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Abstract

This article presents a formal theory of robot perception as a form of abduction. The theory pins down
the process whereby low-level sensor data is transformed into a symbolic representation of the external
world, drawing together aspects such as incompleteness, top-down information flow, active perception,
attention, and sensor fusion in a unifying framework. In addition, a number of themes are identified that
are common to both the engineer concerned with developing a rigorous theory of perception, such as the
one on offer here, and the philosopher of mind who is exercised by questions relating to mental represen-
tation and intentionality.
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1. Introduction

Philosophers who subscribe to a computational theory of mind and artificial intelligence
(AI) researchers who work in the “classical” symbolic style are both vulnerable to awkward
questions about how their symbols and representations acquire meaning. The issue dates back
at least as far as Franz Brentano, whose concern was how mental states gain their inten-
tionality, their “directedness” toward things (Brentano, 1874/1995). Related philosophical
specters have surfaced more recently in the form of the Chinese Room argument (Searle, 1980)
and the symbol grounding problem (Harnad, 1990).

A typical way to parry such arguments is by appeal to the notion of embodiment (Chrisley &
Ziemke, 2003). A system that only interacts with the outside world via a keyboard and screen is
said to be disembodied. The champions of embodiment are willing to concede that the symbols
deployed in such a system lack true intentionality, that they inherit whatever meaning they
have from the human designer. By contrast, a robot that enjoys genuine sensorimotor interac-
tion with the same physical world as ourselves is said to be embodied. Symbolic representa-
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tions built up by a robot through sensorimotor interaction with the physical world are grounded
and can be properly said to have intentionality.1

This is a promising line of argument, as far as it goes. But it opens a great many questions. In
particular, it needs to be filled out with a theoretically respectable account of the process in-
volved in constructing the symbolic representations in question (Barsalou, 1999).2 This article
attempts to plug this gap by offering a formal abductive account of the means by which
low-level sensor data is transformed into meaningful representation. The account incorporates
detailed treatments of a variety of issues, including incomplete and uncertain sensor data, ac-
tive perception, and top-down information flow, and it briefly addresses a number of other top-
ics, including attention and sensor fusion.

The methodological context here is robotics, and one of the strengths of the theory on offer
is that it has been implemented on a number of robot platforms. No explicit claim is made
about the extent to which it applies in the human case. However, at the close of this article vari-
ous philosophical questions relating to meaning and intentionality are placed, for comparison,
alongside answers an engineer might give if the same questions had been asked about a robot
built according to the theory of perception being proposed.

Although this article draws heavily on work carried out in the area of logic-based AI, its pri-
mary focus is not the challenge of building programs that use explicitly logical forms of repre-
sentation and inference. Rather, it is to supply an account of robot perception that is couched in
a precise theoretical language and that is capable of engaging with a variety of contemporary
issues. Naturally the theory will appeal to strictly logicist AI researchers, and the article does
present work in which logic is used as an explicit representational medium. However, the ac-
count also serves as a theoretical yardstick for roboticists working with symbolic AI, but out-
side the logicist tradition.3 In addition, it can be viewed as supportive of philosophers of mind
who favor a computationalist theory and who are open to the charge that they have failed to
supply such an account (Barsalou, 1999, p. 580).4

Thisarticle is structured into threemainparts. In the firstpart, theabductive theoryofperception
is outlined, and some of its methodological underpinnings are discussed along with such topics as
incompleteness, top-down information flow, active perception, and sensor fusion. In the second
part, a number of experiments are sketched in which the abductive theory of perception is put to the
testwithseveral real robotsrangingfromsimplemobileplatformstoanupper-torsohumanoidwith
stereo vision. These experiments supply the context for a series of worked examples that are pre-
sented in more technicaldetail. In the thirdpart, this articlepresents a fewphilosophical reflections
on such subjects as the representational theory of mind and intentionality.

2. An abductive account of perception

We begin with a very basic logical characterization of perception as an abductive task
(Shanahan, 1996b). Given a stream of low-level sensor data, represented by the conjunction Γ
of a set of observation sentences, the task of perception is to find one or more explanations of Γ
in the form of a consistent logical description ∆ of the locations and shapes of hypothesized ob-
jects, such that,

Σ ∧ ∆ � Γ
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where Σ is a background theory describing how the robot’s interactions with the world impact
on its sensors. The form of ∆, that is to say, the terms in which an explanation must be couched,
is prescribed by the domain. Typically there are many ∆s that explain a given Γ, so a preference
relation is introduced to order them. When deployed on a robot, a perceptual system conform-
ing to this theoretical description is a perpetual process, embedded in a closed control loop that
outputs a constant stream of (sets of) ∆s in response to a constant stream of incoming Γs from
the robot’s sensors, which could be anything from bump switches to a stereo camera.

Observation sentences in Γ will not, in general, describe sensor data in its raw state. The sen-
sor data in Γ is only “low-level” in the following sense. Whatever preprocessing the raw data
has undergone to produce it, Γ is never taken as a description of the external world, but rather as
a more refined description of the sensor data. For example, Γ might be a description of edges
extracted from an image using the Sobel operator, or it might be a sequence of sonar data points
that has been through a Kalman filter. Even if the preprocessing applied to the raw sensor data
generates information that more obviously purports to describe the world, such as the depth
map produced by a stereo-matching algorithm, the abductive theory of perception treats this
information simply as a rich form of low-level data. It is strictly the responsibility of the
abductive process to decide how to interpret each item of low-level data—whether it should be
accepted or rejected, and what it says about the presence, identity, and configuration of objects
in the external world.

The real utility of any implementation of perception as abduction will be dictated by the
form and content of the background theory Σ—the underlying formalism in which it is ex-
pressed, the ontology manifest in its choice of sorts and predicates, and the causal knowledge
captured by its constituent formulas. Most of the experiments carried out to date have deployed
an underlying formalism capable of representing action, change, and causal relations, and with
a rudimentary capability for representing space and shape. As far as content goes, in general Σ
has two parts—a set of formulas describing the effect of the robot’s actions on the world, and a
set of formulas describing the impact of changes in the world on the robot’s sensors. In an ideal
implementation of the theory, Σ would incorporate a full axiomatization of naive physics
(Hayes, 1985), either hand coded or acquired by a compatible learning method, such as induc-
tive logic programming (Muggleton, 1991).

2.1. Incompleteness and uncertainty

Shortly, we will see how the previously mentioned basic abductive framework can be ex-
tended to accommodate active perception, attention, and top-down expectation. But even this
simple formal description is sufficient to demonstrate several methodological points. In partic-
ular, we can lay to rest the false notion that a representational approach to perception assumes
the need to build and maintain a complete and accurate model of the environment (Brooks,
1991).

Vision, according to David Marr, is “the process of discovering from images what is pres-
ent in the world and where it is” (Marr, 1982, p. 3). In the past, researchers have taken this
to mean the construction of “a complete and accurate representation of the scene,” and to
live up to this definition have been forced to make gross idealizations about the environ-
ment. For example, an introductory chapter on constraint-based vision from a 1980s AI text-
book invites the reader to consider a world of “crack-free polyhedra with lighting arranged
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to eliminate all shadows” (Winston, 1984, p. 47). This is patently an unsatisfactory starting
point if we want to build robots that work in realistic environments. Moreover, it sidesteps
two issues central to understanding intelligence, namely incompleteness and uncertainty,
which are unavoidable features of what John McCarthy calls the “common sense informatic
situation” (McCarthy, 1989).

Uncertainty arises because of noise in a robot’s sensors and motors, and it is inevitable be-
cause of the physical characteristics of any electrical device. Incompleteness, on the other
hand, arises for two reasons, both of which run deeper than the physics. First, incompleteness
results from having a limited window on the world. No robot can ever sense more than a small
portion of its environment because of the inherently limited reach of any sensor and because of
its singular spatial location. Second, incompleteness is an inevitable (and welcome) conse-
quence of the individuality of each robot’s goals and abilities. So there is no need for a robot’s
internal representations to attempt to capture every facet of the external world.

In the same way, an animal’s perceptual system is adapted to survival within its particular
ecological niche. The subjective visual world of a bee—its Umwelt, in the terminology of biol-
ogist Jakob von Uexküll—might be thought of as an otherwise meaningless blur in which pol-
len-bearing flowers stand out like beacons (von Uexküll, 1957). In a similar vein, the Umwelt
of a robot designed to fetch coke cans might be characterized as a meaningless chaos punctu-
ated by can-shaped objects. So, although it may be a methodological error to presuppose a
world of crack-free polyhedra, it still makes sense to build a robot whose perceptual system is
tailored to pick out nearly polyhedral objects (such as books), so long as it can do so in a nor-
mal, messy working environment.

Mathematical logic is ideally suited to expressing each of the previously mentioned forms
of incompleteness and uncertainty, but at the same time possesses a precise semantics. The
trick, in the context of the abductive treatment of perception, is to carefully design the permit-
ted form of ∆ to take advantage of this. To illustrate, consider the following formula, which
constitutes a partial description of an object in the robot’s work space.

The formula Boundary(c,x) represents that line c is part of the boundary of object x, the for-
mula FromTo(c,w,v) represents that line c stretches from point w to point v, and the term Dis-
tance(v,w) denotes the distance between points v and w. Both incompleteness and uncertainty
are expressed in this formula, thanks to the use of existential quantification. Incompleteness is
expressed because the formula only talks about part of the boundary of a single object. It says
nothing about what other objects might or might not exist. Uncertainty is expressed because
the endpoints of the boundary are only specified within a certain range. Moreover, no commit-
ment to an absolute co-ordinate system is inherent in such a formula, so the locations of these
endpoints could be taken as relative to the robot’s own viewpoint.

Of course, this formula is purely illustrative, and the design of a good ontology for repre-
senting and reasoning about shape and space—perhaps one that is more qualitative and less nu-
merical—is an open research issue. For comparison, here is an example of the kind of formula

106 M. Shanahan/Cognitive Science 29 (2005)

� � � �

� � � �
, , , [ , , ,

, 5,5 1 , 5,5 1]

c x w v Boundary c x FromTo c w v

Distance w Distance v

� � �

� � � �



generated by the implemented abductive system for visual perception, which is described in
Section 3.

∃ x,a,s,r [Solid(x,a) ∧ Shape(x,Cuboid) ∧ FaceOf(r,x) ∧ SideOf(E0,r)]

The formula Solid(x,a) represents that a solid object x is presenting aspect a to the viewer,
the formula Shape(x,s) represents that the solid object x has shape s, the formula FaceOf(r,x)
represents that the two-dimensional surface r is one face of object x, and the formula
SideOf(e,r) represents that visible edge e is on the boundary of surface r. The term E0 denotes a
particular visible edge. This is a purely qualitative representation of the simple fact that a cer-
tain kind of object is visible and “out there” somewhere.

Even this qualitative representation makes some commitment to the nature of the object in
view, through the Shape predicate. Yet, as Pylyshyn argued, it is sometimes necessary to pro-
vide “a direct (preconceptual, unmediated) connection between elements of a visual represen-
tation and certain elements in the world [that] allows entities to be referred to without being
categorized or conceptualized” (Pylyshyn, 2001, p. 127). Once again, mathematical logic fa-
cilitates this, simply by allowing an existentially quantified variable to be substituted for the
term Cuboid.

The open-ended versatility of mathematical logic also enables the abductive account of per-
ception to accommodate the idea that to perceive the environment is to perceive what it can af-
ford, “what it provides or furnishes, either for good or ill” (Gibson, 1979, p. 127).5 Indeed, the
representations generated by an abductively characterized perceptual process are only there as
intermediate structures to help determine the most appropriate action in any given situation.
Their use is only justified to the extent that they enhance rather than hinder the robot’s ability to
respond rapidly and intelligently to ongoing events.

Respecting this point is, once again, down to the design of the right ontology for the back-
ground theory Σ. On the one hand, the design of the background theory Σ might reflect the as-
sumptions of a classical approach to machine vision and describe the relation between com-
pletely described three-dimensional objects and the edges and features they give rise to in the
visual field. But, on the other hand, it can be designed to reflect the concerns of a more biologi-
cally inspired approach to perception and capture the relation between, say, graspable contain-
ers and a small number of easily detected visual cues for such objects. In itself, the theoretical
framework is entirely neutral with respect to this sort of choice.

2.2. Top-down information flow

Cognitive psychology has long recognized that the flow of information between perception
and cognition is bidirectional in humans (Cavanagh, 1999; Peterson, 2003), and the presence of
many reentrant neural pathways in the visual cortex reinforces this view (Grossberg, 1999;
Ullman, 1996, chap.10). Similarly, in the field of machine vision, although great emphasis was
placed on top-down processing in the 1970s (e.g., Waltz, 1975) and on bottom-up techniques in
the 1980s (e.g., Marr, 1982), the need for a two-way flow of information has always been ac-
knowledged. Gestalt effects illustrate the point dramatically, as when a participant is presented
with a picture that looks like a collection of random spots and blotches until it is pointed out ver-
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bally that it depicts, say, a cow, whereupon the spots and blotches resolve themselves, as if by
magic, into indisputably animal form (Ullman, 1996, p. 237). In such cases, where linguistically
acquired knowledge causes the participant to perceive objects and boundaries where none were
seenbefore, it isclear thathigh-levelcognitiveprocesseshave influencedlow-levelperception.6

In the abductive theory of perception on offer here, top-down information flow is accommo-
dated by making use of expectation. As with all the proposals advanced here, the aim is not
necessarily to achieve psychological or biological plausibility, but to produce a well-engi-
neered mechanism. But in this case, as so often, there is a strong engineering rationale for imi-
tating Nature. Presented with a cluttered, poorly lit scene full of objects occluding one another
and camouflaged by their surface patterns, the use of expectations derived from past experi-
ence can reduce the task of distinguishing the important objects from the rest to com-
putationally manageable proportions. Indeed, it makes engineering sense to permit the influ-
ence of high-level cognition to percolate all the way down to low-level image processing
routines, such as edge detection.

The way expectation is exploited is as follows: Suppose a set of ∆s has been found that could
explain a given Γ. Then, in addition to entailing Γ, each ∆ will, when conjoined with the back-
ground theory Σ, entail a number of other observation sentences that might not have been pres-
ent in the original sensor data Γ. These are ∆’s expectations. Having determined these, each ∆
can be confirmed or disconfirmed by checking whether or not its expectations are fulfilled.
This might involve passively processing the same low-level sensor data with a different algo-
rithm, or it might involve a more active test to gather new sensor data, perhaps in a different
modality. In Section 3, we see how these ideas are applied to vision.

2.3. Active perception

The use of expectation in the way just described can be thought of as a form of active per-
ception (Aloimonos, Weiss, & Bandyopadhyay, 1987; Ballard, 1991). The concept of active
perception can be widened from its original application in the work of such pioneers as
Aloimonos and Ballard to include any form of action that leads to the acquisition of new infor-
mation via a robot’s sensors, ranging from short duration, low-level actions, such as adjusting
the threshold of an edge detection routine or rotating a camera to give a different viewpoint, to
longer duration, high-level actions, such as climbing to the top of a hill to see what is on the
other side. More subtle “knowledge-producing” actions (Scherl & Levesque, 1993), such as
looking up a phone number, or asking another agent a question, can be thought of as lying on
the same spectrum.

In general, the varieties of active perception can be classified along two axes. Along one
axis, we have the kind of informative action involved—low-level or high-level, short duration
or long duration—as detailed previously. Along the other axis, we have the mechanism that
triggers the informative action in question. In each of the previous examples, the informative
action could have been triggered by a reactive condition–action rule whose side effect is the ac-
quisition of knowledge, it could have been performed as a deliberate, reasoned effort to acquire
knowledge in the face of ignorance, or it could have been an automatic attempt to confirm an
expectation about this situation. In other words, the triggering mechanism could be habit, in-
tention, or expectation.
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As well as providing a theoretical framework for handling uncertainty, incompleteness, and
expectation, the basic abductive characterization of sensor data assimilation can be extended to
encompass all the previously mentioned forms of active perception. Each is an example of an
action or series of actions with the side effect of generating new sensor data, that is to say, new
Γs. For each type of active perception, the new sensor data can be interpreted via abduction to
yield useful knowledge, that is to say, new ∆s. The purpose of action here is to control the flow
of Γs. However, the role of action in perception is not only to maximize useful information, but
also to minimize useless information. The basic abductive formula makes this clear. If Γ com-
prises a large volume of data, the problem of finding ∆s to explain it will be intractable.

Part of the responsibility for managing incoming sensor data so that Γ is always small but
pertinent belongs to the attention mechanism (Niebur & Koch, 1998). In most animals, turning
the head toward a loud noise and saccading to motion are instinctive behaviors with obvious
survival advantages. An animal needs to gather information from those portions of the environ-
ment most likely to contain predators, prey, or potential mates. Analogous strategies have to be
found for robots, regardless of their design aims.

In general, a full abductive account of perception has to incorporate three compo-
nents—attention, explanation, and expectation. The flow of information between these com-
ponents is cyclical. Thanks to the attention mechanism, the robot’s sensory apparatus is di-
rected onto the most relevant aspects of the environment. The explanation mechanism turns
the resulting raw sensor data into hypotheses about the world. And in response to expecta-
tion, ways of corroborating or refuting those hypotheses are found, thereby influencing the
attention mechanism.

2.4. Sensor fusion

The abductive account of perception can also be thought of as supplying a theoretical foun-
dation for addressing the problem of sensor fusion, that is to say, the problem of combining po-
tentially conflicting data from multiple sources into a single model of some aspect of the world
(Clark & Yuille, 1990). The low-level sensor data in Γ can come from different sensors, or
from the same sensor but preprocessed in different ways, or from the same sensor but extracted
at different times. If the background theory Σ successfully captures how a configuration of ob-
jects in the world gives rise to each kind of low-level sensor data, then the basic abductive char-
acterization of perception also takes care of the data fusion issue. Any ∆ conforming to the def-
inition of an explanation has implicitly integrated each item of data in Γ, whatever its source.

However, Σ must be carefully designed to ensure this works, especially in the presence of
potentially conflicting data. This is facilitated by the use of noise and abnormality terms. In ad-
dition to describing the “normal” causes of incoming sensor data, namely the robot’s interac-
tion with objects in the world, Σ can include formulas that can “explain away” unexpected
items of sensor data as mere noise, and formulas that can dismiss the absence of expected sen-
sor data as abnormal. The causal laws expressed in Σ will then include noise or abnormality
conditions or both, and ∆s must be permitted to include corresponding noise and abnormality
terms. It then remains for the preference relation over ∆s to prioritize explanations with the
fewest such terms, thus ensuring that the explanations that best fit the data rise to the top of
the pile.
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Looked at in this way, the sensor fusion problem is just an instance of the general problem of
finding an explanation for a body of sensor data. Indeed, with a rich sensory modality like vi-
sion, the same issue arises even with a single snapshot of a scene preprocessed by a single algo-
rithm, such as edge detection. Both phantom and occluded edges can occur, and the abductive
account of perception needs to be able to deal with them. This topic is treated in more detail in
Section 3.

3. Elaborating and applying the abductive account

This section describes a number of experiments, carried out over a period of several years,
that were designed to evaluate the abductive account of perception using real robots. In each
experiment, the basic abductive characterization is elaborated in a different way. So a series of
detailed worked examples is also presented to illustrate how the theoretical framework is ap-
plied in each experimental context.

3.1. The Rug Warrior experiment

The earliest and simplest of these experiments (Shanahan, 1996a, 1996b) used a low-cost
two-wheeled mobile robot (called a “Rug Warrior”), whose only sensors were bump switches
that detected collisions with walls and obstacles (Jones & Flynn, 1993). The robot used a reac-
tive exploration strategy, but concurrently ran a sensor data-assimilation process, which, as a
side effect of the robot’s exploratory movements, built a map of the environment.7 Although
the algorithm for sensor data assimilation was implemented as a straightforward C program,
without any form of explicit logical representation, the behavior of the algorithm provably con-
formed to a precise abductive specification expressed in terms of abduction and predicate
logic.

Because the only way for a sensor event to occur with this robot was as a result of its own
motion, the map-building process can be viewed as a form of active perception, in the broad
sense defined previously. To encompass this form of active perception, the basic abductive ac-
count needs to be augmented in such a way that the background theory Σ describes the effects
of actions and must be conjoined to a description of the narrative of robot actions that gave rise
to the sensor data Γ. In the work cited, action and change are described using the event calcu-
lus, a well-known formalism for reasoning about action that incorporates a robust solution to
the frame problem (Shanahan, 1997b, 1999).

To get a fuller flavor of how this sort of active perception works, let us make the example of
the simple Rug Warrior robot more precise. Suppose we let,

• Γ be a conjunction of observation sentences, each describing an event in which one of the
robot’s bump switches is tripped,

• ∆N be a conjunction of sentences, each describing a robot action, such as “turn left,”
“move forward,” and so on, and,

• Σ be a background theory describing both the effect of the robot’s actions on the world
(specifically the effect of movements on the location of the robot itself) and the impact of
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the world on the robot’s sensors (specifically how the presence of an obstacle causes
bump events).

Then, the task of sensor data assimilation is to find a consistent formula ∆M describing an ar-
rangement of walls and other obstacles (a map), such that,

Σ ∧ ∆N ∧ ∆M � Γ

Clearly there will, in general, be many ∆Ms that conform to this prescription, and a major
challenge for any abductive account of perception is to manage multiple explanations in a prin-
cipled way. This topic is dealt with in more detail toward the end of this section, in the context
of vision.

3.2. Reinventing Shakey

In the Rug Warrior experiment, the gap between specification and implementation was con-
siderable. Although the map-building algorithm conformed to a specification expressed in
terms of abduction, no explicit abductive reasoning was carried out by the robot, and no ex-
plicit logical representations were built. The aim of the next set of experiments, involving min-
iature Khepera robots (Mondada, Franzi, & Ienne, 1993), was to demonstrate that a practical
robot control system could be made in which the basic unit of computation is a proof step, and
the basic unit of representation is a sentence of logic (Shanahan, 2000; Shanahan & Witkow-
ski, 2001). In such a system, computation is transparent, in the sense that intermediate compu-
tational states have declarative meaning—each being a logical sentence in an ongoing deriva-
tion—and each step of computation can be justified by the laws of logic.

The attraction of such a foundation from an engineering point of view is clear.8 As in so
many branches of engineering, elegance in design goes hand-in-hand with an elegant theoreti-
cal basis, and leads to artifacts that are easy to understand, to modify, and to maintain. How-
ever, one of the finest early attempts to use logic and theorem proving in the way described,
namely Green’s resolution-based planner (Green, 1969), fell foul of computational complexity
problems. This lead the Shakey project to compromise the ideal of using logic and theorem
proving to control a robot (Nilsson, 1984), and no research group took up the challenge again
until the cognitive robotics revival of the mid 1990s (Lespérance et al., 1994). So the question
at the top of the agenda was whether a robot control system based on logic is computationally
viable.

The Khepera experiments demonstrated this through the use of a logic programming
metainterpreter with anytime properties (Zilberstein & Russell, 1993), in other words one
capable of suspending computation at any time, but still yielding useful partial results
(Kowalski, 1995). This capacity facilitates a design that departs from the classical AI ap-
proach exemplified by Shakey in a very important way. In an architecture such as Shakey’s,
logical inference is the driving force behind the selection of actions. By contrast, in the
Khepera experiments, logical inference is inserted into a closed-loop control mechanism that
only allows it to carry out a small, bounded amount of computation in each cycle before the
robot’s sensors are consulted again. So the robot can never get stuck in a thinking rut while
the world changes around it.
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The miniature Khepera mobile robots used in the experiments were each equipped with two
drive wheels and a suite of infrared proximity sensors. The robots were placed in a miniature
officelike environment comprising walls, rooms, and doorways. The only low-level behaviors
the robots were programmed with were wall-following and corner-turning. The first experi-
ment centered on a navigation task (Shanahan, 2000). Given a description of the layout of
rooms and doorways, and knowing its initial location, the robot had to find its way to a differ-
ent specified room. But as the robot proceeded, the experimenter could unexpectedly block any
of the doorways to hinder its progress.

Once again, an abductive approach to perception was adopted, although this time true
abductive inference was carried out in real time, using the sort of anytime metainterpreter de-
scribed previously. The job of the abductive sensor data-assimilation process was to explain the
ongoing stream of sensor events in terms of what might be going on in the robot’s environment.
Whensensoreventsconformed toexpectations, thiswasa trivial task.But sometimesanomalous
sensor events could occur, such as the detection of an unexpected obstacle. If the only explana-
tion for the anomaly was a blocked doorway, a process of replanning was triggered.

Using this technique, the robot was able to navigate successfully from room to room, with-
out perceptible computational delays, in spite of unexpected and unfavorable changes to its en-
vironment. So the experiment showed that, in principle, a robot might be able to deal with a
changing world using the technology of classical AI adapted for closed-loop control, albeit in a
simple environment.

The second experiment with Khepera robots was another map-building task (Shanahan &
Witkowski, 2001). Once again, the crucial difference from the earlier Rug Warrior experiment
was that actual abductive inference was carried out in real time. The abductive characterization
of the map-building task was similar to that for the Rug Warrior. But for the Khepera experi-
ment, a more sophisticated map-building strategy was deployed, in which the robot reasoned
about its own ignorance and carried out a planned sequence of exploratory actions to fill in
gaps in its knowledge. To have accurate knowledge of its own ignorance, the robot had to be
able to recognize novel locations and to re-identify locations it had previously visited, which is
also an important aspect of the “symbol anchoring problem” (Coradeschi & Saffiotti, 2000).

3.3. A simple worked example of active perception as abduction

Based on the navigation task in the Khepera experiments, this section presents a worked ex-
ample of how a simple form of active perception can be formalized as an abductive process. We
begin with a short introduction to the event calculus, the formalism for reasoning about action
deployed in all the work reported in this article. The version of the event calculus used here has
been widely adopted and has become absorbed into the AI canon (Russell & Norvig, 2002,
chap. 10). In addition to robotics, it has found application in such areas as natural language
processing (Lévy & Quantz, 1998), intelligent agents (Jung, 1998), and commonsense reason-
ing (Morgenstern, 2001; Mueller, 2004; Shanahan, 2004). A more detailed presentation can be
found in Shanahan (1999).

The ontology of the event calculus includes events (or actions), time points, and fluents. A
fluent can be anything whose value changes over time, such as the location of a robot. The ba-
sic language of the calculus is presented in Table 1.
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The relation between these predicates is governed by the following three axioms, whose
conjunction will be denoted EC.

HoldsAt(f,t) ← Initially(f) ∧ ¬ Clipped(0,f,t) (EC1)

HoldsAt(f,t2) ← (EC2)

Happens(e,t1) ∧ Initiates(e,f,t1) ∧ t1 < t2 ∧ ¬ Clipped(t1,f,t2)

Clipped(t1,f,t3) ↔ (EC3)

∃ e,t2 [Happens(e,t2) ∧ t1 < t2 < t3 ∧ Terminates(e,f,t2)]

The frame problem is overcome using circumscription (Lifschitz, 1994; McCarthy, 1986).
The predicates Happens, Initiates, and Terminates are minimized, corresponding to the default
assumption that the known event occurrences are the only event occurrences, and the known
effects of actions are the only effects of actions. By circumscribing separate parts of a theory
independently, the difficulties that beset early attempts to apply circumscription to the frame
problem are avoided (Shanahan, 1997b, 2003). In what follows, given a formula Φ and a set P
of predicates, the circumscription of Φ minimizing P will be denoted CIRC[Φ; P].

In practice, the deductive application of these axioms performs prediction, that is to say, rea-
soning from causes to effects. Given a narrative of events and actions in the form of a set ∆ of
Initially and Happens formulas, and a description of the effects of actions in the form of a set Σ
of Initiates and Terminates formulas, the consequences of,

CIRC[Σ; Initiates, Terminates] ∧ CIRC[∆; Happens] ∧ EC

will include a set of HoldsAt formulas describing which fluents hold when, in other words cap-
turing the effects of the events and actions in ∆.

However, the concern of this article is not with prediction, but with explanation, that is to
say, reasoning from effects to causes, where the effects are the raw sensor data and the causes
are features of the world external to the robot. In event calculus terms, given,

• a set Γ of HoldsAt formulas describing sensor data,
• a set ∆N of Initially and Happens formulas describing the robot’s initial state and subse-

quent actions, and
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Table 1
The language of the event calculus

Formula Meaning

Initiates(e,f,t) Fluent f starts to hold after action e occurs at time t
Terminates(e,f,t) Fluent f ceases to hold after action e occurs at time t
Initially(f) Fluent f holds from time 0
Happens(e,t) Action or event e occurs at time t
HoldsAt(f,t) Fluent f holds at time t
Clipped(t1,f,t2) Fluent f is terminated between times t1 and t2



• a description of the effects of actions in the form of a set Σ of Initiates and Terminates
formulas,

thebasicabductive task is to findaset∆M offormulasdescribingfeaturesof theworldsuchthat,

∆M ∧ CIRC[Σ; Initiates, Terminates] ∧ CIRC[∆N ; Happens] ∧ EC � Γ.

Many variations on this basic formulation are possible. For instance, in the example to fol-
low, Γ includes Happens formulas describing sensor events.

Now, consider Figure 1. Suppose the robot possesses a topological map and knows the lay-
out of rooms and doorways in its world, but it has no way to keep track of whether doors are
open or shut. Because it also has no knowledge of the distances between the various corners, as
it proceeds along the wall, the robot cannot possibly know that D1 is in fact shut until it encoun-
ters corner C4.

Let the robot’s knowledge of the corners and doorways be captured by the following set of for-
mulas,whoseconjunctionwillbedenoted∆M1.Thepredicatenamesshouldbeself-explanatory.

NextCorner(C1,C2) NextCorner(C2,C3)

NextCorner(C3,C4) Inner(C1)

Outer(C2) Outer(C3)

Inner(C4) Door(D1,C2,C3)

Next, we need a set of formulas describing the effects of the robot’s actions. The only action
we will consider here is FollowWall, which takes the robot to the next detectable corner. In this
example, that corner will be C2 or C4, depending on whether door D1 is open or shut.

Initiates(FollowWall,AtCorner(c2),t) ←

HoldsAt(AtCorner(c1),t) ∧ NextVisibleCorner(c1,c2)

NextVisibleCorner(c1,c2) ←

NextCorner(c1,c2) ∧ ¬ InvisibleCorner(c2)

NextVisibleCorner(c1,c3) ←

NextCorner(c1,c2) ∧ InvisibleCorner(c2) ∧ NextVisibleCorner(c2,c3)
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InvisibleCorner(c1) ↔ ∃ d,c2 [Door(d,c1,c2) ∧ DoorShut(d)]

DoorOpen(d) ↔ ¬ DoorShut(d)

Let Σ be the conjunction of the previous formulas. Now we require a set of formulas that
captures the causes of robot sensor events. In this example, the only sensor events we consider
are GoesHigh(Front), which occurs when the robot’s front infrared proximity sensors detect an
obstacle ahead, and GoesLow(Left), which occurs when the robot’s sensors encounter a gap to
its left.

Happens(GoesHigh(Front),t) ←

Happens(FollowWall,t) ∧

Initiates(FollowWall,AtCorner(c),t) ∧ Inner(c)

Happens(GoesLow(Left),t) ←

Happens(FollowWall,t) ∧

Initiates(FollowWall,AtCorner(c),t) ∧ Outer(c)

Let ∆N be the conjunction of the previously Happens formulas with the following narrative
formulas, which describe the relevant episode in the robot’s history.

Initially(AtCorner(C1))

Happens(FollowWall,T1)

The sensor data to be explained involves a single event.

Happens(GoesHigh(Front),T2)

T2 > T1

Now, if we let Γ be the conjunction of the previously mentioned two formulas, the abductive
task is to find some ∆M2 composed of only DoorOpen and DoorShut formulas, such that,

∆M ∧ CIRC[Σ; Initiates, Terminates] ∧ CIRC[∆N ; Happens] ∧ EC � Γ

where ∆M is ∆M1 ∧ ∆M2. In this case, the obvious solution is simply to let ∆M2 be the formula
DoorShut(d). The inclusion of this formula on the left-hand-side of the entailment ensures
that the next detectable corner after C1 is C4, which in turn explains the occurrence of a
GoesHigh(Front) event after the robot executes its FollowWall action.

This example shows the robot actively probing its environment to discover more about it,
and it demonstrates the need for inference to interpret the resulting inflow of sensor data. It is
just about the simplest such example that can be presented in a few pages, but it illustrates a ba-
sic theoretical apparatus that can be used to couch much more complex forms of perception in
abductive terms. For example, by making the whole of ∆M abducible, the general problem of
map building is reduced to a kind of active perception characterized in abductive terms. In-
deed, this is precisely how map building was treated in the Khepera experiments described pre-
viously, and presented in detail in (Shanahan & Witkowski, 2001). A more substantial exten-
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sion of the basic framework is required to deal with the multiple explanations problem, which
is addressed in the next worked example.

3.4. Visual perception through abduction

Although the Rug Warrior and Khepera experiments served as a useful “proof of concept”
for an updated attempt to achieve robot control through logic, they left open the question of
whether the ideas under test would scale up to robots with richer sensors in more complex envi-
ronments. To address the issue of scaling up, a much more ambitious project has been
launched, involving a bench-mounted, upper-torso humanoid robot with stereoscopic vision,
known as Ludwig (Figure 2).

Ludwig has two arms, articulated at the shoulder and elbow, with 3 degree-of-freedom
each. The forearm is mechanically constrained to move in the same plane as the workbench.
The arms terminate with simple prods, rather than grippers. The stereoscopic camera is
mounted on a pan-and-tilt head. Ludwig is mechanically very simple, having fewer degrees
of freedom than other recently constructed humanoid robots, such as Cog at MIT (Brooks,
Breazeal, Marjanovic, Scassellati, & Williamson, 1999). This cuts down on low-level motor
control problems and allows the project to concentrate on the central issues of cognition and
perception.

Like a human infant, Ludwig’s main occupation is play. The specific challenge for Ludwig
is to learn about the objects in its work space through physical interaction with them. The pri-
mary function of the visual system is to pick out potential objects of interest—those that make
up Ludwig’s Umwelt—and to direct the camera’s gaze on them. Ludwig can then use visual
servoing in an attempt to nudge them. The resulting changes in orientation and relative location
of these and other objects on the workbench lead to new and useful information about their
shapes, sizes, and layout.

The Ludwig project embraces both classical AI technology and ideas from biologically in-
spired robotics. On the one hand, the order in which research topics are tackled is not
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top-down, as in classical AI, but bottom-up, as in biologically inspired robotics, mirroring on-
togeny and phylogeny. Accordingly, rather than viewing human-level intelligence as a disem-
bodied phenomenon and coming at it through language and problem solving, the project con-
siders human-level intelligence to rest on bodily skills, such as nudging and grasping, and to be
grounded in (active) perception.

On the other hand, Ludwig’s play has an end product that will be familiar to anyone with
a classical AI background, namely declarative representations with a denotational seman-
tics—in particular, sentences of logic. (These should not, of course, be confused with sen-
tences of natural language. It is not anticipated that Ludwig will be equipped with a capacity
for natural language in the near future.) And as in the Rug Warrior and Khepera experi-
ments, these representations are constructed by an abductive process, which is described
here.

To meet the demands of vision—an altogether richer source of sensor data than bump
switches or infrared proximity sensors—a much more sophisticated abductive account of per-
ception has been developed (Shanahan, 2002). At the core of this treatment of visual percep-
tion are two advances on the basic abductive prescription. First, a precise measure of the ex-
planatory value of a hypothesis is defined, based on probability. Crudely put, the key property
of this measure is that the more data items a hypothesis explains, the greater its explanatory
value. By calculating their explanatory values, competing hypotheses can be compared and un-
promising ones discarded.

The precise definition of explanatory value is as follows. Let ∆1 … ∆n be the set of all
hypotheses that explain the sensor data Γ according to the usual abductive definition. Given
that one and only one of these hypotheses can be the true explanation, and if none of the hy-
potheses are subsumed by any other, we can assume ∆ ∆ ∆ ∆1 1 1� � � � �� �� �k k n .9 Now,
consider any hypothesis ∆k, and let R be,

Then, from the laws of probability, we have,

where P(∆k) is the prior probability of ∆k and P(R) is the prior probability of R. From the form
of R, we have,

For any hypothesis ∆ of the form ψ1 ∧…∧ψm, we have,
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From Equations (1) to (3), the posterior probability of any hypothesis can be calculated,
given the set of all hypotheses, and this is taken to be its explanatory value. Now, recall that
our measure of explanatory value is supposed to reward a hypothesis for explaining more
data. Despite the fact that the abductive definition insists that Γ is explained in its entirety,
this criterion can be met by allowing a hypothesis to include noise terms (Poole, 1995;
Shanahan, 1997a). A noise term “explains away” an item of sensor data as mere noise. If
noise terms are assigned a low prior probability, Equation (3) ensures that a hypothesis that
properly explains an item of sensor data has a higher explanatory value than one that simply
explains it away as noise.

The second advance on the basic abductive story allows for the performance of actions to
confirm or disconfirm the expectations of competing hypotheses and incorporates the results
into an updated measure of explanatory value. A key property of the updated measure is that,
other things being equal, the fewer unfulfilled expectations a hypothesis has, the greater its ex-
planatory value.

Overall, the abductive processing of a set of low-level sensor data consists of the following
four steps:

1. Using abduction, establish a set of hypotheses that can explain the sensor data.
2. Select the best of these hypotheses according to their explanatory values.
3. Determine the expectations of each selected hypothesis, and reconsult the raw data to

check each of these expectations.
4. Recalculate the explanatory values of the selected hypotheses, taking into account the

results of Step 3, and reorder the hypotheses accordingly.

To see how these ideas work in the context of vision, consider Figure 3. The central image
shows the results of applying a simple edge-detection algorithm, based on the Sobel operator,
to the left-hand image. The threshold of the edge-detection algorithm is set high to reduce the
volume of spurious data. Now consider the block circled in the upper image. Because of its
dark half, only some of this block’s edges have been picked out by the algorithm. This leads to
two competing initial hypotheses to explain the edge data. According to Hypothesis A, which
is incorrect, Ludwig is looking at a short block, the faint edges to the left being noise. Accord-
ing to Hypothesis B, which is correct, Ludwig is looking at a long block, but lots of its edges
are missing.

These two hypotheses have different expectations. For example, a consequence of Hypothe-
sis A would be the presence of a vertical edge from the top left-hand corner of the proposed
block. A consequence of Hypothesis B is that the topmost edge of the block should extend far-
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ther to the left than it apparently does. Using an edge-checking algorithm that is much more
sensitive than the algorithm originally applied to the whole scene, these expectations can be
tested. In this example, this leads to a reduction in the explanatory value of Hypothesis A,
whose expectations are not fulfilled, and an increase in the explanatory value of Hypothesis B,
whose expectations are fulfilled.

3.5. A worked example of top-down information flow

More formally, for the purposes of abduction, low-level image data such as that in Figure 3
is represented by a set of predicate calculus formulas. The low-level data in question could be
the product of any off-the-shelf image processing technique, such as color-based segmenta-
tion, optical flow, stereo matching, or any combination of these. But for the worked example of
this section we stick to edge detection. The edge data in Figure 3 can be represented by a set of
formulas that includes the following exemplars:

Line(1,[238,157],[241,147])

Line(3,[249,157],[253,145])

The formula Line(w,p1,p1) represents that there is an edge in the image, labeled w, from point
p1 to point p2. (The labels are arbitrarily assigned by the low-level edge detection procedure.)

An abductive process can be structured into multiple layers (Josephson & Josephson, 1994;
Shanahan, 2002). In effect, each explanation ∆ at the nth layer becomes data Γ to be explained
at the n + 1th layer. Accordingly, formulas that are abducible at layer n can become observable
at layer n + 1. In this context, it is convenient to adopt a two-layer abductive process. The task
of the first layer is to explain one-dimensional edges in terms of two-dimensional visible re-
gions. The task of the second layer is to explain the visible regions in terms of spatially located
three-dimensional objects.

Each layer has a separate background theory Σ, which includes three groups of logical
formulas. Although every formula enjoys the same status from a declarative point of view,
each group plays a different role in the abductive process, and this will be reflected in any
implementation. First, we have a set of formulas that can be used to generate explanatory
hypotheses. Second, we have a set of formulas describing constraints on the permissible
hypotheses. Third, we have a set of formulas describing the expectations of each
hypothesis.

Here are two sample first-layer formulas belonging to the first of these three groups. Their
style is typical. Each has the form Ψ ← Φ, where Ψ is a description of sensor data and Φ is a
description of conditions under which that sensor data arises.

In essence, these two formulas state that a visible edge might be the side of a region or it
might simply be noise. The three predicates Region, SideOf, and Noise (whose meanings
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should be obvious) are declared to be abducible, so hypotheses can be expressed in their terms.
Next, we have a sample first-layer formula from the second group:

Again, the style of the formula is typical. It has the form Ψ ← Φ, where Φ describes condi-
tions that must be met by any hypothesis conforming to Ψ. In this case, the formula presents a
constraint that must be met by a hypothesis describing trapezoidal regions, on the (artificial)
assumption that the robot’s Umwelt comprises cuboids whose visual aspect consists of such
regions.

We postpone consideration of the third type of formula—one describing the expectations of
hypotheses—until the second layer of the abductive process. In the meantime, it can be seen
that the first-layer explanations of the low-level image data, according to the formulas previ-
ously discussed, include both the hypothesis that there is a region whose sides include Edges 1
and 3 (where Edge 7 is noise), and the competing hypothesis that there is a region whose sides
include Edges 7 and 3 (where Edge 1 is noise). Let us call these, respectively, Hypothesis A*
and Hypothesis B*. Hypothesis A* includes the following formulas:

Region(R0) SideOf(1,R0)

SideOf(3,R0) Noise(7)

Hypothesis B* includes the following formulas:

Region(R0) SideOf(7,R0)

SideOf(3,R0) Noise(1)

According to Equations (1) to (3), these two hypotheses have equal explanatory value, be-
cause both postulate a single new region, and both contain the same number of noise terms.
Note, however, that hypotheses containing more noise terms will have lower explanatory
value. In other words, the best hypotheses are those that postulate only a few regions, each of
which explains the presence of many edges.

Now let us consider the second layer of abduction, which moves from visible regions to
solid objects. The second-layer formulas for generating hypotheses include the following:

Region(r) ← ∃ x,a [Solid(x,a) ∧ IsAspect(a) ∧ FaceOf(r,x)]

IsAspect(3Face)

The predicate Solid(x,a) represents that a solid object x is in the visual field, presenting as-
pect a. The predicate FaceOf(r,x) represents that the visible region r is a facet of object x that is
turned toward the viewer. An aspect of an object is an equivalence class of possible views of
that object that are invariant with respect to certain topological properties, such as the number
of its corners or faces (Figure 4). A cube, for example, has three aspects. The one depicted in
Figure 4 is denoted 3Face.
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The following formula is an example of a second-layer constraint, which states that every
pair of faces in the aspect 3Face is abutting, and rules out any hypothesis for which this is not
the case.

[Solid(x,3Face) ∧ FaceOf(r1,x) ∧ FaceOf(r2,x) ∧ r1r2] → Abuts(r1,r2)

Now let us consider two competing second-layer hypotheses. Suppose Hypothesis A con-
tains all of Hypothesis A* and also includes the following formulas:

Region(R1) SideOf(4,R1)

SideOf(6,R1) Solid(X0,3Face)

FaceOf(R0,X0) FaceOf(R1,X0)

Similarly, suppose Hypothesis B contains all of Hypothesis B* and also includes the follow-
ing formulas:

Region(R1) SideOf(4,R1)

Noise(6) Solid(X0,3Face)

FaceOf(R0,X0) FaceOf(R1,X0)

Hypothesis B is, of course, the correct one, as it treats Edge 6 as noise rather than as the
boundary of a solid object. However, Hypothesis A has a higher explanatory value according to
Equations (1) to (3), because it contains more noise terms.

This brings us, finally, to the topic of expectation and top-down information flow. Hypothe-
sis B is underperforming because of the poor quality of the original low-level data. In particu-
lar, the faintly visible face on the left of the block has been ignored by the edge detection algo-
rithm. But Hypothesis B can be promoted to its proper place by actively seeking to confirm
those of its expectations that are not already fulfilled by the original data. Here is an example of
second-layer “expectation” formulas:

[Solid(x,3Face) ∧ FaceOf(r1,x)] →

∃ r2, r3 [FaceOf(r2,x) ∧ Abuts(r2,r1) ∧

FaceOf(r3,x) ∧ r2 r3 ∧ Abuts(r3,r1)]

This type of formula is superficially similar to a constraint. The difference is that the
right-hand-side of the implication describes conditions that, if not already met, can be tested
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by referring back to the raw image data and reprocessing it in a specialized way. In this case,
if the posited cuboid is missing any of its expected faces, this formula will trigger a search
for a region having the right geometrical properties, namely, that it abuts the cuboid’s known
faces. Because these properties are highly specific, the search can be very sensitive. In the
example of Figure 3, this will enable the detection of the previously missed facet of the
block.

The final step of the reasoning process is to incorporate the results of checking the expecta-
tions of each hypothesis into a newly calculated measure of explanatory value. Again, Equa-
tions (1) to (3) are used. The updated measure is obtained simply by widening the set of
low-level sensor data subject to explanation to encompass both the presence and absence of ex-
pectations. To allow for the explanation of the absence of an expected item of low-level data,
abnormality terms are introduced. These are analogous to noise terms—the more of them a hy-
pothesis is forced to contain, the less its explanatory value. This results in an increase in the ex-
planatory value of a hypothesis whose expectations are fulfilled, and a corresponding decrease
in the explanatory value of a hypothesis with unfulfilled expectations.

In this example, each hypothesis entails the expectation of a missing third region that abuts
both R0 and R1. This is a complex expectation involving several edges, which are actively
sought out using a sensitive spatially guided edge-checking algorithm. For Hypothesis A this
expectation is not met, whereas for Hypothesis B it is. Now both the presence of new edges on
the left of the image and the absence of looked-for edges in the center become additions to the
low-level sensor data, and this results in Hypothesis B overtaking Hypothesis A in explanatory
value.

A prototype abductive inference mechanism has been constructed that incorporates these
ideas of explanatory value and top-down expectation. As with the Khepera experiments, the
implementation is in the form of a logic programming metainterpreter. The system has been
applied to visual data and has been shown to work for examples similar to that in Figure 3. The
next step is to interface the system directly to Ludwig’s camera, and to let the best hypotheses it
generates lead the arm to nudge interesting objects on the workbench. A suitable attention
mechanism is also required to guide the camera and to select portions of the visual field for
processing. The present solution is for the system to seek out motion. The experimenter is able
to draw attention to interesting objects by pushing them or waving them about, much as a par-
ent does with a young infant.

3.6. Active visual perception

The preceding examples have shown how the abductive treatment can be given to a sim-
ple sensory modality in a dynamic setting (Section 3.3), and to a richer sensory modality,
namely vision, in a static setting (Section 3.5). To complete the picture, this section gives an
abductive account of vision in a dynamic setting (Shanahan & Randell, 2004). This is
largely a matter of bolting the required logical apparatus for handling actions and change
(from Section 3.3) to the abductive machinery for dealing with top-down information flow
(from Section 3.5).

Consider Figure 5, which shows two images from Ludwig’s camera alongside the results of
applying edge detection. Between the two frames, the block has been nudged slightly. In the

122 M. Shanahan/Cognitive Science 29 (2005)



first frame, the bright highlight on the right of the block has resulted in the loss of detectable
edges. From the edge information in this frame alone, there is no way to determine whether the
object is an L block or a T block (Figure 4). However, the ambiguity is resolvable with the aid
of the extra information obtained by nudging the block and thereby gaining a view of it from a
different angle. The challenge now is to formalize this process of knowledge increase in
abductive terms.

To meet this challenge, a third layer of abductive interpretation is added in addition to the
two layers described in the previous section. This layer has the responsibility of explaining se-
quences of momentary snapshots in terms of persistent solid objects. The first step that needs
to be taken is to turn the predicates previously used to describe static images into fluents. This
is achieved through “reification,” which amounts to wrapping them in the HoldsAt predicate.
So instead of writing Solid(x,a) we now write HoldsAt(Solid(x,a),t) where t is a time point.

Now suppose that two competing second-layer hypotheses have been found to explain the
edge data in the first frame of Figure 5, taken at time T1. According to Hypothesis A, the object
is presenting an aspect of an L block.

HoldsAt(Solid(X0,L4Face), T1)

According to Hypothesis B, the object is presenting an aspect of a T block.

HoldsAt(Solid(X0,T4Face), T1)

Top-down information has helped to narrow down the candidate explanations to these two.
But this is the best it can manage, and because the edges on the right of the block are com-
pletely obliterated, both hypotheses are accorded equal explanatory value.

The arrival of the next frame, taken at time T2, is an opportunity to resolve the ambiguity.
However, thanks to the block’s surface features, edge detection cannot distinguish a clear
boundary at the top of the block. So the application of static abductive interpretation to this
frame would again reveal two equally good competing hypotheses. According to one hypothe-
sis, the block is presenting an aspect of a cuboid:

HoldsAt(Solid(X0,3Face),T2)
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According to the other hypothesis, the object is presenting a different aspect of an L block:

HoldsAt(Solid(X0,L2Face),T2)

But because the two frames are linked, a static analysis of the second one would be inappro-
priate. Instead, the abductive process must attempt to extend each of the ongoing hypotheses
(in this case A and B) to accommodate the data in the new frame. To realize this, we can import
a useful and well-established concept from computer vision, namely, that of an aspect graph
(Koenderink & van Doorn, 1979). The aspect graph of a three-dimensional shape is the set of
all possible aspects it can present to the viewer linked by arcs to indicate legitimate transitions
from one aspect directly to another (Figure 6).

In what follows, the formula Shape(x,s) represents that object x has shape s, where a shape is
defined by its aspect graph. In the third layer of abduction, Shape formulas are made abducible.
The formula Arc(s,a1,a2) represents that there is an arc from aspect a1 to aspect a2 in the aspect
graph of shape s. So the set of formulas required to represent the shapes illustrated in Figure 6
includes the following:

Arc(LBlock,L4Face,L2Face)

Arc(Cuboid,3Face,2Face)

Now we can use the event calculus to describe the possible aspect transitions that can result
from nudging an object. The results are incorporated in the third-layer background theory Σ.
Let the term Nudge(x) denote an act of nudging object x, and assume that no single nudge is
dramatic enough to cause an object to pass through more than one aspect transition. We need to
formalize the fact that a Nudge action might result in no aspect transition, but it might result in
the transition from the current aspect a1 to any new aspect a2 such that an arc exists from a1 to
a2 in the relevant aspect graph.

Initiates(Nudge(x),Solid(x,a2),t) ←

HoldsAt(Solid(x,a1),t) ∧ Shape(x,s) ∧

Arc(s,a1,a2) ∧ ByChance(TransTo(x,a2),t)
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The Nudge action is an example of an action with a nondeterministic effect, and this formula
illustrates one way the event calculus can be used to represent such actions (Shanahan, 1997b).
The formula ByChance(f,t) represents that fluent f holds at time t. Unlike HoldsAt, there are no
axioms to constrain the ByChance predicate, so the fluent f, which is known as a determining
fluent, can either hold or not hold at any time. In the context of abduction, ByChance formulas
are abducible, but make no contribution to the calculation of explanatory value. For more de-
tails, see Shanahan (1997a) or Shanahan and Randell (2004).

The Nudge action that was carried out between the two frames is represented by a Happens
formula:

Happens(Nudge(X0),T)

T1 < T < T2

Because we have Arc(LBlock,L4Face,L2Face), Hypothesis A can now be extended to form
a third-layer hypothesis that explains the two successive frames in terms of a persistent solid
object. The extended hypothesis includes the following formula:

Shape(X0,LBlock)

Bycontrast,HypothesisBcannotbeextended toaccommodate thedata in thenewframe.This
isbecause there isnosecond-layerhypothesis that includes the formulaHoldsAt(Solid(X0,a),T2),
such that Arc(s,T4Face,a) for any shape s. This is, of course, the desired outcome.

4. Related work

The idea that perception can be viewed as a form of abduction can be traced back to the
philosophical writings of Peirce (1903), who carried out an extensive study of abductive rea-
soning. (Indeed, the term abduction was coined by Peirce.) The essential insight is clearly
present in Peirce, although his discussion is somewhat informal. Within psychology, Rock’s
theory of indirect perception, which in turn derives from the ideas of the 19th-century scientist
Hermann von Helmholtz, is the most closely related to the abductive approach of this article
(Rock, 1983). Although Rock does not use the term abduction, that is precisely what he de-
scribes, as his theory of perception involves the generation of hypotheses about the external
world to explain visual data and their testing through the acquisition of further data. Rock’s
theory is informally presented and unimplemented, but has the virtue of empirical support.

Returning to AI and computer science, the treatment of visual perception offered here has
some points of contact with work on model-based vision dating back to the early 1980s
(Brooks, 1981), and aspects of the abductive processing of image data are analogous to the
matching operation at the heart of contemporary model-based object recognition systems
(Jain, Kasturi, & Schunk, 1995, chap. 15). But, in general, these systems neither use logic as a
representational formalism, nor carry out any form of logical inference. Moreover, the role of
high-level knowledge in model-based vision is usually confined to the representation of the
structure of the objects to be recognized.
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The combination of abductive inference with the confirmation of expectations, here applied
to visual perception, echoes the hypothetico-deductive model of scientific reasoning proposed
by philosophers of science. In Kakas and Evans (1992) we find a formal description of
hypothetico-deductive reasoning in a logic programming context, although the authors do not
apply their ideas to perception. The hypothetico-deductive model is applied to perception in
Josephson and Josephson (1994, chap. 10), although the treatment there is informal, and the
authors offer few hints about how their ideas might be realized on a computer.

A rare example of an attempt to apply logic directly to image interpretation can be found in
Reiter and Mackworth (1989), where the authors provided a formal definition of the relation
between an image and the scene it depicts. Their definition, like its abductive counterpart in
this article, relies on an axiomatic description of the way different objects in the environment
give rise to raw image data. Reiter and Mackworth’s treatment was purely theoretical, and their
ideas were never implemented in a real vision system. Moreover, they largely neglected the is-
sues of noise and incompleteness, which are a central concern here. However, their work is a
clear precursor to the framework of this article. To my knowledge, the only other contemporary
attempt to bring logic to bear on the problem of perception is the ongoing work of Pirri and her
colleagues (Pirri & Finzi, 1999; Pirri & Romano, 2002).10

Another example of a methodologically related approach to perception is the recent work of
Chella, Frixione, and Gaglio (1997, 2000), who have developed an architecture for vision with
many of the same features as the approach to perception advocated here. Their architecture
employs off-the-shelf techniques for low-level vision, but uses declaratively represented
knowledge and high-level reasoning to suggest hypotheses that might explain the low-level
data and form the expectations of those hypotheses. These expectations influence an attention
mechanism that can seek out components of a specified shape in designated parts of an image.

Although the efforts of Chella et al. (1997, 2000) perhaps bear the closest resemblance in
the literature to this work, as far as perception is concerned, there are still many differences. In
particular, logic and logical inference play a much smaller part in their approach than in the
framework of this article, and instead they make liberal use of neural networks. Their work
lacks a theoretical counterpart to the abductive treatment of perception that forms the center-
piece of the research reported here. On the other hand, they use a wider range of techniques,
from both AI and machine vision, and have a more sophisticated approach to shape.

5. Philosophical afterthoughts

The motivation for developing the theory of robot perception presented in this article is the
belief that perception, action, and cognition form an inseparable trinity and that success in AI
will not result from studying any one of those topics in isolation. More specifically, the aim is
to supply a solid theoretical foundation for the design of robot perceptual systems that incorpo-
rate action, in the form of active perception, and cognition, in the form of top-down informa-
tion flow. As such, the context is engineering, not philosophy.

Yet it is engineering with a philosophical edge. At every turn, concepts are deployed that de-
rive from centuries of thought in the philosophy of mind. Time and again, aspects of the
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abductive theory of perception echo well-known philosophical debates and conundrums. So it
seems appropriate to make some philosophical remarks. But rather than confronting the phi-
losophy head-on, what follows are brief caricatures of a number of issues set alongside the re-
flections of an imaginary engineer. To bring the issues into proper focus, it is necessary to en-
visage a more advanced humanoid robot than we have at present, albeit built using the
principles set out in this article, so the ensuing discussion has a science-fictional flavor.

5.1. Representational theories of mind

The engineer in question, being a keen amateur reader of philosophy journals, has for years
been interested in the debate surrounding “intentionality” (Crane, 2003; Searle, 1983). The
philosophers, she has learned, are very struck by the fact that mental states are directed toward
things—beliefs are always about something, as are other so-called propositional attitudes,
such as desires, intentions, and so on. In the 19th century, Brentano’s (1874/1995) challenge to
the materialists was to find a theory of mind that could account for this property of in-
tentionality. Not only would it have to account for the fact that propositional attitudes are di-
rected at real, physical objects, it would also have to accommodate their capacity for directed-
ness at nonexistent objects, such as unicorns. Moreover, beliefs can be false. So the same
account must allow for error.

Many of the philosophers trying to meet Brentano’s (1874/1995) challenge have adhered
to some form of representational theory of mind, in which mental states are characterized by
appeal to sentence-like representations (Fodor, 1975). Much is made of the functional role
of these representations in the overall organization of the mind. In some variants of the the-
ory, mental processes are identified with kinds of computation over the sentence-like
representations.

The engineer also knows a fair amount of neuroscience. So she has noted the consider-
able gap between the philosophers’ notion of representation and the messy gray stuff that is
actually found inside people’s heads. She is also aware that certain brands of philosopher
have themselves remarked on this sort of discrepancy and have expressed their skepticism
about the whole idea of a representational theory of mind (Clark, 1998). Some of these phi-
losophers claim that folk-psychological concepts such as the propositional attitudes will, in
due course, be eliminated altogether from our scientific understanding of the mind (Church-
land, 1979).

At this point, the engineer cannot help remarking to herself that her robots, if only they were
a little more advanced, would make excellent candidates for a representational theory of
mind—far more clear candidates, in fact, than human beings. Unlike the philosophers, she has
little difficulty pinning down exactly what she means by an internal representation. These are
sentences of first-order predicate calculus. Pressed for further details, she can easily explain
how these are encoded in standard data structures familiar to any computer scientist, such as ar-
rays, linked lists, and so on, which in turn are stored in the computer’s memory in binary form.
Among the various computational processes carried out by the computer are inferences from
one such representation to another, and the algorithms executed by these processes provably
respect the laws of logic.
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5.2. Intentionality and symbol grounding

As she persists in her reading of the philosophical literature, the engineer soon discerns a
number of overarching themes in the objections raised to representational theories of the hu-
man mind. One of the overarching themes goes to the heart of the whole intentionality issue.
How is it that the mind’s supposed representations, being composed of nothing but symbols,
can actually be said to represent anything? The more attractive replies to this question all seem
to appeal, in some way or other, to the mind’s “connectedness” to the world. The symbols that
go to make up a representation acquire their intentionality because they are grounded in the
perception of objects in the physical world (Barsalou, 1999; Harnad, 1990).

Setting aside her wider concerns about representational theories of the human mind, the en-
gineer is struck afresh by the comparative ease with which she can answer this sort of question
for her robots, because they have all been built according to the abductive theory of perception.
Take the case of the upper torso humanoid robot recently constructed (on a pitifully small bud-
get) in her lab. Where do its internal representations come from? Well, taking visual perception
as exemplary, a very clean causal story can be recounted that begins with light entering the
lenses of the robot’s cameras and ends with the storage in the computer’s memory of structures
standing for sentences of predicate calculus.

This causal story can be told at the purely physical level. But thanks to the abductive theory
of perception to which the humanoid’s design conforms, a more valuable, parallel narrative can
be told at the level of symbols, representations, and logic. Suppose a student places a white cup
on the robot’s workbench, and the robot’s attention mechanism, drawn by the motion, has
directed its gaze on this cup. The perpetual stream of pixel arrays delivered by the robot’s
camera is subjected to various forms of preprocessing using off-the-shelf vision algorithms.
These off-the-shelf techniques supply a symbolic description Γ of many aspects of the im-
age—edges, corners, patches of uniform color, texture, or depth, motion cues, tracked features,
and so on.

What happens next is the most important part. This symbolic description Γ is submitted to a
computational process that carries out abduction. This process produces a prioritized list of ex-
planations ∆ that conform to the abductive prescription given in this article. These are lodged
in the computer’s memory, and their disjunction contributes to the robot’s internal representa-
tion of its workbench environment. At the top of the list of predicate calculus sentences is one
describing the presence on the workbench of a white vessel with a handle:

∃ × [On(x,Workbench) ∧ Is(x,Cup)]

This sentence plays a vital role in the selection of the robot’s next action. Working forward
from its updated model of this situation, the robot’s planner soon identifies an executable ac-
tion that will bring it closer to one of its chief goals, namely, the production of tea. It carefully
positions the teapot it is holding over the cup, using visual servoing, and proceeds to pour. The
onlookers applaud.

The engineer is then able to explain to the audience how the robot was able to build up a
“correct” representation of the scene. The robot “knows there is a cup on the table,” because its
system of perception conforms to an abductive theory of perception. This theory pins down the
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process by which the base metal of raw sensor data is transmuted into the gold of meaningful
representation, and it does so in such a way that the correctness (or otherwise) of that process
can be logically verified. At the same time, it is clear how the process reduces to a causal story
at the level of computer science, electronics, or physics, as preferred.

So when pressed to justify the ascription of meaning to the symbols in a predicate calculus
sentence such as the one previously mentioned, the engineer can appeal to more than their sug-
gestive English names. Ideally, she would be able to claim that the previously mentioned sen-
tence is inserted into the robot’s model of this situation if and only if there is indeed a cup on
the table. In practice, of course, the robot is sometimes fooled into taking noncups for cups and
cups for noncups, thanks to poor lighting, unusual surface patterns, and so on. But it generally
recovers the correct ∆ as soon as it tries to grasp the item in question.

So the engineer’s description of the robot’s representations makes it sound remarkably as if
they have intentionality. The engineer can explain their apparent directedness toward things in
the world, under usual operating conditions. She can point to pathological cases in which they
are not, in this way, directed at the things they should be, and can legitimize the sense in which
these cases are indeed pathological and can thus be said to be examples of “error.” Finally, she
can point to the hypothetical situations that are represented, using novel combinations of the
same predicates and terms, in the course of the robot’s planning processes, as examples of
directedness toward something nonexistent.

5.3. Empiricism and idealism

Unfortunately, during one such demonstration there is a philosopher in the audience, who
asks the engineer how the terms and predicates in the background theory Σ acquire their mean-
ing. Surely any intentionality that can be ascribed to the sentences in ∆ piggybacks on the
intentionality of the sentences in Σ, and their intentionality in turn is parasitic on the
intentionality of the designer’s mental states.

The engineer—after pointing out that, as a humble engineer, she is not really interested in
intentionality as such, just in designing and building robots according to sound engineering
principles—then reiterates the point that a predicate symbol such as Cup appears in the robot’s
model of the world as a causal consequence of there being a cup on the table, and this symbol is
subsequently causally implicated in the robot’s treating the cup as a cup. It would fulfill the
same role, whether it had been put there by a human designer, or acquired by a learning algo-
rithm, or had appeared through an evolutionary process.

But the philosopher is not entirely satisfied by this reply. He would love to ascribe
intentionality to the robot’s representations, he says, but he is still bothered by the origin of Σ.
The engineer patiently explains that, with this generation of humanoids, it is indeed the case
that the background theory Σ has been largely hand-coded by legions of hardworking PhD stu-
dents. But work in, for example, inductive logic programming, has shown that similar theories
can be learned, right down to the invention of new predicate and function symbols. Future gen-
erations of humanoids are likely to acquire more and more of their background theories
through such learning techniques.

That is all very well, says the philosopher, but surely there will always be something in the
original background theory, something to get the whole process off the ground. The engineer
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cheerfully concedes that this is true. The background theory will include at least a basic set of
sorts for time, objects, and spatial location, and basic predicates for representing the occur-
rence of events, cause and effect, spatial relations, and so on. Without this foundation at least,
the learning algorithms will never work. She pulls a dog-eared commentary on Kant from the
shelf and concludes by quoting “the natural world as we know it … is thoroughly conditioned
by [certain] features: our experience is essentially experience of a spatio-temporal world of
law-governed objects conceived of as distinct from our temporally successive experiences of
them” (Strawson, 1966, p. 21).

6. Concluding remarks

One way to think of the theory of perception on offer here is to contrast it with a strictly clas-
sical approach to the problem of sensing, in which some physical quantity needs to be mea-
sured using an imperfect instrument. From this standpoint, machine vision is analogous to
doing graphics backward. The initial challenge is the “graphics problem”—to find a math-
ematical model that takes a description of the solid objects in a scene, the lighting conditions,
and the position of the viewer, and renders the scene for the viewer in question. The vision
problem is then just a matter of inverting the equations so the model works backward, yielding
a precise description of the solid objects in the scene, given what the viewer sees. Under this
approach, uncertainty is treated in the same way that any engineer trying to measure a physical
quantity using a sensor would treat it, namely, by factoring noise into the mathematical model.

The theoretical paradigm for robot perception supplied by this article is very different from
this classical approach, but remains entirely compatible with it. Rather than assuming that the
ideal final product of the perceptual process is a quantitative, numerical description of the
scene, the abductive framework assumes the final product is a qualitative, symbolic description
of the scene. The former type of description is now relegated to the intermediate stage between
the raw sensor data and the final product. The bridge between the quantitative and the qualita-
tive, between the numerical and the symbolic, is made by abduction, which, drawing on
high-level knowledge, is the final arbiter in the fixation of belief for the perceiving agent.

The result is an account of perception that should be attractive to engineers who want to
build sophisticated robots working in realistic environments.11 The main achievement is the
provision of a precise theoretical framework in which the relation between world and acquired
representation is clear. Moreover, this theoretical framework can account for several aspects of
robot perception in a uniform way. These include the processing of incomplete and uncertain
data, the use of top-down information flow, sensor fusion, and the interplay of perception and
action. With the aid of a number of logic-based knowledge representation techniques, each of
these has been assimilated into the notion that the transformation of raw sensor data into mean-
ingful representation can be cast as a form of logical abduction.

Whether or not the abductive theory of perception has genuine philosophical implications is
hard to say. But it is striking that the theory echoes so many themes in the philosophical debate on
representation and intentionality, and it may help to expose philosophers engaged in that debate
to unfamiliar ideas, such as top-down information flow and active perception, which are crucial
to filling out any theory of perception that purports to deliver sentence-like representations.

130 M. Shanahan/Cognitive Science 29 (2005)



Notes

1. It can also be argued that symbols can be grounded through interaction with a virtual
environment, or through disembodied interaction with the real world (through the Internet,
for example). The concern of this article, however, is grounding through embodiment.

2. Barsalou’s own way of tackling this problem (for humans) is very different from the
classical AI solution for robots offered here. Both approaches may be valid for their re-
spective domains of application.

3. This distinction between logic as a representational medium and logic as a specification
tool was first clearly articulated by Newell (1982).

4. For the record, my view is that the logicist approach is a viable way to engineer good ro-
bots. However, this does not entail endorsement of a computational theory of the human
mind. From a philosophical point of view, this article shows that if the computational
theory of mind is flawed, this is not for want of an account of the transition from sensor
data to meaningful representation.

5. Gibson himself would hardly approve of this theory. But this does not prevent us from
lifting this particular insight from his work.

6. The precise nature of the interplay between cognition and perception is controversial
(Pylyshyn, 1999). That such an interplay exists is less so.

7. In this experiment, the robot’s exploratory movements are not the result of planning and
are not influenced by what the robot already knows. In the next section, a map-building
experiment is described in which the robot reasons about its own ignorance to decide
where to move next.

8. The arguments for using logic as an explicit representational medium are well known
(Hayes, 1977; Moore, 1982; Nilsson, 1991). They include its possession of a mathemat-
ically precise semantics, its putative universality as a representational formalism, and
the reusability of (declarative) logical sentences in multiple contexts.

9. In other words, one and only one hypothesis is true. Strictly speaking, this is an abuse of
notation, because the ⊕ (exclusive or) operator does not compose in the intended way.

10. Van der Does and Van Lambalgen (2000) presented a “logic of vision” that draws on
Marr’s (1982) ideas. Although their main concern is to supply a semantics of perceptual
reports rather than to formalize the perceptual process itself, it would be interesting to
compare the relevant aspects of their logic to this approach.

11. In addition to robotics, the theoretical framework of this article has been influential in
cognitive vision (Cohn, Magee, Galata, Hogg, & Hazarika, 2003) and spatial reasoning
(Hazarika & Cohn, 2002; Remolina & Kuipers, 2004).
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