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abstract. In this paper we study the intermediate logic MLO(X ) of open

subsets of a metric space X . This logic is closely related to Medvedev’s logic

of finite problems ML. We prove several facts about this logic: its inclusion

in ML, impossibility of its finite axiomatization and indistinguishability

from ML within some large class of propositional formulas.
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1 Introduction

In this paper we introduce and study a new intermediate logic MLO(X ),
which we first define using Kripke semantics and then we will try to ratio-
nalize this definition using the concepts from prior research in this field.

An (intuitionistic) Kripke frame is a partially ordered set (F,≤). A
Kripke model is a Kripke frame with a valuation θ (a function which maps
propositional variables to upward-closed subsets of the Kripke frame). The
notion of a propositional formula being true at some point w ∈ F of a model
M = (F, θ) is defined recursively as follows:

For propositional letter pi, M,w � pi iff w ∈ θ(pi)
M,w � ψ ∧ χ iff M,w � ψ and M,w � χ
M,w � ψ ∨ χ iff M,w � ψ or M,w � χ

M,w � ψ → χ iff for any w′ ≥ w, M,w � ψ implies M,w′ � χ
M,w 6� ⊥

A formula is true in a model M if it is true in each point of M . A formula
is valid in a frame F if it is true in all models based on that frame.

The set of formulas which are valid on every Kripke frame is intuitionistic
logic Int. An intermediate logic is an extension of Int closed under modus
ponens and substitution. Every consistent intermediate logic is contained
in classical logic CL.

The set L(F ) of all formulas valid in a given frame F forms an interme-
diate logic, which allows us to define a logic just by constructing its Kripke
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frame (although not every intermediate logic can be constructed in this
way).

For example, the logics ML and ML1, which will be often mentioned in
this paper are defined as follows:

DEFINITION 1. LetX be a set, then P1(X) is the Kripke frame (2X \ ∅,⊇)
(non-empty subsets of X ordered by converse inclusion). Medvedev’s logic of
finite problems ML is

⋂{L(P1(X))|X is finite} [1] and the logic of infinite
problems ML1 is L(P1(ω)) (or L(P1(X)) for any infinite X) [6].

It is well-known that ML1 ⊆ ML, but it is an open problem whether
ML1 = ML or not.

Let X be a topological space, and O(X ) a set of non-empty open sets
in X . Then (O(X ),⊇) is a Kripke frame with the least element X . Logic
MLO(X ) is defined as the logic of this frame:

DEFINITION 2. MLO(X ) = L(O(X ),⊇). We will often useO(X ) to denote
the frame (O(X ),⊇) as a simple notation.

Finally, a few words on why this logic is interesting. We can understand
information as a subset of some basic set Ω. An information type is an arbi-
trary set of informations (these notions were introduced by Yuri Medvedev
in [2]). A type σ is called regular iff

∀E1∀E2 E1 ∈ σ & E2 ⊆ E1 ⇒ E2 ∈ σ
As described in [5] regular information types form a structure that is natu-
rally connected to Medvedev’s logic of finite problems ML (in case of finite
Ω), or logic of infinite problems ML1 in case of infinite Ω. Namely, the set
of all regular types I(Ω) ordered by inclusion is a Heyting algebra, and it is
isomorphic to the Heyting algebra of upward-closed subsets of P1(Ω). Thus,
the logic of Heyting algebra I(Ω) is L(P1(Ω)).

Now, for a topological space X it may be more natural to understand
information as an open subset of X , and not an arbitrary one. For example,
every measurement in a physical experiment has a margin of error, so the
only kind of information we can get about the measured value is that it is
within some interval (open subset of R). In this case regular information
types correspond to upward-closed subsets of O(X ) and thus form a Heyting
algebra of MLO(X ).

2 Useful facts and definitions

In this section we briefly recall facts related to Kripke semantics of inter-
mediate logics.

DEFINITION 3. Let u ∈ F be a point of a Kripke frame (F,≤). Then the
Kripke frame Fu = {v ∈ F |u ≤ v} with the ordering ≤ is called a cone.

DEFINITION 4. The surjective mapping h from frame F to frame G is
called a p-morphism iff ∀u ∈ F h(Fu) = Gh(u), that is

1. ∀u, v ∈ F (u ≤ v)⇒ h(u) ≤ h(v)
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2. ∀u ∈ F,w ∈ G (h(u) ≤ w)⇒ ∃v ≥ u : h(v) = w

If there is a p-morphism from F to G, this is denoted by F ։ G.

LEMMA 5.

1. L(F ) ⊆ L(Fu).

2. If F ։ G then L(F ) ⊆ L(G).

Let F be a finite Kripke frame with the least element (called the root and
denoted by 0F ). Then it is possible to construct a propositional formula
X(F ), called Jankov (characteristic) formula with the following properties:

LEMMA 6.

1. For any propositional formula A, X(F ) ∈ (Int +A) ⇐⇒ F 6|= A

2. For any frame G, G 6|= X(F ) ⇐⇒ ∃u ∈ G : Gu ։ F

3 MLO(X ) as a subset of Medvedev’s logic

In this section we construct a p-morphism from the Kripke frame of open
subsets of X to the Kripke frame of ML1, thus proving that MLO(X ) is a
subset of ML1 and ML.

THEOREM 7. Let X be an infinite metric space. Then MLO(X ) ⊆ML1.

Proof. To prove this we construct a p-morphism f : O(X ) ։ P1(ω). X
can be split into 3 disjoint subsets: X = X1 ∪ X2 ∪ X3.
X1 = {x ∈ X |∃ε∀y ∈ X , y 6= x⇒ ρ(x, y) > ε} contains all isolated points.
X2 = {x ∈ X |∃{xn}∞n=1 ⊂ X1, xn → x, n → ∞} \ X1 contains the limits of
isolated points.
X3 = (X \ X1) \ X2 contains the limit points which are not the limits of
isolated points. A point of X3 is always a limit of other points in X3, thus
X3 is either empty or infinite.

If X3 is empty then X1 cannot be finite (since otherwise X2 is empty, and
X is finite). We can choose a sequence xn ∈ X1,
n = 0, 1, 2, . . . where all xn are different. Let Di = {xi}, i = 1, 2, 3, . . . ,
D0 = {x0} ∪ {x ∈ X1|∀n x 6= xn}. Each of Di is open, since each xi is
an isolated point. Let G ⊂ X be a nonempty open subset. If G ∩Di = ∅,
i = 0, 1, 2, . . . then G∩X1 = ∅, so G ⊆ X2, since X3 is empty. But since each
point in X2 is a limit of isolated points from X1, G has to contain some,
which is a contradiction. Thus, there always exists Dn which intersects
G. We define f(G) = {n ∈ ω|G ∩ Dn 6= ∅}, which is easily checked to be
p-morphism.

Let X3 be nonempty. It is open, since its complement X \ X3 = X1 ∪ X2

is clearly closed (a limit of points in X2 is also in X2). Choose an arbitrary
x0 ∈ X3 and let Dn = {x ∈ X3| 1

n+1 < ρ(x, x0) < 1
n}, n = 2, 3, . . . . If we

exclude empty Dn, there would be still an infinite number of them left (since
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x0 is a limit point of X3). Also defineD1 = {x ∈ X3|ρ(x, x0) > 1
2}, D0 = X1.

Each open subset G ⊂ X intersects one of Dn. After renumbering Dn such
that all of them are non-empty we can define f(G) = {n ∈ ω|G ∩Dn 6= ∅},
which is a p-morphism. �

It should be noted that by definition ML1 = MLO(ω). For a metric
space X , MLO(X ) would be equal to ML1 if it is possible to construct a
p-morphism from P1(Y ) to O(X ) for some infinite set Y .

For example, consider X = {0} ∪ {1/n|n ∈ N} with the usual metric and
Y = N × {0, 1}. Open sets of X are either arbitrary subsets of X \ 0, or
cofinite subsets of X . We define h : P1(Y )→ O(X ) as follows:

• h(E) = {1/n|∃j (n, j) ∈ E} if |X \ E| = ω

• h(E) = {1/n|∃j (n, j) ∈ E} ∪ {0|∃n (n, 1) ∈ E} if |X \ E| < ω

It is easy to check that h is a p-morphism. The following lemma is a
generalization of this construction.

LEMMA 8. Suppose X is an infinite metric space consisting only of isolated
points and limits of isolated points (X = X1 ∪ X2 using the notation from
the proof of Theorem 7). Then ML1 = MLO(X ).

Proof. Let Y = X1 × (X2 ∪ {x0}) (x0 ∈ X1), and for y = (y1, y2) ∈ Y
φ(y) = y1, ψ(y) = y2. Define h : P1(Y )→ O(X ) as follows:

h(E) = int(φ(E) ∪ (X2 ∩ ψ(E)))

φ(E) is always in h(E), and we only add appropriate limit points from
ψ(E) so that the result is an open set. If G ∈ O(X ) then h(E) = G for
E = H(G) = (G∩X1)× ({x0}∪ (G∩X2)) (every open subset of X contains
some points from X1, so G∩X1 6= ∅). So, h is surjective. If E′ ⊆ E then of
course h(E′) ⊆ h(E). If G ⊆ h(E) then h(E′) = G for E′ = E ∩H(G). So,
h is a p-morphism, and that means that ML1 ⊆MLO(X ). Combining this
with the result of Theorem 7 we conclude that ML1 = MLO(X ). �

On the other hand, if X3 6= ∅, there is no p-morphism from P1(Y ) to
O(X ). Suppose h is such p-morphism and h(Y ′) = X3 (X3 is an open set,
so such Y ′ ⊆ Y must exist). Then for y ∈ Y ′ h({y}) must be a singleton
(isolated point), but there are no such open subsets of X3.

It is unknown whether MLO(X ) is always equal to ML1, although we will
prove later that they are quite close to each other.

4 MLO(X ) is not finitely axiomatizable

Let X be a metric space, F is a finite Kripke frame and suppose there exists
a p-morphism h : O(X ) ։ F . We will construct a mapping h, which is an
extension of h to some other (non-open) subsets of X .

Let A ⊂ X be a non-empty subset of X , and let {An} be a sequence
of open subsets of X such that Ai+1 ⊆ Ai and

⋂∞
i=1Ai = A. Then we
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define h(A) = sup{Ai} limi h(Ai). Note that for every sequence Ai with
these properties the limit does exist. This follows from the fact that F is
finite and h(Ai) ≤ h(Ai+1). If Ai and Bi are sequences which yield different
limits, then the sequence Ai ∩ Bi yields a limit that is greater or equal to
both of these limits (h(Ai ∩ Bi) ≥ h(Ai)). Thus, the supremum always
exists as long as at least one such sequence exists.

Since X is a metric space, h is defined for every non-empty finite subset of
X (for {x1, . . . , xn} there exists a sequence Ai =

⋃
1≤j≤n{x|ρ(x, xj) < 1

i }).
For u ∈ F we denote the set of its immediate successors by br(u); the

maximum length of an increasing chain starting at u is denoted by d(u).

LEMMA 9. Let X be a metric space and let F be a finite frame with the
least element, and |br(u)| 6= 1 for any u ∈ F . If there exists a p-morphism
h : O(X ) ։ F , then for any u ∈ F there exists E ⊂ X such that h(E) = u
and |E| < 2d(u).

Proof. If d(u) = 1 then ∃G ∈ O(X ) : h(G) = u and ∀G′ ⊂ G h(G′) = u.
Thus any E = {g}, g ∈ G satisfies h(E) = u, as there is a sequence of
neighborhoods of g which yields a limit u, but since u is a maximal point
of F , h(E) is also u.

Now suppose d(u) = n > 1 and we have already proved the statement
of the lemma for d(u) < n (and for any appropriate X and F ). Choose
G ∈ O(X ) : h(G) = u. There exist at least 2 immediate successors of u in
F , which we denote by v1 and v2. ∃G1, G2 : G′ = G1∪G2 ⊂ G, h(G1) = v1,
h(G2) = v2, |G1| < 2d(u)−1, |G2| < 2d(u)−1. This follows from the induction
hypothesis for X := G,F := Fu, h = h|O(G). Then |G′| < 2d(u) and
h(G′) = u. This completes the induction step. �

We will call a finite subset A = {a1, a2, . . . , an} stable under h iff

∃ε∀A′ = {a′1, a′2, . . . , a′n} ∀i ≤ n ρ(ai, a′i) < ε⇒ h(A′) = h(A)

If every non-empty subset of A is also stable, we say that A is hereditarily
stable under h.

LEMMA 10. Let E = {e1, e2, . . . , en} be a subset constructed by applying
the previous lemma. Then it is stable under h.

Proof. Note that every point ei ∈ E is chosen at the induction base as an
arbitrary point in an open set Gi. Since E is finite, we can choose ε such
every ei ∈ E will remain in its corresponding set Gi if we move it no farther
than ε. Thus E is stable. �

LEMMA 11. If a finite set E = {e1, e2, . . . , en} is stable under h then
∀ε∃E′ = {e′1, e′2, . . . , e′n} : ∀i ≤ n ρ(ei, e′i) < ε such that h(E′) = h(E) and
E′ is hereditarily stable.

Proof. Let δ be a positive number which is smaller than ε, mini6=j ρ(ei, ej)
and ∀E′ = {e′1, e′2, . . . , e′n} ∀i ≤ n ρ(ei, e′i) < δ ⇒ h(E′) = h(E). Such δ
exists since E is stable.
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A point x ∈ Xn with distinct coordinates can be regarded as n-element
subset of X . x0 = (e1, e2, . . . , en) corresponds to E and points in
δ-neighborhood of x0 correspond to possible E′ (by choice of δ, all such
points have distinct coordinates and h(E′) = h(E)).
k = 2n − 1 is the number of non-empty subsets of I = {1, . . . , n}, and

we will denote J ⊆ I by I(
∑
j∈J 2j−1) (so that every non-empty subset is

numbered from 1 to k).
We define the mapping H : Bδ(x0) → F k as follows: Hi(x) = h(Ei(x)),

i = 1, . . . , k, where Ei(x) = {xj |j ∈ I(i)}. The frame F k is ordered as
follows:

(f1, . . . , fk) ≤ (g1, . . . , gk) ⇋ f1 ≤ g1& . . .&fk ≤ gk
It can be easily shown that under that ordering H has a local minimum

in each point x from δ-neighborhood of x0. Indeed, if Hi(x) = u then there
is open G ⊃ Ei(x) such that h(G) = u and

∀x′ Ei(x′) ⊂ G⇒ Hi(x′) = h(Ei(x′)) ≥ h(G) = u

(this follows from the definition of h). Note that a hereditarily stable set
corresponds to a point in Xn such that H is constant in some neighbor-
hood of it. If H is not constant near x0 then in δ

2 -neighborhood of x0

∃x1 : H(x1) > H(x0). Likewise, if H is not locally constant in x1, then in
δ
4 -neighborhood of x1 ∃x2 : H(x2) > H(x1). F k is finite and hence has no
infinite increasing sequence, so we will stop at some point. That is, there
exists xm where H is locally constant and it is within δ-neighborhood of x0.
A set E′ which corresponds to xm is hereditarily stable, and satisfies the
requirement of being close enough to E. �

LEMMA 12. Under the assumptions of Lemma 9, ∀u ∈ F |br(u)| < 2d(u).

Proof. Choose a finite set E using Lemma 9 such that h(E) = u. It is stable
and thus by Lemma 11 we can construct E′ which is hereditarily stable and
h(E′) = u. Choose E0 ⊆ E′ such that h(E0) = u and ∀E1 ⊂ E0 h(E1) > u.
Assume that |E0| = n, E0 = {e1, e2, . . . , en}. We also introduce the fol-
lowing open sets: Aij = {x ∈ X : ρ(x, ej) < 1/i}, Ai =

⋃n
j=1Aij . By

the definition of h, limh(Ai) = u. There exists i0 such that for i > i0
Aij1 ∩ Aij2 = ∅ if j1 6= j2. In the remaining part of the proof we assume
that i > i0.

We assume that br(u) is non-empty since otherwise the statement is triv-
ial. Select v ∈ br(u) and for each Ai construct Gi ⊂ Ai : |Gi| < 2d(u)−1,
h(Gi) = v by Lemma 9. Ki = {j : Gi ∩ Aij 6= ∅} is a sequence of subsets
of {1, . . . , n}. Since there is only a finite number of such subsets, there is a
subset K, which is equal to infinitely many of Ki, say K = Kim , m ∈ N,
im+1 > im. We can now define the following sets: A′m =

⋃
j∈K Aimj ,

E1 = {ej |j ∈ K}. Note that h(E1) = limi h(Ai).
If E1 = E0 then Gim ⊆ A′m = Aim and ∀j Gim ∩ Aimj 6= ∅. Since

E′ is hereditarily stable, E0 is stable. Thus for a sufficiently large m



On the intermediate logic of open subsets of metric spaces 311

( 1
im

< ε) we can select E∗ = {e∗j |e∗j ∈ Gim ∩ Aimj , j = 1, . . . , n} such that
h(E∗) = h(E0) = u. But since E∗ ⊂ Gim , h(E∗) ≥ v, which leads to a
contradiction (u < v).

So, E1 is a proper subset of E0. h(E1) > u (by the choice of E0) and
h(E1) ≤ v, since each A′m contains Gim and h(Gim) = v, so h(A′m) ≤ v.
Thus h(E1) = v. Choose E2 : E1 ⊆ E2 ⊂ E0, |E2| = n − 1. h(E2) = v
(again, by the choice of E0). There are only n possible subsets of E0 of this
cardinality, thus |br(u)| ≤ n ≤ |E′| = |E| < 2d(u). QED. �

LEMMA 13. Under the assumptions of Lemma 9, if E is a hereditarily
stable subset under h, and h(E) = u ∈ F then h|P1(E) is a p-morphism
from P1(E) to Fu.

Proof. We will prove that h(P1(E)) = Fu using induction by |E|. If
|E| = 1, then |br(u)| = 0, and Fu = h(P1(E)) = {u}.

Now consider E such that |E| > 1. For any E′ ⊆ E h(E′) ≥ u, so
h(P1(E)) ⊆ Fu. For any w ∈ Fu \ {u} there is v ∈ br(u) such that
u ≤ v ≤ w, and there is E1 ⊆ E such that h(E1) = v (as demonstrated in
the proof of Lemma 12). By induction hypothesis, h(P1(E1)) = Fh(E1), so
∃E2 ⊆ E1 h(E2) = w. Thus, h(P1(E)) = Fu. �

The remaining part of the proof is almost identical to the proof of The-
orem 5.5 in [5]. This method was introduced in [4], where it was used to
prove that ML is not finitely axiomatizable.

We will use the family of finite frames Φ(k,m) (k,m > 0). Φ(k,m)
is the set of pairs (i, j) such that either 0 ≤ i ≤ k and 0 ≤ j ≤ 1, or
i = k + 1 and 1 ≤ j ≤ m, or i = k + 2 and j = 0. The ordering is
defined as follows: (i, j) < (i′, j′) iff (i > i′). We will also use the frames
Φi(k,m) ⇋ Φ(k,m) \ {(i, 1)}, where 0 ≤ i ≤ k.
LEMMA 14. Let X be an infinite metric space.

1. X(Φ(k, 2k+3)) ∈MLO(X )

2. X(Φi(k,m) 6∈MLO(X )

Proof.

1. By Lemma 6 we need to prove that there doesn’t exist a p-
morphism from some cone of O(X ) (that is O(Y ) where Y ⊆ X )
to Φ(k, 2k+3). But if such p-morphism exists, by Lemma 12 we have
|br(k + 2, 0)| < 2d(k+2,0), which is false, since |br(k+2, 0)| = 2k+3 and
d(k + 2, 0) = k + 3.

2. To prove this we can either construct a p-morphism from MLO(X ) to
Φi(k,m), which is easy, or use a result from [5] (Lemma 5.3), stating
that X(Φi(k,m) 6∈ML, and we already know that MLO(X ) ⊆ML.

�
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DEFINITION 15. A k-formula is a formula that does not contain proposi-
tional letters besides p1,. . . ,pk.

LEMMA 16.
If A is a k-formula and Φ(k,m) 6|= A then there exists i ≤ k such that

Φi(k,m) 6|= A. Or, in terms of Jankov formulas, if X(Φ(k,m)) ∈ (Int +A)
then X(Φi(k,m)) ∈ (Int +A) for some i ≤ k.

Proof. Let (Φ(k,m), θ) be a model refuting A. Since each θ(pr) is an
upwards closed set, for every i, except maybe a single one, it either contains
all (i, j) or none. Since there are only k variables, and k+ 1 possible values
for i, there has to be a level i∗ on which (i∗, 0) and (i∗, 1) have the same
valuations. Clearly, the model (Φi

∗
(k,m), θ) also refutes A. �

THEOREM 17. Let X be an infinite metric space. Then MLO(X ) is not
axiomatizable in finite number of variables, that is for any k ∈ N MLO(X )

is not axiomatizable by any set of k-formulas.

Proof. Let Σ be a set of k-formulas and suppose that Σ axiomatizes
MLO(X ). Then X(Φ(k, 2k+3)) could be derived from some finite number of
axioms A1, . . . , An ∈ Σ. But then Lemma 16 with A = A1 ∧ . . . ∧ An pro-
vides a contradiction, since by Lemma 14 X(Φi(k,m)) is never in MLO(X ).

�

COROLLARY 18. MLO(X ) is not finitely axiomatizable.

Finally, let us show that MLO(X ) is not distinguishable from ML within
the class of characteristic formulas of finite frames, to which Lemma 9 is
applicable.

THEOREM 19. Let X be an infinite metric space and F a finite frame with
the least element, and |br(u)| 6= 1 for any u ∈ F . Then

X(F ) ∈MLO(X ) ⇐⇒ X(F ) ∈ML

Proof. If X(F ) ∈MLO(X ) then it is also in ML because MLO(X ) ⊆ML.
If X(F ) /∈ MLO(X ) then by Lemma 6 ∃U ⊆ X ∃h : O(U) ։ F . By

Lemmas 9 and 11 we can find a finite E ⊂ U such that h(E) = 0F and E is
hereditarily stable. h : P1(E)→ F is a p-morphism (see Lemma 13), hence
X(F ) /∈ L(P1(E)) and thus X(F ) /∈ML. �

COROLLARY 20. Let L be an intermediate logic, and MLO(X ) ⊆ L ⊆ML
for some infinite metric space X . Then L is not axiomatizable in finite
number of variables.

Proof. By Theorem 19 L has the same formulas of the form X(F ) as
MLO(X ) or ML. Therefore Lemma 14 applies to L, and so does the rest of
the proof of Theorem 17. �
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5 Conclusion

To summarise the results of this paper, we have discovered that logics
MLO(X ) (for different infinite metric spaces X ) are subsets of ML, are not
finitely axiomatizable and we cannot distinguish them from ML or each
other by using formulas of the form X(F ), where F is a finite frame with
a particular property. Although these results were stated only for metric
spaces, they could easily be extended to various topological spaces as well.

Many questions still remain open. Here are some of them:

1. Is (for example) MLO(R) different from ML1 and ML?

2. Is MLO(R) recursively axiomatizable?

3. Is MLO(R) decidable?

4. What is the intersection of the logics MLO(X )? Does there exist a
metric space X0 such that MLO(X0) ⊆ MLO(X ) for all metric spaces
X ?

5. [5] introduces a sequence of logics MLn = L(Pn(ω)), where
Pn(X) = ({E ⊆ X||E| ≥ n},⊇). MLi ⊆ MLj if i ≤ j. Is it true
that ML2 ⊆MLO(X )?

Instead of open sets we can choose another class of sets to build a Kripke
frame. For example closed sets generate a logic between ML1 and ML
[5]. [3] shows that many families of sets such as n-balls in Rn, connected
compacts and convex compacts generate intuitionistic logic Int.
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