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For a formal theory T, the diagonalizable algebra (a.k.a. Magari algebra) of T, denoted
D, is the Lindenbaum sentence algebra of T endowed with the unary operator [
arising from the provability predicate of T: (the equivalence class of) a sentence ¢ is sent
by Or to (the equivalence class of) the T-sentence expressing that T proves ¢. It was
shown in Shavrukov [6] that the diagonalizable algebras of PA and ZF, as well as the
diagonalizable algebras of similarly related pairs of ¥;-sound theories, are not isomorphic.
Neither are these algebras first-order equivalent (Shavrukov [7, Theorem 2.11]).

In the present paper we establish a sufficient condition, which we name B(O) co-
herence, for the diagonalizable algebras of two theories to be isomorphic. It is then
immediately seen that Dzp = Dgp, which answers a question of Smorynski [11]. We
also construct non-identity automorphisms of diagonalizable algebras of all theories un-
der consideration. The techniques we use are a combination of those developed in the
context of partially conservative sentences (cf. Lindstrém [4]), and those of Pour-El &
Kripke [5]. A related construction appears in Solovay [12, Theorem 1].

1. CONVENTIONS.  Theories in this paper are first order r.e. theories over classical
predicate logic. We assume that a translation of the arithmetic language into that of each
theory is fixed and do not distinguish between arithmetical and translated arithmetical
formulas. The arithmetic of any theory is presumed to be at least as strong as IAg + Exp
(cf. Hajek & Pudldk [3, I.1(b)]).

We also assume that each theory T comes equipped with a provability predicate Oy
(we shall be omitting the subscript whenever reasonable). Note that we use the same no-
tation for the provability predicate as for an opeator of ®. The formula [ ¢ expresses
in a natural way that ¢ has a proof from an axiom set specified by a (Kalméar) elemen-
tary formula which describes, in the standard model, a set of sentences axiomatizing T.
(Kalmér elementary formulas are essentially the same as X" (exp) formulas of Hajek
& Pudlék [3, 1.1.29].) It is then easily verified in IAg + Exp that O is closed under
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classical predicate logic (see [3, 1.4(a)]). We shall use the notation z : O ¢ to denote the
elementary formula expressing that the sentence ¢ has a T-proof whose code is <z.

2. DEFINITIONS. Let S and T be theories and let I" be a class of sentences common to
the languages of both theories. S and T are called I'-coherent if

(i) S|~ iff T |-~ for any I' sentence v, and

(ii) both S and T prove Vo Jy Vyel' ((z:Ogy = y:Opy) A(z:Opy = y:Og7)).

If B(T') =T, i.e. if I is closed under Boolean combinations, and = (é1,...,&,) and

&= (p1,-.-,pn) are tuples of S- and T-sentences respectively, then the pairs (S; £) and
(T; @) are T'-coherent if

-

(i') S |- b(7;€)iff T |- b(7; @) for any tuple 7 of I' sentences and any Boolean term b,
and

ii') both S and T prove
(it') P
Vz 3y Vel VbeB

((2:050(%:€) > y: O b(F: 8)) A (2: O b(F: @) — y: Osb(F:6)) ),

where 7 € T’ means that 7 is a finite tuple of T sentences, and b € B is short for ‘b is a
Boolean term’. The purpose of assuming the c_lpsure of I under B is that this definition
agree with the previous one for empty tuples ¢ and .

Let us note that the complicated statement of (ii) will be equivalent to the more
familiar condition of formalized mutual [ conservativity

S,T |- Vvyel' (Ogvy < Op7)
in case the theories S and T are closed under the X collection rule (¥1-CR):

Vzx Eiy §(1’,y)
Vz 3w Ve<z Jy<w ¢(z,y)

for ¥, formulas ¢(z,y)

(see Beklemishev [1, Proposition 5.3]). Clause (ii') can be similarly simplified in the
presence of this rule. ¥;—-CR is obviously equivalent over IAy + Exp to the collection
rule for elementary formulas. Theories containing BY; are closed under X;—CR.

For a theory S, we let g denote the class of sentences of the form g ¢ and hope
this does not lead to confusion. The Friedman—Goldfarb—Harrington Principle, which is
readily verifiable in IAy 4 Exp, states that the class of Oy sentences is, modulo (IAq +
Exp)-provable equivalence, the same as the class of ¥; sentences S-provably implied
by Og L (see e.g. Smorynski [10, p. 366]). If another theory T is B(Og)-coherent with S,
then both S and T prove Og L <+ O} L, and since O, ¢ is a 31 sentence implied by O L,
it is provably equivalent to a B(Os) sentence. Thus the classes Og and O essentially
coincide, as do B(Og) and B(Or). Therefore we can just speak of B(O) coherence in
place of B(Os) or B(Ot) one.

B(O) coherence is the central notion in this paper. Observe that by the Friedman—
Goldfarb—Harrington Principle the class O is closed under conjunction and disjunction,
and therefore, when establishing B(0) coherence between two theories, it is sufficient in



(i) and (ii) to consider only sentences v of the forms Oy — O and =0 rather than
arbitrary B(0) sentences.

Given a class T’ of arithmetical sentences of bounded complexity, e.g. I' = X,,, we recall
that there is a formula True(-), to which we shall refer as truth definition for T, s.t.

IAp + Exp |- Vyel’ Op(y < True(y))

(see e.g. Héjek & Pudlék [3, I.1(d), V.5(b)]). Obviously, for a finite tuple ¢ of T-sentences
we can (effectively in @) modify the formula True(-) in such a way that

[Ap + Exp |- Vx€B(T; @) Op(x ¢ True(y)),

where B(T; @) is, of course, the class of Boolean combinations of ' sentences and sen-

tences from .
The Small Reflection Principle (Héjek & Pudlak [3, Lemma II1.4.40], or Shavrukov [7])
says:

IAg + Exp |- Vo, Op(z:Opp = ).
Combining this with the aforementioned properties of truth definitions we get
IAo + Exp |- Vo O VxeB(; @) (x: Op x — True(x)).

By Theorem V.1.4 in [3] it follows that an upper bound on the size of the relevant T-proof
is (Kalmér) elementary in z.

3. LEMMA. Let (S; {) and (T; 4) be B(O)-coherent and let ¢ be an arbitrary S-
sentence. Then there is a T-sentence , found effectively in ((,4,€), s.t. (S; (,€) and
(T; 4}, @) are B(O)-coherent.

PRrROOF. Let True(:) be a truth definition appropriate for B(O; z/_; ) sentences. Consider
the following self-referentially defined sentence:

o = Vz <<3XeB(D; z/_;) (True(x) A z: Op(x = @)
v 3¢eb) 3beB (—rTrue(b((f;zE)) Az :Og (€= b(d; 5))))
— (3068(&@5) (=True(d) A z: Op(p — 0))

v 37ell 3ceB (True(C(F; $)) Aw: B (7 0) = 5))>>

We claim that the sentence ¢ is as required in the statement. Recalling the assumption
of B(O) coherence between (S; ¢) and (T; ¢) and considering conjunctive normal forms
of Boolean terms one easily sees that it suffices to show that for all & € O and all b € B

(1) Tl ¢—b(d)iff S |- & — b(&; (), and



(2) T]b(G9) = ¢iff S|-b(F;¢) = €

by a proof that formalizes in both S and T producing bounds on the size of proofs as in
clause (ii') of Definition 2.

(1, if): Suppose S |- & — b(#; (). Fix an z for which we have z : Og (€ = b(d; ).
Note that there is then a y s.t. y : Og(y = b(5; f)) whenever z : Og(y — §) and v is any
sentence. Also, by B(0) coherence, there is a z for which there holds z : O d(7; ) once
y : Og d(7; f), where 7 is any sequence of O sentences and d is a Boolean term. Reason
in T:

Assume ¢ and —True(b(&;4))). Since w : Og (& — b(d; 7)), one of the two
disjuncts in the succedent of ¢ holds.

Case 1. z:0¢(p—6) and ~True(d) for some 6 € B(O; ).

This clearly contradicts the Small Reflection Principle.

Case 2. z:0Og(c(T $) = €) and True(c(7; ) )).

Since x : Og(& — b(d; ), we have y : Og (c(75 C) = b(#C)). Hence there
holds z : DT(C(?;iﬁ) — b(#;4)). By Small Reflection we get b(;1) which
contradicts the assumption.

Thus T |- ¢ — b(d; z/?) by a proof that is clearly elementary in z, y, and 2, and therefore
both S- and T-provably recursive in z.

- -

(2, only if): Suppose T |- b(d';¢)) = ¢. There is then an z s.t. = : O (b(559 ) = ¢).
Reason in T:
Assume b(;1). Then we have ¢. Note that b(#;¢) € B(0;4). Thus we
must either have z : O (¢ = 6) and —True(d) with 6 € B(0; ) which, in view
of ¢ and Small Reflection, is impossible, or there must be a B(O; f ) sentence
o(7C) stz Og (c(75 $) = €) and True(c(7;4)).
Thus T |- b(&;1p) — WA{ (7)) € B(O; ) | « : Og(c(75 O =) } by a proof elementary
in 2. Hence by B(O) coherence there holds S |- b(@¢) — W{e(® () € B@; () |
x : Og(c(75 f) — ¢£) } which implies S |- b(d; _:)‘ — £ as required. Once again, it is easily
seen that the just constructed S-proof of b(5;() — & is both S- and T-provably recursive
in x.

(1, only if) and (2, if) are symmetric to (2, only if) and (1, if) respectively. "

4. PROPOSITION. Let (S; &,...,&,) and (T ¢1,...,¢n) be B(O)-coherent. Then
there is a recursive isomorphism e : Og — D s.t. e(§;) = ¢; whenever 1 < i < n, and
e(o) = o for all O sentences o.

PrROOF. Iterating Lemma 3 in a back-and-forth way, we extend the given tuples 5”
and @ to recursive sequences (&;)rew and (pp)reo exhausting all S- and T-sentences
respectively with the property that (S; &1,...,&) and (T; ¢1, ..., ¢k) are B(O)-coherent
for any k € w.

We claim that e : & — ¢ is the desired isomorphism between ©g and ©t. For
assume S |- & < &y. Then T |— ¢ ¢ ¢ by B(O) coherence, so the definition of e is
correct. e is one-one for the same reason, and onto because (pr)re. €xhausts T-sentences.
e preserves Boolean operations ¢ since S |- ¢(&, &) ¢ & implies T |- @k, 01) € Om.-



Finally, if we have S |- Og & <> &, then T |— Og & ¢ ¢ because Og & is a [ sentence.
Moreover, T |- Og & <> O ¢ by B(0) coherence, whence T |- O ¢ > ¢y, follows.
Thus e is indeed an isomorphism.

If o is an arbitrary O sentence, then S |- o < &, implies T |- o ¢ ¢,, by B(O) co-
herence. Therefore e(o) = o as claimed. n

5. THEOREM. Let S and T be B(O)-coherent theories. Then Dg = D.

PRrooF. Follows at once from Proposition 4. "

In the following examples concerning individual theories it is understood that the trans-
lation of arithmetic into the languages of the latter is the conventional (in most cases the
identical) one, and that the diagonalizable algebras feature natural provability predicates
of those theories, so that known conservativity results among the theories formalize for
the provability predicates chosen.

6. EXAMPLES. We have Dg = D7 for the following pairs (S, T):
(a) (ZF, GB), (PA, ACAy);

(b) (ZFC, ZFC + CH);

(c) (PRA,IX;);

(d) (I%,, BE,11),aln>0.

COMMENTS. All these pairs fall under the scope of Theorem 5:

(a). Shoenfield [8] shows that these pairs prove the same theorems in the language of
the first-coordinate theory. His proof clearly formalizes in PA.

(b). ZFC knows that w, +, and x are absolute for L and forcing extensions. Hence
these pairs are coherent for first-order arithmetic sentences.

(c). By PRA here we mean the first order theory called (QF(B9R)-IA) in Sieg [9].
Among the available proofs of II, conservativity of I¥; over PRA, the one in Sieg [9,
Lemma 2.1.2] probably presents the more convenient opportunity to see that this con-
servativity formalizes in I¥; (or even in IAg + Superexp) and hence, by that same con-
servativity, in PRA. On top of that, Il conservativity also allows us to conclude that
PRA is closed under ¥;—CR because I¥; is, for the latter theory contains BX;. Thus
PRA and I¥; are II»- and hence B(0)-coherent.

I hope this example justifies our having mentioned ¥;—CR in Definition 2, although
one can, of course, verify clause (ii) of Definition 2 for PRA and I¥; directly.

(d). Clote & al. [2, Theorem 14] formalize in I¥; Paris’ theorem that BX,, ;1 is II,,4o-
conservative over I¥,,. n

We turn next to the subject of automorphisms.



7. THEOREM. Let T be a theory and £ a sentence which is not provably equivalent to
any B(O) sentence. Then there exists a (recursive) automorphism of Dt that moves &.

PROOF. We construct a sentence ¢ s.t. (T; €) and (T; ¢) are B(O)-coherent and T |+
p < & To this end we employ essentially the same construction as in Lemma 3:

p = Vx ((EixeB(D)U{f} (True(x) Az:O(— cp))

v 3peBO)U{6) 3980 (~Truc(p) 0 ((€ 5 A (5 ) )

— <E|9€B(D)U{§} (=True(d) A z:O(p — 9))

Vv JpeB(O)uU{¢} deB(0) (True(u) Az:O((p—=8) A6 — f))))) )

where True(-) is an appropriate truth predicate. In a fashion similar to the proof of
Lemma 3 we show that for each § € B(O)U{¢}

(1) T |- ¢ — 6 iff for some B(O) sentence 8, T |-¢ = fand T |- f — 6, and
(2) T |- 6 — g iff for some B(O) sentence 8, T |- - fand T |- 3 — &.
By way of example, we only do

(1, only if): Let = :O(p — 6). Step into T:
Suppose —6. Then —p. Since there cannot exist xy with True(y) and z:O(x —
¥), there are p € B(O)U{¢} and B € B(O) s.t. =True(p) and z : O((& = B) A

(B = p))-
So, T |- N{p € BIOYU{¢} | IBeB(O) =z :O((§ = B) A (B—p)) } — 6. Let, for each
p from the conjunction above, 3, € B(O) be s.t. z : O((§ = B,) A (B, = p)). We have
T}-¢— A\p By, and T |- B, = p which entails T |- /Ap B, — 6. Finally, observe that
N\, By is a B(O) sentence.

Now, (1) and (2) imply that for any B(O) sentence
Tho— Bif T ¢— 3, and
TEA—= @il TEB—¢,

which, when properly formalized, means that (T; ) and (T; £) are B(0)-coherent. Next,
(either one of) (1) and (2) also imply that

T |- ¢ + £ iff for some B(O) sentence 3, T |- € « (.

We have assumed the r.h.s. not to be the case. Therefore, T |£ ¢ < £. By Proposition 4
we conclude the existence of an automorphism as described in the statement. "

8. QUESTION. Can automorphisms move [ sentences?
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