position would seem to imply that the past is literally
infinite while the future is only figuratively infinite (though he may have been using the term ‘actual’ in a
slippery way—a subject we will return to in § 23.1).

Like his predecessors, Aristotle had no mathematical means of operating with literal infinity, such as
adding two literally infinite sets together to produce totals of infinite sets, but his distinction between
actual and potential infinity shows that he did conceive of actual infinity as a quantitative condition that
is literally complete and limitless.

Aristotle did not really invent the concept of infinity in its literal sense as a complete but limitless
guantity. Instead, Aristotle explicated one of the common uses of the term ‘apeiron’ or ‘infinity’ by giving
it a more formal name—actual infinity—and explaining its use in contrast to another common usage of
the term—which he called potential infinity—where no one had explicitly made this distinction before.

Likewise, it is also not the case that Aristotle invented use of the term ‘apeiron’ or ‘infinity’ in
reference to processes that continue indefinitely while always remaining finite. Infinity was already
commonly used according to these two senses—on the one hand, to mean that which is complete and
limitless in quantity (literal infinity) and, on the other hand, to mean that which is indefinite but not
literally complete and limitless (figurative infinity).

What Aristotle accomplished was to categorize and point out the differences between the two
colloquial uses of infinity or ‘apeiron’ by distinguishing indefiniteness as a condition that could go on
accumulating but is never complete at any given time (his ‘potential infinity’ and what we should call
figurative infinity) from a condition of being complete but also limitless (literal infinity, or in his parlance
‘actual infinity’). So, it’s not that these concepts were invented with Aristotle; rather, they were simply
not labeled or addressed until Aristotle formally named and attempted to explicate and define them [206].
(However, as | will argue in § 23.1, Aristotle’s use of the terms ‘actual’ and ‘potential’ in application to
infinity was misleading and led his analysis astray; he should have used ‘literal’ and ‘figurative instead.)
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It's been commonly thought that, even after Aristotle, ancient mathematicians sought to avoid use of
literal infinity (or actual infinity) in favor of a figurative notion of infinity (or potential infinity). However,
that is rather misleading. While Aristotle’s influence predominated among the intellectual elite writing on
matters pertaining to infinity from ancient through medieval times, it’s also true that we find examples of
literal infinity referenced in the ancient world and on into later centuries.

8.1.5 Euclid’s Conception of Infinity

A good example of another figure in the ancient world making use of literal infinity is the mathematician
Euclid (325-265 BCE), who implied literal infinity to be a quantitatively complete and limitless condition
for certain collections of objects and expanses of space. Some scholars, however, have argued that Euclid
had no notion of literal infinity because he too had no mathematical operations—no algebra, calculus, or
transfinite math—for dealing with literal infinity. Mathematician Samuel T. Sanders (1872-1970), for
example, proposed that Euclid’s concept of parallel lines as extending “to infinity” is simply a figurative
way of saying lines are “indefinitely extensible” [207]. According to Sanders, Euclid was positing only
figurative infinity. But contrary to those who believe that Euclid knew nothing of literal infinity or sought
to avoid it, Euclid’s writings do not state infinity to be only figurative [208]. The argument that Euclid
regarded infinity to be only figurative is based more on what Euclid did not say—he did not claim to
actually calculate the literally infinite—rather than anything he did say.

In some passages of his book Elements, Euclid talks of “producing” parallel lines to infinity where the
production of the lines can only be carried “to infinity” in a figurative sense [209]. However, Euclid also
says that “there exist an infinite multitude” of lines as if the infinitude of lines is already there waiting to
be discovered [210]. | take it that Euclid thought the figurative infinity of lines we produce in mathematical
operation implies a literal infinity of lines out there in a Platonic world waiting to be approximated by our
constructions. To carry out a process of extending lines “infinitely” may be figurative, but the lines also go
“to infinity” in the sense that there is a literal infinity that the lines are reaching for.

Euclid thus may have assumed literal infinity is logically implied by his figuratively infinite method of
exhaustion [211]. This method could be used as a means of calculating the area of a shape, like the area
of a circle, by exhaustively pursuing ever closer approximations to the shape [212]. For instance, one might
keep adding sides to a polygon until the sides together become indistinguishable from the closed curve of
a circle. According to Euclid’s method of exhaustion, if we examine the area of the polygon closely, we
will find it never quite matches the area of a circle, no matter how long we keep adding sides; we would
become exhausted from trying to approximate a circle—hence the name of the method. Euclid realized
his method of exhaustion was inadequate for producing a literally infinite multitude of sides. At best, his
method of exhaustion shows only that geometrical figures can be ceaselessly constructed (figurative
infinity). Nevertheless, Euclid seems to have regarded the circle as a polygon with a literally infinite
number of sides and used his method of exhaustion as an analogy to demonstrate this, [213] an idea later
supported by the ancient mathematician Archimedes (287-212 BCE). The idea was that if one could
overcome exhaustion with godlike energy, one could create a polygon with infinitely many sides—a
perfect circle; but alas we are not like the gods.

8.1.6 Archimedes Reckons Infinity

We find an even clearer example of literal infinity in The Sand Reckoner by Archimedes: “There are some,
King Gelon, who think that the number of the sand is infinite in multitude” [214]. This statement is clearly
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a reference to the concept of literal infinity since “the sand” is a collection of components—individual
grains of sand—existing together all at once. Archimedes does not use Aristotle’s “actual infinity” and
does not reference Aristotle at all in The Sand Reckoner. He simply takes it for granted that infinity is
thought of as complete and limitless in quantity. In fact, Archimedes contrasts an infinite collection with
one that is finite but indefinitely large in count. Archimedes states, “Again there are some who, without
regarding [the quantity of grains of sand in the world] as infinite, yet think that no number has been
named which is great enough to exceed its multitude” [215]. This is clearly a contrast of literal infinity with
a condition of indefiniteness that characterizes figurative infinity. Scholars have even discovered that
Archimedes not only knew of literal infinity but made some use of the concept in his mathematical writings
(though nothing with the rigor of algebra, calculus, or transfinite mathematics) [216].

8.1.7 Infinity Becomes Operational

All of the foregoing examples illustrate that the notion of infinity as a complete and limitless quantity goes
all the way back to Anaximander’s time, maybe even earlier. Moreover, the use of literal infinity in
guantitative thought experiments (from Zeno to Aristotle) and mathematics (Archimedes) even predates
the invention of algebra and textbook calculus by over 1,800 years.

During the Medieval Period, or Middle Ages (5" to 15™ Centuries), Aristotle’s philosophy became
popular among Christian theologians, and so his motto, Infinitum actu non datur (i.e., There is no actual
infinity), held sway with the majority of mathematicians and philosophers in Europe in that time. You
might recall, though, that Aristotle believed the past to be in some way an ‘actual infinite’, so his motto
clearly shows an internal inconsistency on the subject (see § 23.1 for more). Regardless, the motto is how
Aristotle was commonly understood in the Medieval Period, as shown in the writings of the theologian
Thomas Aquinas (1225-1274), who acknowledged infinity according to Aristotle’s distinctions of
‘potential infinity’ and ‘actual infinity’, denying that actual infinity exists and championing potential
infinity as the infinities found in mathematics and physics [217].

Notice that in order for Aristotle’s followers to deny that infinity can be literally complete and limitless
just goes to show that the scholars of the time indeed knew what ‘infinity’ commonly means in its literal
sense, according to its ordinary language usage. Moreover, despite that Aristotle’s inconsistent motto was
widely held among medieval scholars, there were nevertheless mathematicians and philosophers even in
that period of time that championed the notion of literal infinity (for example, 13" Century scholar Robert
Grosseteste and 14" Century scholars Gregory of Rimini and Gersonides) [218]. The work of those scholars
did not catch on with respect to mathematical use, however, and so literal infinity remained regarded in
European academia, through the Medieval Period until at least the 16" Century, as unusable in
mathematical calculation, even though literal infinity is nevertheless a quantitative concept.

In the 16" Century, mathematicians then began using literal infinity not just as a quantitative concept
but also as a ‘mathematical concept’ in the sense of working with infinity in numerical functions and
operations the way it is in algebra and calculus today. Nevertheless, even during the 1700s, while
mathematicians held that some collections (sequences, series, sets, etc.) have a condition of being
complete and limitless in their quantity of elements, it was still the case that literally infinite collections
could not be calculated in mathematics in a way that could give definite results without contradiction. At
best, when literal infinity was dealt with in mathematics, it was treated only as the implication of
“irrational” progressions (like 3.14159...); figuratively infinite operations were held to imply literally
infinite conditions that could not be represented by a definite result. This much had not changed since
Euclid’s time.
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In the 17" and 18™ Centuries, the renowned scientist Isaac Newton (1642-1727) and the lesser
renowned philosopher Gottfried Leibniz (1646—1716) independently reinvented calculus (it was first
invented in medieval India) and further developed it into its modern form [219]. During this time, algebra
was also further developed from its medieval Islamic roots. With the refinement of algebra and calculus,
the situation changed somewhat, particularly in Europe: infinity became more widely recognized as usable
in math to generate definite results [220]. For example, mathematicians created functions of calculus for
using oo to produce numbers “converging” to 0 (figurative infinity) and most mathematicians assumed
that co implied a literal infinity of values between 0 and 1. But since the use of oo was, operationally
speaking, ‘infinity’ only in the figurative sense, there was even by the 17" Century no method to calculate
literal infinities in a direct and unambiguous manner.

This is not to say that literal infinity had no reference in mathematics. Even if literal infinity was not a
concept used for making calculations in any direct manner, it was still something mathematicians thought
was implied or connoted by operations carried out in a figuratively infinite fashion. Newton clearly
assumed a geometrical line has a literally infinite number of infinitesimals, though he had no method for
calculating them. Newton said such ‘infinitesimals’ could not be “distinguished” or “attended to.” So, he
instead posited ‘fluents’ (minuscule, yet finite, units of motion) that operated at a speed he called a
‘fluxion’ (an ephemeral, yet finite, rate) as the basis for constructing lines, planes, etc. for use in calculus
[221]. Newton's fluents and fluxions did not catch on; instead, it was the calculus of Newton’s rival Leibniz
that would prove more influential. And yet, even Leibniz could not offer an entirely coherent calculus for
dealing with literal infinity in a direct manner.

The functions of calculus only produced indefinite—figuratively ‘infinite’—progressions that
mathematicians regarded, at best, as pointing to literal infinity; there were still no mathematical
operations to directly calculate literally infinite collections. It was not for lack of trying, however. Leibniz,
for one, stated he was “totally in favor of actual infinity...” even if he had no idea how to calculate it [222].
(Though, as we will see in § 23.4.1, what he meant by ‘actual infinity’ may be misleading.) Mathematicians
recognized their inability to directly use literal, or actual, infinity in mathematics until Bolzano proposed
a system that attempted to directly calculate literal infinities [223].

This overview of infinity throughout history shows that, while it is true we have no evidence of
mathematical treatments of literal infinity that allowed the concept to be (at least seemingly) used in
calculations until a posthumous publication of Bolzano’s work (1851), and certainly nothing rigorous until
the work of Cantor (published in 1874), that does not mean literal infinity as a quantitative concept was
not widely known prior to the 1800s. Philosophers, scientists, scholars, and the educated portions of the
public throughout the centuries since Anaximander had the concept that ‘infinity’ referred to a condition
of being limitless in quantity and yet also, in some sense, complete. It's simply that until the work of
Bolzano and Cantor literal infinity had no technical definition as a counterpart that could be used in
mathematical operations and functions. So even though mathematicians prior to the 17™ and 18
Centuries did not have our current mathematical methods for manipulating ‘infinities’, this fact does not
mean the literal meaning of infinity was not commonly assumed; it only means literal infinity was not
regarded as calculable until the right methods were invented [224].

8.1.8 False Claims to Orthodoxy on Infinity
Literal infinity is a concept that has been around since Anaximander. And its logical coherence has been

largely (but not entirely) unquestioned. Most of the skepticism regarding literal infinity came not from
philosophers charging it with logically contradictory meaning, though there were a few who did (§ 23.2.3
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and § 23.3.1 for details). Rather, most of the skepticism about the literally infinite came from those
mathematicians, following in the tradition of Aristotle, who believed that literal infinity could not be used
in mathematical operations without contradiction.

Due to the intractability of calculating literal infinities, mathematician Carl Friedrich Gauss (1777-
1855), in a 12 July 1831 letter to astronomer Heinrich Christian Schumacher, stated his position that
‘infinity’ is only a figure of speech and not to be taken literally in mathematics [225]. Gauss did not say
that, as a quantitative condition of completeness and limitlessness, literal infinity was illogical. Rather, he
only indicated that ‘infinity’, taken literally, couldn’t be used in mathematics with any precision and should
therefore be regarded as only a figurative notion, like Aristotle’s ‘potential infinity’.

However, it seems many mathematicians understood the operations of algebra and functions of
calculus as nevertheless implying literal infinity. This is seen some twenty years later when Bolzano in his
Paradoxes of the Infinite stated that literal infinity is the commonly accepted implication of our ability to
plot a figuratively infinite series of points along a line or index a figuratively infinite series of instants
between any two moments of time [226]. Our ability to plot points or index instants only until exhaustion
implies, in Bolzano’s view, that there is already embedded in lines a literally infinite number of points to
plot and there is already situated between any two moments a literally infinite number of instants to
index. Bolzano assumed this was the common opinion among mathematicians [227]. He said that there is
“scarcely any mathematician” who would deny literal infinities, like infinitely many points in a line
segment, are mathematical realities and instead hold that infinities don’t really exist but are instead only
figuratively implied by mathematical calculations [228]. Bolzano claimed that being literally complete and
limitless was implied by the concept of infinity and that this was the accepted norm among
mathematicians, rejected only by “opponents of all infinity” (such as myself) whom in Bolzano’s day
proposed we should keep using the term ‘infinite’ as a figure of speech (like Gauss, but unlike myself)
[229].

What Bolzano’s contradiction of Gauss’s view on the proper use of infinity shows is that literal infinity
was indeed commonly understood to be a condition of completeness and limitlessness in quantity, as
endless divisions or additions of numbers were often assumed to imply. It was simply due to the
mathematical intractability of making literal infinity into anything more rigorous than an indirect
implication that some scholars, such as Gauss, falsely claimed orthodoxy in their take on infinity as only a
figurative notion while either implying or claiming that those not holding their view are the heretics. As
the writings of Bolzano indicate, such claims to orthodoxy do not necessarily represent the common view.
It appears then, there was an intellectual battle among mathematicians to establish an orthodoxy
regarding how infinity should be considered—as literal or as figurative—a battle that had been quietly
going on in academia for hundreds of years.

A little over twenty years after Bolzano’s publications, Cantor took the side of Gauss insofar as
agreeing that infinity is typically considered to be a figure of speech—at least, among mathematicians.
And perhaps the majority opinion on the subject among mathematicians did vacillate from one decade or
century to another. In any case, Cantor’s view flew in direct contradiction to Bolzano’s claim that scarcely
any mathematician would make infinity solely figurative. But by the time of Cantor’s career, perhaps
opinion on the nature of infinity was beginning to favor Gauss’s view, at least among academics practicing
professional mathematics.
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8.1.9 Rise of the Transfinite System

Despite the fluctuating consensus that infinity should only be thought of as a figurative notion, Cantor
wanted to overthrow Gauss’s popular position on the matter. Not only did Cantor believe literal infinity
to be a logical concept, but he also sided with Bolzano in belief that the concept of literal infinity could be
used in mathematical operations.

In the late 1800s, Cantor published his first work on the transfinite system [230], making direct use of
literal infinities in calculations with the use of new symbols for literally infinite sets: w and N. Cantor
distinguished his own procedures for calculating with literally infinite sets (what he called “proper
infinities”) from the operations used for infinite sequences and series in general mathematics, which
Cantor claimed, like Gauss, are only for figurative (or “improper”) infinities. In an 1871 paper, Cantor
represented literal infinity by the symbol co but by 1874 he was instead using w for that purpose; the
lemniscate (o) and related symbols he began using more often as a representation for figurative infinity
[231].

Essentially, Cantor’s transfinite system interprets infinity to be literal while allowing infinity to be
regarded as either figurative or literal in general mathematics. Mathematicians today largely side with
Cantor on this interpretation, which is why they now often claim that oo should be taken as representing
only figurative infinity while X and w represent literal infinity. As shown previously, this dichotomy does
not always hold in actual mathematical practice, however, as o is sometimes taken quite literally even in
algebra and calculus.

8.1.10 Literal Infinity from Past to Present

Table 2 depicts the views on infinity held by a sample of mathematicians, scientists, and philosophers
from over the centuries [232]. Though the samples given in Table 2 are, for the sake of brevity, far from
comprehensive, they nevertheless represent what some of the major scholars have had to say about
infinity up to the present. For convenience, | have paraphrased the statements of many scholars in the list
to distill their positions on infinity, while all quotes are from their original works, or translations of them.
As the table shows, each listed scholar has made statements that assume infinity to be a condition of both
completeness and limitlessness in quantity.

That is not to say that all of the listed scholars believe that something quantitatively infinite in the
literal sense of ‘infinity’ actually exists in the real, physical world (Thomas Aquinas, for example, did not).
It’s just to say that they all recognize what it means to be quantitatively infinite in the literal sense of the
term.

It’s also not to say that all the scholars listed in the table used only the concept of literal infinity. Some
instead used the term ‘infinity’ or its cognates (‘infinite’, ‘infinitely’, etc.) in a variety of senses, including
the figurative sense. And some—for example, Aquinas and Cantor—believed in types of infinity that were
not purely quantitative. Aquinas believed not only in figurative (‘potential’) infinity but also a version of
qualitative infinity. Cantor believed not only in literal (‘actual’ or ‘proper’) infinity and in the qualitative
infinity of God’s intellect, but he also went further, proposing that God has the attribute of absolutely
infinite totality which Cantor referred to as “the absolute” [233] [234]. Chapter 23 will review what the
major historical figures thought regarding figurative infinity; Chapter 25 will review the views of the major
historical regarding divine (qualitative and absolute) infinity.
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Scholar Lifetime Regards (Literal) Infinity as Complete and Limitless:

Zeno of Elea 490-430 BCE Complete: Any finite distance (like the path from a runner’s starting point to the
finish line) is composed of a complete set of points.

Limitless: The number of points in any finite distance is without limit.

Aristotle 384-322 BCE Complete: There are “those who say that there is an infinite number of worlds...”
Limitless: “...there cannot be a source of the [actual] infinite or limitless, for that
would be a limit of it.”

Euclid 325-265 BCE Complete: In any geometrical shape, “it is proved that there exist” a “multitude of
straight lines commensurable and incommensurable with an assigned straight line.”
Limitless: That same “multitude of straight lines” is “infinite” (without limit), as the
method of exhaustion implies.

Archimedes 287-212 BCE | Complete: The number of triangles in a parabolic segment and the number of lines
in the plane of a rectangle are “equal in magnitude.”

Limitless: A parabolic segment can be shown to contain a limitless number of
triangles.

John Philoponus ~490-570 Complete: If the world had no beginning, an actual infinite number of things would
already exist.

Limitless: “...the infinite is by its nature untraversable...”

Robert Grosseteste 1175-1253 Complete: There are infinitely many points in part of a line.

Limitless: To “subtract a number from an infinite sum” still yields “the infinite sum.”

Galileo Galilei 1564-1642 Complete: A circle is a polygon with an infinite number of sides.

Limitless: “To be infinite is to be without limit.”

John Wallis 1616-1703 Complete: The circumference (i.e., closed curve) of a circle is composed of “an
infinite number of infinitely short lines” and a cone is “composed of an infinite
number of circles.”

Limitless: For a line and curve to converge “after an infinite distance” is for them
never to meet.

Isaac Newton 1642-1727 Complete: Any complete line contains “infinite divisions and subdivisions” that one
can neither distinguish nor attend to.

Limitless: To be infinite is to be “interminate” —to have no termination or limit.

Bernard Bolzano 1781-1848 Complete: The single quantity V2 contains “a complete infinite series of decimal
places.”

Limitless: “I shall call a plurality which is greater than every finite one, i.e., a
plurality which has the property that every finite multitude represents only a part of
it, an infinite plurality.” Such a plurality has “absolutely no last term.”

Georg Cantor 1845-1918 Complete: The actual infinite, or “transfinite,” is a “finished” set in which all its
elements “exist together” as a “compounded thing for itself;” that is, as a “totality.”
Limitless: The sequence of numbers in the transfinite set of all natural numbers is
without limit.

George Gamow 1904-1968 Complete: “The number of all points on a plane is equal to the number of all points
on a line,” and “the infinity of all points within a cube is the same as the infinity of
points within a square or on a line.”

Limitless: The universe is likely infinite in geometry, having a “limitless extension” of
space in all directions.

Brian Greene 1963- Complete: “There are infinitely many [places] in an infinite expanse of space.”

Limitless: There are “regions of space like the one we inhabit” that are “distributed
through a limitless cosmos...”

Table 2: Anincomplete sample of historical scholars describing infinity. Each scholar assumed the literal sense of infinity to
denote a state of both completeness and limitiessness in quantity (See endnote 232).
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8.1.11 Literal Infinity in Contemporary Thought

Even to the present day, most literal references to infinity assume it to be a quantitatively complete-yet-
limitless condition or state. Table 2 lists a couple of physicists from modern times: George Gamow, who
died the year | was born, and Brian Greene, now prominent in the media. Their statements, referenced in
Table 2, reflect the traditional view of literal infinity. And there are positions held by many other
contemporary scholars that could have been included in the table as well.

A good example of a contemporary scholar taking the traditional understanding of infinity as a state
of completeness and limitlessness is the late John D. Barrow (1952—-2020), once Cambridge Professor of
Applied Mathematics and Theoretical Physics, who wrote of the possibility of an “infinitely large
universe” —a universe with a “limitless” magnitude of space that is “actually infinite” (that is, completely
so) [235]. Another contemporary theoretical physicist who assumes the traditional understanding of
infinity is Roger Penrose; he believes the Universe has already gone through a complete set of limitless
iterations and will continue to go through more without limit [236]. These are just a few examples of the
views on infinity held by many contemporary scholars that can be cited in support of the definition |
articulated as the conventional or traditional conception for literal infinity.

8.2 AHISTORY OF THE INFINITE AS COMPLETE

Throughout history, infinity in its literal sense has been regarded as a condition of being not just limitless,
but also complete in quantity. What it means for a given collection, C, to be “complete in quantity” is that
C has y amount (any variable amount that can be assigned a value equal to a total)—no more, no less—
because C is a whole, entire, finished, and full collection. The writings of the scholars listed in Table 2 all
assume the completeness of collections to be a matter of wholeness, entirety, being finished, full, and
having a total quantity. Even with respect to infinity.

For yet another historical example of literal infinity implying a state of quantitative completeness in
this sense, consider infinity as portrayed in the work of the ancient poet and philosopher Titus Lucretius
Carus (94-54 BCE), more often known simply as Lucretius. In his epic poem, On the Nature of Things,
Lucretius wrote that “void” (space) is infinitely vast and contains an infinite amount of atoms [237].
Certainly, he would be surprised to hear that ‘infinity’ is only a figure of speech or merely a potential.

In the view of Lucretius, the two most fundamental things—infinitely vast void and an infinite amount
of atomic matter—constitute everything that exists. It is clear from his descriptions of infinite amounts of
matter and the infinitely vast void that Lucretius thought infinity to be a state or condition of being,
literally, complete in quantity as well as limitless in quantity. He used various titles for the Universe to
capture its completeness: the “All”, the “All-that-Is”, “the Whole” (or ‘wholeness’), “the Sum of Being”
and “the Sum of Things” (that is to say, a ‘totality’) [238].

Lucretius also implied that the whole, totality of matter in the Universe comprises a ‘finished’
collection in the sense that atoms form a fixed, unchanging amount—they were never created and will
never be destroyed (implying an entirety)—and so he also gave the Universe another title: “the All” [239].
To be “the All” implies no more is being added—the collection of atoms in the Universe is a full collection
just as it is. Since for Lucretius the amount of atoms in the Universe is infinite, it is clear that he regarded
infinity as having the property of ‘completeness’ in a sense similar to the way I've portrayed it.
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Jumping way ahead in history, we find the same old concept of literal infinity alive and well. The
mathematician David Hilbert (1862-1943) stated [240],

We meet the true infinite when we regard the totality of numbers 1, 2, 3, 4, ... itself as a
completed unity, or when we regard the points of an interval as a totality of things which
exist all at once. This kind of infinity is known as actual infinity.

Hilbert used Aristotle’s label ‘actual infinity’ to denote literal infinity, noting that it is a “completed” unity.

Even today mathematicians refer to literal infinity or actual infinity as ‘completed infinity’ in order to
emphasize that any set or sequence of members in a literally infinite collection are complete in quantity.
For example, the contemporary mathematician Eric Schechter states [241],

Completed infinity, or actual infinity, is an infinity that one actually reaches; the process
is already done. For instance, let’s put braces around the sequence mentioned earlier:

{1,2,3,4,.]}

With this notation, we are indicating the set of all positive integers. This is just one object,
a set. But that set has infinitely many members. By that | don’t mean that it has a large
finite number of members and it keeps getting more members. Rather, | mean that it
already has infinitely many members.

Hilbert and Schechter both state that actual infinity—what | term ‘literal infinity’—is a condition of
being complete with members existing “all at once” in a “totality” that is “already done” forming—in other
words, it refers to a whole, entire, full, and finished object with a total. Such examples again illustrate that
mathematicians are assuming the completeness of infinite collections to be comprised of properties very
similar to, if not identical with, those I've explicated in this chapter.

However, none of this is to say that scholars throughout history or today would necessarily use my
precising definitions for the properties of completeness. Cantor, for instance, defined the term ‘finished’
with respect to infinite sets a bit differently [242]:

| say of a set that it can be thought of as finished...if it is possible without contradiction...to
think of all its elements as existing together, and to think of the set itself as a compounded
thing for itself; or (in other words) if it is possible to imagine the set as actually existing
with the totality of its elements.

Cantor’s description of what he means by finished is different from my precising definition for ‘finish’. His
idea of finish sounds more like a combination of wholeness, entirety, fullness, and totality (most of the
properties of completeness). However, his use of the term ‘finish’ does not necessarily contradict my
analysis of what it commonly means for a set to be complete or what scholars have typically meant by the
‘complete’; if “all” of a set’s elements are “existing together” as a “totality” (which together constitutes
Cantor’s sense of ‘finish’), then it follows that the process of constructing such a set is concluded or
finished in the way | define the term ‘finish’. So, | take my precising definition for ‘finish’ as complementary
with how Cantor would construe completeness in a general sense.
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Similarly, | believe the other scholars listed in Table 2 (§ 8.1.10) would regard the lexical and precising
definitions for ‘completeness’ as at least generally complementing their own sense of the term’s meaning
in ordinary language. The listed scholars may use other technical, theoretical, or operational definitions
for ‘complete’ (or for ‘whole, ‘entire’, ‘finished’, ‘full’, and ‘total’) when making mathematical calculations,
but aside from use of the term ‘complete’ in relation to particular mathematical procedures or
measurements, the lexical and precising sense remains the same.

In short, it’s my contention that the lexical definition for completeness, and the precising definitions
for its constituent properties, capture the essence of how various scholars throughout history have
regarded completeness for collections, even with respect to infinity in its literal sense.

8.3 TROUBLE BETWEEN COMPLETENESS AND LIMITLESSNESS FOR LITERAL INFINITY

If | have correctly explicated the properties of completeness and limitlessness with respect to literal
infinity, then problems begin to appear; we find the properties of completeness and the properties of
limitlessness do not cohere with each other.

Take the completeness of an infinite collection, as exemplified by the infinite bag of marbles
mentioned in § 1.3.2. In order for a bag to hold an infinitude of marbles, the bag would have to hold a
limitless quantity of marbles. But the marbles are all in the bag and so the collection of marbles would
also have to be complete. Drawing on our definition of ‘complete’, to say the collection of marbles in the
bag is complete is just to say all the marbles necessary for the collection to be representative of a “bag of
marbles” must actually be present in the collection. And drawing on the completeness criteria, to say the
bag contains a complete collection of marbles implies the following:

= The process by which marbles are placed in the bag’s collection, whether in a single step or over
many steps, has ended.

= No subset of the marbles in the bag is quantitatively separated from the collection.

= No marbles required for the collection are missing from the collection.

®* The collection of marbles can have no addition of further marbles without changing the
parameters of the collection (like the size of the bag).

= The collection of marbles forms a totality—a quantitative ‘total’ of some kind.

This sounds reasonable enough until we investigate further what it means to for the quantity of
marbles in the bag to be limitless. Recall that to be limitless means to be of unspecifiable range even in
principle. So then, how can the collection have a quantitative total of any kind? The idea of a complete
and limitless collection—a literal infinity—starts to exhibit internal contradictions.

In Chapters 10-12 | argue that literal infinity is a self-contradictory concept. | will make this argument
by showing why a collection cannot be complete as well as limitless. If | am correct, no collection can be
literally infinite. Even the number scales cannot be literally infinite and so must be inherently finite,
existing only as open series that are always incomplete. Before proceeding, however, we need a little
more background about what the charge of self-contradiction entails (and what it does not entail) for
literal infinity, which is the subject of the next chapter.
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CHAPTER 8 IN REVIEW

« The earliest conception we have of infinity as literal infinity dates to the ancient Greek
philosophers. Aristotle used the term ‘actual infinity’ instead of literal infinity, which he
contrasted with ‘potential infinity’ rather than figurative infinity.

% Most philosophers post-Aristotle were skeptical of there being anything literally (or
“actually”) infinite, though not always because they thought literal infinity is logically
contradictory in meaning (there were only a few that went that far). Rather, most were
skeptical that literal infinity could be used in mathematical operations without contradiction.

« However, in the 1800s, Bolzano pointed out that many mathematicians understood the

operations of algebra and functions of calculus as nevertheless implying literal infinity. Still,

calculating various kinds of infinite collections directly did not catch on until the late 1800s
to early 1900s with the work of Cantor, who proposed a ‘transfinite’ system for calculating
literal infinities, which he called ‘proper’ or ‘genuine’ infinites.




9: LOGIC VERSUS LITERAL INFINITY

The words ‘infinity’ and ‘infinite’ have been defined according to their literal usage in ordinary, natural
language, irrespective of any particular mathematical procedure that might be used to ascribe such terms
to a collection of some kind. By providing precising definitions for these words, we are able to have a
deeper understanding of what literal infinity means as expressed in natural language. Only subsequently
did the previous chapters address the common mathematical symbols for infinity, which are abstract
representations for the natural language understanding of infinity. With that background established, we
are now nearly ready to confront the logical self-contradictions inherent in the concept of literal infinity.

But before continuing there is something about the charge of self-contradiction that I'm leveling at
literal infinity that must be cleared up so there is no misunderstanding. | want to make clear that in stating
literal infinity is an illogical concept | am not claiming that any and all expressions of infinity are absurd or
meaningless [243]. | am not claiming infinity is incoherent simply as a word used in natural language or as
a term used in mathematical expressions. Instead, | only argue literal infinity is, with respect to logic, an
incoherent concept regardless of how the term ‘infinity’ is used in mathematics.

To draw this distinction more clearly, | will start by defining, comparing, and contrasting these ways
of expressing infinity. | will then show how (literal) infinity can be coherent as a natural language word or
as a mathematical concept while being incoherent with respect to its logical implications.

9.1 EXPRESSION

We examined in 8§ 7.1 how infinity is a term used in two different types of language: natural language and
formal language. The distinction between these types of language will play an important role as we
proceed.

Natural language and formal language each allow us to make expressions, where the term ‘expression’
is defined as follows:

= expression:
(1) a communicated idea or concept.
(2) the form of a communicated idea or concept.
(3) the act of communicating an idea or concept.

Whenever we communicate an idea or concept, we are making an expression. When we speak in
sentences, write down mathematical formulas, or compose proofs in symbolic logic, we are making
expressions.
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9.1.1 Forms of Expression

As implied by the second definition above, expressions come in various ‘forms’ (here the term ‘form’ is
used rather loosely). Some examples of forms of expression for natural and formal language are as follows:

= natural language forms of expression: phrases, clauses, sentences, paragraphs, etc.

= formal language forms of expression: axioms, formulas, equations, statements, inferences,
rationales (e.g., arguments and proofs), etc.

We thus have at least two types of language—natural language and formal language—each with its own
forms of expression, and each type of language also has its own symbolism and notation.

9.1.2 Fields of Expression

Natural language comes in many flavors—English, French, Spanish, German, Italian, Chinese, Japanese,
and so on. But there are also at least two formal languages: mathematics and logic.

As formal languages, logic and mathematics can be regarded as languages of their own alongside the
natural languages. We can either make expressions in natural language or in the language of logic or in
the language of math. However, there is also overlap among these languages.

For example, a form of expression in one language can be used to communicate an idea or concept
native to one of the other languages. We can use natural language to make logical or mathematical
expressions, we can use logic to make natural language and mathematical expressions, and we can use
mathematics to make natural language and logical expressions.

Take an example of a form of expression: a sentence. While a ‘sentence’ is a form of expression in
natural language, a sentence can also be made in a formal language. A natural language sentence can be
symbolized as a logical ‘statement’. A mathematical ‘axiom’ expressed in formal language can be re-
expressed as a natural language ‘sentence’.

Hence, both natural language and the formal languages of logic and mathematics all overlap with their
various forms of expression.

Since mathematics and logic are the only two formal languages we will be considering, we can make
the comparison across language types a bit simpler:

® natural language
= |ogic
= mathematics

| will refer to these as fields of expression since they are each a language in which expressions are made
according to rules that are themselves ‘fields’ (topics of interest studied by the specialists of a profession).
That’s not to imply fields of expression are exclusive; it is only to say the principles governing expressions
in these languages can each be studied on their own.
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9.1.3 Domains of Expression

We know the fields of expression—natural language, logic, and mathematics—all share some common
features. Expressions of one field’s language can also be expressed by another field’s language, and
expressions can be translated from one field’s language into another. But in order to coherently make
expressions across language types of these fields, we need rules for making expressions and translating
them from one language into another.

Fortunately, the fields of expression have such rules. The set of rules for natural language expression
(rules for making phrases, clauses, sentences, paragraphs, etc.) is known as grammar. The set of rules for
making axioms, formulas, equations, and so forth goes by the same name as its field: mathematics. Similarly,
the set of rules for reasoning in general (in statements, rationales like arguments and proofs, and so forth)
has the same name as its field: logic.

We can think of each set of rules for each field of expression as a ‘domain’ of its own. So, each ‘field
of expression’ (natural language, mathematics, and logic) has an associated domain of expression
consisting of the set of rules for making expressions in that field. The domains of expression are therefore
as follows:

= grammar: rules for phrases, clauses, sentences, etc.
= mathematics: rules for axioms, formulas, equations, etc.
= |ogic: rules for statements, inferences, rationales, etc.

Insofar as the forms of expression in a given field are governed by rules, we can think of the forms of
expression as falling into a ‘domain of expression’ studied and governed by the rules of the respective
field.

Mathematicians use the term ‘domain’ in a particular way in their field but in this broader context,
the term ‘domain’ will be defined as follows:

= domain: the scope of a field’s subject.

Hence, while phrases, clauses, and sentences are forms of expression in the field of grammar, they
can also be regarded as following rules in the domain of grammar. Likewise, while axioms, formulas, and
equations are forms of expression in the field of mathematics, they must also follow the rules established
in the domain of mathematics. And while statements, inferences, and rationales are forms of expression
that fall into the field of logic, they are also forms of expression that must follow the rules defined in the
domain of logic [244].

9.1.4 What the Domains of Expression Have In Common

Each domain of expression is the scope of how ideas and concepts are communicated with signifiers
(signs, symbols, words, terms, etc. that represent the ideas and concepts to be communicated) particular
to the domain’s associated field. A domain of expression covers the rules for making and communicating
expressions using those signifiers according to the forms of expression particular to the field. The fields of
grammar, logic, and mathematics each study signifiers for expressing ideas and concepts, and all three of
these fields have their own rules for expression. There are, however, overlap and similarities between the
rules of expression among fields.
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For instance, use of signifiers in natural language, mathematics, and logic are made according to rules
of syntax and semantics:

= syntax: the set of principles determining how signifiers are formed, structured, and organized in
expressions.

= semantics: the set of principles that determine the meaning (the intended sense) of signifiers and
their expressions.

Syntax is all about form and structure; semantics, on the other hand, is all about meaning [245].

The meaning of a signifier or expression is its usage and its intension. Note the spelling of ‘intension’—
with an ‘s’ rather than with a second ‘t’ as has the word ‘intention’. Intension and intention have very
different meanings. An intention (with a ‘t’) is a purpose, goal, aim or plan. An intension (with an ‘s’), on
the other hand, is the ‘sense’—the semantic content—of a signifier or expression. More narrowly,
intension can be defined thus:

= intension: the properties ascribed to (or implied as belonging to) members of a given collection or
class.

The properties ascribed by intension are made up of the necessary and sufficient conditions
something needs in order to belong to the collection of things to which the signifier or expression refers.
An oft-used example is the definition for bachelor: an unmarried male. Being male is a necessary condition
for being a bachelor. Being unmarried is also a necessary condition for being a bachelor. But neither being
male nor being unmarried alone is sufficient for being a bachelor; one must be both male and unmarried
in order to be a bachelor—those properties together are sufficient conditions for bachelorhood. So, the
intension of the word ‘bachelor’ is the set of properties—the necessary and sufficient conditions—one
needs to be a bachelor (or to belong to the set of all bachelors): namely, the properties of being unmarried
and male. So, we can say that being an unmarried male is the ‘intension’ of the word ‘bachelor’. Basically,
the set of properties ascribed to something comprises the primary meaning of a signifier or expression.

The intension of a signifier or expression can be used to make both ‘denotations’ and ‘connotations’.
The word ‘denotation’ has different senses. For example, sometimes ‘denote’ means “symbolized” as
when a term with a specific meaning is given a particular symbolic representation (for example, infinity is
denoted as x); other times denotation means the same thing as intension. Where | do not use the word
‘denote’ to refer to assigning a symbol, | will instead assume the following definition for denotation:

= denotation: the reference to a particular, specified object or set of objects.

A denotation is not what is referred to but rather the reference made to something, be it singular or
plural. Reference is the act of referring, which is to direct one’s attention to something. And the
“something” denoted is a referent—something referred to. We can regard a referent as an object (as
earlier defined—“that of which a subject can be aware”) about which we are providing information.
Denotation does not have to refer to concrete objects. Prepositions, conjunctions, disjunctions,
determiners, etc. all denote conditions, properties, situations, etc. Denotation is about the specificity of
reference, not concreteness.
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The denotation of a signifier might be a designation for a single member in a set or it might be the list
of all the members in a set, depending on the context. When a signifier, like a word or a term, “denotes”
something, the signifier refers to it either by directing thought to a specific thing out of a list of things or
by directing thought to a specific list of things as opposed to other lists. So, the word ‘bachelor’ may be
used to denote a particular person, like John, as when we refer to John as ‘the bachelor’. But the word
‘bachelor’ might also denote any bachelor, including John.

Denotation stands in contrast with connotation, which can also mean various things. | will define
connotation as follows:

= connotation:
(1) an idea associated with what is signified or expressed.
(2) a logical implication of what is signified or expressed.

By its first definition, a connotation is an association that does not necessarily apply to all the
members of the set of things signified. For example, if the word ‘mouse’ is used to denote a rodent, it
might connote an agent of disease or the subject of a lab experiment or a snack for a cat, etc.—none of
which will apply to all mice.

By its second definition, a connotation is a secondary, logical implication that follows from the
intension or, more narrowly, the denotation of a signifier or expression. For example, if a male human
being is a bachelor, then it logically follows that he is also an adult—a secondary, logical implication of
what it means to be a bachelor.

Denotation and connotation are both aspects of intension. The intension of a signifier or expression
is the set of properties defining membership in a collection. Those properties are used to denote members
of a collection or denote the collection itself. And the intension also connotes secondary properties of the
members of a collection.

Intension stands in contrast with extension. The term ‘extension’ sometimes means to expand in
scope or lengthen in sequence, but here the word has a different meaning. While the ‘denotation’ of a
signifier or expression is the reference itself to particular objects or sets of objects, the extension of a
signifier or expression is what is referred to. (However, it should be noted that | am using the term
‘extension’ a bit differently than do many other philosophers [246]).

= extension: the referent (object or class of objects) denoted by a signifier or expression.

The denotation of ‘bachelor’ can be a reference to a particular man or a reference to the set of all
unmarried men. The extension of ‘bachelor’, on the other hand, is a particular man referred to, or the
extension can even be all the actual men—whether past, present, or future—to whom this term ‘bachelor’
applies. When a signifier ‘denotes’ something, it refers to it. When a signifier ‘extends’ to something, there
is something (real or imagined) to which the signifier refers. So, when the word ‘bachelor’ denotes a
particular unmarried man—for example, John—then John is the extension of ‘bachelor’.

Examples of semantic properties (intension, connotation, and denotation) and the extension of what
is signified by the semantics are provided in Table 3.

It's important to keep in mind with these examples that we need not hold mathematical symbols for
infinity denote sets coherently or extend to anything real; Table 3 merely portrays how symbols for infinity
would extend if they were coherent.
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PROPERTIES OF SIGNIFIERS

SEMANTICS
SIGNIFIER INTENSION CONNOTATION DENOTATION EXTENSION
(symbol) | (primary meaning) | (secondary meaning) (reference) (referent)
Bachelor | Man, unmarried. Adult male able to “The bachelor” The particular
marry. refers to a unmarried man
particular man who | referred to (e.g.,
is not married. John).
Wife Woman, married. A female who had been | “The wife” refers to | The particular
a bride. a particular woman | married woman
who is married. referred to (e.g.,
Jane).

~ Logical operator, A must be either “Not,” as in, The situation in
negation of a given | affirmed or denied. “not A,” written as which A is not
statement, A. ~A. the case.

\Y; Logical operator, “Either A or B” is “Or,” as in, The situation in
disjunction between | equivalent to “Either B “A or B,” written as | which at least
two simple or A’ AV B. one of the simple
statements, A and statements must
B. be true for the

complex
statement to be
true.

Z The set of numbers | The integers include {..,—2,-1,0,1,2,..} | Allthe numerals
with the ability to be | the natural numbers. in or from the
written without a integer scale.
fractional
component.

N Cardinality of any Nisimplies asetboth | X =N or X =W or | The size of any
set equal to N. complete and limitless | & = Z or X = Q or | collection having

in quantity. etc. a literally infinite
number of
members.

Table 3: Examples of semantics and extensions for some given signifiers. The first two rows provide examples of natural
language signifiers (in the case, words) which must be used according to the rules of natural language grammar. The next two
rows provide examples of logic signifiers (in this case, operators) that must be used following the rules of logic. The last two rows
provide examples of mathematical signifiers (in this case, notation) that must be used in accordance with the rules of mathematical

operation.
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The relationship between the intension/extension and the denotation/connotation of a signifier is
depicted in Figure 9.1. The fields of expression we will consider—grammar, math, and logic—all study the
expression of ideas and concepts according to the signifiers and rules of syntax for their respective
languages, just as depicted in Figure 9.1.

LANGUAGE

/ EXPRESSION  «------- \
Signifiers ﬁ

Syntax
USAGE

INTENSION

[ REALITY ] [ ILLUSION ]

Figure 9.1: Each expression is composed of signifiers used with syntax. The manner of usage is what produces the expression’s
meaning—its semantics. The semantics of an expression is the expression’s intension (primary meaning), its denotation (reference
to something), and any connotation (secondary meaning) it may have. Denotation necessarily implies (solid arrow) extension;
connotation only contingently implies (dashed arrow) further concepts and ideas that are expressed with other signifiers, and those
other signifiers also have syntax of their own. However, the semantics of a connotation may also have further intension, denotation
with extension, or even further connotations. A given expression may either denote something that extends to reality (that which
exists) or denote something that extends merely to illusion (that which is fictional or purely imaginary). Some complex expressions
may have extension as a mix of reality and illusion.

How expressions for a language relate to reality is also depicted in Figure 9.1. Just because an idea or
concept is expressed consistently in the syntax of a language, that does not ensure such an idea
corresponds to anything ‘real’. The denotations of some expressions in a given language extend to things
that are what they appear to be (realities) while others extend to things that are not what they appear to
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be (illusions). Alternatively, we could say some expressions denote things with extension (i.e., they denote
realities—they refer to real things) while what some other expressions denote do not have extension (i.e.,
what they denote are illusions—they refer to nothing real). | would contend that this is true even in the
languages of mathematics and logic. Some mathematically or logically consistent expressions have
extension—they refer to real things; others do not have extension as they are merely ideas having the
illusion of reality behind them.

The reality of infinity, or its lack thereof, will be addressed in later chapters. In this chapter, | wish only
to address how infinity is expressed in natural and formal language according to the rules of grammar,
mathematics, and logic. Each of these fields has its own rules for syntax and semantics that signifiers and
expressions must follow to be included in the respective field but, as we shall see, there is much overlap
between the ways in which the rules operate among these domains as well—rules that will become
important to how we assess the coherence of infinity.

9.2 GRAMMAR

Natural language (or just ‘language’ for short), like logic and mathematics, is comprised of expressions.
The forms of expression in language differ from those of mathematics, and in certain areas they differ
from those forms of expression in logic, but expressions in language are nevertheless governed by rules.
In the case of (natural) language, the signifiers are words, and the rules for making expressions in words
are collectively called ‘grammar’—which, quite broadly, is simply the rules of expression for a natural
language.

Linguists have various ways of defining the domain of grammar. | prefer to take a bit of a nonstandard
approach and define the domain of grammar according to three broad categories of rules that govern the
use of words; the three categories of rules making up the domain of grammar are the same as for all the
domains of expression: syntax, semantics, and morphology.

For grammar, which pertains to natural language, syntax includes the ‘combinatorial system’ of
language, such as rules for consistency, predication, transformation of expressions, and phonology [247].
In fact, it is the syntax of natural language that is most often thought of when the word ‘grammar’ is used;
however, philosophers widen ‘grammar’ to include semantics and morphology as well as syntax.

Semantics in natural language is the denotation and connotation of words, both of which are relative
to their usage in various contexts. For example, if used as a noun, the word ‘duck’ might denote a member
of the Anatidae family of birds; but if used as a verb, ‘duck’ might denote the action of stooping or bending
suddenly to avoid an impact. This is an example of how denotation varies in usage according to context.
Next, consider connotation and how the connotations of words vary with differences in word usage
among changes in context. Connotations, in terms of natural language, include any associations a word
may have, whether logical or analogical. Insofar as the word ‘duck’ denotes a bending or stooping action
to avoid impact, it also connotes avoidance of unwanted physical contact—this is an example of a logical
connotation. On the other hand, insofar as the word ‘duck’ denotes a kind of bird, it may also connote a
target for hunters—this is an example of an analogical connotation; for hunters, the bird is likened to a
target. These examples illustrate that the grammar of natural language includes semantic rules not only
for the denotations of words but for their connotations as well.

The syntax and semantics of natural language grammar actually share a common subset of rules:
morphology—the rules by which the signifiers used in expressions are structured so as to have particular
meanings. In natural language, morphology is found in the use of words. For example, ‘duck’ and ‘ducks’
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are variations of the same word, but their differences in structure indicate different meanings—the
former is singular, the latter is plural. Morphology is the set of natural language rules relating word
structure to word meaning. Morphology thus overlaps both syntax (structure) and semantics (meaning).

The grammar of natural language includes syntax, semantics, and morphology, but what about
extension? Words that obey grammar also have extension, whether that extension is to something real
(e.g., a president or prime minister) or illusory (e.g., something fictional or imaginary like pixies and
unicorns). However, while extension is certainly a function of language—the way words “attach” to things
in the world—extension is not a part of grammar proper (see Figure 9.1), so | will not assume that it is
included in grammar. Instead, the denotation of a signifier such as a word—its reference to something—
is included in grammar; the extension of the signifier—what is referred to—is not a part of language but
is what language addresses.

Dividing grammar up into syntax, semantics, and morphology for natural language is not the only
approach to categorizing the rules making up the domain of grammar, but it will suffice for our purposes.
What | do want to make clear, though, is that syntax, semantics, and morphology only constitute
‘grammar’ insofar as they are types of rules for expressions made in natural language. These same rule
types for expressions are not exclusive to natural language and so they are not exclusive to grammar—as
we’ll see, logic and mathematics also have their own forms of syntax, semantics, and morphology.

9.3 LOGIC

Our second domain of expression is logic. | don’t intend this book to be a primer of logic, but it does help
to make sure we all understand what is meant by ‘logic’ and its related terms for any readers who may
not have majored in philosophy. So before proceeding further, | will lay out my basic assumptions on logic.

9.3.1 Reason

Logic concerns reason with a small ‘r—not Reason with a capital ‘R’ as a kind of epistemology. The word
‘reason’ can be defined both as a noun and as a verb:

= reason: (noun)
(1) a correct inference.
(2) aninference intended or assumed to be correct.
(3) a condition correctly inferred from another.
(4) the ability to draw correct inferences.

= reason: (verb) to attempt a correct inference.
Likewise, reason is also used as the adjective ‘reasonable’:
= reasonable: (adjective)

(1) able to draw correct inferences.
(2) the property of being a correct inference.
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We use the adjective ‘reasonable’ in the first sense when we mean someone displays the ability to
draw a correct inference (“She is being reasonable”) or has a character of doing so (“She is a reasonable
person”), and in the second when we indicate an inference is correct (“That is a reasonable position to
take”).

Clearly, all of these definitions regarding reason make much ado of inference and correctness.

9.3.2 Inference
As philosophers use the term, an ‘inference’ also has more than one use:

= inference:
(1) the act of recognizing an implication.
(2) the implication that is recognized.

Where implication can be defined as follows:

= implication: any situation in which one particular condition either always or usually results in
another particular condition.

A classic example of an inference: we may infer from the fact that it is raining outside that the streets
will be wet. The conditions implied or inferred (for example, the wetness of streets inferred from the
condition of rain falling) need not be captured in language; the conditions need simply be recognized via
observation, experience, imagination, or conception. In whatever manner the conditions are recognized,
we say that one condition, B, is the ‘implication’ of another condition, A, when A implies B. To say that A
‘implies’” B means that A results in B unless prevented by a third set of conditions, C. Unless something is
blocking the rain from hitting the streets, rain implies wet streets. So, when we recognize that B always,
or at least usually, is the case as a result of A, then we ‘infer’ B from A. Hence, we infer wet streets (B)
from falling rain (A). The recognition that one thing always or usually follows from another is what making
an inference means [248].

9.3.3 Correctness
Definition:

= correctness: the condition of being correct.
= correct: free of error.

Some reasons are good, some bad. We have “good reasons” when we draw correct inferences—those
free of error. We have “bad reasons” when we have incorrect inferences—those that contain at least one
error. These are straightforward enough, but even simple definitions can be ambiguous. For instance,
some might take ‘correct inference’ to be about truth and ‘incorrect inference’ to be about falsity, but
that is not so. By ‘correct inference’ | do not mean a true statement; likewise, by ‘incorrect inference’ | do
not mean a false statement—correctness and incorrectness are here a matter of whether or not an
inference from one premise to another is valid or cogent, not whether the individual premises are true or
false.
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On those occasions when we don’t draw correct inferences, when our reasons are bad, we may still
have the ability to draw correct inferences—it’s just that we do not implement that ability well on the
occasion of bad reasoning. Clearly, we need some principles to distinguish good reasoning from bad
reasoning—principles that help us recognize reasons that are, or are more likely to be, correct from those
that are not correct or are unlikely to be correct. This is where logic enters the picture.

9.3.4 Reasoning Effectively

Reasoning is the attempt at drawing correct inferences, and the intended result of reasoning is having the
correct inferences. If one uses principles that are effective for drawing correct inferences, one is reasoning
logically. If one uses principles that are not effective for drawing correct inferences, one is not reasoning
logically. We can thus define logic:

= |ogic: (1) principles effective for reasoning.
Where ‘effective’ means the following:
= effective: producing or achieving the desired or intended result.

While reasoning is the attempt to infer correctly, logic is the set of principles that are effective for inferring
correctly, provided we use them and use them well.

9.3.5 The Principles of Logic

Logical reasoning may be expressed in natural language as a set of sentences or in the formal language of
mathematics as a set of operations and equations, or in a hybrid of natural and formal language studied
by philosophers and logicians. However, logic does not have to be expressed in these forms at all. A logical
inference can be in any form of information. For instance, some animals display instances of
demonstrative and instrumental reasoning, as when birds figure out how to use simple tools for retrieving
food [249]. Regardless, logicians primarily study the principles for effective reasoning either in natural
language or formal language, or a mix of the two. It is mainly that sort of logical inference that will concern
us.

And this raises another distinction: there is ‘logic’ as a set of principles and then there is ‘logic’ as a
domain of expression and a field of study. What | have referred to as the ‘domain of logic’ is the domain
of all statements that are logical—statements that are effective for drawing correct inferences. Moreover,
as a domain is the domain of a field of study, and ‘logic’ is an academic field of study, we may thus add
another definition of logic:

= |ogic: (2) the academic field that studies principles effective for reasoning.

| don’t intend for this to be a logic book in the sense of the second definition of ‘logic’. A detailed
examination of the principles of reason is beyond the scope of this book—entire textbooks are devoted
to the study of logic, and | cannot cover all the same territory here.

However, | will need to refer to certain meta-logical principles of reason as we proceed, such as the
principle of sufficient reason, and certain principles of logic such as the principle of non-contradiction and
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the principle of excluded middle, both of which will play an important role in the case against infinity and
for the finitude of existence.

9.3.6 What Logic Has in Common with Grammar

All statements and rationales expressed in natural language are subject to the syntax, semantics, and
morphology of natural language. The syntax, semantics, and morphology of natural language comprise
what we call ‘grammar’. So, logical statements and rationales, insofar as they are expressed in natural
language, must follow the rules of grammar to be linguistically coherent.

However, there is another way of expressing statements and rationales: symbolic logic (sometimes
called formal logic). As indicated above, logic expressed in formal language has syntax, semantics, and
morphology just as grammar does.

Logical syntax. Symbolic or formal logic has its own syntax. A couple of examples of logical syntax were
provided in Table 3. By having syntax, logic and grammar overlap in their respective domains. A statement
in natural language can be translated into the syntax of symbolic logic. For example, the simple statement,
“Philosophers attempt to express wisdom,” may be signified as p, and the complex statement, “Either
philosophers attempt to express wisdom, or they don’t,” might have syntax in symbolic logic like this:

pv-~p.

Logical semantics. Forms of rationale called arguments and proofs can be constructed in formal logic with
variables (e.g., p) that have unassigned meanings. For that reason, it might be assumed that formal logic
is a syntax-only discipline. But that is not accurate; there are semantics involved even in formal logic.

Expressions in symbolic logic such as p V ~p can be used to represent particular states of affairs, so
such expressions are not necessarily without intension. And not just intension but in particular the
semantics of denotation and connotation. In the above example, the letter p denotes philosophers
attempting to express wisdom. Ergo, what p denotes may also have further semantics—the semantics of
logical connotation.

A connotation in logic is not just a psychological or cultural association as it can be in the grammar of
natural language; instead, a connotation in logic is a (perhaps unstated) implication. For instance, if p
denotes philosophers attempting to express wisdom, then a connotation is that there is at least one
philosopher, possibly more than one.

Of course, the same variable, p, might mean something else in a different logical expression, but that
is beside the point: the symbols can be given meaning; they can be used with semantics as well as syntax,
and they can have connotations as well as denotations. Like grammar, logic is not just syntax alone—it
also has semantics. In fact, is precisely in logical semantics that informal logical fallacies can arise—logical
errors in meaning.

Logical morphology. Just as natural language grammar has its rules for word usage, so too does formal
logic have rules for variations on the same variables. For instance, the letter ‘T’ may be a predicate as in
Tx, but it may also represent the property of truth (T) vice falsity (F) in a truth table (see § 9.5.2, example
in Figure 9.3).
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All of the above goes to show that while syntax, semantics, and morphology comprise grammar (rules
for natural language), they are also categories that pertain to expressions for logic. It’s just that the formal
language of logic has its own type of syntax, semantics, and morphology.

9.3.7 Logic is not Math

Logic can be compared and contrasted with grammar on the basis of different syntax, semantical
connotations, and even morphology. But we can also draw some comparisons between logic and
mathematics to show how logic and math overlap, and how they differ.

For instance, symbolic logic, with its use of variables and quantifiers (as in expressions like p V ~p) is
where logic appears very math-like. But logicians engage in a symbolic activity that mathematicians do
not: translating natural language statements into symbolic syntax to check the validity of an argument’s
reasoning. Mathematicians do not engage in that kind of activity, but for logicians, it is the heart of the
discipline of logic.

That is not to say there is no logic in math—far from it. But it is to say that logic does not reduce to
mathematics. Logic is much broader than mathematics since logic concerns the use of reason per se, while
math concerns a particular type and subject area of reasoning.

Conversely, some philosophers such as the German philosopher and mathematician Gottlob Frege
(1848-1925) and the British philosopher Bertrand Russell (1872-1970) hoped to prove mathematics
reduces to logic, but such projects have been likewise unsuccessful [250] [251] [252]. Mathematics does
not reduce to logic, for mathematics is more than logic, just as logic is more than mathematics.

9.4 MATHEMATICS

Our third and final domain of expression is mathematics. There are various definitions of ‘mathematics’,
but | propose the following definition:

= mathematics: the study of numerical schemes and schemas.
9.4.1 Schemes and Schemas

Mathematicians and philosophers of mathematics use terms like scheme and schema in various ways. |
propose the following definitions:

= scheme: (pl., schemes) a system of ideas or concepts used for organizing.

= schema: (pl., schemas or schemata) a category, pattern, or relation organized according to a
scheme.

A schema is not quite the same thing as a ‘scheme’, though the two words are related. Plans, operations,
and programs are all examples of schemes, while schemes organize schemas.
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Consider some examples of schemas, which are organized by schemes:

= Categories of collection such as ‘aggregate’, ‘multitude’, ‘set’, ‘sequence’, and ‘series’ are all
examples of schemas organized in mathematics by schemes such as rule-based operations,
functions, algorithms, and programs.

= Variables and operators are schemas, all organized by schemes like the rules of elementary
arithmetic.

=  Geometric shapes and points are schemas organized by the scheme of geometric rules.

= Axioms, theorems, scales, designs, and quantitative models are all schemas because they are
patterns organized by rule-based schemes; one axiom may be proposed on the basis of a set-
theoretic model, for example.

= Relations and relational properties expressed as quantifiers like ‘finite’, ‘indefinite’, and ‘infinite’
are schemas insofar as various schemes apply them as concepts for organizing other
guantification schemas.

What do all these schemas and schemes have in common with respect to mathematics? Mathematics
expresses them in terms of numbers and enumeration. Numbers (ordinality and cardinality relations) are
also schemas; they are schemas for numerals, organized according to schemes such systems and rules for
defining them and using them in enumeration schemes and other schemes that assume the ability to
enumerate. In short, mathematics studies ‘schemes’ insofar as they are used for organizing numbers,
organizing numerical schemas, and organizing schemas with the use of numbers. For that reason, | defined
mathematics as “the study of numerical schemes and schemas”.

My view on this matter is not too far from that of Dr. Stephen Simpson, a mathematician and logician
at Pennsylvania State University and Vanderbilt University, who states [253]:

Mathematics is a particular field of study. If you were to ask me to be more specific, |
would follow Aristotle and define mathematics as “the science of quantity”, with quantity
interpreted broadly to include not only numbers but also higher quantities (matrices, etc.)
and geometrical figures (triangles, manifolds, etc.)...

This definition of mathematics may seem too old-fashioned, but | believe it can be
stretched to cover not only ancient but also modern mathematics, and it has the
additional advantage of being well-linked to applications and the rest of human
knowledge.

My definition of mathematics, like Simpson’s, is broad enough to include both the quantities and the
figures he mentions. But my definition differs on a few technicalities.

First, Simpson refers to mathematics as a science, but | prefer to think of science as an activity that is
more empirical in nature than mathematics. Second, | prefer to define mathematics in reference to the
numerical rather than just to ‘quantity’ since the field of logic also addresses quantity indirectly with the
use of predicate ‘quantifiers’. Third and finally, the kind of things mathematicians study like ‘matrices’,
‘fields’, geometric figures, and so on are all studied by the use of numbers or variables for numbers.
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So, | feel justified being narrower with reference to the numerical rather than broader with quantity.
Even so, these differences are rather nitpicky; regarding the bottom line of what mathematics is about, |
am in basic agreement with Simpson.

9.4.2 The Categories of Mathematics

I’ll take @ moment here to distinguish between some sub-disciplines in the field of mathematics. We can
partition the field of mathematics into two broad categories of study:

=  pure mathematics
= applied mathematics

Pure mathematics is the study of mathematical concepts without regard to practical application in
other fields.

Applied mathematics is the study and use of mathematical concepts to solve problems in fields other
than mathematics, such as in science, engineering, economics, business, and so forth.

There is no clear demarcation between these two categories of study [254].

Take the mathematical study of probability, for example. A mathematician may study the conceptual
framework for probability theory as an instance of pure mathematics or may study the calculation of
particular probabilities as an instance of applied mathematics [255].

Because there is no clear boundary between these categories of mathematical study, what is studied
in pure mathematics may become part of applied mathematics and what is studied in applied
mathematics may inspire novelty in pure mathematics. For example, some conclusions reached in the
study of pure mathematics may find practical use in applied mathematics, as when the study of the
factorization of whole numbers (pure math) became used for purposes of encryption (applied math) [256].
Conversely, some applications of mathematics inspire new theories pursued in pure mathematics, as
when calculation of the speed of bodies in motion (applied math) inspired the invention of calculus (pure
math) or when models of cartography (applied math) inspired the creation of differential geometry (pure
math).

So, it’s not always clear where pure mathematics ends and practical mathematics begins, and the two
categories of study certainly influence one another.

Still, let’s pause on this note a bit further to elucidate what pure mathematics and applied
mathematics are each about before continuing with our distinctions between mathematics and other
disciplines such as grammar and logic.

Pure Mathematics. As mathematics can be divided into the categories of pure and applied, so too pure
mathematics, if very broadly conceived, can be subdivided into the following categories:

= theoretical mathematics
= general mathematics
= experimental mathematics

As with pure and applied mathematics, these categories also have no clear boundaries between them as
they overlap in their various disciplines, but these categories will serve our purposes. We'll take each in
turn.
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Theoretical mathematics is the study of the logical justification of mathematics and the conceptual
exploration of alternative mathematical schemes and schemas.

The alternative schemes studied by theoretical mathematics include new methods to calculate
abstract schemas such as algebraic groups, higher dimensional geometries, and topologies that do not
exist in physical space. One example of a schema in theoretical mathematics is an abstract object known
as E8 (Figure 9.2) and another is the sphere eversion process discussed at the beginning of Chapter 18.

Figure 9.2: A two-dimensional, symbolic depiction of EB—an abstract object of 248 dimensions that does not exist in real,
physical space.

In addition to generating novel quantitative theories about abstract objects, theoretical mathematics
proposes logical justifications for all mathematical schemes and schemas. The justifications consist in part
of what mathematicians refer to as the foundation of mathematics.

The ‘foundation’ is all of the most fundamental concepts assumed in mathematics (concepts such as
set, function, number, figure, etc.) and how they can be used to logically justify the hierarchy of more
complex mathematical schemes and schemas (the particular definitions, models, formulas, proofs,
algorithms, etc.). Mathematicians typically hold all of the schemes and schemas of mathematics to be
deducible from the foundational concepts.

The common assumption is that if mathematics rests on a ‘solid foundation’, it is rationally justified
as a consistent and coherent part of human knowledge. The foundations of mathematics are usually
framed according to axioms (allegedly “self-evident” truths) and theorems (proofs based on axioms and,
in some cases, on other truths) such as those proposed in set theory, number theory, and what is often
referred to as first-order arithmetic and second-order arithmetic (both of which concern the axioms that
underly what most of us know as ‘elementary arithmetic’ in general mathematics). If the axioms are
uncontroversial and the theorems are deducible from the axioms, then the theoretical mathematical
system in question is considered a solid foundation for mathematics.

Theoretical mathematics includes several sub-disciplines such as transfinite set theory (see § 13.1),
transfinite mathematics, and other speculative areas of mathematics. But theoretical mathematics also
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bleeds into general mathematics and experimental mathematics; there is no clear-cut distinction. For
example, some universities consider theoretical mathematics to include some of the specialized areas of
general mathematics, such as algebra and geometry [257].

General Mathematics covers number theory, arithmetic (‘elementary arithmetic’ or ‘elementary
calculation’), combinatorics, algebra, geometry, topology, analysis, trigonometry, calculus, statistics, and
similar disciplines familiar to most folks. As theoretical mathematics has some overlap with general
mathematics, so too does general mathematics have overlap with experimental mathematics. It is
primarily the operations of general mathematics that are used in experimental mathematics [258].

Experimental Mathematics is the use of the schemes and schemas of theoretical mathematics and general
mathematics to investigate mathematical objects and identify numeric properties and patterns. Some
examples of experimental mathematics include:

= Consistency checks to support the search for analytical proofs of a conjecture.
= Searching for a counterexample to a conjecture.

= Inventing new mathematical objects with particular properties.

= Use of computer programs to complete a proof.

Since all these activities may be applied to solving problems outside the field of mathematics,
experimental mathematics is not always distinguishable from applied mathematics [259].

Applied Mathematics. The professional study of mathematics to solve problems in other professional
fields like cosmology, science, engineering, industry, economics, and business. The applications of
mathematics in any of these fields may be the application of any of the disciplines of general mathematics
[260]. Even theoretical mathematics may find some application as noted with the example of factorization
having use for computer encryption. The application of mathematical schemes for analysis, asymptotic
methods, variational methods, and probability theory have been key to the development of physics since
the time of Newton.

9.4.3 The Language of Mathematics

Whether the mathematics is pure or applied, the numerical schemes of mathematics are expressed in
terms of rules, which are not unlike the rules of a language. As with grammar and logic, the numerical
schemes of math also have rules of syntax, semantics, and morphology—all of which play a big part in
organizing the kinds of schemas mathematicians study.

However, | admit not all mathematicians would agree with this characterization of their field. Many
mathematicians don’t consider semantics and morphology as playing roles in the practice of mathematics.
For instance, some mathematicians claim that mathematics is a ‘first-order language’ only [261]. First-
order languages are languages that “have no meaning in themselves. There is syntax, but no semantics.
At this level, sentences don't mean anything” [262].

By ‘sentence’ the mathematician means an expression composed of strings of symbols, but not
necessarily words. Some examples [263]:

Vx3ywWz(x <z-x#2)D(x <y - y<z-x#Y)
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and

fFF') =x
and

8+2=4
and

0 4+ 00 = 00
etc.

Mathematicians sometimes say such ‘sentences’ in first-order language “have no meaning” or that
they have “no semantics.” This view was proposed by the 20" Century philosopher Ludwig Wittgenstein
(1889-1951). According to Wittgenstein, “An equation is a rule of syntax” [264]. He stated, “In
mathematics everything is algorithm and nothing is meaning” [265]. This is what many mathematicians
and philosophers claim of mathematics, but it is not accurate [266].

9.4.4 Math is More Than Syntax

It is certainly correct to say that equations and formulas in mathematics are expressed according to first-
order language rules, as shown in the foregoing examples of mathematical ‘sentences’. Mathematical
definitions can also be made in the formalism of first-order language, as they sometimes are, so that too
is correct. But from this it does not follow that math is only syntax and so without semantics. Mathematics
involves more than syntax.

In support of this contention, let’s start with a trivial observation: we will never find a textbook on
mathematics the expositions in which are completely shorn of natural language. The reader needs at least
some exposition of the terms and procedures in natural language in order to comprehend what the purely
formal expressions are all about. And to the extent that a text on math does not contain natural language
is the extent to which the author assumes the reader already has the necessary background information
to understand the text, much of which was learned in natural language. Even journal articles on the
transfinite system—pages dense with formulas and equations, written by mathematicians for
mathematicians—nevertheless have to make at least some use of natural language in order for the
content to be understood. And this holds true for general mathematics as well—all math makes use of
the semantics of natural language.

More importantly, while formalized mathematical expressions (like, x = a/b) are indeed calculated
according only to syntax, we find the terms (x, 4, and b) in such expressions actually have meanings. In
fact, all mathematical symbols (and formal logical symbols too) have meanings; they have semantics in
the form of intension, including denotation and connotation.

Mathematics denotes its own elements—numerals, sets, and their orderly relationships. Math also
denotes operations with these elements. We can say that the extension of mathematical symbols,
relationships, and operations are those very symbols, sets, relationships, and operations—math denotes
itself and extends to itself, as shown by the examples in Table 3 above [267].
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The intensions and denotations of math can even be translated into the grammar of natural language;
in so doing, we see the semantic content. In fact, all mathematical expressions are translatable (though
not in every case actually translated) into natural language. Mathematicians actually do this translating
all the time without taking notice of the fact. For example, in speaking out loud 1 + 1 = 2, we say, “One
plus one equals two,” or some variation thereof. We usually do not pay attention to the fact that we are
using the grammar of natural language to translate mathematical expressions into natural language
sentences. But that is exactly what we do all the time; the syntax of math is translated into the syntax of
natural language while preserving the semantic content of the original mathematical form of the
expression. Moreover, the implications of what “One plus one equals two” means can also be put into
natural language: “If you have a single thing and another single thing of the same kind, then you have a
pair of things of the same kind” (or a similar sentence that captures that meaning) [268].

We find further examples of the natural language translation of mathematical expressions when we
examine definitions for mathematical terms. Though mathematical objects and their relations can be
given formal, operational definitions in mathematics and written purely in syntactical symbolism (for
example, @ = { }), these terms and expressions are only comprehensible because they all assume
meanings in ordinary, second-order, natural language. We have to be told what the symbol @ is, what the
equals sign means, and what the curly braces are for. We have to be told what it means for a ‘set’ to be
“empty.”

The similarities between mathematics and natural language do not end there. It may surprise some
mathematicians to think that metaphors and similes are assumed in set theory and mathematics, but they
certainly are. We find that mathematical terms are based on analogies with words from natural language,
and even assume the lexical meanings of corresponding words from ordinary, natural language. Consider
Moore's point about how the first-order language of set theory and the transfinite system is not in itself
sufficient to define sets and members of sets [269]:

Suppose now that you had no idea what either ‘Set’ or ‘member’ meant, beyond
knowing that they were mathematical terms. Think of them as two utterly alien terms,
say ‘zad’ and ‘nanpal’. How much could you determine about their meaning from being
presented with true sentences from this language?

You might be told, first,

(1) No two zads have exactly the same nanpals,

then
(2) There is one zad that has no nanpals.

Moore goes on to state that even if we can use transfinite axioms to make further deductions from the
first and second statements about zads and nanpals, there is more to understanding what is meant by
‘zad’ and ‘nanpal’ than is presented in axioms about them. Likewise, there is more to the meaning of sets
and members than can be said about them in the first-order language of set theory and the transfinite
system [270]. What is needed in addition to deduction from the axioms, Moore states, is knowledge of
how to use the terms correctly, which is an understanding acquired by learning the mathematical
conventions through actual practice [271]. But | would go a bit further than Moore: even mathematical
practice and rule-based demonstrations are not enough to capture the mathematical meanings of these
terms. A familiarity with the semantic content (meaning) of concepts from ordinary, natural language is
needed to comprehend the terms of mathematics in order to apply the terms in mathematical procedure.
This holds for terms like ‘set’ and ‘member’, which are borrowed from natural language, as well as for
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predicates like ‘infinite’ which, as explicated in § 5.4, assume meanings of constituent concepts from
natural language.

Using Moore’s example, if math were just syntax without meaning, Cantor could have used terms like
‘zad’ and ‘nanpal’ instead of ‘set’ and ‘member’ when he formulated set theory and his transfinite system,
but he didn’t. And he didn’t because mathematical conceptions of things like ‘sets’ and ‘members’ are
only mathematically defined in the way they are because they are based on analogies with concepts that
we are familiar with from our second-order language. The idea of a ‘set’ is based on collections we can
see in the real world; the idea of ‘member’ is based on group membership of real things in the physical
world we see [272]. Cantor drew upon words and their meanings in our second-order language to create
abstract conceptions of sets and members and related them in formal, first-order schemas.

Mathematical and set-theoretic concepts are based on analogies drawn from ordinary, natural
language. Mathematics assumes meanings for its terms that are drawn from natural language, and that is
precisely why the language of mathematics is translatable into natural language.

9.4.5 The Semantics of Mathematics

The first-order language of mathematics assumes a second-order of natural language semantics, even if
it doesn’t explicitly reference the meanings of terms in operation. The first-order language of
mathematics—its syntax-only formalism—is an abstraction and simplification from the first-order
language (the syntax) of ordinary, natural language. The first-order language of math did not precede
natural language and it is not more fundamental than natural language (which has both a first-order
language of syntax and a second-order language containing the semantics of tense, predication, adverbs,
prepositions, idioms, etc.). Rather, natural language and its grammar preceded math and it is natural
language that is primary; the ‘first-order’ language of mathematics is the language that is not fundamental
but rather is an abstraction derived from the syntax of natural language.

Because of this, terms like ‘set’, ‘element’, ‘member’, and ‘infinite’, while having formalized
expressions in mathematics, also have natural language meanings assumed by mathematicians as they
work. For example, mathematicians will often explain that sets, as calculated in set theory, are sets of
anything, such as “the set of all students registered at the City University of New York in February 1998,
the set of all even natural numbers, the set of all points in the plane m exactly 2 inches distant from a
given point P, the set of all pink elephants” [273]. However, much of the semantic content assumed in
terms like ‘set’, ‘element’ and so on is not made explicit in the formalism of mathematics.

The first-order language of math actually “abstracts out” (that is, ignores) the semantics and syntax
of natural language in order to simplify and systematize the schemas it studies. But the ordinary, natural
language meanings and semantics of terms adopted by, and used in, mathematics do not go away simply
because they are not acknowledged or attended to. The semantics instead are assumed, or sometimes
implied, by the mathematician and can even influence mathematical practice. In fact, those semantics
influence the proposal of the formal, mathematical definitions of those terms (like the use of ‘set’ rather
than a new word like ‘zad’, for sets are assumed to be sets of things).

As a caveat to this contention, it is true that when semantics are given any thought in math, it’s only
with regard to denotation rather than connotation. Mathematical definitions are used primarily for
making denotations (which are numerical and ostensive in meaning) without interest in any secondary
logical implications or connotations (which may have even metaphorical meanings). And when the first-
order language ‘sentences’ in math are translated into second-order language concepts, the meaning of
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the terms is confined to denotation only for the sake of making calculations with little attention paid to
connotation.

For example, ‘2’, ‘3’, and ‘5’ denote the cardinalities of sets of different size, ‘+’ denotes combining
cardinalities, and ‘=" denotes identifying the cardinality of a set resulting from the cardinalities combined.
Hence, 2 +3=>5denotes the cardinalities of sets added together to establish a combined cardinality of 5.

We notice the semantics of denotation more clearly when we translate the equation as a
mathematical ‘sentence’ into an ordinary, second-order language sentence. (The syntax of any ‘sentence’
in a first-order language can be translated into the syntax of a second-order language sentence.) That is,
a mathematical equation like 2 +3 =5 can be translated into the second-order grammar of natural
language like so: “A set of two elements added to a set of three elements is identical in size to a set of five
elements,” or in its commonly abbreviated form: “Two plus three equals five.” When we express the
equation 2 +3=>5in its mathematical syntax, we are assuming the second-order grammar of its natural
language equivalent expression, which in turn denotes sets of various sizes.

So, the formalism of math assumes the semantics of second-order, natural language, though the
semantics assumed in a mathematical expression are mainly meanings in the form of denotation.
Connotations—secondary logical implications based on the meaning of terms—are not given much
consideration in math. The operational procedures in math “abstract out” any further connotations.

Numbers and properties like infinity, considered only in the abstract, are said to denote sets or
properties of sets, or even just the signifiers in the syntax of math itself. Any further connotations are not
relevant to the mathematician.

And even when the issue of denotation is considered, denotation is often mistaken for extension and
dismissed with the statement that mathematics is not about the extension of terms. However, it’s not
that mathematics has no denotations, for what is denoted in math are the properties of the mathematical
schemas, or even the signifiers that refer to properties like ordinality, cardinality, and the like. Rather,
such denotations of the terms are merely assumed in mathematical operation and taken for granted.

It’s not hard to see why this confusion happens: numbers, after all, are properties of numerals and
sets can be sets of numbers. So, mathematics, unapplied to measurement of the real world, references
only properties of its own signifiers and so the properties of the signifiers become, even if not technically
accurate, identified with the signifiers themselves and their syntax. Hence, even denotation can become
ignored and only the syntax given notice in the practice of mathematics.

This appears to be the case at least insofar as pure mathematics is concerned, stripped of any concern
for application to thought experiments or measurements that involve real-world entities. What is denoted
(mathematical properties) can become mistaken for the signifiers as such so that only syntax is of concern,
while any second-order logical connotations and natural language associations assumed in the use of
mathematical terms, like infinity, simply aren’t relevant with respect to mathematical operations which
can be effectively considered solely with regard to first-language formalism. But this does not mean that
mathematical ‘sentences’ carry no logical connotations at all, or that connotations cease to influence
mathematical procedure.

9.4.6 Connotations of Mathematical Expressions
Not only do mathematical expressions carry meaning in terms of denotations, but the semantics of

mathematical signifiers sometimes carry connotations that are tacitly assumed, even while habitually
being “abstracted out” for convenience in making calculations. As an example of a connotation carried by
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a mathematical expression, consider the tense of mathematical expressions translated into natural
language.

Some mathematicians point out that first-order languages have no past or future tense in their
expression [274]. Instead, first-order languages are said to be tenseless. First-order languages are
‘tenseless’ in the sense that tense is not a relevant consideration in first-order languages. After all, notice
that when the mathematical expression ‘2 +3 =5 is translated into second-order, natural language as,
“Two plus three equals five,” we never say that two plus three equaled five or will equal five; rather, we
always say the sum equals five—present tense. What is regarded as “tenseless” in the syntax of math’s
first-order language only becomes tensed when translated into the syntax of natural language—though,
the tense for mathematical expressions so translated is confined to the present tense.

Some mathematicians believe that the ‘tenselessness’ of expressions in first-order symbolism of math
entails that mathematical expressions have no semantics and so are without meaning [275]. But this is
not quite so.

Rather, the ‘tenselessness’ of the first-order syntax in math shows only that mathematicians can safely
ignore tense when constructing their mathematical ‘sentences’ and performing operations. But when we
translate the first-order ‘sentence’ into a second-order sentence in natural language (as “Two plus three
equals five”), the resulting expression carries not only the denotations of the terms (the sets designated
by the numbers) but also the logical connotation that the present-tensed operation implies constancy
over time. The particular operation on sets of those sizes holds true or false at all times and any time;
past, present, or future. It will always be true that two plus three equals five. This constancy is a logical
connotation of what the mathematical expression means.

Even more significantly, connotations are found in the use of mathematical terms that function as
predicates, or that are defined with predicates; such terms assume or imply concepts with lexical
meanings. As pointed out earlier, the terms w and ¥ mean ‘infinite in order’ and ‘infinite in size’
respectively; the term ‘infinite’ is a predicate. Hence, w and N represent concepts with the meaning of
the natural language predicate ‘infinite’, the intension of which both denotes and connotes.

For example, X may denote a set that has the same cardinality as the infinite set of naturals (N) or
the infinite set of wholes (W), but it also implies that the set is both complete (whole, entire, finished,
full, and total) and limitless (has no last member even in principle). Even if we want to define ‘infinity’ in
the formalism of algebra, calculus or transfinite math, the concept of infinity, taken literally, still assumes
the more lexical meanings of ‘complete’ and ‘limitless’ as commonly understood. Infinity is a great
example of a term used in mathematics that has semantics as well as syntax, and the semantics of infinity
carry lexical meanings even if they remain tacitly assumed. There is thus more to being infinite in the
transfinite system than is stated in the formalism of its mathematical syntax. So once again we see that
the mathematical symbols represent concepts with meanings, and the meanings of those concepts can
even carry connotations.

9.4.7 Math Expressed in Natural Language

All of this so far shows that math is more than just syntax; its expressions both denote and even connote—
they have semantics.

As further evidence of this contention consider that some mathematical postulates, axioms, and
theorems are themselves written in natural language—whether English, French, Greek, Latin, Chinese,
etc.—albeit with technical terminology. As a simple example, consider that Euclid’s First Postulate of
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geometry is stated in natural language: “A straight line segment can be drawn joining any two points”
[276]. As another example, consider Goldbach’s Conjecture (GC):

= GC: Every even integer greater than 2 can be expressed as the sum of two primes.

Clearly, at least some mathematical expressions, like certain axioms and theorems, are given in second-
order natural language with natural language semantics. Hence, there is definitely some overlap between
the domain of natural language grammar and that of math.

To get around this example and maintain math is just syntax, some philosophers like Wittgenstein
protested that all mathematical ‘sentences’ must be testable, and testable by syntax alone. Wittgenstein
maintained that we should confine our understanding of math to that which is written in the first-order
language syntax of mathematical ‘sentences’ and test them only syntactically. He claimed that GC should
therefore not be considered a genuine mathematical statement [277].

However, we can indeed translate axioms and theorems like GC into the first-order language of math.
For instance, GC can, roughly speaking, be written as ‘p + g = 2n’ (assuming p and q are primes, where p
<gandn>2).

But such translation is only an instance of abstracting out meanings, like any logical connotations that
we don’t wish to attend to for the sake of calculation. Translate the syntax of the expression back into the
syntax of natural language grammar and all the second-order language connotations return. For example,
“every” in GC's natural language phrasing, “every even integer,” implies that all even integers, no matter
how much greater than 2, are available for scrutiny. In which case, we can at least in principle attend to
them no matter how great they are. This is not stated, but it is implied—it’s a logical connotation and
therefore part of the semantics of the mathematical statement. Hence, once again we see that math does
indeed entail semantics as well as syntax.

To rebut this point, Wittgenstein would claim that although GC can be translated into the first-order
language of math, doing so still does not make GC syntactically testable—it does not give us a testable
‘sentence’. However, this maneuver seems designed to avoid both the assumed and implied semantics
that are indeed inherent in mathematics, and it turns out not to be true.

Clearly, GC is falsifiable (able to be shown false, if indeed it is false) by simple calculation. If, for
example, we were to find that no two primes (like 3 and 5), when added together, equal an even integer
(such as the number 8), then GC would be false. Of course, this isn’t so, but that doesn’t matter; the point
is, we know what would prove GC false, so we can test GC to see if it’s false, and the test can be performed
only with syntax. Again: at least in principle if not in practice, for we can imagine some even integer too
large for us to define today, but not at some point in the future and we can also imagine there could be
even integers that are definable only in principle but not in practice. So, GC is certainly falsifiable in
principle, arguably falsifiable in practice.

However, we can also ask if GC is verifiable (able to be shown true). That is harder to say. It depends
on what “every even integer” means; does it mean every even integer invented so far, or every even
integer that can be invented in practice, or every even integer that can be invented in principle, or does it
mean every even integer from a literally infinite set of integers? If it means the latter condition, then it is
difficult to see how GC can be verified without contradiction—a point in Wittgenstein’s favor. If it means
one of the former conditions, then we can see that GC can be verified.
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Due to this ambiguity, GC may need a bit of refinement:

=  GC: (revised) For any even integer able in practice to be defined as greater than 2, the integer can
be expressed as the sum of two primes.

Logicians will notice in that version of GC some troublesome modal words (such as ‘able’ and ‘can’),
but let’s assume this statement of GC is clear enough. If we state GC this way, then GC is verifiable as well
as falsifiable.

It doesn’t matter if we actually test GC to see what the outcome is. The only thing that matters is that
we understand the meaning of GC enough to comprehend what testing it would be like. If upon exhausting
our ability to define even integers, we find that all defined even integers greater than 2 are indeed
expressible as the sum of two primes, then we have verified GC. If verifiability is to be the standard of
meaningfulness, then GC can be a meaningful statement in mathematics—an instance of mathematical
semantics.

Moreover, we could capture this modified version of GC in formal logic without much altering the
first-order formulation. It is not necessarily true, then, that GC isn’t syntactically testable even though its
primary expression is in second-order, natural language.

This example illustrates again that math is more than syntax alone; semantics are either assumed or
implied in axioms, theorems, and mathematical conjectures. And taking testability into account, the
semantics may even imply which syntactical means should be used as a test for the consistency of the
mathematical statement.

Some philosophers and mathematicians retort that, aside from natural language axioms, theorems,
and such, mathematical operations performed on first-order language ‘sentences’ or ‘statements’ carry
no meaning. Such expressions can only be assessed as ‘true’ or ‘false’ in the sense of being either
syntactically consistent or inconsistent, not in the sense of meaning something that is representative of a
state of affairs outside the mathematical system itself [278]. In math, a ‘sentence’ such as ‘8 + 2 =4"is
true while ‘8 +~ 3 = 4’ is false because the former is consistent according to the syntactical rules of math
while the latter is not. Since determining the truth of a mathematical ‘sentence’ is merely a matter of
formal consistency, then comprehending a ‘sentence’ in the first-order language of mathematics does not
require semantics, just syntax. Even a mindless computer can use formal, first-order language expressions
(or at least voltage levels corresponding to them) to perform calculations on behalf of human users
without any need for understanding the semantics of the concepts behind such expressions. So, any
natural language expression is unnecessary or irrelevant.

But this is not entirely accurate. It is true that testing a mathematical expression for truth or falsity is
a matter of simply testing it for syntactical consistency. But just because the truth or falsity of a
mathematical expression is determined by syntactical test rather than semantic test against an
observation does not mean that the mathematical expression in first-order language does not assume or
imply meaning. An expression like ‘8 +~ 2 = 4’ carries a primary meaning—namely, that four (4) is the
solution of the division process; the semantics of ‘8 + 2 = 4’ is thus directly implied by the denotation of
the expression’s terms. And ‘8 <+ 2 = 4’ also has a connotation: the expression can be applied to many
situations as a measure, such as the division of a group of eight people into two parties of four people.
Hence, mathematical operations are not shorn of all semantics, of all meaning. The meanings may be
simply assumed or implied rather than attended to directly during procedure.

As for machines performing mathematical operations, the machines are programmed to output
meaningful data. The machine may not understand the meaning of the output but the human user of the
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machine does indeed need to comprehend the semantic content of the concepts assumed by the formal
syntax of the machine’s outputted expressions in order to understand their significance.

Further, in order to be comprehensible and significant, mathematical expressions must be
meaningful, not just organized strings of uninterpreted symbols. For example, the following expression
will only be comprehensible to those who already know about derivatives in calculus:

y = ++25—x?

Such examples show yet again that mathematics is not just syntax alone and is not solely a first-order
language and nothing more; mathematical expressions in first-order language translate into second-order
language statements that have semantics, even if those semantics are considered in purely denotative
terms and any further connotations are ignored for the sake of carrying out mathematical procedure, as
demonstrated by first-order language calculations performed by machines but carrying significance only
humans understand.

9.4.8 Meaning Matters to Math

Defining mathematical terms formally, using first-order language to make various mathematical
expressions, testing the consistency of those expressions by using the formal syntax of math alone, and
even the ability to program machines to output strings of symbols do not indicate that there is no semantic
content in mathematics. Mathematics may be a formal, first-order language in terms of how its notation
can be used without reference to semantic content. But it is a mistake to think mathematical terms have
no semantics at all and that math does not make use of terms having assumed meanings and logical
connotations.

As a further example, take E = 7.76 X 1018] as an expression in formal, mathematical language.
Certainly, it follows mathemati