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Abstract

In this paper, we prove undecidability and the lack of finite model property for a certain class of
unimodal logics. To do this, we adapt the technique from [7], where products of transitive modal logics
were investigated, for the unimodal case. As a particular corollary, we present an undecidable unimodal
fragment of Halpern and Shoham’s Interval Temporal Logic.
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1 Introduction

In the recent paper [7], it was shown that products of transitive modal logics are usually
undecidable and lack the finite model property. In the present paper we adapt the
technique from [7] for the unimodal case.

We consider logics of g-products: if (W,R1, R2) is the product of frames F1 and
F2, we put F1 g F2 = (W,R1 ∪ R2). We show that for a certain class of frames this
operation allows us to ‘maintain’ relations R1 and R2. Namely, we consider g-products
of transitive locally one-component frames: a frame (W,R) is locally one-component at
a point w, if the set of all points R-accessible from w cannot be split into the disjoint
union of two R-incomparable non-empty sets. In particular, if a transitive frame is linear
or directed, then it is locally one-component.

We show that products of unimodal locally one-component frames can be simulated in
g-products. Also, by presenting a set of unimodal axioms, we define a class of unimodal
frames, which allows us to ‘encode’ the modalities of the commutator [K4,K4]. For
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various unimodal logics (defined syntactically or semantically), it leads to undecidability
and the lack of finite model property.

It is known that modal logics of products are related to modal logics of intervals
(see e.g. [10]), namely – to fragments of Halpern and Shoham’s Interval Temporal
Logic HS [8]. This allows us to prove similar results for a unimodal fragment of HS.
It is known that HS and many of its fragments are undecidable over various classes
of intervals, for the latest results see [3,2]; these results were obtained for fragments
with two or more modalities. Also, in the very recent paper [4], undecidability for a
fragment of HS with a single modality was obtained: it was shown that the logic of the
‘overlap’ relation is undecidable over discrete linear orders. We obtain another result
of this kind: we show the undecidability and the lack of finite model property for the
〈B ∨E〉-fragment of HS interpreted over various classes of intervals (including intervals
on real and rational numbers), where the modality 〈B ∨ E〉 corresponds to the inverse
of the union of Allen’s relations ‘begins’ and ‘ends’ . As far as we know, this is the first
example of an undecidable unimodal fragment of HS over dense linear orders.

The paper is organized as follows. In Section 2 we introduce some basic notions and
notations. Section 3 contains some auxiliary observations on modal-to-modal transla-
tions that allow us to adapt the technique from [7] to the unimodal case, and also to
find some modal axioms for g-products. In Section 4 we study basic properties of g-
products of locally one-component frames. In Section 5 we formulate and prove results
on undecidability and the lack of finite model property. In Section 6 we consider the
〈B ∨ E〉-fragment of HS.

2 Preliminaries

We consider propositional normal modal logics with finitely many modalities. PV

denotes the countable set of all propositional variables. The set of all n-formulas
MLn is constructed from PV , the classical connectives ∧, ¬, and the unary con-
nectives ♦1, . . . ,♦n. Other connectives are regarded as abbreviations, in particular,
2iϕ = ¬♦i¬ϕ. ♦ and 2 abbreviate ♦1 and 21, respectively.

Variables are typically denoted by p, q, r, formulas – by ϕ,ψ, possibly subscripted.
For a formula ϕ, PV (ϕ) denotes the set of all variables of ϕ. For a set of formulas Γ,
PV (Γ) =

⋃
ϕ∈Γ PV (ϕ). For formulas ϕ, ψ and a variable p, [ϕ/p]ψ denotes the result

of substitution of ϕ for p in ψ. Also we use the abbreviations

♦ψϕ = ♦(ψ ∧ ϕ), 2ψϕ = 2(ψ → ϕ), ϕ0 = ¬ϕ, ϕ1 = ϕ.

An (n-)frame is a tuple F = (W,R1, . . . , Rn), where W 6= ∅, Ri ⊆ W ×W ; an (n-
)model M based on F is a pair (F, θ) or a tuple (W,R1, . . . , Rn, θ), where θ : PV → P(W ),
P(W ) is the powerset of W ; θ is called a valuation on W . The truth of a formula at a
point in a model , and also the validity of a formula in a frame (or in a class of frames)
are defined in the standard way, see e.g. [1]. In symbols, M, w � ϕ means that ϕ is true
at w in M, |ϕ|M = {w | M, w � ϕ}. F � ϕ means that ϕ is valid in F. F, w � ϕ means
that (F, θ), w � ϕ for any valuation θ. For a set of formulas Ψ, F � Ψ means F � ϕ for
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all ϕ ∈ Ψ.
ϕ is satisfiable in a frame F at a point w, if (F, θ), w � ϕ for some valuation θ. For a

class of frames F , ϕ is satisfiable in F (or F-satisfiable), if ϕ is satisfiable in F for some
F ∈ F . For a logic L, if F � L, we say that F is an L-frame; ϕ is L-satisfiable, if ϕ is
satisfiable in an L-frame.

For a binary relation R on a set W , R= denotes the reflexive closure of R, i.e.,
R= = R ∪ {(w,w) | w ∈W}. wRv means (w, v) ∈ R. For w ∈W , V ⊆W , put

R(w) = {v | wRv}, R(V ) =
⋃
w∈V

R(w).

For a frame F = (W,R1, . . . , Rn), RconeF denotes the transitive reflexive closure of R1 ∪
· · · ∪ Rn. A point w in F is called a root of F, if W = RconeF (w); in this case F is called
rooted . Fw (Mw) denotes the subframe of F (submodel of M) generated by w, see e.g.
[1].

For relations R,S, R ◦ S denotes their composition, R2 = R ◦R, Rm+1 = R ◦Rm.
F × G denotes the product of frames F,G; for logics L1,L2, [L1,L2] denotes their

commutator , see e.g. [5].

The following construction was used in [7] to prove negative results on products of
transitive modal logics, and will also play an important role in this paper.

Fix variables h, v and put

♦hϕ =
∧

ε=0,1
(hε → ♦1(¬hε ∧ (ϕ ∨ ♦1ϕ)),

♦vϕ =
∧

ε=0,1
(vε → ♦2(¬vε ∧ (ϕ ∨ ♦2ϕ))

(recall that for a formula ψ, ψ0 = ¬ψ, ψ1 = ψ).
For a 2-model M, put

R̄M
h,0 = {(u,w) | uR1w & (M, u � h⇔ M, w � ¬h)},

R̄M
v,0 = {(u,w) | uR2w & (M, u � v⇔ M, w � ¬v)},

R̄M
h = R̄M

h,0 ∪
(
R̄M
h,0

)2

, R̄M
v = R̄M

v,0 ∪
(
R̄M
v,0

)2
,

where R1, R2 are the accessability relations of M. Clearly,

R̄M
h = {(u,w) | ∃u′ ∈ R1(u) (w ∈ R=

1 (u′)&(M, u � h⇔ M, u′ � ¬h))},

R̄M
v = {(u,w) | ∃u′ ∈ R2(u) (w ∈ R=

2 (u′)&(M, u � v⇔ M, u′ � ¬v))}.

For any w in M, ϕ ∈ML2, we have

M, w � ♦hϕ⇔ ∃u ∈ R̄M
h (w)(M, u � ϕ), M, w � ♦vϕ⇔ ∃u ∈ R̄M

v (w)(M, u � ϕ)
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(see [7] for more details).
Put

ψhv =
∧
ε=0,1

2122 ((hε ∨ ♦2h
ε → 22h

ε) ∧ (vε ∨ ♦1v
ε → 21v

ε)) .

Proposition 2.1 ([7]) If M is a model based on a [K4,K4]-frame with a root w, and
M, w � ψhv, then (W, R̄M

h , R̄
M
v ) is a [K4,K4]-frame.

Proof. Straightforward. See [7] for more details. 2

3 Modally definable relations in pretransitive frames

In [7] various undecidable problems and infiniteness of a model are encoded by formulas
of the form ψhv ∧ ψ, where ψ is built using propositional variables, boolean connectives
and derived modal operators ♦v,♦h. Our goal is to describe a unimodal analogue of this
fragment.

In this section we consider some syntactic constructions which will be used later to
transfer negative results about products to the unimodal case.

3.1 ‘Diamond-like’ formulas

Fix a variable s ∈ PV . For any formulas ψ,ϕ, put ψ(ϕ) = [ϕ/s]ψ. Given an n-model
M = (F, θ), with every formula ψ ∈MLn we associate a function ψM : 2W → 2W defined
in the following way:

sM(V ) = V, pM(V ) = θ(p), if p ∈ PV and p 6= s,

(¬ψ)M(V ) = W − ψM(V ), (ψ1 ∧ ψ2)M(V ) = ψM
1 (V ) ∩ ψM

2 (V ),

(♦iψ)M(V ) = R−1
i (ψM(V )).

Clearly, for any ϕ ∈MLn,
ψM(|ϕ|M) = |ψ(ϕ)|M.

Definition 3.1 Consider an n-model M and a relation R̃ ⊆ W ×W . We say that a
formula ψ ∈MLn expresses R̃ in M, in symbols ψ M

⇁ R̃, if

ψM(V ) = R̃−1(V ) for any V ⊆W. (1)

We say that ψ expresses R̃ in F, in symbols ψ F
⇁ R̃, if (1) holds for any M based on

F.

Proposition 3.2 For an n-model M = (F, θ), the following conditions are equivalent:

(1) ψ
M
⇁ R̃;
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(2) if θ′ : PV → P(W ), θ′(p) = θ(p) for any p ∈ (PV (ψ) − {s}), then for any w ∈ W ,
ϕ ∈MLn, we have

(F, θ′), w � ψ(ϕ) ⇔ ∃u ∈ R̃(w)((F, θ′), u � ϕ).

Proof. Let N denote (F, θ′).
(1)⇒ (2). If θ′(p) = θ(p) for any p ∈ (PV (ψ)− {s}), then ϕM and ϕN are the same

functions, so |ψ(ϕ)|N = ψN(|ϕ|N) = ψM(|ϕ|N) = R̃−1(|ϕ|N).
(2)⇒ (1). For V ⊆ W , put θ′(s) = V , θ′(p) = θ(p) for p 6= s. We have: ψM(V ) =

ψN(V ) = |ψ|N = R̃−1(|s|N) = R̃−1(V ). 2

Example 3.3 Consider a model M based on a 2-frame F. Recall that the operators
♦h, ♦v and the relations R̄M

h , R̄
M
v are associated in the following way:

M, w � ♦hϕ⇔ ∃u ∈ R̄M
h (w)(M, u � ϕ), M, w � ♦vϕ⇔ ∃u ∈ R̄M

v (w)(M, u � ϕ).

Moreover, the above equivalences hold for any model based on F, if its valuation on h,
v is the same as in M. In other words, for the formulas

ψh =
∧
ε=0,1

(hε → ♦1(¬hε ∧ (s ∨ ♦1s))) , ψv =
∧
ε=0,1

(vε → ♦2(¬vε ∧ (s ∨ ♦2s))) ,

we have
ψh

M
⇁ R̄M

h , ψv
M
⇁ R̄M

v . (2)

This example is important for us: the proofs of our negative results are based on the
fact that the relations R̄M

h , R̄
M
v can be expressed in the unimodal language.

To describe fragments of modal logics in different languages it is convenient to use
the following construction.

Definition 3.4 Given formulas ψ1, . . . ψk ∈ MLn, let [ ](ψ1,...ψk) denote the following
translation from MLk to MLn:

[p](ψ1,...ψk) = p for p ∈ PV ;

[φ ∧ ψ](ψ1,...ψk) = [φ](ψ1,...ψk) ∧ [ψ](ψ1,...ψk);

[¬φ](ψ1,...ψk) = ¬([φ](ψ1,...ψk));

[♦iφ](ψ1,...ψk) = ψi([φ](ψ1,...ψk)).

This definition is explained by the following simple lemmas.

Lemma 3.5 Consider a model M = (W,R1, . . . , Rn, θ) and relations R̃1, . . . , R̃k ⊆W ×
W . Let ϕ ∈MLk, ψ�1 , . . . ψ

�
k ∈MLn,

ψ�1
M
⇁ R̃1, . . . , ψ

�
k

M
⇁ R̃k.
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Let θ′ be a valuation such that θ′(p) = θ(p) for any p ∈ PV (ϕ,ψ�1 , . . . ψ
�
k). Then for any

w ∈W , we have

M, w � [ϕ](ψ�1 ,...ψ�k) ⇔ (W, R̃1, . . . , R̃k, θ
′), w � ϕ.

Proof. By induction on the construction of ϕ. The basis is trivial.
Suppose ϕ = ♦iχ. Then [ϕ](ψ�1 ,...ψ�k) = ψ�i ([χ](ψ�1 ,...ψ�k)). We have:

M, w � ψ�i ([χ](ψ�1 ,...ψ�k)) ⇔ M, v � [χ](ψ�1 ,...ψ�k) for some v ∈ R̃i(w) (by Proposition 3.2)

⇔ (W, R̃1, . . . , R̃k, θ
′), w � ♦iχ (by the induction hypothesis).

Other cases are trivial. 2

Lemma 3.6 Consider models M′ = (W,R′1, . . . , R
′
n, θ), M′′ = (W,R′′1 , . . . , R

′′
m, θ), and

relations R1, . . . , Rk ⊆W ×W . Let ψ�1 , . . . ψ
�
k ∈MLn, φ�1, . . . φ

�
k ∈MLm,

ψ�i
M′
⇁ Ri, φ�i

M′′
⇁ Ri.

Then for any ϕ ∈MLk, w ∈W , we have

M′, w � [ϕ](ψ�1 ,...ψ�k) ⇔ M′′, w � [ϕ](φ�1 ,...φ�k).

Proof. Put M = (W,R1, . . . , Rk, θ). By Lemma 3.5,

M′, w � [ϕ](ψ�1 ,...ψ�k) ⇔ M, w � ϕ, M′′, w � [ϕ](φ�1 ,...φ�k) ⇔ M, w � ϕ.

2

3.2 Pretransitive frames and cone formulas

Definition 3.7 [6] A frame F = (W,R1, . . . , Rn) is called pretransitive, if there exists a
formula ψ ∈MLn such that ψ F

⇁ RconeF ; ψ is called a cone formula for F.

For a formula ψ, let

ψ(0) = s, ψ(1) = ψ, ψ(i+1) = ψ(ψ(i)), ψ≤n = ψ(n) ∨ . . . ∨ ψ1 ∨ ψ0.

Example 3.8 Clearly, if F = (W,R) is a transitive frame, then (♦s)≤1 (= ♦s ∨ s) is a
cone-formula for F. If F is a product of two transitive 1-frames, then (♦1s ∨ ♦2s)≤2 is a
cone formula for F. These observations are a particular case of the following proposition.

Proposition 3.9 ([6]) An n-frame F is pretransitive iff there exists l such that (♦1s ∨
. . . ∨ ♦ns)≤l is a cone formula for F.

For a pretransitive n-frame F, put ψconeF = (♦1s ∨ . . . ∨ ♦ns)≤l0 , ♦coneF ϕ = ψconeF (ϕ),
2cone

F ϕ = ¬ψconeF (¬ϕ), where
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l0 = min{l | (♦1s ∨ . . . ∨ ♦ns)≤l is a cone formula for F}.

The following lemma shows how modally definable properties transfer between ex-
pressible relations in pretransitive frames.

Lemma 3.10 Let F = (W,R1, . . . , Rn) be a pretransitive frame with a root w,
χ, ψ�1 , . . . , ψ

�
k ∈ MLn, ϕ ∈ MLk, PV (ϕ) ∩ PV (χ, ψ�1 , . . . , ψ

�
k) = ∅. Suppose

Rθ1, . . . , R
θ
k ⊆W ×W for any valuation θ on W , and if (F, θ), w � χ, then

ψ�1
(F, θ)
⇁ Rθ1, . . . , ψ

�
k

(F, θ)
⇁ Rθk.

Then the following conditions are equivalent:

(1) F, w � χ→ 2cone
F [ϕ](ψ�1 ,...,ψ�k);

(2) for any θ, if (F, θ), w � χ, then
(
W,Rθ1, . . . , R

θ
k

)
� ϕ.

Proof. Let F̃θ denote (W,Rθ1, . . . , R
θ
k). Put PV0 = PV (χ, ψ�1 , . . . , ψ

�
k).

(1)⇒ (2). Let (F, θ), w � χ. Suppose that (F̃θ, θ′), u � ¬ϕ for some θ′, u. Let η
coincide with θ′ on PV (ϕ), and with θ on all other variables. Then (F̃θ, η), u � ¬ϕ and
(F, η), w � χ. Thus (F, η), w � 2cone

F [ϕ](ψ�1 ,...,ψ�k) and (F, η), u � [ϕ](ψ�1 ,...,ψ�k). Since
PV0 ∩ ϕ = ∅, then

Rθ1 = Rη1 , . . . , R
θ
k = Rηk, and ψ�1

(F, η)
⇁ Rθ1, . . . , ψ

�
k

(F, η)
⇁ Rθk.

By Lemma 3.5, (F̃θ, η), u � ϕ, which is a contradiction.
(1)⇐ (2). Suppose (F, θ), w � χ, u ∈ W . ϕ is valid in F̃θ, so (F̃θ, θ), u � ϕ, and by

Lemma 3.5 (F, θ), u � [ϕ](ψ�1 ,...,ψ�k). Therefore (F, θ), w � 2cone
F [ϕ](ψ�1 ,...,ψ�k). 2

4 g-products

4.1 Definition and basic properties

Recall that the product of 1-frames (W ′, R′) and (W ′′, R′′) is the frame
(W ′ ×W ′′, Rh, Rv), where

(u1, w1)Rh(u2, w2)⇔ (u1R
′u2&w1 = w2),

(u1, w1)Rv(u2, w2)⇔ (u1 = u2&w1R
′′w2).

We consider a monomodal analogue of this operation, the g-product. 1

Definition 4.1 The g-product of frames F′ = (W ′, R′) and F′′ = (W ′′, R′′) is the frame
F′ g F′′ = (W ′ ×W ′′, R), where

(u1, w1)R(u2, w2)⇔ (u1R
′u2&w1 = w2) or (u1 = u2&w1R

′′w2).

1 If frames are considered as transition systems, this operation is called the asynchronous product , see
e.g. [11].
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Fig. 1.

Equivalently, if (W,Rh, Rv) is the product of F′ and F′′, then
F′ g F′′ = (W,Rh ∪Rv), Fig. 1a.

For classes F1,F2 of n-frames, put F1 g F2 = {F1 g F2 | F1 ∈ F1,F2 ∈ F2}.
For logics L1,L2, put L1 g L2 = L({F | F � L1}g {F | F � L2}).

Example 4.2 If (W,R) = (R, <) g (R, <), then R(x, y) is the union of two open rays
{(x, t) | t > y} ∪ {(t, y) | t > x}, Fig. 1b. If (W,R) = (R,R2) g (R,R2), then R(x, y) =
{(t1, t2) | t1 = x or t2 = y}, Fig. 1c.

These simple examples have a natural geometric interpretation. Recall the notion
of the lightlike relation λ in Minkowski space Rn, n ≥ 2: xλy ⇔ Σn−1

i=1 (yi − xi)2 =
(yn − xn)2, where x = (x1, . . . , xn), y = (y1, . . . , yn). It is easy to see that (R2, λ)
is isomorphic to the frame (R,R2) g (R,R2) (a detailed discussion of the connection
between relativistic modalities and modal logics of various geometric structures can be
found in [12]). Similarly, (R, <) g (R, <) is isomorphic to the frame (R2, λ↑), where
xλ↑y ⇔ xλy&yn > xn (future directed lightlike relation).

Since S5× S5 is decidable and has the product finite model property (see e.g. [5]),
using the above observation, it is easy to show that the logic L(R2, λ) is also decidable
and has the finite model property. At the same time, it follows from Theorems 5.9 and
5.14 (proved in the next sections) that the logic L(R2, λ↑) is undecidable and does not
have the finite model property.

Consider some basic properties of g-products.
Trivially, (F1gF2, θ), w � ♦p⇔ (F1×F2, θ), w � ♦1p∨♦2p, so L(F1)gL(F2) can be

regarded as a fragment of L(F1×F2). In the next sections we show that these fragments
can be very expressive if factors are transitive, so g-products of many extensions of
K4 are quite complex. But first let us consider g-products of weak logics, like K,
T = K+♦p→ p, D = K+♦>.

Recall that w is serial in a frame (W,R), if R(w) 6= ∅; F is serial, if all its points is
serial.

Due to the Definition 4.1, we have

Proposition 4.3 For 1-frames F and G, we have:
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• if one of these frames is serial (reflexive), then Fg G is serial (reflexive);
• if G is an irreflexive singleton, then Fg G is isomorphic to F;
• if G is a reflexive singleton, then Fg G is isomorphic to the reflexive closure of F.

These observations yield the following fact for g-products of unimodal non-transitive
logics.

Theorem 4.4

(i) If an irreflexive singleton validates a logic L, then Kg L = K, Dg L = D.

(ii) If L1 ⊆ T, L2 is consistent, and L1 ∪ L2 ⊇ T, then L1 g L2 = T; in particular,
Tg L = T for any consistent L.

Proof. (i) Clearly, Kg L ⊇ K, and Dg L ⊇ D by Proposition 4.3.
To prove the other inclusions, suppose that a formula ϕ is satisfiable in some (serial)

frame F. Consider an irreflexive one-point frame F0. By Proposition 4.3, F g F0 is
isomorphic to F, so ϕ is KgL-satisfiable (DgL-satisfiable). Thus KgL ⊆ K, DgL ⊆ D.

(ii). Since L1 ∪ L2 ⊇ T, it follows that L1 g L2 ⊇ T by Proposition 4.3.
To show that L1 g L2 ⊆ T, suppose that a formula ϕ is satisfiable in some reflexive

frame F. Since L2 is consistent, a one-point frame F0 validates L2 (Makinson’s Theorem,
see e.g. [1]). Since F is reflexive, by Proposition 4.3 we obtain that Fg F0 is isomorphic
to F. It follows that L1 g L2 ⊇ T. 2

Further on, we will focus on g-products of unimodal transitive frames and logics.

Consider a 1-frame (W,R). Recall that R is transitive, if R2 ⊆ R. We say that
(W,R) is m-transitive, if Rm+1 ⊆ Rm. Trivially,

F is m-transitive ⇔ F � ♦m+1p→ ♦mp.

Proposition 4.5 If F1 and F2 are transitive 1-frames, then F1 g F2 is 2-transitive.

Proof. Let F1 × F2 = (W,R1, R2). Due to commutativity and transitivity,

(R1 ∪R2)3 = R3
1 ∪ (R2

1 ◦R2) ∪ (R1 ◦R2
2) ∪R3

2 ⊆ R2
1 ∪ (R1 ◦R2) ∪R2

2 = (R1 ∪R2)2.

2

4.2 Locally n-component frames

Locally n-component frames were studied in [13], and later in [9], in the context of
topological modal logics. We use this notion to express the relations R̄M

h , R̄M
v by unimodal

formulas.

Definition 4.6 ([13]) Consider a 1-frame F = (W,R). For w ∈ W , let R4w be the
following equivalence relation on R(w): uR4w v iff there exist points w0, . . . , wk+1 ∈ R(w)
such that u = w0, wk+1 = v and for every i = 0, . . . , k we have wiRwi+1 or wi+1Rwi or
wi = wi+1, see Fig. 2a.
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Fig. 2.

For serial w, let compF(w) denote the quotient set of R(w) by R4w ; if R(w) = ∅, put
compF(w) = ∅. #F(w) denotes the cardinality of compF(w). F is locally n-component ,
if #F(w) ≤ n for all w ∈W .

If #F(w) is finite, then #F(w) is the maximal k such that for some non-empty
V1, . . . , Vk we have R(w) = V1 ∪ · · · ∪ Vk and∧

1≤i 6=j≤k

(Vi ∩ Vj = R(Vi) ∩ Vj = R(Vj) ∩ Vi = ∅) (Fig. 2b).

In this case compF(w) = {V1, . . . , Vk}.
The above described properties are modally definable. For n ≥ 1, put:

comp(p1, . . . , pn) =
∧

1≤i≤n
♦pi ∧2

∨
1≤i≤n

pi ∧2
∧

1≤i 6=j≤n
(pi → ¬(pj ∨ ♦pj));

AxCompn = ¬comp(p1, . . . , pn+1).

Proposition 4.7 ([13]) Consider a frame F = (W,R). For any w ∈ W , n > 0, we
have:

(i) #F(w) ≤ n iff F, w � AxCompn; in particular, F is locally n-component iff F �
AxCompn;

(ii) #F(w) = n iff F, w � AxCompn and compn(p1, . . . , pn) is satisfiable at w in F.

Locally 1-component frames are especially important for us. Note that frames with
properties like reflexivity, linearity or Church–Rosser property (the latter in the transi-
tive case only) are locally 1-component (see Fig. 3).

Now we formulate a number of straightforward propositions that will be used in the
next sections.

Proposition 4.8 Consider 1-frames F,G and points u in F and v in G. If u is reflexive,
then #F(u) = #FgG(u, v) = 1; if u and v are irreflexive, then #FgG(u, v) = #F(u) +
#G(v).
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Proof. If u is reflexive, then (u, v) is reflexive in Fg G.
If u and v are irreflexive, then

compFgG(u, v) = {{u} × V | V ∈ compG(v)} ∪ {{v} × U | U ∈ compF(u)}.

2

Proposition 4.9 If L1, L2 are unimodal logics, AxCompn ∈ L1, AxCompm ∈ L2,
then AxCompm+n ∈ L1 g L2.

Proof. Follows from Proposition 4.8. 2

Put
AxCov = comp(p, q)→ (♦♦t ∧ ¬♦t→ ♦(p ∧ ♦t)).

By a straightforward argument, we have

Proposition 4.10 Let F = (W,R) be a locally 2-component frame. Then for any w ∈W
the following conditions are equivalent:

(1) F, w � AxCov;

(2) if #F(w) = 2 and V ∈ compF(w), then R(V ) ⊇ R2(w)−R(w).

Proposition 4.11 If frames F,G are locally one-component, then Fg G � AxCov.

Proof. Let F × G = (W,R1, R2). If #FgG(w) = 2, then compF = {R1(w), R2(w)}. By
Proposition 4.10, Fg G � AxCov. 2

Proposition 4.12 Let F be a 2-transitive frame with a root w such that #F(w) = 2
and F, w � AxCov. Then for any valuation θ we have: (F, θ), w � comp(p, q) iff
compF(w) = {θ(p), θ(q)}.

Proof. Follows from Proposition 4.10. 2

5 Simulation of two dimensions

In this section we define relations R̂M
h , R̂M

v and operators ♦g
v , ♦g

h that play the same role
as R̄M

h , R̄M
v , ♦v, ♦h, but ‘work’ in the unimodal case.
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Fig. 4.

The main idea is that if compF(w)=2, then we can split R(w) into two parts (via
the formula comp(p, q)), and then express two ‘directions’ by unimodal operators. We
show that under some additional restrictions these ‘directions’ are [K4,K4]-relations.

The formal definition of R̄M
h , R̄M

v and ♦g
v , ♦g

h is rather tedious, so first we illustrate
the idea with the following example.

Example 5.1 (Fig. 4) Let F1 and F2 be rooted strict linear orders, F = F1 g F2 =
(W,R), F1× F2 = (W,R1, R2). Let w be the root of F, θ be a valuation on W such that
θ(p) = R1(w), θ(q) = R2(w). Suppose

(F, θ), w � 2p(2¬ph ∨2¬p¬h) ∧2q(2¬qv ∨2¬q¬v),

or, equivalently, for any u1 ∈ R1(w), u2 ∈ R2(w) we have

R2(u1) ∩ θ(h) = ∅ or R2(u1) ⊆ θ(h), R1(u2) ∩ θ(v) = ∅ or R1(u2) ⊆ θ(v).

In this case we can define ‘horizontal’ and ‘vertical’ relations in terms of R and θ in the
following way: for any u 6∈ R=(w), put

uR̂horu
′ iff uRu′&(u ∈ θ(h)⇔ u′ 6∈ θ(h)), uR̂veru

′ iff uRu′&(u ∈ θ(v)⇔ u′ 6∈ θ(v)).

Now consider the 2-model M = (F1 × F2, θ) and observe that

(u, u′) ∈ R̂hor ⇔ (u, u′) ∈ R̄M
h,0 and (u, u′) ∈ R̂ver ⇔ (u, u′) ∈ R̄M

v,0

for any u 6∈ R=(w). Due to this observation, it is possible to define unimodal formulas
which express R̄M

v , R̄M
h , thus to express [K4,K4]-relations in (F, θ).
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Definition 5.2 For a model M = (W,R, θ), put

SM
h = {(u,w) | uRw&(u ∈ θ(h)⇔ w 6∈ θ(h))},

SM
v = {(u,w) | uRw&(u ∈ θ(v)⇔ w 6∈ θ(v))}.

Proposition 5.3 For a unimodal M, if ψ M
⇁ R̃, then

∧
ε=0,1

(hε → ψ(s ∧ ¬hε)) M
⇁ R̃ ∩ SM

h ,
∧
ε=0,1

(vε → ψ(s ∧ ¬vε)) M
⇁ R̃ ∩ SM

v .

Proof. By a straightforward argument using Proposition 3.2. 2

Definition 5.4 For a model M = (W,R, θ), put

uRM
h,av ⇔ uRv&u ∈ θ(q) ∪ θ(r)&v 6∈ θ(q), uRM

v,av ⇔ uRv&u ∈ θ(p) ∪ θ(r)&v 6∈ θ(p),

uRM
h,bv ⇔ uRv&u, v ∈ θ(p), uRM

v,bv ⇔ uRv&u, v ∈ θ(q),

uRM
h,cv ⇔ uRv&u 6∈ θ(p) ∪ θ(q) ∪ θ(r), RM

v,c = RM
h,c,

R̂M
h,0 = (RM

h,a ∪RM
h,b ∪RM

h,c) ∩ SM
h , R̂M

v,0 = (RM
v,a ∪RM

v,b ∪RM
v,c) ∩ SM

v ,

R̂M
h = R̂M

h,0 ∪
(
R̂M
h,0

)2

, R̂M
v = R̂M

v,0 ∪
(
R̂M
v,0

)2

.

In Fig. 5 these relations are shown for the model described in Example 5.1 where also
θ(r) = {w} is assumed. Note that RM

h,c ∩ SM
h = R̂hor, RM

v,c ∩ SM
v = R̂ver, so R̂M

h,0 ⊆ R1,
and R̂M

v,0 ⊆ R2; moreover, as we will show later, R̂M
h = R̄M

h and R̂M
v = R̄M

v . It is not hard
to see that these relations can be expressed in M by unimodal formulas. For this, we
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need several simple formulas, namely:

ψg
h,a = q ∨ r→ ♦(¬q ∧ s), ψg

v,a = p ∨ r→ ♦(¬p ∧ s),

ψg
h,b = p→ ♦(p ∧ s), ψg

v,b = q→ ♦(q ∧ s),

ψg
h,c = ¬(p ∨ q ∨ r)→ ♦s, ψg

v,c = ¬(p ∨ q ∨ r)→ ♦s,

ψg
h,0 =

∧
ε=0,1

(
hε → [(s ∧ ¬hε)/s](ψg

h,a ∧ ψg
h,b ∧ ψg

h,c)
)
,

ψg
v,0 =

∧
ε=0,1

(
vε → [(s ∧ ¬vε)/s](ψg

v,a ∧ ψg
v,b ∧ ψg

v,c)
)
,

ψg
h = ψg

h,0 ∨ ψg
h,0(ψg

h,0), ψg
v = ψg

v,0 ∨ ψg
v,0(ψg

v,0).

The only subtle case is for the operators ψg
h,0, ψg

v,0: here we use Proposition 5.3.

Lemma 5.5 Consider a model M = (W,R, θ) such that the sets θ(p), θ(q), θ(r) are
pairwise disjoint. Then

ψg
h

M
⇁ R̂M

h , ψg
v

M
⇁ R̂M

v .

Proof. By a straightforward argument,

ψg
h,a ∧ ψg

h,b ∧ ψg
h,c

M
⇁ RM

h,a ∪RM
h,b ∪RM

h,c, ψg
v,a ∧ ψg

v,b ∧ ψg
v,c

M
⇁ RM

v,a ∪RM
v,b ∪RM

v,c.

By Proposition 5.3,
ψg
h,0

M
⇁ R̂M

h,0, ψg
v,0

M
⇁ R̂M

v,0,

thus ψg
h

M
⇁ R̂M

h and ψg
v

M
⇁ R̂M

v . 2

Put ♦g
hϕ = ψg

h (ϕ), ♦g
v ϕ = ψg

v (ϕ), 2g
hϕ = ¬ψg

h (¬ϕ), 2g
v ϕ = ¬ψg

v (¬ϕ).

5.1 Undecidability

The following formula is a unimodal analogue of the formula ψhv:

ψg
hv = r ∧ ¬♦r ∧ ¬♦♦r ∧ (2p(2¬ph ∨2¬p¬h) ∧2q(2¬qv ∨2¬q¬v)) .

Using it we express the relations R̄M
h , R̄M

v in 1-models based on g-products of transitive
locally one-component frames.

Lemma 5.6 Let F1,F2 be transitive locally one-component frames, F = F1 g F2,
G = F1 × F2 = (W,R1, R2), θ be a valuation on W such that

θ(p) = R1(w), θ(q) = R2(w), θ(r) = {w}. (3)

If F has the irreflexive root w, then the following holds.

(i) (F, θ), w � ψg
hv iff (G, θ), w � ψhv.

(ii) If (F, θ), w � ψg
hv, then R̂(F, θ)

h = R̄(G, θ)

h , R̂(F, θ)
v = R̄(G, θ)

v .
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(iii) If (F, θ), w � ψg
hv, ϕ ∈ML2, u ∈W , then

(F, θ), u � [ϕ](ψg
h ,ψ

g
v ) ⇔ (G, θ), u � [ϕ](ψh,ψv).

Proof. Put R = R1 ∪R2, M = (F, θ), N = (G, θ), w = (x0, y0). Note that

R1(R2(w)) ∩R=
1 (w) = R1(R2(w)) ∩R=

2 (w) = ∅. (4)

Indeed, for u = (x, y) ∈ R1(R2(w)), if u ∈ R=
1 (w), then y = y0 and y0 is reflexive in

F2, and if u ∈ R=
2 (w), then x = x0 and x0 is reflexive if F1; since #F(w) = 2, then by

Proposition 4.8 x0 is irreflexive in F1 and y0 is irreflexive in F2, that proves (4).
(i) Suppose M, w � ψg

hv.
Consider u = (x, y) ∈ R1(R2(w)).
Let M, u � hε∨♦2h

ε, v ∈ R2(u) for some v ∈ R2(w), ε ∈ {0, 1}. Since wR1(x, y0)R2u,
then (x, y0) ∈ θ(p), and M, (x, y0) � 2¬ph ∨ 2¬p¬h. Due to (4), u, v 6∈ θ(p), so M, u �
2¬ph

ε and N, v � hε. Thus M, u � hε ∨ ♦2h
ε → 22h

ε.
Similarly, M, u � vε ∨ ♦1v

ε → 21v
ε, so N, w � ψhv.

Suppose N, w � ψhv.
Let us show that M, w �

∧
ε=0,1

(2p(♦¬ph
ε → 2¬ph

ε)).

Suppose u ∈ R(x), u ∈ θ(p). Then wR1u, u = (x, y0) for some x. Put

Y0 = R2(u)− θ(h), Y1 = R2(u) ∩ θ(h).

Since N, (x, y) � h ∨ ♦2h → 22h for any (x, y) ∈ Y1, then R2(Y1) ∩ Y0 = ∅. Similarly,
R2(Y0) ∩ Y1 = ∅. Since F2 is locally one-component, Y0 = ∅ or Y1 = ∅. Suppose
M, u � ♦¬ph

ε for some ε ∈ {0, 1}, and let v ∈ R(u) − θ(p). Then M, u′ � hε for some
u′ ∈ R(u) − θ(p). It follows that u′, v 6∈ R1(u), so u′, v ∈ R2(u). Thus Yε 6= ∅ and
v ∈ Yε. It follows that M, v � hε, so M, u � ♦¬ph

ε → 2¬ph
ε.

Similarly, M, w � 2q(2¬qv ∨2¬q¬v).
Since w is irreflexive in F, M, w � ¬♦r, and due to (4), M, w � ¬♦♦r. It follows that

M, w � ψg
hv.

(ii) Let us show that R̂M
h,0 = R̄N

h,0. Note that if uR̂M
h,0v or uR̄N

h,0v, then

uRv and (u ∈ θ(h)⇔ v 6∈ θ(h)). (5)

Suppose (5) holds and consider the following cases.
a). u ∈ R=

2 (w) (equivalently, u ∈ θ(q) ∪ θ(r)).
In this case, uR1v iff v 6∈ θ(q), so uR̄N

h,0v iff uRM
h,av.

b). u ∈ R1(w) (equivalently, u ∈ θ(p)).
In this case, uR1v iff v ∈ θ(p), so uR̄M

h,0v iff uRM
h,bv.

c). u ∈ R2(w)−R=(w) (equivalently, u 6∈ θ(p) ∪ θ(q) ∪ θ(r)).
In this case we have uRM

h,cv. Let us show that uR̄M
h,0v. Due to (5), uR̄M

h,0v iff uR1v.
Since N, w � ψhv, N, u �

∧
ε=0,1

(hε ∨ ♦2h
ε → 22h

ε). It follows that if uR2v then (u ∈

θ(h)⇔ v ∈ θ(h)), which contradicts (5). Thus uR1v, and so uR̄M
h,0v.
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It follows that R̂M
h,0 = R̄N

h,0. Similarly, R̂M
v,0 = R̄N

v,0. Thus R̂M
h = R̄N

h and R̂M
v = R̄N

v .

(iii) Follows from (2), Lemma 5.5, and Lemma 3.6. 2

The above lemma allows to express [K4,K4]-relations in models: to apply the lemma,
we need the condition (3). The following key lemma shows how to obtain this result for
frames.

Lemma 5.7 Let F1,F2 be transitive locally one-component frames, (x, y) be an irreflex-
ive point in F1 g F2. Let ϕ ∈ ML2, PV (ϕ) ∩ {p, q, r} = ∅. Then comp(p, q) ∧ ψg

hv ∧
[ϕ](ψg

h ,ψ
g
v ) is satisfiable at (x, y) in F1 g F2 iff ψhv ∧ [ϕ](ψh,ψv) is satisfiable at (x, y) in

F1 × F2 or at (y, x) in F2 × F1.

Proof. Let F denote (F1 g F2)(x,y), (W,R1, R2) = (F1 × F2)(x,y).
Since (x, y) is irreflexive, #F(x, y) = 2 (Proposition 4.8).
For V ⊆ W , put V ∗ = {(y′, x′) | (x′, y′) ∈ V }. For a valuation θ on W , let θ∗(t) =

(θ(t))∗ for all t ∈ PV . Trivially, (F1 g F2, θ), (x′, y′) � ψ ⇔ (F2 g F1, θ
∗), (y′, x′) � ψ for

any ψ ∈ML1, (x′, y′) ∈W .
Suppose (F, θ), (x, y) � comp(p, q) ∧ ψg

hv ∧ [ϕ](ψg
h ,ψ

g
v ). Since #F(x, y) = 2,

compF(x, y) = {θ(p), θ(q)}. It follows that

R1(x, y) = θ(p) & R2(x, y) = θ(q) & {(x, y)} = θ(r) or

R2(x, y) = θ(p) & R1(x, y) = θ(q) & {(x, y)} = θ(r).

By Lemma 5.6, in the former case (F1×F2, θ), (x, y) � ψhv ∧ [ϕ](ψh,ψv), and in the latter
case (F2 × F1, θ

∗), (y, x) � ψhv ∧ [ϕ](ψh,ψv).

If (F1 × F2, θ), (x, y) � ψhv ∧ [ϕ](ψh,ψv), put

η(p) = R1(x, y), η(q) = R2(x, y), η(r) = {(x, y)}, η(t) = θ(t) for t 6∈ {p, q, r};

if (F2 × F1, θ), (y, x) � ψhv ∧ [ϕ](ψh,ψv), let η be a valuation on W ∗ such that

η(p) = (R2(x, y))∗, η(q) = (R1(x, y))∗, η(r) = {(y, x)}, η(t) = θ(t) for t 6∈ {p, q, r}.

Since PV ([ϕ](ψh,ψv), ψhv) ∩ {p, q, r} = ∅, then (F1 × F2, η), (x, y) � ψhv ∧ [ϕ](ψh,ψv) or
(F2 × F1, η), (y, x) � ψhv ∧ [ϕ](ψh,ψv). Moreover, if the former case (F1 × F2, η), (x, y) �
comp(p, q), and in the latter case (F2 × F1, η), (y, x) � comp(p, q). By Lemma 5.6,
comp(p, q) ∧ ψg

hv ∧ [ϕ](ψg
h ,ψ

g
v ) is satisfiable at (x, y) in F1 g F2 or at (y, x) in F2 g F1.

To finish the proof, note that F1 g F2 and F2 g F1 are isomorphic. 2

The above lemma allows us to formulate undecidability results for unimodal frames.

Definition 5.8 A transitive locally one-component frame F = (W,R) is called an axis-
frame, if there exists an irreflexive point x in F such that Fx contains an infinite de-
scending chain of distinct points, i.e., there exists a sequence {xi}i>0 such that xi+1Rxi,
xi 6= xi+1 and xRxi for all i > 0; x is called an origin of F.
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Theorem 5.9 If a class F of transitive locally one-component frames contains an axis-
frame, then L(F g F) is undecidable.

Proof. In [7], it was shown that the ω × ω-tiling problem is reducible to the [K4,K4]-
satisfiability problem. More precisely, there was described a procedure which for a given
tile Θ provides ϕΘ with the following properties:

(i) if Θ tiles ω × ω and F is a transitive 1-frame with a root x containing an infinite
descending chain, then ψhv ∧ [ϕΘ](ψh,ψv) is satisfiable at (x, x) in F× F;

(ii) if ψhv ∧ [ϕΘ](ψh,ψv) is [K4,K4]-satisfiable, then Θ tiles ω × ω. 2

Without any loss of generality we may assume that PV (ϕΘ) ∩ {p, q, r} = ∅.
The statement of the theorem follows from the following fact:

Θ tiles ω × ω iff comp(p, q) ∧ ψg
hv ∧ [ϕΘ](ψg

h ,ψ
g
v ) is F g F-satisfiable.

To prove it, consider an axis-frame F ∈ F with an origin point x. If Θ tiles ω × ω, then
ψhv ∧ [ϕΘ](ψh,ψv) is satisfiable at (x, x) in (F× F)(x,x), and by Lemma 5.7, comp(p, q)∧
ψg
hv ∧ [ϕΘ](ψg

h ,ψ
g
v ) is satisfiable at (x, x) in Fg F.

Conversely, suppose comp(p, q)∧ψg
hv ∧ [ϕΘ](ψg

h ,ψ
g
v ) is satisfiable at a point (x, y) in

a frame F1g F2 for some F1,F2 ∈ F . Then #F1gF2(x, y) = 2 due to Proposition 4.7. By
Lemma 5.7, ψhv ∧ [ϕΘ](ψh,ψv) is satisfiable at (x, y) in F1 × F2 or at (y, x) in F2 × F1.
Thus Θ tiles ω × ω. 2

Example 5.10 Clearly, if F = (W,R) is a strict linear order containing a point x and
an infinite descending chain y1R

−1y2R
−1 . . . R−1x, then F is an axis frame. Thus the

satisfiability problem for Fg F is undecidable. In particular, the satisfiability problems
for (R, <)g (R, <) and (Q, <)g (Q, <) are undecidable.

5.2 Lack of the finite model property

In the previous subsection we ‘encoded’ two dimensions in semantically defined frames
– namely, in g-products. To prove the lack of finite model property, we have to define
such frames axiomatically.

For a formula ϕ, let 2≤2ϕ abbreviate 22ϕ ∧2ϕ ∧ ϕ.
Let Lg

min be the minimal normal unimodal logic containing the formulas ♦3p→ ♦2p,
AxComp2, AxCov, and the following formulas:

AxTrg
1 = comp(p, q) ∧ ψg

hv → 2≤2(♦g
h♦

g
h t→ ♦g

h t),

AxTrg
2 = comp(p, q) ∧ ψg

hv → 2≤2(♦g
v ♦

g
v t→ ♦g

v t),

AxCRg = comp(p, q) ∧ ψg
hv → 2≤2(♦g

h2g
v t→ 2g

h♦
g
v t),

AxCommg = comp(p, q) ∧ ψg
hv → 2≤2(♦g

h♦
g
v t↔ ♦g

v ♦
g
h t).

2 See the proof of Theorem 2 in [7], where ψhv ∧ [ϕΘ](ψh,ψv) is the conjunction of the formulas denoted
by ϕ∞, ϕgrid, and ϕΘ.
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Lemma 5.11 If F1,F2 are unimodal transitive locally one-component frames, then F1g
F2 � Lg

min.

Proof. Due to Propositions 4.5, 4.9, and 4.11,

F1 g F2 � {♦3p→ ♦2p,AxComp2,AxCov}.

Due to Proposition 2.1 and Lemmas 5.6, 3.10,

F1 g F2 � {AxTrg
1 ,AxTrg

2 ,AxCRg,AxCommg}.
2

Proposition 5.12 Let F = (W,R1, R2) be a [K4,K4]-frame, M = (F, θ), G =
(W, R̄M

h , R̄
M
v ). Then R̄(G, θ)

h = R̄M
h , R̄(G, θ)

v = R̄M
v .

Proof. Put N = (G, θ).
uR̄M

h,0v iff uR1v&(M, u � h ⇔ M, v � ¬h) iff uR̄M
h,0v&(N, u � h ⇔ N, v � ¬h). It

follows that R̄M
h,0 = R̄N

h,0. Similarly, R̄M
v,0 = R̄N

v,0. 2

Lemma 5.13 Let F = (W,R) � Lg
min, w be a root of F, θ : PV → P(W ), M = (F, θ),

G = (W, R̂M
h , R̂

M
v ), N = (G, θ). Suppose that M, w � ψg

hv ∧ comp(p, q). Then we have:

(i) ψg
h

M
⇁ R̂M

h , ψg
v

M
⇁ R̂M

v ;

(ii) G is a [K4,K4]-frame;

(iii) N, w � ψhv;

(iv) if ϕ ∈ML2, PV (ϕ) ∩ {p, q, r} = ∅, then for any u ∈W

M, u � [ϕ](ψg
h ,ψ

g
v ) ⇔ N, u � [ϕ](ψh,ψv).

Proof. Put V1 = θ(p), V2 = θ(q). By Proposition 4.12, comp(w) = {V1, V2}. It follows
that θ(p), θ(q), θ(r) are pairwise disjoint, so (i) follows from Lemma 5.5. (ii) follows
from (i), Lemma 5.11, and Lemma 3.10.

Let us check (iii). Put R1 = R̄N
h, R2 = R̄N

v . It follows that if u ∈ R2(R1(w)), then
u 6∈ V2, and if u ∈ R1(R2(w)), then u 6∈ V1. Due to the commutativity, we have

R1(R2(w)) ⊆ R2(w)−R(w). (6)

Let u ∈ R2(R1(w)), N, u � hε ∨ ♦hε for some ε ∈ {0, 1}. Then u0R2u and N, u′ �
hε for some u0 ∈ V1, u1 ∈ R=

2 (u). Thus M, u0 � ♦¬ph
ε → 2¬ph

ε. Suppose v ∈
R2(u). Since R2 is transitive, u1, v ∈ R2(R1(w)). Due to (6), u1, v 6∈ θ(p). Recall
that R ⊇ R2, thus M, u0 � ♦¬ph

ε, so M, u0 � 2¬ph
ε and N, v � hε. It follows that

N, u �
∧

ε=0,1
(hε ∨ ♦2h

ε → 22h
ε).

Analogously, N, u �
∧

ε=0,1
(vε ∨ ♦1v

ε → 21v
ε) for any u ∈ R2(R1(w)), which

implies (iii).

By Proposition 5.12, R̂M
h = R̄N

h, R̂M
v = R̄N

v . Due to (i) we have ψg
h

M
⇁ R̄N

h, ψg
v

M
⇁ R̄N

v .
Recall that ψh

N
⇁ R̄N

h, ψv
N
⇁ R̄N

v . By Lemma 3.6 we obtain (iv). 2
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Theorem 5.14 If a unimodal logic L contains Lg
min and there exists an axis-frame F

such that Fg F � L, then L has no finite model property.

Proof. In [7], it was shown that there exists a formula ϕdiag ∈ML2 such that

(i) if F is a transitive 1-frame with a root x containing an infinite descending chain, then
ψhv ∧ [ϕdiag](ψh,ψv) is satisfiable at (x, x) in F× F,

(ii) if G is a [K4,K4]-frame and ψhv ∧ [ϕdiag](ψh,ψv) is satisfiable in G, then G is infinite. 3

Due to Lemma 5.7, comp(p, q) ∧ ψg
hv ∧ [ϕdiag](ψg

h ,ψ
g
v ) is satisfiable in Fg F.

On the other hand, if comp(p, q) ∧ ψg
hv ∧ [ϕdiag](ψg

h ,ψ
g
v ) is satisfiable in a finite L-

frame G, then, by Lemma 5.13, ψhv∧[ϕdiag](ψh,ψv) is satisfiable in a finite [K4,K4]-frame,
which is a contradiction. 2

Corollary 5.15 If a class F of transitive locally one-component frames contains an
axis-frame, then L(F g F) does not have the finite model property.

Example 5.16 The logics L((R, <)g (R, <)) and L((Q, <)g (Q, <)) does not have the
finite model property.

6 〈B ∨ E〉-fragment of HS

In this section we consider modal logics, where modal operators are interpreted by
relations between intervals. For known results on these logics see [3,2,4].

We show how Theorems 5.9 and 5.14 can be used to obtain negative results for logics
of intervals.

For a (strict or non-strict) partial order F = (W,R), let Ints(W ) denote the set of
all (non-strict) intervals over F: Ints(W ) = {(a, b) | aR=b}. For intervals (a, b), (c, d),

(a, b)R〈B〉(c, d) iff a = c ∧ dRb;
(a, b)R〈E〉(c, d) iff aRc ∧ b = d;

R〈B ∨ E〉 = R〈B〉 ∪R〈E〉, R〈B ∨ E〉 = R−1
〈B ∨ E〉.

For a partial order F, let L〈B ∨ E〉 (F) denote L(Ints(W ), R〈B ∨ E〉). For a class F of
partial orders, put L〈B ∨ E〉 (F) =

⋂
F∈F

L〈B ∨ E〉 (F).

Lemma 6.1 Let F = (W,R) be a partial order, G = (W,R−1). Then L〈B ∨ E〉 (F) =⋂
aR=b

L(Ga g Fb).

Proof. The statement of the lemma is based on the following observation (see e.g. [10]):
(Ints(W ), R〈E〉, R〈B〉)i = Ga × Fb for any i = (a, b) ∈ Ints(W ); therefore,

(Ints(W ), R〈B ∨ E〉)
i = Ga g Fb. (7)

3 In [7], ψhv ∧ [ϕdiag ](ψh,ψv) is denoted by ψ∞.
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We have:

L(Ints(W ), R〈B ∨ E〉) =
⋂
aR=b

(Ints(W ), R〈B ∨ E〉)
(a,b) =

⋂
aR=b

L(Ga g Fb).

2

Theorem 6.2 Let F be a class of strict linear orders such that (W,R) is isomorphic
to (W,R−1) and (W,R)a is isomorphic to (W,R)b for any (W,R) ∈ F , a, b ∈ W . If F
contains an axis-frame, then the following holds:

(i) L〈B ∨ E〉 (F) = L(F)g L(F);

(ii) L〈B ∨ E〉 (F) is undecidable;

(iii) L〈B ∨ E〉 (F) lacks the finite model property.

Proof. For a frame F = (W,R), we have

L(F)g L(F) =
⋂

a,b∈W

L(Fa g Fb) =
⋂
aR=b

L(Ga g Fb).

Due to (7), L(F) g L(F) = L〈B ∨ E〉 (F), that proves (i). Now (ii) and (iii) follow from
Theorems 5.9, 5.14. 2

Corollary 6.3 The logics L〈B ∨ E〉 (R, <) and L〈B ∨ E〉 (Q, <) are undecidable and lack
the finite model property.

7 Further results and open questions

The main results of the paper are stated in Theorems 5.9 and 5.14. At the same time,
the method of proof is presented in Lemmas 5.6, 5.7 and 5.13. Basing on this method,
many other results on products can be transferred to the unimodal case. In particular,
various not recursively enumerable g-products and fragments of HS can be constructed
using Theorems 3 and 4 from [7] and Lemma 5.7.

There are many questions about logical properties of g-products. Let us formulate
some of them.

As it was shown in Section 5, some special axioms appear from g-products of tran-
sitive locally-one component frames. However, no complete axiomatizations for logics of
this kind are known.

The logic K4gK4 is of special interest. We know that ♦3p→ ♦2p ∈ K4gK4. Does
it have the finite model property? Is it decidable? Is it equal to the logic K+♦3p→ ♦2p?
Note that the finite model property (and, apparently, the decidability) of the latter logic
is a long-standing open problem.

Another question was asked by one of anonymous referees: to give an example of
decidable logic L1 g L2 with undecidable L1 × L2. Theorem 4.4 now gives the answer
in the non-transitive case: if L1 is an undecidable logic, L2 = T, then L1 × L2 is
undecidable, and L1gL2 = T. At the same time, the author was unsuccessful in finding
such an example for transitive L1 and L2.
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