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Abstract
Most natural domains can be represented in multiple ways: we can categorize foods
in terms of their nutritional content or social role, animals in terms of their taxo-
nomic groupings or their ecological niches, and musical instruments in terms of
their taxonomic categories or social uses. Previous approaches to modeling hu-
man categorization have largely ignored the problem of cross-categorization, fo-
cusing on learning just a single system of categories that explains all of the fea-
tures. Cross-categorization presents a difficult problem: how can we infer cate-
gories without first knowing which features the categories are meant to explain?
We present a novel model that suggests that human cross-categorization is a result
of joint inference about multiple systems of categories and the features that they
explain. We also formalize two commonly proposed alternative explanations for
cross-categorization behavior: a features-first and an objects-first approach. The
features-first approach suggests that cross-categorization is a consequence of at-
tentional processes, where features are selected by an attentional mechanism first
and categories are derived second. The objects-first approach suggests that cross-
categorization is a consequence of repeated, sequential attempts to explain features,
where categories are derived first, then features that are poorly explained are recat-
egorized. We present two sets of simulations and experiments testing the models’
predictions about human categorization. We find that an approach based on joint
inference provides the best fit to human categorization behavior, and we suggest
that a full account of human category learning will need to incorporate something
akin to these capabilities.

People explain different aspects of everyday objects in different ways. For example, steak is
high in iron because it is a meat; however, it is often served with wine because it is a dinner food.
The different ways of thinking about steak underscore different ways of thinking about the domain
of foods: as a system of taxonomic categories including meats and vegetables, or as a system of
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situational categories including breakfast foods and dinner foods. If you were to plan meals for a
family trip you would draw upon both of these systems of categories, consulting the taxonomy to
ensure that meals were nutritionally balanced and consulting the situational system to ensure that
there were foods that were appropriate for the different times of the day (Ross & Murphy, 1999).
In nearly every domain, objects have different kinds of properties, and more than one system of
categories is needed to explain the different relationships among objects in the domain.

Several lines of behavioral research have shown how the ability to think about objects in
multiple cross-cutting ways is critical to flexibility in inductive reasoning, planning, and problem
solving. Heit & Rubinstein (1994) showed that when reasoning about anatomical properties (e.g.
“has a liver with two chambers that act as one”) people draw upon taxonomic knowledge about
animals to guide inferences, but when reasoning about behavioral properties (e.g. “usually travels in
a back-and-forth, or zig-zag, trajectory”) people draw upon ecological knowledge (see also Medin,
Coley, Storms, & Hayes, 2003; Shafto & Coley, 2003). Barsalou (1983) demonstrated that people
derive cross-cutting categories, such as ‘things to take out of the house in case of a fire’, in the
service of goals, and that these goal-based categories are used in planning (Barsalou, 1991). Chi,
Feltovich, & Glaser (1981) showed that expert physics students augment similarity-based event
categories with categories based on abstract physical principles, and these abstract categories play
an important role in expert problem solving.

Despite the empirical evidence that people categorize objects in multiple ways for different
purposes, formal models of categorization and category learning have not typically addressed this
dimension of cognitive flexibility. Most models represent only a single system of mutually exclusive
categories for a given domain, and focus on simplified behavioral tasks where a single way of cat-
egorizing is sufficient to perform well (Anderson, 1991; Kruschke, 1992; Medin & Schaffer, 1978;
Nosofsky, Palmeri & McKinley, 1994; but see Martin & Billman, 1994). Consider, for example,
the animals in Figure 1. Standard approaches to categorization infer a single system of mutually
exclusive categories such as that shown in Figure 2. This captures intuitively compelling taxonomic
categories such as mammals, birds, amphibians and reptiles, and invertebrates. However, while this
is the only way that standard approaches can view the data, it is not the only way that people can
view the data. People are able to see the domain in multiple ways: as taxonomic categories for
sure, but also as ecological categories capturing animals that live primarily on land, sea, and air (see
Figure 3), and these kinds of categories are necessary to support basic cognitive functions such as
inference (Heit & Rubinstein, 1994). In this paper, we investigate the cognitive basis of people’s
abilities to cross-categorize.

Cross-categorization presents a fundamental challenge: how a learner can infer categories
without knowing in advance which features they are meant to explain? We propose that people
address this challenge by jointly inferring one or more systems of categories and the features that
the systems explain. We contrast this proposal with two intuitively compelling alternatives. The
first proposes that cross-categorization arises as a consequence of selective attention. On this ac-
count, people attend to different features of the stimuli in different contexts, and categorize ob-
jects differently depending on the features currently under consideration. This general approach to
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cross-categorization builds on the many previous models that have emphasized the role of selective
attention in categorization (e.g. Love, Medin, & Gureckis, 2004; Medin & Schaffer, 1978; Nosof-
sky, 1984; Shepard, Hovland, & Jenkins, 1961). The second alternative formalizes the intuition that
people’s cross-categorization behavior arises as a consequence of successive attempts to account
for poorly explained features. On this account, people categorize objects, then identify features are
not well-explained by these categories. They recategorize based on those poorly explained features,
repeating if necessary, and the result is multiple different systems of categories which apply to dif-
ferent contexts. The critical difference between our approach and these two alternatives is that our
approach alone relies on joint inference about categories and feature kinds. The selective attention
approach first fixes a set of features then identifies categories that are supported by these features.
The repeated recategorization approach first fixes a system of categories, then learns feature kinds
and additional systems of categories to account for data that are not well explained by the initial
system. Our approach fixes neither the categories nor the feature kinds, and allows both to mutually
constrain each other.

To illustrate the idea we develop a new model of categorization, CrossCat, that jointly infers
cross-cutting systems of categories that best explain the data, together with the subset of features
that each explains. We contrast this approach with a representative traditional approach to category
learning, and two additional models which attempt to explain cross-categorization as a consequence
of attentional mechanisms or sequential recategorization. We present two sets of experiments in
which we investigate cross-categorization, and each model’s ability to explain the human catego-
rization behavior. To preview our results, we find that the CrossCat model accounts best for the
data, suggesting that cross-categorization relies on joint inference about categories and features.

Empirical evidence for cross-cutting systems of categories

Research on categorization has tended to focus on either identifying category structure in
real-world domains (e.g. Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976; Ross & Murphy,
1999; Medin et al., 2005), or understanding category learning using artificially constructed stimulus
sets (e.g. Shepard et al., 1961). Studies of real-world domains have shown that people learn richly
structured categories, and have identified cross-cutting systems of categories in several domains.
Studies of artificial category learning, on the other hand, rarely investigate how cross-cutting cat-
egories are learned. We therefore focus on the evidence suggesting that cross-cutting systems of
categories underlie people’s understanding of many real-world domains.

Ross & Murphy (1999) describe a series of experiments that provide evidence for people’s
use of both taxonomic and situation-based categories when thinking about foods. They showed
that, when presented with individual foods (e.g. bagel) and asked to name categories to which they
belong, people list about 50% taxonomic categories (e.g. grain) and 42% situation-based categories
(e.g. eaten for breakfast). These results were supported by a variety of other measures indicating that
people consider foods to be good examples of both taxonomic and situation-based categories, and
that people reliably sort foods into systems of taxonomic and situation-based categories. Finally,
Ross & Murphy showed that both taxonomic and situation-based category labels prime retrieval of
category members, and that both kinds of categories can guide inferences in inductive reasoning.
Similar results have been obtained by researchers investigating the domains of biology (Shafto &
Coley, 2003; Boster & Johnson, 1989; Medin et al., 2005; Proffitt, Coley, & Medin, 2000) and
person categorization (Nelson & Miller, 1995; Smith, Fazio, & Cejka, 1996; Zarate & Smith, 1990),
and in research with children (Nguyen & Murphy, 2003; Nguyen, 2007). Together, these results
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provide a compelling demonstration that people spontaneously produce, consistently agree about,
and reason based on multiple systems of categories.

There is compelling evidence that people cross-categorize. But what gives rise to these abil-
ities? In the next section, we will discuss previous models of category learning in the context of
cross-cutting categorization.

Previous approaches to category learning

Previous models of categorization have taken a wide variety of approaches to the problem
of category learning, including those based on learning rules (e.g. Nosofsky, Palemeri, & McKin-
ley, 1994; Goodman, Tenenbaum, Feldman, & Griffiths, 2008), inferring prototypes (e.g. Posner &
Keele, 1968), storing exemplars (e.g. Medin & Schaffer, 1978; Nosofsky, 1984, 1986; Kruschke,
1992), and simplicity-based approaches (Pothos & Chater, 2002; Pothos & Close, 2008), as well as
many which interpolate between approaches (e.g. Anderson, 1991; Love et al., 2004). These ap-
proaches differ in many ways, including whether they focus on supervised or unsupervised learning
(see Love, 2002; T. L. Griffiths, Canini, Sanborn, & Navarro, 2007). However, these models are
similar in that they focus on learning a single system of categories (but see Pothos & Close, 2008),
limiting their applicability to modeling learning in real world domains.

Though they seem unlikely to account for cross-categorization, these approaches provide
important insights into the basic problems of supervised and unsupervised category learning. In this
paper, we focus on the problem of unsupervised learning. In unsupervised categorization, no labels
are provided for the data; rather, based on the stimulus structure, participants are asked to discover
both how many categories there are and which objects belong in which categories (cf. Rosch et
al., 1976). This contrasts with supervised categorization, where examples are paired with category
labels, and participants are tested on how long it takes to learn to correctly categorize examples
within some error bounds. Both are important, though unsupervised categorization is arguably the
more challenging because of the ambiguity about the number of categories. Additionally, it seems
closer to the problems people face in the real world. We view supervised learning as a special case
of unsupervised learning, though we will not discuss the extension of our model to the supervised
(or semi-supervised) setting.

We discuss in detail one standard approach to unsupervised categorization, a variant of An-
derson’s (1991) Rational Model of Categorization that we call the single system model. We will
use this as a basis from which we will explore some different explanations of people’s abilities to
cross-categorize. Particularly, we contrast three intuitive approaches that attempt to explain human
cross-categorization as joint inference about multiple systems of categories and the features that
they explain, as a consequence of attentional mechanisms operating over features, or as a result of
sequential attempts to form categories that account for features that were not explained by previous
systems.

The single system model

Anderson proposed a solution to the problem of unsupervised categorization based on a prob-
abilistic model known in machine learning as the infinite mixture model (Rasmussen, 2000) and in
statistics as the Dirichlet process mixture model (Neal, 1998). Here we call it the single system
model. It embodies two intuitions about category structure in the world: the world tends to be
clumpy, with objects clustered into a relatively small number of categories, and objects in the same
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category tend to have similar features. 1 Formalizing categorization as Bayesian inference over
the hypothesis space of systems of categories described by this model automatically implements
an Occam’s razor-like tradeoff between two goals: minimizing the number of clusters posited and
maximizing the relative similarity of objects within a cluster.

This approach has two additional aspects useful for modeling human categorization. First,
as when people discover categories in the real world, the number of categories does not have to
be known in advance. The model is able to infer the correct number of categories for a given set
of objects, and that number grows naturally as new objects are introduced. Second, the model
has a minimal number of free parameters (2) allowing for straightforward implementation, and
parsimonious explanations for predicted phenomena. 2

Here we present a sketch of the model’s critical aspects needed to intuitively understand it
and the extensions we develop for cross-categorization. Full mathematical details are provided in
Appendix A. 3 The model assumes as input a matrix of objects and features, D, where entry Do, f

contains the value of feature f for object o. These values could take on a variety of forms, however,
we focus on the special case of binary features. Thus, for our purposes Do, f indicates whether object
o has feature f . For example, Figure 1 shows a data set representing the features of different kinds
of animals.

The single system model assumes that there are an unknown number of categories that un-
derlie the objects, and that objects within a category tend to have the same value for a given feature.
The goal of the model is then to infer likely system of categories, w, or sometimes we may infer the
single most probable system of categories (the maximum a posteriori solution or MAP).

The probability of an assignment of objects to categories given the data, p(w|D) depends on
two factors: the prior probability of the assignment of objects to categories, and the probability of
observed data given the categories. Formally, the probability of a system of categories w given the
data D is,

p(w|D,α,δ) ∝ p(w|α)p(D|w,δ). (1)

The probability of a particular system of categories p(w|α) captures a preference for a small number
of categories relative to the total number of objects, and the strength of this preference is governed
by the parameter α. The term p(D|w,δ) assesses the probability of the observed feature values, given
the system of categories. The model assumes that, for objects in different categories, the values they
take on a particular feature are independent (i.e. learning that reptiles tend to have legs does not tell
you whether or not birds or mammals will have legs). Therefore, different categories can be treated
separately. For simplicity, it is typically assumed that features are conditionally independent given
the underlying system of categories, which means that within a category different features can also
be treated separately. Thus, assessing the probability of the observed features given the categories
reduces to assessing the probability of the observed values for a feature within a single category
multiple times. The probability of the observed data given a system of categories p(D|w,δ) prefers
that objects in a category have the same values for each feature, and the strength of this preference
depends on the parameter δ.

1Anderson’s approach also involved implementing plausible constraints on cognition, but we will not address his
proposed constraints in this paper.

2Nosofsky (1991) describes Anderson’s model as having one parameter for each feature plus one coupling parameter.
Because we see no a priori reason to have different parameter values for different features, we set all features to the same
value. The coupling parameter is the second free parameter in our characterization.

3See also Appendix B for formal details of other implementations not discussed in the text
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The model captures a tradeoff between two competing factors. The term P(w|α) specifies a
preference for simple solutions that use a small number of object categories. The term P(D|w,δ) fa-
vors solutions that explain the data well, and tends to prefer more complex solutions. By combining
these terms, we arrive at a model that attempts to find the simplest solution that adequately accounts
for the data. This approach has strong relations to simplicity-based approaches (Pothos & Chater,
2002; Pothos & Close, 2008), as well as prototype and exemplar models (see Nosofsky, 1991, for
a detailed discussion). Figure 2 shows how the tradeoff between these factors leads the model to
group animals in Figure 1 into a small number of familiar large-scale taxonomic categories: mam-
mals, birds, reptiles and amphibians, and insects and invertebrates.

Once the prior p(w|α) and the likelihood p(D|w,δ) have been formalized, categorization
can be treated as a problem of finding a w that has high probability in the posterior distribution
p(w|D,α,δ) (see Equation 1). In the this paper, we address this search problem using Markov
Chain Monte Carlo (MCMC; Gelman, Carlin, Stern, & Rubin, 1995), a stochastic hill-climbing
approach to inference, operating over the complete data set. Intuitively, the algorithm searches
through the space of possible category assignments for w, and tends to spend more time searching
around high probability assignments. Specifically, the algorithm imagines proposing small changes
to the current solution; for example, moving an object from one category to another or splitting an
existing category into two, and tends to choose the better of the imagined and current states. We
are not committed to the psychological reality of this particular search process as a model of the
learning process or development, and there are a number of psychologically plausible approaches
for approximate inference (see also Anderson, 1991; Sanborn, Griffiths, & Navarro, 2006).

Formal models of cross-categorization

Although it seems clear that traditional models of categorization cannot account for people’s
ability to cross-categorize, there is little agreement on what does account for these abilities. Here we
contrast three potential explanations: that cross-categorization is a consequence of joint inference
about categories and the features they explain, that cross-categorization is a side effect of attentional
mechanisms, or that cross-categorization is a consequence of repeated attempts to explain observed
features. We present a new model, CrossCat, which is based on joint inference about cross-cutting
systems of categories that explain different features. For example, in Figure 3a the feature “lays
eggs” is associated with the taxonomic system of categories, and the feature “is dangerous” is as-
sociated with the ecological system of categories. Although some features are plausibly associated
with multiple systems — for example, the feature “has blubber” seems to depend on being a mam-
mal and an aquatic creature—assuming that each feature is assigned to just one system provides a
simple starting point for investigating cross-categorization. As discussed in the General Discussion,
future approaches could relax this assumption in several ways.

To test whether full cross-categorization is necessary to account for people’s behavior, we
also introduce a family of models that attempt to explain people’s behavior as a consequence of
attentional mechanisms. In addition, we introduce a third model, based on sequential attempts to
infer categories to account for poorly explained features. By contrasting the ability of these models
to predict human behavior, we will be able to address the cognitive basis of cross-categorization.
Particularly, is people’s behavior more consistent with joint inference about cross-cutting systems
of categories, or alternatives that are not fully committed to cross-categorization but may lead to
apparent cross-categorization behavior?
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Cross-categorization through joint inference over multiple systems of categories

The first approach is CrossCat, a model that infers multiple systems of categories. CrossCat
extends the approach of the single system model by allowing there to be potentially many systems of
categories, where each system categorizes the objects based on a subset of the features. Under this
approach, systems of categories are considered contemporaneously, and exist to explain different
subsets of features.

Given the animals data in Figure 1, our goal is to infer how many systems best describe
the data, to decide which features belong to which system, and to discover a categorization of the
objects for each system. Our approach extends the single system model by adding a method for
assigning features to different systems. The probability of a particular assignment of features to
systems p(s|α) uses the same probabilistic process as the assignment of objects to categories. As
for the single system model, the parameter α governs how strong a preference we have for a small
number of systems. This is the key difference between CrossCat and the single system model.
CrossCat allows there to be many different systems, while the single system model assumes that all
features belong to the same system.

Within each system, CrossCat is effectively equivalent to the single system model. That is,
the probability of a single system depends on the probability of the assignment of the objects to
categories, p(w|α), and the probability of the observed values of the features in that system, given
the categories. Importantly, however, there are as many sets of categories as there are systems in
s. Thus, the probability of all of the categories p({w}|α) is the product of the probabilities of each
individual category w where the object categories for different systems may differ.

The final component is the probability of the data given the systems of categories,
P(D|{w},s,δ). Each system of categories has an associated subset of features, and for that sys-
tem there is a particular assignment of objects to categories. As for the single system model, we
assume that values of features across categories are independent, and for convenience assume that
different features are independent within a category.

Combining these three factors, we specify the probability of a particular assignment of fea-
tures to systems and categories for each systems,

p(s,{w}|D,δ,α) ∝ p(s|α)p({w}|α)p(D|s,{w},δ). (2)

Like the single system model, CrossCat trades off the preference for complexity, favored by the
p(D|{w},s,α), against the preference for simplicity, favored by the priors p(s|α) and p({w}|α),
where α captures the strength of this preference. In cases where the data are best explained by
a single system of categories, CrossCat arrives at the same solution as the single system model.
However, when the data are best explained by multiple systems of categories, CrossCat is able to
discover multiple systems, and which features are explained by each.

Because it is a generalization, CrossCat inherits many of the strengths of the single system
model. It embodies simple assumptions about why categorization works: people have a preference
for smaller numbers of categories that tend to explain the data well. CrossCat also has a minimal
number of free parameters. Because we have no a priori grounds for expecting greater complexity in
the number of systems or the numbers of categories per system, we assume that a single α parameter
governs both the prior assigning objects to categories and the prior assigning features to systems.
CrossCat thus has the same number of free parameters as the single-system model. 4 It is also related

4In all of the work we present in this paper, the parameters were set to α = 0.5 and δ = 0.25.
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to prototype and exemplar approaches, though the relationship is somewhat more complicated, and
we return to this issue in the general discussion.

By using multiple systems of categories, CrossCat can explain patterns in how features covary
across objects that the single system model cannot explain—patterns that reflect different kinds of
category structures underlying the domain. Figure 3 shows many examples of this behavior. For
example, bats and dolphins share some features because they are both mammals, while bats and
eagles share other features because they are flying creatures. CrossCat explains the former pattern
by grouping bats and dolphins together in the taxonomic system of categories (Figure 3a), and the
latter pattern by grouping bats and eagles together in the ecological system of categories (Figure 3b).

As for the single system model, we perform inference using MCMC over the complete data
set. The approach is broadly similar to inference in the single system model. The algorithm searches
for better solutions by imagining moving either some objects to new categories or features to new
systems, preferring moves that improve on the current state. Although we think that roughly similar
heuristics may sometimes be used by human learners, we make no claims about the psychological
reality of this particular inference algorithm, only the importance of joint inference over multiple
systems of categories for explaining people’s behavior. Importantly, the algorithm described tends
to converge to solutions that jointly optimize the systems of categories and the features that they
explain.

Features-first: Attending to subsets of features

The second account we consider is based on the idea that cross-cutting systems may arise
from a features-first approach. In this approach, attention to different subsets of information leads
to identification of subsets of features, and then categories are derived. We formalize this intuition
as an extension of the single system model. The attention model is essentially the same as the single
system model, but instead of applying the model to the full data set, we consider only a subset of
the features at any given time.5 Thus, under the attention model, cross-categorization is explained
by constraining features first, then inferring the best system of categories to explain those features.

We implemented two versions of this proposal, which correspond to different ways of choos-
ing subsets of features. The first version follows the simplest possibility, with subsets chosen by
random selection. The second version(s) implement feature choice based on a simple notion of
search. The first feature is chosen at random, and subsequent features are chosen to align well with
the previously selected feature. We implemented feature selection in a variety of different ways,
which are summarized in detail in Appendix A (we tried a total of 6 versions which varied on how
feature similarity was computed and whether choices were based on maximal or average similar-
ity). 6 In the results, we present only the subset search model that showed the best performance.

In each of these models, a subset of the features is chosen. We formalize this choice using
the same prior as in CrossCat, where the probability of choosing n features is the probability of
choosing n features in one group, and the remaining F − n features in a second group (which is
ignored). The two models differ only in how the subset is chosen: in the subset attention model
we consider the possibility of randomly choosing subsets of different sizes, and in the subset search

5We also implemented a features-first approach in which the single system model was used to categorize features,
then applied to these subsets of features to infer categories. This model did not perform well, and we only report the
subsets of features results.

6In addition to the six versions that are described in Appendix A, we tried an additional 12 versions of a related but
different implementation, which did not perform better and are described in Appendix B.
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model we consider choosing subsets of similar features. For both versions, search is formalized as
for the single system model, and full formal details are presented in Appendix A.

Objects-first: Repeated recategorization

The final approach we consider suggests that cross-categorization arises from multiple ap-
plications of simple categorization, where each successive application focuses on the features that
were not well-explained by previous systems of categories. On this account, feature kinds are de-
rived from object categories; instead of being jointly optimized, categories are given priority and
feature kinds are secondary.

We formalize these intuitions as an extension of the single-system model, with an additional
parameter, corresponding to the criteria for determining when a feature is well enough accounted
for. For each iteration, the probability of categories is defined as for the single system model (see
Equation 1). The number of iterations is determined by the parameter, together with the data. We
formalize goodness of a feature, g, by considering the relative probability of each feature compared
to the feature that is best explained by the system, g = p(D f |w,δ)

max f [p(D f |w,δ)] . Thus, goodness ranges from
1, for the best explained feature, down in theory to 0. The value of the free parameter determines
which features are good enough. All of the features with g less than the cutoff are recategorized,
resulting in additional systems of categories. Within each run, search is formalized as described for
the single system model, and full formal details are presented in Appendix A.

Artificial data simulations

To highlight differences between the models, we constructed three data sets. Each data set
included 8 objects and 6 features, and was designed to have either a single system or multiple
systems of categories. The first data set was constructed to have two systems with 3 orthogonal
categories each. Figure 4a shows the raw data on the top. Note that for the first three features, clean
blocks of features appear, while the last three features have a diagonal pattern. The best solution
according to CrossCat is shown on the bottom, and shows that both sets of features resolve into
perfectly clean systems of categories. A second data set (see Figure 4b) was also constructed to
have two systems of categories, but with a somewhat less clean solution. The first system was based
on the first three features and had the same structure as in the previous example. The second system
was based on the last three features, and was designed to have two categories. The two categories
had one defining feature (in the figure, antenna), and two noisy variations. A third data set was
constructed to have one system of two prototype-like categories. Figure 4c shows the raw data on
the top, and the MAP solution according to CrossCat on the bottom.

To illustrate why CrossCat prefers these solutions, take the case of Figure 4b. The best
solution has two systems, the first with three categories and the second with two categories. To
discuss the components of the score, we use log probabilities, which range from negative infinity
to zero, and are equivalent to probabilities of 0 and 1, respectively. Higher log probabilities thus
indicate more probable outcomes. The total score for the best solutions is composed of five parts,
the prior probability for the feature kinds p(s|α), prior probabilities for each of the systems of
categories p({w}|α), and the probability of the data given the system of categories for each of the
two systems p(d|s,{w},δ). The best solution is broken down into these components in Figure 5a.
The prior for feature kinds p(s|α) contributes a log probability of −5.09. The prior on systems
of categories p({w}|α) prefers simplicity, so the probability of the three category system is less
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than the two category system, −9.67 versus −6.78, respectively. The data are more likely when,
for a single feature, all of the objects in a category have the same value. Under the likelihood
p(d|s,{w},δ), the three category system is more probable than the two category system, −8.51 and
−11.46. This embodies the tradeoff between the prior and the likelihood – the three category system
is more complex (and hence has a lower prior) but fits the data better, while the two category system
is simpler but fits the data less well. The log probability of the total solution can be calculated by
adding up these contributions, −41.51.

We can contrast this solution with possible alternatives where the structure is simpler or more
complex to show how the prior trades off with the likelihood. For the first case, we consider a single
system with the two categories discussed above, shown in Figure 5b. There are three components:
the prior on the feature kinds, the prior on the system of categories, and the likelihood of the data.
Because the structure on features is simpler and there is one less system, the prior prefers this case
over the solution described above. The log probability for the feature kinds and system of categories
are log(p(s|α)) = −1.00 and log(p(w1|α)) = −6.78. However, the simpler solution comes at the
cost of explaining the data well, and as a result the log probability of the data under the likelihood
is relatively low, log(p(d|s,{w},δ)) = −34.35. The result is a total solution that is less probable,
−42.13, than best solution.

Another set of alternative solutions could be formed by choosing a solution that is more
complex, but fits the data better. Consider for example the case where we add two categories
to the two category system in Figure 5a. The result would be a four-category system that could
explain the data without exceptions, as in Figure 5c. In this case, the probability of the feature
kinds, and the three category system are going to be identical to the original, log(p(s|α)) =−5.09
and log(p(w1|α)) = −9.67. However, because the second system now has four categories, it has
relatively low prior probability, log(p(w2|α)) = −10.36. The question is whether the ability to
explain the data better overcomes this penalty. The probability of the data for the first system is
unchanged, −8.51, while the probability of the data for the second system increases, −10.04. In
this case, the ability to explain the data better does not outweigh the added complexity and the
probability of the total solution, −43.68, is also lower than the log probability of the best solution.

Contrasting the predictions of CrossCat and the single system model

CrossCat’s approach, based on multiple systems of contrasting categories, leads to distinctly
different predictions than each of the other models. Contrasting CrossCat with the single system
model provides insight into the effects of multiple systems of categories. For the data in Figure 4c,
the single system model and CrossCat predict the same solutions because the single system model
is a special case of CrossCat, and the data only warrant a single system of categories. However,
for the data in Figures 4a and b, the models make sharply divergent predictions. Unlike CrossCat,
the single system model cannot recognize multiple systems. Because the systems of categories are
orthogonal to each other, the single system model cannot see any structure. The single system model
predicts that the best solution is a single category with all of the objects.

For the data in Figure 4b, CrossCat and the single system model again predict sharply dif-
ferent systems of categories. In this case, the two systems of categories are not orthogonal to each
other. The single system model predicts that the simpler two category system is the best solution.
However, the next four best systems of categories are variants of the best. For example, the second
and third best solutions were 1357− 24− 68 and 17− 2468− 35. These results reflect the single
system model’s inability to recognize substructures that are less prominent in the data.
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These predictions highlight important differences between CrossCat and the single system
approach. As demonstrated by the third data set, CrossCat can learn that a single system of cate-
gories is the appropriate structure, when that is the best explanation for the data. However, when
the data are best described by multiple systems of categories, as for the first two data sets, CrossCat
learns which systems of categories best describe the data. The first data set shows that CrossCat
learns rich category structure in a case when the single system model learns that there is essentially
no structure. The second data set shows that even when there are not perfectly orthogonal structures,
CrossCat’s ability to learn different systems for different subsets of the features predicts markedly
different solutions than a single system model. Critically, the predictions provided by CrossCat
are not equivalent to taking the top N predictions of the single system model. CrossCat predicts a
qualitative change in the ordering of hypotheses.

Contrasting the predictions of CrossCat and the subset attention and subset search models

In contrast with the single system model, the subset attention model can attend to subsets of
features. However, the ability to attend to subsets of features does not lead to the same predictions
as CrossCat. Because most of the possible subsets of the the data in Figure 4a do not form good
clusters, the random subset model predicts that a single cluster with all of the data is highly likely,
like the single system model. For the data in Figure 4b, the subset attention model predicts that
the system with two categories is highly likely, but not the system with three categories that is
predicted by CrossCat. Like the single system model, the feature subset model instead predicts
that two systems that split the two category solution are also highly likely, 1357− 24− 68 and
17− 2468− 35. The preference for the two-category solution shows the influence of the prior’s
preference for simpler solutions. The subset attention model shows a stronger preference for the
additional three category solutions because of the high probability of subsets of features that span
the two systems, requiring explanation of the structure in both. For the data in Figure 4c, the subset
attention model, like CrossCat and the single system model, predicts that a two category solution
1234−5678 is highly likely. This preference is, however, not very strong because only subsets with
three or more features will uniquely identify the two category structure.

The subset search model performs differently from CrossCat, despite focusing on selecting
groups of features that go together. To see why, consider the data in Figure 4a. The features Tail
and Head, which are in the same system according to CrossCat, are (anti)correlated, having 5 out of
8 features in contradiction. The features Tail and Legs, which are in opposite categories according
to CrossCat, also have 5 out of 8 features in contradiction. 7 Any model of feature similarity
will necessarily be based on the number of matching and mismatching values, and will therefore
have difficulty with cases like this. This suggests that raw feature similarity does not adequately
predict category structure. As a consequence, the subset search model(s) predict that categories
like 12678− 345 and 13467− 258 are higher probability than categories like 12− 345− 678 and
147− 258− 36. Feature similarity does not provide as strong an inductive bias as joint inference
over systems of categories.

Contrasting the predictions of CrossCat and the repeated recategorization model

The repeated recategorization model also does not perform like CrossCat. To see why, con-
sider the data in Figure 4. For the data in Figure 4a the repeated recategorization model predicts

7Note that features are two-valued—there are, for example, two different kinds of legs—and values are symmetric.
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that the best solution is placing all objects in the same category. This is because the repeated recate-
gorization model is based on the single system model, and inferring categories based on all features
leads to the same result. However, the repeated recategorization model can identify which fea-
tures are not well captured by this solution, and consequently the repeated recategorization model
also tends to favor solutions that focus on single features, which are not well-explained by a sin-
gle category. Considering the data in Figure 4c, the repeated recategorization model, unlike the
other models, fails to converge robustly on the two category solution. Although it predicts that
1234− 5678 is highly likely, it also predicts that a number of other solutions are nearly as likely.
This is because the repeated recategorization model sets a cutoff value without contrasting possible
solutions for bad features, and therefore splits off subsets of features that, while not perfect, would
be best accounted for by a single system of categories. Because repeated recategorization derives
feature kinds from object categories, it obtains quite different predictions than CrossCat.

Experiment 1: Categorization of artificial stimuli

We developed an unsupervised category learning experiment using a novel multiple sorting
method, to explore which systems of categories people tend to form given the different data sets in
Figure 4. For the first data set, CrossCat predicts that people should generate the two orthogonal
systems with three categories. The alternative models all predict that a system with a single category
is the best solution. For the second data set, all models predict that the two category solution should
be highly likely; however, only CrossCat predicts the three category solution 12− 345− 678. For
the third data set, all of the models predict that a two category solution, 1234−5678, should be the
most likely.

Method

Participants. Thirty individuals from the MIT community participated in this experiment.
Participants were recruited via a mailing list, and included both students and non-students.

Materials. Three sets of artificial stimuli, which we refer to as the 3/3, 3/2, and 2 category
learning conditions, were created for the experiment. Each set of stimuli included eight bugs that
varied on six binary features: number of legs, kinds of feet, body patterns, kinds of tails, kinds of
antennae, and head shapes (see Figure 6 for an example set of stimuli).

Procedure. There were two phases to the experiment: training and testing. In the training
phase, participants were told that we were interested in different ways of categorizing a single set
of objects. As an example, the experimenter explained that foods can be organized into taxonomic
categories (meats, dairy foods, or grains) or situational categories (breakfast foods, lunch foods or
dinner foods). The experimenter then explained the sorting task with two examples. In the first ex-
ample, the experimenter showed two ways of categorizing a set of cards with two orthogonal feature
dimensions (based on size and texture). In the second example, the experimenter showed the partic-
ipant two prototype categories using stimuli from Yamauchi & Markman (2000). The experimenter
explained that this was a good set of categories because it captured most of the information about
the objects. This was included because people have a well-known tendency to sort based on single
features in artificial categorization tasks, and there is good reason to believe that this is not repre-
sentative of their real-world behavior (e.g. Rosch & Mervis, 1975). This manipulation was intended
to help motivate participants to produce more real-world type behavior. Participants were told that
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they would be given a set of cards and that they would be asked to sort them into categories. They
would then be asked if there was another way of sorting the objects that captured new and different
information about the objects. After each sort, they would be asked if there was another way of
sorting the objects until they decided that no additional sorts remained. Each participant sorted each
set of stimuli, and the sets were presented in random order.

Results & Discussion

We generated predictions for models by computing the marginal probability for each system
of categories. Predictions were derived by enumerating and ranking all possible systems of cat-
egories. For CrossCat, this was limited to all solutions with up to two systems. For one system
solutions, the marginal probability was simply the probability of that system given the data. For two
system solutions, the probability of each system was computed by computing the probability of the
whole solution and the probability of choosing that system from the solution (uniformly at random).
The marginal probability of a system under CrossCat is the sum of the probabilities of each possible
way of obtaining that system. Similarly, for the feature subset models, we summed the probabilities
of different systems for each possible subset of features, weighted by the probability of choosing
that subset of features. For full details, see Appendix A.

Though people produced a variety of sorts, responses converged on a relatively small subset.
For the following analyses we focus only on the top five sorts produced by people in each learning
condition. These capture the majority of the sorts produced by people and allow us to focus on the
most reliable subset of the data.

Model predictions and human results for the 3/3 condition are plotted in Figure 7a. The best
solution for the 3/3 condition according to CrossCat contains two systems with three categories
each, and these are the most likely categories according to the model. The single system model,
subset attention model, subset search, and repeated recategorization all predict that a single category
with all of the objects is highly likely. Because the systems are orthogonal, a model that is not
able to focus on explaining subsets of the data separately, like the single system model, does not
recognize the structure of the data. However, simply focusing on subsets is not enough to sharply
identify this as the correct structure. The sorting data clearly show that people have no trouble
discovering orthogonal systems of categories. To quantify the correspondence between the models
and observed data, we correlated the predicted log probability of a system of categories with the
observed frequency of the six sets, for each model. CrossCat accurately predicted the frequencies
of different categories, r = 0.91. All of the other models fail to predict people’s behavior (single
system, r = 0.16; subset attention, r = 0.16; subset search, r = −0.76; repeated recategorization,
r =−0.88).

The model predictions and human data from the 3/2 learning condition are shown in Fig-
ure 7b. The MAP solution according to CrossCat contained two categories: one system of three
clean categories, and one system of two categories with noise. CrossCat predicts these to be the
most likely sorts. The single system model again has difficulty with the fact that these categories
are largely orthogonal. Because they are not perfectly opposed, the single system and subset atten-
tion models identify the simpler of the two systems as the most likely category. The predictions of
the repeated recategorization model are similar to those of CrossCat, with the exception that it pre-
dicts an additional two category system is more likely than the two systems predicted by CrossCat.
The human data shows that people were most likely to produce the two systems predicted by Cross-
Cat, and overall fit was good, r = 0.70. Notably, the single system, subset attention, subset search,



CROSS-CATEGORIZATION 14

and repeated recategorization models all incorrectly predict that at least one other system should be
more likely than the second best system under CrossCat, and the overall fits to the data suffer as
a consequence (single system, r = −0.06; subset attention, r = −0.06; subset search, r = −0.14;
repeated recategorization, r =−0.28).

In the 2 condition, all models agreed on the best solution, a single system with two categories.
This was also the most common sort by people, chosen by two-thirds of participants and appearing
more than twice as often as the second most frequent sort. The repeated recategorization model
predicts a second solution to be as likely as likely as the first, which is not consistent with the human
data. Overall, all models provided reasonably good fits to the human data, though the subset search
model performed best (CrossCat, r = 0.57; single system, r = 0.57; subset attention, r = 0.57;
subset search, r = 0.76; repeated recategorization, r = 0.55)

To further investigate the data, we consider, for each pair of objects, what is the probability
that they will appear in the same category? Specifically, we compared the probabilities predicted
by each model with the observed frequency in the human data. For the 3/3 condition, all mod-
els perform well, though the repeated recategorization performs worst (CrossCat, r = 0.91; single
system, r = 0.91; repeated recategorization, r = 0.78; subset attention, r = 0.92; subset search,
r = 0.90). Because the only possible structure in the data corresponds to the two orthogonal sys-
tems of categories, all models capture the pairwise relationships between objects. In contrast, in
the 3/2 condition the attention-based models are unable to predict people’s performance (CrossCat,
r = 0.88; single system, r = 0.87; repeated recategorization, r = 0.87; subset attention, r =−0.06;
subset search, r = −0.11). Because the two systems are not orthogonal, attending to subsets of
features that span the systems can lead to systematically incorrect categorization predictions, while
attending to the full set of features tends to lead to categories that are qualitatively similar to the cat-
egories in one system or the other. For the 2 condition, only CrossCat and the single system model
provide accurate predictions of people’s behavior (CrossCat, r = 0.95; single system, r = 0.95;
repeated recategorization, r = 0.26; subset model, r = 0.09; subset search, r = 0.07). Notably,
the repeated recategorization model fits poorly because it splits off imperfect features, and forms
categories capturing individual variability rather than the overall prototype structure.

Note that the single system model does predict the probability with which pairs of objects
are categorized together despite not learning the right categories. To see why, consider the last two
categories in Figure 7b. The category 1357−24−68 is almost the same as the category 1357−2468
in terms of the implied pairwise object relations. The single system model tends to assign high
probability to these kinds of nearby wrong answers. Therefore, while its predictions about the
probability of categorizing pairs of objects are quite good, its predictions about the categories that
people will form are quite poor.

The two sets of analyses show that the attention-based and recategorization models do not
capture the patterns observed in the human data. The analyses also show that while the single system
model predicts the probability with which pairs of objects are categorized, it does not capture the
actual categories that people form. Only CrossCat captures both the the probability of categorization
pairs of objects and the actual categories that people form.

Real-world data simulations

Although controlled studies of artificial category learning provide some insight into cogni-
tion, our ultimate goal is to model real-world behavior. We therefore explored the models’ predic-
tions in two real-world domains: animals and musical instruments. This section describes modeling
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results for these domains, and the next section describes behavioral experiments testing the model
predictions.

The starting point for each analysis is again a matrix of objects by features. We used feature-
listing data that were collected prior to the work described in this paper. The animals matrix was
based on feature-verification responses of a single participant, and the instruments data set was
collected by DeDeyne et al. (in press). 8 For both data sets, a subset of objects was chosen to make
the number more reasonable for participants to categorize multiple times, resulting in 22 objects for
the animals data set and 13 objects for the musical instruments data set.

The raw data for the animals data set are shown in Figure 1. The data represent the knowledge
that, for example, ostriches and dolphins have lungs, while jellyfish and grasshoppers do not. The
MAP solution according to the single system model is shown in Figure 2. The solution contains a
system of taxonomic categories, including mammals, invertebrates, birds, and reptiles/amphibians.
These categories capture a subset of the features quite well, including ‘has lungs’ and ‘squawks’.
However, as can be seen on the right side of the figure, there are many features which are poorly
explained by these categories. Some of these features seem likely to contain interesting structure
based on ecological relations, including ‘hunts’, ‘is a carnivore’, and ‘eats leaves’.

Figure 3 shows shows that the MAP solution according to CrossCat contains three systems.
The first system is identical to the categories predicted by the single system model (Figure 3a).
In addition, CrossCat learns two more systems that apply to features that are poorly captured by
the single system model. Figure 3b shows a roughly ecological system of categories, including
categories of land predators, aquatic predators, aerial predators, and prey. These categories indicate,
for example, that bats and eagles and seals and penguins have many features in common. Figure 3c
shows a third system which contains features that are noisy (e.g. ‘is large’) or irrelevant (e.g. ‘is a
rodent’). 9 CrossCat has learned that the features in this system have little discriminative ability,
and therefore should not be attended to.

The raw data for the musical instruments data set are shown in Figure 8, and and indicate,
for example, that banjos have strings but that drums do not. The MAP solution according to the
single system model is shown in Figure 9. The solution includes 5 roughly taxonomic categories
including wind instruments, two categories of string instruments, and two categories of percussion
instruments. This solution attempts to accommodate two different kinds of information: information
about taxonomic categories, and information about the social uses of the instruments.

The best solution for the musical instruments data according to CrossCat is shown in Fig-
ure 10. The best solution includes two systems. The first system corresponds to a taxonomic cat-
egorization of musical instruments: wind, percussion, and string instruments. The second system
approximates categories based on social concerns. Although not perfect, they reflect instruments
used in more classical settings, such as cellos, harps, bassoons, and clarinets, as well as those that
are found in popular (rock) music settings, drums and bass. The remaining splits reflect intermediate
groups such as violins and flutes, which can be found together in folk music and classical music.

The attention and repeated recategorization models do not lend themselves to presentations
of single solutions, because any possible solution depends on random processes. However, these
models do lead to quantifiable predictions that will be contrasted with those of CrossCat and the
single system model. We will test these predictions in Experiment 2.

8Four people participated in the feature verification task in their study. We thresholded the data at two: if two people
said that a feature was true, then we considered it to be true, otherwise it was considered false.

9The uninformative system does split off frog to capture the amphibian characteristics that do not apply to reptiles.
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Experiment 2: Categorization of real-world domains

Method

Participants. 25 University of Louisville undergraduates participated in exchange for extra
credit.

Materials. The experiment included two sets of items: an animals set and an instruments set.
The entities used in both sets are listed in Figures 1 and Figure 8.

Procedure. The experiment was conducted on computers using MATLAB. Participants sat at
a computer and were told that we were interested in how people categorize objects, specifically the
different ways that people categorize the same set of objects. We then gave them the example of
categorizing foods in groups based on taxonomic categories such as meats, dairy, and grains or in
situational categories such as breakfast, lunch, and dinner foods.

People participated in the animals and the instruments categorization tasks in counterbal-
anced order. A set of words (either animals or instruments) appeared on the screen in random
locations. Participants could group the words by clicking and dragging. They could then indicate
categories by drawing rectangles around groups of words. When they completed categorizing the
words, they were asked whether there were other ways of categorizing that captured new and differ-
ent information about the objects. If participants indicated that there were, a new screen appeared
with the same words in random positions. Their previous categories remained visible for reference,
but could no longer be modified. This process repeated as long as participants indicated there were
other important sets of categories. When participants indicated that there were no more important
ways of categorizing the objects, the experiment was completed. Upon completion, we debriefed
and thanked participants.

Results & Discussion

We compare the categories people produced to the model predictions, addressing a series of
questions. First, we will investigate the predicted and observed probabilities of categorizing pairs
of objects together, allowing us to characterize which model best fits people’s behavior and which
pairs of items show the greatest differences between models. Second, we will compare the accuracy
of CrossCat to the alternative models on the pairs of items for which their predictions differ the
most. Third, we will compare the observed distribution of numbers of categories per system to the
distribution predicted by the models.

To test how well the models predict the human data, we investigated which pairs of objects
are more or less likely to be categorized together, collapsing across all of the categories people
formed. This will allow us to quantitatively compare the models’ predictions and human data for
each pair of objects, to identify and to test specific items where the model predictions diverge.
All model predictions were generated using simulations. Samples from the posterior distributions
were obtained via MCMC (see Appendix A for details). From these samples, we estimated the
marginal probability that two objects belong together by computing the proportion of times the pair
was categorized together. For the single system model, this marginal probability is the proportion
that cases where each pair of objects was assigned to the same category. For CrossCat, if a sample
had multiple systems of categories, each system of categories was treated separately. Then the
proportion of co-occurrences were computed as for the single system model. For the subset attention
and the subset search models, subsets were drawn and then samples were drawn given that subset of
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features. This was repeated multiple times for different samples of features, and the predictions for
each subset were weighted by the probability of sampling that feature kind. Full details are provided
in Appendix A.

The scatterplots in Figure 11 compare the model predictions and human data for each data
set. For the animals data, the single system model makes sharp predictions, predicting for all pairs
that they will almost deterministically be categorized either together or separately. 10 The model
shows a reasonable correlation, r = 0.48, but it is clearly not accounting in detail for the variability
in human behavior, as indicated by the points clustering on the left and right sides of the plot. The
subset attention model performs considerably worse, r = 0.30. Attention to subsets of features
leads to considerable blurring of the overall structure, which results in much poorer fits. The subset
search model fits human data well, r = 0.70, as does the repeated recategorization model, r =
0.64. CrossCat fits the human data most closely, 0.71. These results suggest that the subset search,
repeated recategorization, and CrossCat capture the gross ordering of the data.

For the musical instruments data, the models show a different pattern of fits. The single
system model, r = 0.83, and CrossCat, r = 0.86, both provide very close fits to the human data.
Also, the subset search model provides a strong fit to the data, r = 0.85. In contrast, the subset
attention model, r = 0.68 and repeated recategorization model, r = 0.59, provide a less accurate
fit to the human data. The subset attention model provides the weakest fit because it is unable
to discern good features from bad features, and incorporation of subsets of features that are not
representative of the whole lead to incorrect predictions. Repeated recategorization also performs
poorly on the musical instruments. Whereas for the animals data, repeated categorization captured a
successively more detailed picture of the data, for the instruments data, successive categories focus
on idiosyncratic details. The repeated recategorization model can only identify when features are
not well-explained; however, this does not necessarily imply that there is important structure that
has yet to be identified. These results suggest that both CrossCat and the subset search model predict
the ordering of the pairs of objects; however, inspection of the subset search scatterplots suggests
that, at least for the animals data, subset search does not accurately predict the probabilities with
which people group pairs of objects together. We address this issue in the next set of analyses.

To provide more insight into differences between CrossCat and the other models, we identi-
fied the 25 pairs of objects for which CrossCat’s predictions deviated most sharply from each other
model, for each data set. Then, for each set of items, we computed the average absolute devia-
tion between the model predictions and human data, and the results are presented in Figure 12.
The sharpest differences between CrossCat and the single system model focused on animals that
share ecological similarities, such as penguins and seals, and bats and seagulls, and instruments
that are used in similar contexts, such as clarinet and harp, and cello and bassoon. Figures 12a
and 12d show that CrossCat provides significantly closer fits to the human data for these cases,
t(24) = 4.92, p < 0.001 and t(24) = 8.95, p < 0.001. The sharpest differences between CrossCat
and the subset attention model focus on items that are very different from each other. For the animals
data, these include pairs such as octopus and sheep, and dolphin and grasshopper. For the musical
instruments, these cases include flute and drums, and triangle and guitar. Figures 12b and 12e show
that CrossCat was significantly more accurate for the animals items t(24) = 23.09, p < 0.001 and

10To ensure that this was not due to a failure of the MCMC to mix properly, we implemented an Importance sampler
that sampled from a relaxed version of the posterior distribution, and weighted samples appropriately (see Appendix A
for details). The predictions of both approaches converged, and the predictions from the importance sampler are shown
for the single system model for both data sets.
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for the instruments items, t(24) = 7.07, p < 0.001. CrossCat also fared well when contrasted with
the subset search model. The main area of disagreement on the animals was items that do not belong
together, such as ostrich and frogs, and penguins and sheep, and CrossCat performed significantly
better than the subset search model on these items, t(24) = 25.64, p < 0.001. For the instruments,
the main differences were among various string instruments such as banjo and cello and guitar
and harp. On these items, CrossCat was significantly more accurate than the subset search model,
t(24) = 3.40, p < 0.005. The differences between CrossCat and the repeated recategorization model
on the animals data were negligible, t(24) = −0.08,ns. However, for the instruments, the largest
differences were on both taxonomically related pairs such as violin and harp and drums and cymbals
and socially related items such as harp and basson. CrossCat performed significantly better than the
repeated recategorization model on these, t(24) = 7.27, p < 0.001. These results suggest that al-
though the subset attention model provided good correlations, CrossCat more accurately predicted
which pairs of objects are more likely to belong in the same category.

To get a better sense of how well the models predict the structure of people’s systems of
categories, we compared the observed number of categories per system to the predictions of all of
the models. Figure 13 shows the distributions predicted by the models, and the frequencies observed
for both domains. To quantify the strength of the relationships between the models and the human
data, we ran correlations between observed and predicted proportions. The single system model’s
predictions tend to overestimate the number of categories and show relatively poor fits to the human
data, r = 0.68 and r = −0.10 for the animals and instruments data. The subset attention model
shows moderate fits to the human data, r = 0.79 and 0.82 but fails to capture the flatness of the
distribution in the animals data and the sharp peak in the instruments data. The subset search model
performs similarly on average, r = 0.62 and r = 0.94, trading off a better fit to the instruments
against a worse fit to the animals data. The repeated recategorization model shows good quantitive
fits, 0.81 and 0.94, but fails to capture the qualitative differences in people’s performance on the
two data sets. CrossCat provides the closest fit to the human data, r = 0.81 and r = 0.95, capturing
both the relative flatness of the animals distribution and the peak in the instruments distribution.

Taken together, these results suggest that people’s cross-categorization abilities are based
on joint inference about multiple systems of categories and the features that they explain. The
single system and subset attention model provide relatively poor fits to human data. The subset
search model provides reasonable correlations to the human data, but has a strong preference for
small numbers of categories, which leads the model to overestimate the probabilities of pairs of
objects being categorized together. The repeated recategorization model failed to account for human
data on the musical instruments, and failed to capture the qualitative aspects of people’s sorting
behavior. Only CrossCat provides an accurate fit to people’s judgments across all three measures, a
consequence of joint inference over multiple systems of categories.

General Discussion

Although there is broad consensus that people do cross-categorize, there has not been consen-
sus on how best to explain this ability. Our approach to addressing this question has been based on
identifying common intuitive explanations of cross-categorization, and formalizing and contrasting
models based on these intuitions. The accounts we have considered form a continuum from simply
learning a single system of categorization, through two approaches which treat inferences about cat-
egories and features separately, to joint inference about systems of categories and the features they
explain. In formalizing these explanations, we have focused on a single family of models, based on
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a version of Anderson’s rational model (1991), systematically modifying aspects of the basic model
to implement the different explanations. This approach has allowed us to minimize differences be-
tween the models, and has provided a means by which we may investigate which forms support
human-like cross-categorization.

We have contrasted each of the models in two sets of experiments: the first focusing on ar-
tificial category learning, and the second on categorization in real-world domains. The artificial
category learning experiment used stimuli that were designed to either support or not support mul-
tiple systems of categories. The real world data were chosen to represent very different domains
of knowledge: biological kinds and artifacts. In each of the two sets of experiments, the data in-
duced sharp differences among all of the models. For the artificial categories, each of the alternative
approaches showed characteristic divergences from the human data. Unlike people, the single sys-
tem model was unable to recognize orthogonal systems of categories. The subset attention model,
while able to identify orthogonal systems by only attending to a few features, incorrectly predicted
a number of noisy and unnecessarily complex systems as a result of attending to subsets of features.
Repeated recategorization failed to identify orthogonal structure, and was unable to account for situ-
ations when there was only a single system of categories. The subset search model failed to capture
behavior on the data sets with multiple systems, because feature similarity does not necessarily map
onto good category structure. Only CrossCat, the approach based on joint inference over multiple
systems of categories, was able to account for people’s behavior across the three data sets.

The real-world data also supported the importance of joint inference over multiple systems
of categories. The single system approach provided a reasonable correlation with the human data
for the musical instruments, but the fit was rather poor for the animals. The subset attention model
showed poor fits to human behavior because random subsets of features do not necessarily capture
representative structure. The subset search model provided strong correlations, but more detailed
analyses showed that the model produced systematically fewer systems of categories and conse-
quently overestimated the probability with which pairs of objects belong together. The repeated
recategorization model provided good fits for the animals data, but it was systematically distracted
by idiosyncratic details and therefore failed to capture people’s behavior for the instruments data.
CrossCat provided close fits to the human data in both cases, providing comparable or superior
performance across all analyses. These results suggest that simple attentional mechanisms cannot
explain human cross-categorization. Rather, a model that jointly infers multiple systems of cate-
gories provides the best explanation of people’s behavior.

Beyond these specific findings, our work advances the understanding of category learning
in several ways, which we will elaborate in the following. First, we discuss the intuitions for two
assumptions, mutual exclusivity of categories and systems, that underlie our implementation of
cross-cutting categorization. Second, we will discuss relations to, and implications for, previous ap-
proaches to category learning and the notion of selective attention. We will conclude by discussing
future directions.

Mutual exclusive versus overlapping categories

Cross-categorization, and our model in particular, combine two ideas that may seem incom-
patible at first. The vast majority of categorization models learn a single system of non-overlapping
categories, and one of the reasons for the popularity of this approach is that many real-world cate-
gories are mutually exclusive. There is no animal, for example, that is both a mammal and a reptile,
and no food that is both a meat and a vegetable. The second ideas is that categories can overlap.
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This approach also seems natural, since real-world categories do overlap: an animal can be a bird
and a pet, and bacon is both a meat and a breakfast food.

Cross-categorization resolves the apparent contradiction between these perspectives. Cate-
gories may often be organized into multiple systems of mutually exclusive categories. The first
perspective recognizes the structure that is present within each of these systems, and the second
perspective recognizes that categories from different systems may overlap. Our model therefore
inherits much of the flexibility that overlapping categories provide, without losing the idea that the
categories within any given system are often disjoint.

In their studies of food categories, Ross & Murphy (1999) noted a difference in the apparent
structure of taxonomic and situation-based categories. Whereas foods tended to be rated as good
members of one taxonomic category, some foods were considered reasonably good members of
multiple situation-based categories. Based on these results, one might ask whether our assumption
of mutually exclusive categories is too strong.

There are several reasons to believe that the mutual exclusivity assumption may not be too
strong. Close inspection of Ross & Murphy’s (1999) situation-based categories shows a rather het-
erogeneous group including ‘breakfast foods’, ‘snacks’, ‘healthy foods’, and ‘junk foods’. It seems
reasonable that membership in this assortment of categories would not be exclusive, as they do not
appear to form a coherent system. It is, however, possible that even if one selected a more targeted
subset of these categories such as breakfast, lunch, and dinner foods, one may find that membership
is more mixed than for taxonomic categories. Foods may not be breakfast or lunch foods, but poten-
tially both. CrossCat is able to handle this possibility; categories can be mutually exclusive (within
a system of categories) or overlapping (across systems). Situation-based categories may not form a
single coherent system, and if not, CrossCat should find that different systems account for different
situation-based categories.

In formalizing our model, we assumed that features are not shared across systems. This
assumption provides a simple starting point for exploring cross-categorization, but will ultimately
need to be relaxed. Consider, for example, the feature “has blubber”. This feature is possessed by a
subset of animals defined by the intersection of mammals and aquatic creatures, and should proba-
bly be linked with both the taxonomic system of categories and the ecological system in Figure 3.
Another instance in the domain of animals is the feature “is large”, which seems potentially related
to taxonomic categories (mammals tend to be large relative to the others) and ecological categories
(aerial creatures tend to be not large). These are two cases where our assumption of mutual exclu-
sivity seems incorrect, and there are likely more. One way to develop an extension of CrossCat that
handles cases like these is to replace the current prior on feature assignments (Equation 3 in the
Appendix) with a prior that allows features to be assigned to multiple systems of categories. As de-
scribed in the appendix, the current prior is based on a procedure known as the Chinese Restaurant
process, and an extension of this procedure called the Indian Buffet process (T. Griffiths & Ghahra-
mani, 2006) allows features to be assigned to multiple systems of categories. Once features can be
assigned to multiple systems of categories, some assumption must be made about how these multi-
ple systems combine to predict whether the feature applies to a given object. One simple approach
is a noisy-AND model—for example, an animal is expected to have blubber only if its taxonomic
category AND its ecological category both indicate that blubber is a possibility. Other assumptions
are possible, however, and future studies can explore which set of assumptions best captures human
abilities.

Allowing features to be shared across multiple systems of categories is a natural direction
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for future work, but pursuing this direction is likely to leave the primary conclusions of the present
paper unchanged. We focused on a comparison between CrossCat, an approach that jointly infers
systems of categories and assignments of features to these categories, and two alternatives which
suggest that cross-categorization emerges as a consequence of selective attention or repeated re-
categorization. Our data suggest that joint inference provides the closest account of human abilities,
and refinements of the modeling approach can only increase the strength of this conclusion.

Implications for models of category learning

There have been many models of categorization and category learning proposed in the liter-
ature. These focus on the problem of learning a single system of categories, and therefore cannot
account for the results showing that people learn and use cross-cutting systems of categories. In the
following, we consider relations between exemplar and prototype approaches and simplicity and
attention-based approaches and our own, addressing the possibility that extended versions of these
approaches can handle cross-cutting systems of categories.

Exemplar and prototype approaches. One benefit of developing an approach that includes the
single system model (a version of Anderson’s rational model) as a special case is that there are strong
ties between this model and both prototype and exemplar models (see Nosofsky, 1991). Nosofsky
showed that, under certain conditions, the Rational model (Anderson, 1991) can be viewed as a gen-
eralization of an exemplar approach (specifically the Context model, Medin & Schaffer, 1978). 11

Depending on the value of a single parameter (α in our discussion of the single system model),
the Rational model interpolates between storing each example individually, an exemplar-based ap-
proach, and grouping all of the examples into a single category, a prototype-based approach. Be-
tween these extremes, the model learns a single system with multiple categories, each represented
by a single prototype.

CrossCat extends this approach by allowing multiple systems of categories. In our formaliza-
tion, we have assumed that the α value is the same for categories and systems, since there seemed
to be no a priori grounds for different settings. For the sake of comparison, we consider setting
these parameters separately, and refer to them as αc and αs. In the case where αs, the parameter for
systems, ensures that all features are of the same kind (i.e. is set to 0), then CrossCat will only learn
a single system of categories, and the relationships between traditional exemplar and prototype ap-
proaches are recovered as discussed above. As αs goes to infinity and αc goes to zero, we would
learn multiple systems of identical categories. Each system would have a single category including
all of the objects, and therefore would learn the average value for each feature. For independent
features, the result is similar to the case where all features were together. As both αc and αs go to
infinity, we are memorizing individual object-feature pairings.

This highlights the core difference between our approach and previous prototype and
examplar-based models: our approach learns about the structure of both objects and features. Ex-
emplar and prototype-based approaches represent two extremes of our model. Our suggestion is that
this continuum is not enough (see also Murphy, 1993). It is also necessary to consider that different
constellations of features be summarized differently, that different categories and representations
are necessary to capture different ways of thinking about objects.

11Note that this equivalence no longer holds for the unsupervised Generalized Context model (Pothos & Bailey, 2009).
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Simplicity-based approaches. Our approach is also related to simplicity-based approaches
(Pothos & Chater, 2002; Pothos & Close, 2008). The simplicity-based approach attempts to learn
the system of categories that (almost) allows within-category similarity to be greater than between
category similarity for all pairs of objects. The model directly trades-off simpler category structure
against violations of the constraint that within category similarity be greater than between category
similarity.

The spirit of trading off complexity of structure versus fit to the data is a unifying principle of
our approaches. Indeed, CrossCat can account for many of the results presented by Pothos & Close
(2008). In one experiment, the researchers presented participants with a category learning task in
which participants observed artificial stimuli that varied on two continuous dimensions. Two data
sets were created: one for which the best system of categories integrated information based on both
feature dimensions, and the other for which the best categories treated the features independently
(Figures 7 and 8 in Pothos & Close, 2008). They found that in the case of dependent dimen-
sions people’s categories were closer to the two-dimensional categories than the unidimensional
categories. In the independent dimensions case, people’s categories were closer to the predicted
unidimensional categories than the two-dimensional categories. Adapting our approach to handle
continuous, potentially correlated data, CrossCat makes similar predictions. 12 Figure 14 shows
that CrossCat prefers categories based on a single dimension for the data that are independent, and
a category based on both dimensions for the dependent data. This underscores the similarities of the
approaches.

However, there are important differences between the simplicity-based approach as applied
to categorization based on different feature dimensions in Pothos and Close (2008) and CrossCat.
Whereas Pothos and Close’s approach does admit multiple categories for a single data set, it is
based on identifying categories that account for a subset of the features, and ignore the rest. In this
sense, their model is similar to the subset attention model. Consequently, the simplicity approach
described in (Pothos & Close, 2008, see Pothos & Chater, 2002 for a full description) cannot account
for our results. 13 In particular, on the artificial data, the simplicity account makes patterns of
predictions (and errors) that are qualitatively similar to those of the subset attention model, providing
a reasonable explanation of the 3/3 and and 2 category systems, but failing to predict the pattern of
results observed in our 3/2 condition. These results suggest that Pothos and Close’s approach does
not capture the qualitative effects that we have observed here. We believe that this is because the
model represents systems of categories independently, a representational commitment comparable
to those in the subset attention models. It seems possible that an alternative formulation, based on
joint inference about systems of categories, may be able to account for our data, and we believe that
this would provide further insight into the representational basis of cross-categorization.

12To generate predictions, we implemented a generalized version of CrossCat that allowed multiple observations per
cell (binomial data), and considered the Pothos and Close data to be on an interval-level scale. The modified version
of CrossCat is similar in detail to the version discussed here, with the exception that the probability of the data (see
Equation 4) must be modified to include binomial coefficients that depend on the number of observations per cell.

13We implemented the simplicity model described in Pothos & Chater, 2002, and scored the systems of categories
shown in Figure 7 under their model. The simplicity model cannot be straightforwardly applied to data sets of the size
of the real world data we considered because the number of subsets of 106 features (as in the case of the animals data)
is more than a nonillion (1030) and running the simplicity model would require searching over all subsets of the feature
space. This practical issue should not, however, be interpreted as an argument against the model.
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Cross-categorization and selective attention

Our results suggest that cross-categorization provides a more accurate account of human
behavior than selective attention mechanisms; however, we do not consider this a point of discon-
tinuity with previous research. Categorization with selective attention can be viewed as a simple
kind of cross-categorization, where one system of categories is learned for one group of features
(those that are attended to), and all objects are lumped into the same category for another set of
features (those that are not attended to). Cross-categorization can be viewed as a generalization of
this basic idea. Rather than adopting this distinction between features based on relevance or irrele-
vance, Cross-categorization proposes that all features are relevant, but in different contexts. In any
one context, this is similar to selective attention. However, cross-categorization is also different
from selective attention. Cross-categorization takes the basic goal of categorization – to discover
the structure of the world – and generalizes it to allow for the possibility that there may be more
than one explanation for structure in a domain.

Cross-categorization suggests that there may be more than one explanation to the question
of why objects are the way they are. This represents a hypothesis about the world, that multiple
explanations exist, and leads directly to the question of which categories best explain a given fea-
ture. This competition between systems of categories to explain features leads to a different view
of selective attention. Rather than explaining features as relevant or irrelevant in a given context,
cross-categorization attempts to explain why a feature is irrelevant; what is the alternative explana-
tion? When there is a system of categories that better explains that feature and sufficiently many
other features, we infer that it is irrelevant in this context because there is some other causal process
that explains its structure. In this sense, where selective attention suggests that the problem of carv-
ing nature at its joints is a matter of attenuating noise, cross-categorization suggests that nature is
composed of many different sets of joints, reflecting a complex of causal histories, and the problem
is to infer the joints that separate these histories.

Conclusion

People think of objects as belonging to many different categories, and the ability to think
about objects in different ways plays a critical role in how we categorize, reason, plan, and solve
problems. This cross-categorization presents a chicken-or-egg problem. How can people infer
categories without knowing the relevant subset of features in advance? We have presented and
tested four possible explanations for people’s ability to cross-categorize: accounts based on simply
learning a single system of categories, using feature-based attentional mechanisms to guide multiple
category formation, using object-derived categories to identify feature kinds, and joint inference
about multiple systems of categories and the features they explain. Our results suggest that people’s
behavior is best explained by approaches that jointly infer multiple systems of categories.

Though it is important to understand basic aspects of thought in simple settings, in order to
understand the flexibility of human reasoning, we must attempt to model learning of the more robust
and complex knowledge that underlies flexible learning and reasoning. We focused on developing
an account of how cross-cutting categories could be inferred from bottom-up information. Top-
down information, such as intuitive theories and verbal statements, also plays a key role in cross-
categorization. It is important to continue to develop these approaches toward the goal of modeling
human abilities in more real-world situations, and we believe that models that can learn multiple
systems of categories to account for different aspects of knowledge are a step in the right direction.
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APPENDIX A: Formal details for the single system, subset attention, subset search, and
CrossCat models

Single system model
Both the single system model and CrossCat can be viewed as probabilistic generative models for
possible categories and observed data. The single system model is composed of two parts.

The first is a prior on categories in systems, p(w|α), which has a single parameter α that
represents the strength of our preference for small categories. This is implemented using a Chinese
Restaurant Process (CRP) prior. The CRP is a sequential generative process which assumes there
are a potentially unbounded number of categories, only some of which we have observed so far.
Imagine a new object is encountered, and we need to decide which category it belongs in. The
CRP states that the probability of assigning the object to an existing category is proportional to the
number of objects in that category, and the probability of assigning that object to a new category
depends on a single parameter, α.14 More formally, the probability that object oi is assigned to
category c given the assignments of objects wo1...oi−1 is

P(wi = c|w1, · · · ,wi−1) =
{ nc

i−1+α
if wc > 0

α

i−1+α
c is a new category

(3)

where nc is the number of objects in category c. The key aspects of this prior are that it allows for
anywhere between 1 and O categories, where O is the number of objects so far, and the number of
categories can grow naturally as new data are observed.

The second part is a model for generating observations of a feature for all objects within
a category, p(Do∈c, f |δ,w), where δ specifies the strength of our preference that all objects in a
category tend to have the same values for features. As δ goes from 1 down to 0, the preference gets
stronger. Formally, the probability of the observed values of feature f for objects in a category c is

P(Do∈c, f |w,δ) =
Beta(nc, f +δ, n̄c, f +δ)

Beta(δ,δ)
(4)

where Beta indicates the beta function and nc, f is the number of cases for which the feature is
observed.

The full generative model is then,

p(D,w|α,δ) = p(w|α)
max(w)

∏
c=1

p(Do∈c, f |δ,w). (5)

In general, we observe D and want to make inferences about w. Using Bayesian inference,
the probability p(w|D,α,δ) is,

p(w|D,α,δ) ∝ p(w|α)
max(w)

∏
c=1

p(Do∈c, f |δ,w) (6)

where the normalization constant can be obtained by summing over possible sets of categories.
This is not analytically tractable, and there are a variety of methods for approximate inference.

14This can be thought of as the number of imaginary seed objects that start new categories. Larger values indicate that
we think there are more categories.
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One method which is gauranteed to converge to the correct answer is Gibbs sampling. In Gibbs
sampling, we imagine probabilistically changing the category assignment of one object at a time,
based on the fit between the object and each possible category. Formally,

p(wi = c|w−i,D,α,δ) ∝ p(w′|α)
max(w′)

∏
c=1

p(Do∈c, f |δ,w′) (7)

where w−i are the assignments of all other objects, and w′ is the proposed system of categories
with wi = c and all other objects remaining the same. This is normalized based on all possible
assignments of object i to categories c, where c could be a new category with only object i.

Cycling through the objects, the algorithm tends to move to sets of categories that have
higher probability. In the long run, by storing sample categories, we are guaranteed that the
proportion of samples of w will converge to p(w|D,α,δ). We can then use the samples from the
Gibbs sampler to answer questions about how likely two objects are to belong to the same category.

CrossCat
CrossCat extends the single system model by allowing multiple systems of categories. Within one
particular system, CrossCat is the same as the single system model, aiming to discover the best
system of categories for the objects based on the given features. However, in CrossCat, each sys-
tem contains a different categorization of the objects, and CrossCat learns how many systems are
necessary and which features belong together in which systems.

Equation 5 defines the generative process for the single system model. CrossCat extends
this, by first choosing an assignment of features to some number of systems with probability p(s|α)
using the CRP, then for each system choosing assignments of objects to some number of categories,
each with probability p(w|α), and then generating data with probability p(D|s,w,δ). Combining all
of the pieces, the probability of a particular set of systems and categories is given by

P(s,{w}|D,α,δ) ∝P(s|α)
max(s)

∏
k=1

P(wk|α)
max(wk)

∏
c=1

P(Do∈ck, f∈k|wk,s,δ) (8)

where wk is the categorization associated with system k and Do∈ck, f∈k is the subset of matrix that
includes the features in system k and the objects in category ck.

Inference can be performed using an extended version of the algorithm used for the single
system model. Because within a system, CrossCat is the same as the single system model, the same
Gibbs sampling algorithm is used to move objects within a system. It is alternated with MCMC
(specifically, Metropolis-Hastings) proposals that allow features to change systems, including a
potentially new system. The proposal works by selecting a feature at random, and assessing the
probability of moving it to each existing system (excluding the one that it came from), as well
as a new system (with randomly drawn categories). We choose a proposal system randomly in
proportion to how well the feature fits the system. This defines the proposal probability for the
Metropolis-Hastings moves. The probability that we accept the proposal depends on the probability
of proposing the move, the probability of reversing the move (via the same proposal scheme), and
the probability of the old and new states. Like the Gibbs sampling algorithm, this MCMC algorithm
tends to move to better states, and is guaranteed in the long run to converge to the probability
distribution P(s,{w}|D,α,δ). Using samples drawn from this algorithm, we can approximate the
probability of two objects being in the same category.
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Subset attention model
The subset attention model extends the single system model by choosing a subset of n features, and
running the single system model. The size of the subset was allowed to vary, but similar to the CRP
prior for features in CrossCat, subsets were weighted based on their size. The weights allowed the
size of the subset to vary, while maintaining the same number of free parameters as in CrossCat.
To minimize differences among the models, the weights were based on the CRP prior probability
of partitioning the features into two groups, one of size n and the other of size F − n. The full
probability of a subset n and associated categories w is

p(s,w|D,δ,α) ∝ p(s|α)p(w|α)p(Ds|s,w,δ). (9)

where s specifies the subset of features under consideration, p(s|α) is the probability of choosing
that subset (computed as described above), and Ds is the subset of the data that includes only the
features currently under consideration.

To generate predictions for the artificial data sets, we scored systems of categories using
Equation 9, with subsets ranging from 1 to 6 features. We considered the five most common solu-
tions provided by people, as well as any solutions that were higher probability than people’s choices
according to the single system model. As for CrossCat, the subset attention model’s predictions
reflects the probability of each solution, given all possible subsets, weighted by the prior probability
of a subset of that size. The figures show the relative scores, where zero is defined to be the one
system that had lowest probability out of these possibilities.

To generate predictions for the real world data sets, we considered subsets, n, of between
1 and 10 features. For each size, we chose a subset and generated samples as described for the
single system model. This resulted in a set of samples for that subset of features. We conducted 20
runs for each n, where each run resulted in 100 samples. The samples were weighted by the prior
probability of that subset, and the sum of the weighted frequencies of object co-occurrences was
computed, approximating the probability that each pair of objects belonged in the same category,
under the model.

Subset search model
The subset search model extends the subset attention model by systematically (as opposed to ran-
domly) choosing subsets of features. An initial feature was chosen randomly, and subsequent fea-
tures were chosen to be similar. This model includes an additional parameter, which determines
how similar is similar enough. Since there is no correct setting of this parameter a priori, we con-
sider multiple possible values and weight and combine the results (see below). All other details
of implementation were identical to those of the subset attention model, with the exception that
the probability of a subset of features depended on the selection process in addition to the CRP
contribution.

To implement feature search, we considered two variables: how similarity between features
was determined and whether feature selection was based on average or maximal similarity between
the currently selected features and new features. Feature similarity was formalized using the rand
index (Rand, 1971), the adjusted rand index (Hubert & Arabie, 1985), and the wallace index (De-
noeud, Garreta, & Guenoche, 2005). Either maximum or average similarity between new and al-
ready chosen features was used to determine how similar a new feature was to a group of already
chosen features (cf. Osherson, Smith, Wilkie, López, & Shafir, 1990). Finally, given the feature of
similarity between new features and the group, a single feature was deterministically chosen. This
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process was repeated until the the similarity measure fell below the critical value. The critical value
was varied between 0.1 and 0.9 on different runs of the model. The samples based on runs at all
values were combined and weighted based on the CRP. The combination of all of these concerns
led to 6 unique models (3×2).

Simulations were conducted for each model for both the artificial and real world data sets.
Models performed comparably on the artificial data. For the real-world data, there was some
variability in performance. Generally, most models performed comparably, and the only notable
difference was that the model using the adjusted Rand index with average similarity performed
better than the others on the animals data (as measured by correlation coefficient), and the results
for that model are presented throughout the paper.

Repeated recategorization model
The repeated recategorization model predicts multiple categorizations based on initially catego-
rizing the objects, identifying features that are poorly explained, recategorizing based on those
features, and repeating. We formalized this as an extension of the single system model, with modi-
cations as follows. First, the initial categorization was obtained by running the single system model
and recording 100 samples from the posterior and the MAP solution. For each feature we computed
the log probability of the feature given the categories in the MAP solution. Features that are better
explained by the categories have higher log probability. The log probabilities were converted into
a measure of relative goodness, by computing the probability of each feature relative to the best
feature. The result was goodness ratings that range from 1, which were the most likely features
given the categorization, to (in theory) 0. The model was implemented with a free parameter that
determined the cutoff for bad features. We varied this parameter from 0.9 down to 0.1 in increments
of 0.1. Features with goodness scores below the cutoff were rerun using the single system model,
and the process was repeated until there were no more bad features.

Predictions were derived for the artificial category learning and real-world data sets by con-
sidering the samples of categories obtained by applying the repeated recategorization model 3 times
for each setting of the parameter and merging the samples that resulted from each run. Given the
systems of categories, the predictions for the real-world data were derived as for CrossCat: we com-
puted the proportion of solutions in which each pair of objects was in the same category. For the
articial data sets, we computed the relative frequency of the different categorizations in the samples
from the posterior. Because under Gibbs sampling a category is sampled in proportion to its proba-
bility, ranking the categorizations by frequency approximates the rank order of their probabilities.

APPENDIX B: Formal details for additional alternative models

To convince ourselves that cross-cutting categories were the best explanation of the data, we
implemented an additional set of instantiations of the subset search idea. This included 12 different
variants of the basic idea of subset search, which are detailed below.

Alternative subset search models
The main difference between these versions of the model and the ones discussed in the text is that
these allow probabilistic selection of features by first choosing a number of features, then choosing
features one at a time based on similarity. To allow for uncertainty about the right number of
features, we weighted samples based on the probability of a group of features of this size under the
CRP and generated predictions based on the weighted average.
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To implement feature search, we considered three variables: how similarity between features
was determined, whether feature selection was based on average or maximal similarity between the
currently selected features and new features, and whether features were chosen probabilistically or
deterministically. Feature similarity was formalized using the rand index (Rand, 1971), the adjusted
rand index (Hubert & Arabie, 1985), and the wallace index (Denoeud et al., 2005). Either maximum
or average similarity between new and already chosen features was used to determine how similar a
new feature was to a group of already chosen features (cf. Osherson et al., 1990). Finally, given the
similarity between new features and the group, a single feature was chosen. Either the maximally
similar feature was chosen (deterministically), or features were chosen in proportion to their relative
similarity (stochastically). The combination of all of these concerns lead to 12 unique models
(3×2×2).

Simulations were conducted for each model for both the artificial and real world data sets.
All models performed comparably on the artificial data. For the real-world data, there was some
variability in performance. Generally, several models performed comparably, and the only notable
difference was a slight tendency for stochastic feature selection to outperform deterministic feature
selection. The model using the adjusted rand index, average similarity, and stochastic feature
selection performed best, as measured by average correlations on the real-world data sets, but the
results were not better than those discussed in the text.
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has a beak
has feet
has horns
is a bird
is a canine
is a reptile
is black
lives in grass
runs
has gills
is a mammal
is brown
bites
eats animals
has long legs
has webbed feet
is blue
is furry
is warm−blooded
lives in houses
makes loud noises
sings
swims
travels in groups
has 2 legs
has 4 legs
has 6 legs
has a tongue
has claws
has tusks
hunts
is a carnivore
is a feline
is ferocious
is smart
is smooth
lives in the ocean
is scaly
has fins
is fast
eats mice
eats rodents
has feathers
squawks
digs holes
has tentacles
is white
is a predator
howls
is slow
lives on land
eats nuts
eats seeds
has a long neck
has antennae
is slimy
lives in hot climates
has bones
is slender
crawls
eats leaves
has tough skin
has hooves
is an amphibian
is soft
lives in trees
has a spinal cord
has subcutaneous fat
lives in lakes
lives in groups
lays eggs
roars
is poisonous
has paws
has a nose
has lungs
is an insect
has teeth
has a large brain
is a lizard
eats grass
is long
is yellow
lives in water
is strong
is nocturnal
is tall
has red blood
is dangerous
has a womb
flies
is green
has a tail
is large
eats bugs
lives in the forest
eats fish
has (a) stripe(s)
has flippers
lives in cold climates
is a fish
is colorful
has visible ears
is a rodent
has a snout
has wings
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Figure 1. Raw data provided to the models for the animals condition. For each object-feature pair, a grey
square indicates that that pair was judged to be true and a white square indicates that that feature was judged
to be false. For example, ostriches, penguins, and seagulls were all judged to have beaks.
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Figure 2. The best solution to the animals data according to the single system model. The model finds
four intuitively compelling categories: mammals, invertebrates, birds, and reptiles/amphibians. Features are
sorted from those that are best explained by these categories to those that are most poorly explained. Note
that while many features such as “has lungs” are well explained, many that seem structured, such as “is a
carnivore” are not.
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Figure 3. The best solution for the animals data according to CrossCat. The solution includes three systems
of categories. Panel (a) shows that CrossCat discovers a taxonomic system that is identical to that found by
the single system model. Panel (b) shows a system of ecological categories including land predators, aquatic
predators, aerial predators, and prey. This system accounts for features such as “is dangerous”, “lives in the
ocean”, and “is a carnivore”. Panel (c) shows a system mainly consisting of noisy and irrelevant features, in
which nearly all of the objects are grouped together.
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Figure 4. Matrices representing the structure of the different stimulus sets. The matrices correspond to the
stimuli for (a) 3/3, (b) 3/2, and (c) 2 category conditions. Unsorted matrices are presented on the top, and on
the bottom are the best solutions according to CrossCat.
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Figure 5. Three possible solutions to the 3/2 data. The solutions correspond to (a) the best solution, (b) a
simpler solution that accounts for the data less well, and (c) a solution that accounts for the data better, but at
the cost of greater complexity.
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Figure 6. Stimuli from the 3/3 condition. Note that three categories can be formed by either grouping the
objects by row or by column. Stimuli numbers correspond to the numbers used in Figures 4 and 5.
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hands as well as feet are used
part of the violin family
is used in rock music
southern
used in the Mass
is used in traditional music
can be connected to an amplifier
hold transverse
has a belt to carry it
has to be supported
has a neck
they sometimes play it on the street
has a sound hole
is for tough guys
muffled sound
is used in a lot of music genres
is relatively unknown
hollow
calming music
often used by street musicians
clear sound
looks like a guitar
has a cylindrical shape
lots of practice needed
hard
often used with blues
also found as children’s toy
is used for folk music
play seated
functions with air
warm sound
is mostly played by men
has a sound cup
is played with the mouth
can produce different tones at the same time
played by a drummer
family of the guitar
is used for pop music
soft sound
sharp sound
is a popular instrument
can sound false 
beautiful
chords are played on it
percussion instrument
shines
indicates rhythm
silver colored
heavy
has to be tuned
classical instrument
can have different colors
has keys
makes high sounds
has pedals
different kinds
stringed instrument
is played with the fingers
easy to play
is rarely played
is found in most music groups
is played with a bow
is made of brass
has holes
is found in a brass band
makes noise
difficult instrument
is played with a stick/sticks
large
has strings
is found in an orchestra

drum
 set

banjo
flute

bassoon
clarinet

cello
bass(guitar)

violin
harp

guitar
cym

bals
triangle

Figure 8. Raw data provided to the models for the instruments condition. These data are derived from
human judgments collected in (DeDeyne et al., in press). Due to space constraints, only every other feature
is labeled.



CROSS-CATEGORIZATION 39

is found in an orchestra
is a wind instrument
difficult instrument
has holes
one can hit it
has a mouth piece
you have to be able to read notes for playing it
has keys
percussion instrument
part of percussion
is played with a plectrum
is played with the mouth
you need to have good lungs
has tuning keys
has a cylindrical shape
you can play songs on it
has a belt to carry it
melodious
is played with a stick/sticks
sounds hard
is mostly played by men
made of wood
small
is made of brass
is found in most music groups
easy to play
has pedals
can have different colors
classical instrument
heavy
is played in a brass band
chords are played on it
beautiful
consists of different parts
family of the guitar
has a sound cup
easy to transport
consists of iron
sort of violin
is cheap
can be acoustic
hollow
is a fixed factor in a band
has a neck
has to be supported
cumbersome
southern
part of the violin family
makes noise
loud
clear sound
brown
different kinds
black
accompanies (other) music
creates atmosphere
can be electronic
different sizes
often used by street musicians
has a sound hole
deep sound
used in the Mass
makes high sounds
is used in a lot of music genres
soft sound
warm sound
used in the Middle Ages
is relatively unknown
they sometimes play it on the street
is used in traditional music
is rarely played

flute
clarinet

bassoon
violin
cello
harp

triangle
cym

bals
guitar

bass(guitar)
banjo

drum
 set

Figure 9. The best solution to the instruments data according to the single system model. The model finds
a roughly taxonomic system of the instruments into wind, string, and percussion categories. This solution
divides the string and percussion instruments each into two groups. Features are sorted from best explained
at the top, to most poorly explained at the bottom.
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has strings
is blown
is found in a brass band
you can learn it in a school of music
has a mouth piece
you have to be able to read notes for playing it
has keys
percussion instrument
part of percussion
is played with the mouth
you need to have good lungs
has tuning keys
has a cylindrical shape
you can play songs on it
you can play different notes on it
a lot of breath is needed
nice sound
played by a drummer
consists of metal
can have different colors
silver colored
can sound false 
play seated
small
has a sound box
elongated
can produce different tones at the same time
is cheap
can be acoustic
has a neck
has to be supported
large
easy to play
stringed instrument
accompanies (other) music
shines
rhythms are played on it
family of the guitar
also found as children’s toy
deep sound
cumbersome
is used for jazz music
creates atmosphere
calming music
is triangular
different kinds
shrill sound
has a sound hole
used in the Middle Ages
large as well as small

clarinet
flute

bassoon
drum

 set
triangle

cym
bals

guitar
violin
cello

bass(guitar)
banjo
harp

makes noise
classical instrument
indicates rhythm
sharp sound
is used for pop music
bas sounds
muffled sound
is for tough guys
used in folk music
southern
is found in an orchestra
can be electronic
is used for folk music
hard
often used by street musicians
is sometimes found on parties
hold transverse
used in folk dance
makes high sounds
doesn’t weigh much
is relatively unknown

cym
bals

banjo
violin
flute

triangle
harp

bassoon
cello

clarinet
bass(guitar)

drum
 set

guitar

Figure 10. The best solution found by CrossCat for the instruments data, containing two systems of (a)
taxonomic, and (b) social use categories. The system of taxonomic categories includes wind, percussion, and
string instruments. The system based on social use includes categories of classical instruments such as cello,
harp, bassoon, and clarinet, and the rhythm section (drums and bass) of rock bands are grouped.
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Figure 14. CrossCat predictions on data from Pothos & Close (2008). For data with dependent (correlated)
dimensions, CrossCat predicts two-dimensional categories. For data with independent dimensions, CrossCat
predicts one-dimensional categories.


