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When the density of the body becomes large enough, general relativity predicts the formation of a 

black hole. The neutron stars of about 1.4 solar masses and the black holes are the final stage for 

the evolution of the massive stars. 1 Usually a black hole in a galaxy has played an important role in 

its formation and related cosmic structures. Such bodies provide an efficient mechanism for the 

emission of electromagnetic radiation2 and the formation of microquasars. 3 Accretion can lead to 

relativistic jets. General relativity allows the modeling of these phenomena, 4 confirmed by 

observations. 

Black holes are the areas where gravitational waves are searched, sometimes formed by combining 

binary stars with black holes, detected on Earth; the pre-fusion phase ("chirp") can be used as a 

"standard illumination" to deduce the distance to the fusion events, serving as a proof of cosmic 

expansion over long distances. 5 When a black hole joins another supermassive black hole, it can 

provide direct information about the geometry of the supermassive black hole. 6 

In February 2016 and later in June 2016, June 2017 and August 2017, Advanced LIGO announced 

that it had directly detected gravitational waves from a black hole stellar fusion. 7 Gravitational 

waves can be detected directly, and many aspects of the Universe can be found in their study. The 

astronomy of gravitational waves is concerned with the testing of general relativity and of 

alternative theories, verifying the predicted shape of the waves and their conformity with solutions 

of the field equations of the theories. 8 
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2 R. D. Blandford, “Astrophysical Black Holes.,” in Three Hundred Years of Gravitation, 1987, 277–329, 
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Other tests for strong gravity allow the gravitational redshift of the light from the star S2 orbiting 

the supermassive black hole Sagittarius A* in the center of the Milky Way, with the help of the 

Very Large Telescope using GRAVITY, NACO and SIFONI. 9 

The strong equivalence principle of general relativity for bodies with strong self-gravity was tested 

using a triple star system called PSR J0337+1715, consisting of a neutron star with a white dwarf 

star located approximately 4,200 light-years from Earth. which orbit along with another distant 

white dwarf star. The observations, with high accuracy, compare the way in which the gravitational 

pull of the outer white dwarf affects the pulsar which has a strong autogravity and the inner white 

dwarf. The results confirmed the general theory of relativity. 10 

 

 

9 R. Abuter et al., “Detection of the Gravitational Redshift in the Orbit of the Star S2 near the Galactic Centre 

Massive Black Hole,” Astronomy & Astrophysics 615 (July 1, 2018): L15, https://doi.org/10.1051/0004-

6361/201833718. 

10 Anne M. Archibald et al., “Universality of Free Fall from the Orbital Motion of a Pulsar in a Stellar Triple 

System,” Nature 559, no. 7712 (July 2018): 73–76, https://doi.org/10.1038/s41586-018-0265-1. 
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Gravitational lenses 

When a massive astronomical body lies between the observer and a distant body with an 

appropriate mass and distance, several distorted images of the distant body can be seen, forming 

the effect known as gravitational lenses, 11 two or more images are the shape of a light ring. known 

as the Einstein ring or partial rings (arches). 12 The first such observation was in 1979. 13 The effect 

can be measured according to the brightness of the distant body. Gravitational lenses allow the 

presence and distribution of dark matter to be detected, being a kind of "natural telescope" for 

observing distant galaxies and obtaining an independent estimate of the Hubble constant. Their 

statistical assessments provide information about the structural evolution of galaxies. 14 The 

observation of gravitational lenses is expected to complement observations in the electromagnetic 

spectrum, 15 to provide information on black holes, neutron stars and white dwarfs, and on 

processes in supernovae and the very early universe, and to check the alternative theories including 

string theory in quantum gravitation. 16 

Gravitational lenses also form at the level of the solar system, with the Sun interposed between the 

observer and the light source, but the convergence point of such lenses would be approximately 

542 AU from the Sun. However, this distance exceeds the capabilities of the probe equipment and 

goes far beyond the solar system. 

Sources for gravitational lenses are radio sources far away, especially some quasars. For detection 

are used long-distance radio telescopes combined with very long basic interferometry technique. 

For accuracy, we consider the systematic effects on the Earth level, where the telescopes are 

located. The observations confirmed the value of the deformation predicted by the general 

relativity. 17 

 

 

11 Joachim Wambsganss, “Gravitational Lensing in Astronomy,” Living Reviews in Relativity 1, no. 1 (November 

2, 1998): 12, https://doi.org/10.12942/lrr-1998-12. 

12 Bernard Schutz, “Gravity from the Ground Up by Bernard Schutz,” Cambridge Core, December 2003, 

https://doi.org/10.1017/CBO9780511807800. 

13 D. Walsh, R. F. Carswell, and R. J. Weymann, “0957 + 561 A, B: Twin Quasistellar Objects or Gravitational 

Lens?,” Nature 279, no. 5712 (May 1979): 381–384, https://doi.org/10.1038/279381a0. 

14 Ramesh Narayan and Matthias Bartelmann, “Lectures on Gravitational Lensing,” ArXiv:Astro-Ph/9606001, 

June 3, 1996, sec. 3.7, http://arxiv.org/abs/astro-ph/9606001. 

15 Kip S. Thorne, “Gravitational Waves,” ArXiv:Gr-Qc/9506086, June 30, 1995, 160, http://arxiv.org/abs/gr-

qc/9506086. 

16 Curt Cutler and Kip S. Thorne, “An Overview of Gravitational-Wave Sources,” ArXiv:Gr-Qc/0204090, 

April 30, 2002, 4090, http://arxiv.org/abs/gr-qc/0204090. 

17 E. Fomalont et al., “Progress in Measurements of the Gravitational Bending of Radio Waves Using the 

VLBA,” The Astrophysical Journal 699, no. 2 (July 10, 2009): 1395–1402, https://doi.org/10.1088/0004-

637X/699/2/1395. 
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With the help of the astronomical satellite Hipparcos of the European Space Agency it was found 

that the whole sky is slightly distorted due to the gravitational deviation of the light caused by the 

Sun (except the direction opposite to the Sun). This requires some minor corrections for virtually 

all stars. 
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Gravitational waves 

Gravitational waves were predicted in 1916 by Albert Einstein. 18 They are disturbances in the 

curved spacetime geometry, generated by the accelerated masses and propagating with the speed 

of light. They were confirmed on February 11, 2016 by the Advanced LIGO team. 19 For the weak 

fields a linear approximation can be made for these waves. Data analysis methods are based on the 

Fourier decomposition of these waves. 20 Exact solutions can be obtained without approximation, 

but for gravitational waves produced by the fusion of two black holes, numerical methods are the 

only way to build suitable models. 21 

Gravitational waves were initially suggested by Henri Poincaré in 1905, and then predicted in 1916 

by Albert Einstein based on the general theory of relativity. The laws of classical mechanics do not 

guarantee their existence, this being one of the classical limitations. Binary neutron star systems are 

a powerful source of gravitational waves during fusion. Gravitational waves were detected by the 

LIGO and VIRGO observatories. They allow the observation of the fusion of black holes and the 

study of the distant universe, opaque to electromagnetic radiation. 

Einstein and Rosen published the first correct version of gravitational waves in 1937. 22 

Gravitational waves are created by accelerating mass in space, but if the acceleration is spherically 

symmetrical, no gravitational waves are radiated. Binary systems always radiate gravitational waves, 

because their acceleration is asymmetrical. 

The first indirect detection of gravitational waves was in 1974 by Hulse and Taylor, from a binary 

pulsar PSR 1913+16, using delayed radio wave detection. 23 They found that the gravitational time 

 

 

18 Albert Einstein, “Näherungsweise Integration Der Feldgleichungen Der Gravitation,” Sitzungsberichte Der 

Königlich Preußischen Akademie Der Wissenschaften (Berlin), Seite 688-696., 1916, 1: 688–696, 

http://adsabs.harvard.edu/abs/1916SPAW.......688E. 

19 B. P. Abbott, The LIGO Scientific Collaboration, and the Virgo Collaboration, “Observation of 

Gravitational Waves from a Binary Black Hole Merger,” Physical Review Letters 116, no. 6 (February 11, 2016): 116(6): 

061102, https://doi.org/10.1103/PhysRevLett.116.061102. 

20 Piotr Jaranowski and Andrzej Królak, “Gravitational-Wave Data Analysis. Formalism and Sample 

Applications: The Gaussian Case,” Living Reviews in Relativity 8, no. 1 (March 21, 2005): 8 (1): 3, 

https://doi.org/10.12942/lrr-2005-3. 

21 Edward Seidel, “Numerical Relativity: Towards Simulations of 3D Black Hole Coalescence,” ArXiv:Gr-

Qc/9806088, June 23, 1998, 6088, http://arxiv.org/abs/gr-qc/9806088. 

22 A. Einstein and N. Rosen, “On Gravitational Waves,” Journal of The Franklin Institute 223 (January 1, 1937): 

43–54, https://doi.org/10.1016/S0016-0032(37)90583-0. 

23 R. A. Hulse and J. H. Taylor, “Discovery of a Pulsar in a Binary System,” The Astrophysical Journal Letters 

195 (January 1, 1975): L51–L53, https://doi.org/10.1086/181708. 
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dilation was in line with the GR prediction and contradicted most alternative theories. 24 The first 

direct detection of gravitational waves occurred in 2015, with two Advanced LIGO detectors, from 

source GW150914, a binary black hole. 25 These observations confirmed the spacetime curvature 

as described by GR. 

Joseph Weber designed and built the first gravitational wave detectors, in 1969 reporting that he 

detected the first gravitational waves, then reporting signals regularly from the Galactic Center. But 

the frequency of detection raised doubts about the validity of his observations. 26 

Some scientists disagree with the fact that experimental results are accepted on the basis of 

epistemological arguments. Based on gravitational wave detection experiments, Harry Collins 

developed an argument he calls the "experimenters’ regress":27 a correct result is obtained with a 

good experimental apparatus, respectively one that gives correct results. Collins argues that there 

are no formal criteria for checking the device, not even by calibrating a device by using a "surrogate" 

signal. 28 The problem is finally solved by negotiation within the scientific community, depending 

on factors such as the career, social and cognitive interests of the scientists, and the perceived 

usefulness for future work, but without using epistemological criteria or rational judgment. Thus, 

Collins asserts that there is serious doubt about experimental evidence and their use in evaluating 

scientific hypotheses and theories. The example given by Collins is early experiments to detect 

gravitational radiation or gravitational waves. 29 

The physical community was forced to compare Weber's assumptions with reports of six other 

experiments that did not detect gravitational waves. Collins argues that the decision between these 

contradictory experimental results could not be made on epistemological or methodological 

grounds - the six negative experiments could not legitimately be considered as replications, and 

thus were considered less important. In his experiments Weber used a new type of device to detect 

 

 

24 Clifford M. Will, “The Confrontation between General Relativity and Experiment,” Living Reviews in 

Relativity 17, no. 1 (December 2014): 17, https://doi.org/10.12942/lrr-2014-4. 

25 Abbott, The LIGO Scientific Collaboration, and the Virgo Collaboration, “Observation of Gravitational 

Waves from a Binary Black Hole Merger,” 116(061102). 

26 Jorge L. Cervantes-Cota, Salvador Galindo-Uribarri, and George F. Smoot, “A Brief History of 

Gravitational Waves,” Universe 2, no. 3 (September 2016): 2 (3): 22, https://doi.org/10.3390/universe2030022. 

27 Harry M. Collins, Changing Order: Replication and Induction in Scientific Practice, Reprint edition (Chicago: 

University of Chicago Press, 1992), 4:79-111. 

28 Allan Franklin and Slobodan Perovic, “Experiment in Physics,” in The Stanford Encyclopedia of Philosophy, ed. 

Edward N. Zalta, Winter 2016 (Metaphysics Research Lab, Stanford University, 2016), 

https://plato.stanford.edu/archives/win2016/entries/physics-experiment/. 

29 Allan Franklin, “Calibration,” in Can That Be Right? Essays on Experiment, Evidence, and Science, ed. Allan 

Franklin, Boston Studies in the Philosophy of Science (Dordrecht: Springer Netherlands, 1999), 5: 31–80, 

https://doi.org/10.1007/978-94-011-5334-8_9. 
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a hitherto unobserved phenomenon, which could not be subjected to standard calibration 

techniques. 30 

The results of other scientists who contradicted Weber's were more numerous, and have been 

carefully verified, and have been confirmed by other groups of researchers. They investigated 

whether their analysis procedure, a linear algorithm, could explain the failure in observing Weber's 

results. They changed the procedure to the one used by Weber, a nonlinear algorithm, to analyze 

their own data, but again found no trace of gravitational waves. They recalibrated their experimental 

devices by introducing known acoustic energy impulses and thus detecting a signal. 31 

There were other doubts about Weber's analysis procedures. An admitted programming error 

generated false coincidences between the two detectors that could be interpreted during the 

experiments as real. 

The results of the critics were much more credible from the point of view of the procedures that 

had to be followed: they verified the results by independent confirmation that included the sharing 

of data and analysis programs, eliminated a plausible source of error, and they calibrated the devices 

by injecting known energy pulses and observing the output. Allan Franklin and Slobodan Perovic 

believe that the scientific community made a motivated judgment by initially rejecting Weber's 

results by accepting those of his critics. Although no strict formal rules were applied, the procedure 

was reasonable. 32 

Another way of detecting gravitational waves is through the interaction of the waves with the walls 

of a microwave cavity, with a formalism developed by Caves, for measuring inertial frame 

dragging33 and detecting high frequency gravitational waves. 34 

 

 

30 Franklin and Perovic, “Experiment in Physics.” 

31 Franklin and Perovic. 

32 Franklin and Perovic. 

33 C. M. Will, “The Theoretical Tools of Experimental Gravitation,” 1974, 1, 

http://adsabs.harvard.edu/abs/1974exgr.conf....1W. 

34 Carlton Morris Caves, “Theoretical Investigations of Experimental Gravitation” (phd, California Institute 

of Technology, 1979), http://resolver.caltech.edu/CaltechTHESIS:03152016-161054898. 
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Synchronization binary pulsars 

Pulsars are rotating neutron stars that emit radio waves in pulses as they rotate, thus functioning as 

watches that allow a very precise measurement of their orbital movements. Their observations 

showed that their precessions that cannot be explained by classical mechanics can be explained by 

general relativity. 35 

Measurements on binary pulsars can test the combined relativistic effects, including the Shapiro 

delay. 36 And, since the gravitational field near the pulsars is strong, the weak equivalence principle 

can also be tested due to the invariant position of the objects with strong self-gravity properties. 37 

 

 

35 Joel M. Weisberg, David J. Nice, and Joseph H. Taylor, “Timing Measurements of the Relativistic Binary 

Pulsar PSR B1913+16,” The Astrophysical Journal 722, no. 2 (October 20, 2010): 722 (2): 1030–1034, 

https://doi.org/10.1088/0004-637X/722/2/1030. 

36 Lijing Shao and Norbert Wex, “Tests of Gravitational Symmetries with Radio Pulsars,” Science China Physics, 

Mechanics & Astronomy 59, no. 9 (September 2016): 59(699501), https://doi.org/10.1007/s11433-016-0087-6. 

37 Clifford M. Will, Theory and Experiment in Gravitational Physics, Revised Edition, Revised edition (Cambridge 

England ; New York, NY, USA: Cambridge University Press, 1993). 
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Extreme environments 

Extreme gravity environments are close to very massive compact bodies, where the curvature of 

spacetime is very pronounced and the general relativistic effects are profound. These are usually 

neutron stars and black holes (especially supermassive ones), the active galactic nucleus and 

quasars. Deviations from the GR are most likely to occur here, under strong gravity regime. Such 

a test, for 16 years, was performed by Gillessen et al., 38 for Sagitarius A* [Sgr A*], a light radio 

source in the center of the Milky Way where there is a supermassive black hole. The observations 

made by Hambaryan et al. 39 were in full agreement with the GR, an essential confirmation for this 

theory. 

 

 

38 S. Gillessen et al., “Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center,” The 

Astrophysical Journal 692, no. 2 (February 20, 2009): 692(2), pp.1075–1109, https://doi.org/10.1088/0004-

637X/692/2/1075. 

39 V. Hambaryan et al., “On the Compactness of the Isolated Neutron Star RX J0720.4-3125,” Astronomy & 

Astrophysics 601 (May 2017): A108, https://doi.org/10.1051/0004-6361/201630368. 
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