A CONCEPTION OF
TARSKIAN LOGIC*

BY
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Which logic is the right logic? In a paper so titled Leslie Tharp! poses the
question: What properties should a logical system have? In particular: Is
standard Ist-order logic the right logic? The question asked in this paper
is somewhat less general: Which logic is Tarski’s logic? More precisely:
Are the basic principles of Tarskian logic exhausted by the standard 1st-
order system or does it take a new, extended logic, to fully realize them?
(By 'Tarskian logic’ I here understand the modern semantic conception
of logic as it evolved out of Tarski’s theory.) To answer questions on the
adequacy of a system of logic, Tharp says, it is essential that we acquire
first an idea of “the role logic is expected to play.”? I think Tharp’s point
1s important, and with this guideline in mind I will turn to Tarski’s early
work on the foundations of semantics.?

I. The Task of Logic, the Origins of Semantics

In “The Concept of Truth in Formalized Languages”, *“On the Concept
of Logical Consequence” and other writings* Tarski presents logical
semantics as providing (i) a definition of the general concept of truth for
formalized languages, and (ii) definitions of the logical concepts ‘logical
truth’, ‘logical consequence’, ‘consistency’, etc., for such languages.
The main purpose of (i) is to secure metalogic against semantic
paradoxes. Tarski worried lest the uncritical use of semantic concepts
prior to his work concealed an inconsistency: a hidden fallacy would
undermine the entire venture. He therefore sought precise, materially as
well as formally correct, definitions for ‘truth’ and related notions which
would serve as a hedge against paradox. This aspect of Tarski’s work is
well known. In “Model Theory Before 1945, Robert Vaught® puts
Tarski's enterprise in a slightly different light: Work in model theory
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before the development of formal semantics was based on an intuitive
notion of truth which was not defined mathematically. “This meant that
the theory of models (and hence much of metalogic) was indeed not part
of mathematics . . . . [Tarski’s] major contribution was to show that the
notion ‘o is true in.%’ can simply be defined inside of ordinary math-
ematics, for example, in ZF.”

On both accounts the motivation for (i) has to do with the adequacy of
the system designed to carry out the logical project, not with the logical
project itself. The goal of logic is not the mathematical definition of ‘true
sentence’, and (i) is, therefore, a secondary, if crucially important, task
of Tarskian logic. (ii), on the other hand, does reflect Tarski's vision of
the role of logic. In paper after paper throughout the carly 30’s, Tarski
describes the logical project as follows:” The goal is to study the
properties of deductive systems. A (closed) deductive system is the set of
all sentences which follow logically from a set X of sentences (of a given
formal language), namely, a formal theory in contemporary terminology.
The task of logic is twofold: (A) the construction of a logical framework
for formal (formalized) theories; (B) the investigation of the logical
properties of formal theories relative to the logical framework con-
structed in (A). (Note that the logical framework itself can be viewed as a
deductive system, namely, by taking X to be the sct of logical axioms.)
(A) determines the enterprise of logic proper; (B)—the enterprise of
metalogic. The concept of logical consequence is the key concept of
metalogic according to Tarski. Once the definition of ‘logical conse-
quence’ is given, we can easily obtain not only the notion of a formal
theory (deductive system) but also those of a logically true sentence,
logically equivalent sets of sentences, axiomatizability, completeness and
consistency of a set of sentences.

Whence semantics? Prior to Tarski's “On The Concept of Logical
Consequence”, the definitions of ‘logical consequence’ and the other
logical concepts were proof-theoretical, i.c., in terms of logical axioms
and rules of inference. Thus, given a formal system Z’which includes, in
addition to a formal language, a sct of logical axioms, A, and a sct of
rules of inference, R—the set of logical consequences of a sentence X in /'
was defined as the smallest set of sentences of Z’which includes X and the
axioms in A, and is closed under the rules in R. The need for semantic
definitions of the same concepts arose when Tarski realized that there
was a serious gap between the proof-theoretical definitions and the
intuitive concepts they were intended to capture: many intuitive consc-
quences of formal theories were undetectable by the standard system of
proof. Thus, the sentence ‘For every natural number n, Pn’ scems to
follow, in some important sense, from the set of sentences ‘Pn’, where n
is a natural number, but there is no way to express this fact by the proof
method for standard 1st-order logic.® This situation, Tarski said, shows
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that proof theory, by itself, is inadequate for the task of metalogic. One
might contemplate extending the system by adding new rules of inference,
but to no avail. Godel’s discovery of the incompleteness of the deductive
system of Peano Arithmetic showed that:

In every deductive theory (apart from certain theories of a particularly elementary nature),
however much we supplement the ordinary rules of inference by new purely structural
rules, it is possible to construct sentences which follow, in the usual sense, from the
theorems of this theory, but which nevertheless cannot be proved in this theory on the basis
of the accepted rules of inference.®

Tarski’s conclusion was that proof theory can provide only a partial
account of the metalogical concepts. A new method is called for, which
will permit a more comprehensive systematization of the intuitive
content of these concepts.

Our pretheoretical understanding of the logical concepts is based,
according to Tarski, on certain intuitions of the relationship between
linguistic expressions and the objects they refer to (the situations they
describe). The discipline which studies relations of this kind is semantics.

We . .. undersiand by semantics the totality of considerations concerning those concepts
which, roughly spcaking, express certain connexions between the expressions of a language
and the objects and states of affairs referred to by these expressions. '

The precise formulation of the intuitive content of the logical concepts is,
thercfore, a job for semantics. (Although the relation between the set of
sentences ‘Pn’ and the universal quantification ‘(vx)Px’, where x ranges
over the natural numbers and ‘n’ stands for a name of a natural number,
is not logical consequence, we will be able to characterize it accurately
within the framework of Tarskian semantics, e.g., in terms of w-models.)

1. The Semantic Definition of ‘Logical Consequence’
and the Emergence of Models

Tarski describes the intuitive content of the concept ‘logical consequence’
as follows:

Certain considerations of an intuitive nature will form our starting-point. Consider any
class K of sentences and a sentence X which follows from the sentences of this class. From
an intuitive standpoint it can never happen that both the class K consists only of true
sentences and the sentence X is false. Morcover, . . . we are concerned here with the
concept of logical, i.e. formal, consequence, and thus with a relation which is to be
uniquely determined by the form of the sentences between which it holds . . . The two
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circumstances just indicated . . . seem to be very characteristic and essential for the proper
concept of consequence. !!

We can express the two conditions set by Tarski on a correct definition
of ‘logical consequence’ by (C1) and (C2) below:

(C1) If X is a logical consequence of K, then X is a necessary conse-
quence of K in the following intuitive sense: it is impossible that
all the sentences of K are true and X is falsc.

(C2) Not all cases of intuitive consequence fall under the concept of
logical consequence: only those in which the consequence relation
between a set of sentences K and a sentence X is based on formal
relationships between the sentences of K and X do.

In order to give a definition of ‘logical consequence’ based on (C1) and
(C2), Tarski introduces the notion of model. In current terminology,
given a formal system %, a model forZ’is a pair, v= <D,A >, where A is
a set and D is a function which assigns the nonlogical primitive constants
of Z, t,,t;, ..., elements (or constructs of elements) in A: il t; is an
individual constant, D(t;) is a member of A; if t; is an n-place Ist-order
predicate, D(t;) is an n-place relation included in A"; etc. We will say that
the function D assigns to t,,t,, ... denotations in A. Any pair of a set A
and a denotation function D determines a model for 7. Given a theory./
in a formal system_/; we say that a model.«/for./'is a model of.7iff (if and
only if) every sentence of .7 is true in.v. Similarly, ¥ is a model of a
sentence X of Z’iff X is true in.«.) The definition of ‘the sentence X is true
in a model.w fory” is given in terms of satisfaction: X is true in.viff every
assignment of elements in A to the variables of /’satisfies X in.v. The
definition of satisfaction is based on “The Concept of Truth in
Formalized Languages.” 1 assume the reader is familiar with this
definition.

The formal definition of ‘logical consequence’ in terms of models
proposed by Tarski is:

(LC) The sentence X follows logically from the sentences of the class
K iff every model of the class K is also a model of the sentence
X.|2

The definition of ‘logical truth’ immediately follows:

(LT) The sentence X (ofy) is logically true iff every model (fory) is a
model of X.

(A historical remark: Some philosophers claim that Tarski’s 1936
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definition of a model is essentially different from the one currently used
because in 1936 Tarski did not require that models vary with respect to
their universes. This issue does not really concern us here since what we
are interested in is the legacy of Tarski, not this or that historical stage in
the development of his thought. For the intuitive ideas we go to the early
articles where they are most explicit, while the formal constructions are
those which appear in his mature work.

Notwithstanding the above, it seems to me highly unlikely that in 1936
Tarski intended all models to share the same universe. This is because
such a notion of model is incompatible with the most important model-
theoretic results obtained by that time. Thus, the 1915-1920/22-1927/28
Lowenheim-Skolem-Tarski theorem says that if a 1st-order theory has a
model with an infinite universe, it has a model with a universe of cardin-
ality « for every infinite «. Obviously, this theorem does not hold if one
universe is common to all models. Similarly, Gédel’s 1930 completeness
theorem fails: If all models share the same universe, then for every
positive integer n, one of the two Ist-order statements, ‘there are more
than n things’ and ‘there are at most n things’, is true in all models,
hence, according to (LT), it is logically true. But no such statements are
provable from the logical axioms of standard Ist-order logic. Be that as it
may, the Tarskian concept of a model discussed here does include the
requirement that any nonempty set is the universe of some model for the
given language.) .

Does (LC) satisfy the intuitive requirements on a correct definition of
*logical consequence’ given by (C1) and (C2) above? According to Tarski
it does:

It seems 10 me that everyone who understands the content of the above definition must
admit that it agrees quite well with common usage. . . . it can be proved, on the basis of this
definition, that every consequence of true sentences must be true, and also that the conse-
quence relation which holds between given sentences is completely independent of the sense
of the extra-logical constants which occur in these sentences.'?

In what way does (1.C) satisfy (C1)? Tarski mentions the existence of a
proof but does not provide a reference. John Etchemendy'4 proposes a
very simple argument which, I believe, is in the spirit of Tarski:

(PR) Assume X is a logical consequence of K, i.e., X is true in all
models in which all the members of K are true. Suppose that X is
not a necessary consequence of K. Then it is possible that all the
members of K are true and X is false. But in that case there is a
model in which all the members of K come out true and X comes
out false. Contradiction.
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The argument is simple. However, it is based on a crucial assumption:

(AS) If K is a set of sentences and X is a sentence (of a Tarskian
language) such that it is intuitively possible for all the members
of K to be true while X is false, then there is a (Tarskian) modecl
in which all the members of K come out true and X comes out
false.

(AS) is equivalent to the requirement that, given a logic 2/, cvery
possible state of affairs relative to the expressive power of /' be
represenied by some model for 2 (Note that (AS) does not entail that
every state of affairs represented by a model for £’is possible. This is in
accordance with Tarski’s view that the notion of logical possibility is
weaker than—hence, different from—the general notion of possibility
(see (C2)).) Is the assumption (AS) fulfilled by Tarski’s model-theoretic
semantics?

We can show that (AS) holds at least for standard Ist-order models.
Let Z’be a Ist-order system, K—a set of sentences of -/, and X—a
sentence of ./ Suppose it is intuitively possible that all the members of K
are true and X is false. Then, presuming the rules of inference of
standard Ist-order logic are necessarily truth-preserving, K U | ~ X] is
intuitively consistent in the proof-theoretic sense: for no lIst-order
sentence Y, both Y and ~Y are provable from K U |~ X{. It follows
from the Completeness Theorem for Ist-order logic that there is a model
for Z’in which all the sentences of K are true and X is falsc.

As for (C2), in standard Tarskian logic, logical consequences depend
only on the definitions of the truth-functional connectives, the existential
(universal) quantifier and identity. Generally speaking, the mathematical
nature of these operators ensures the satisfaction of (C2). More par-
ticularly, Tarski took the fact that the relation of logical consequence
defined by (LC) “is completely independent of the sense of the cxtra-
logical constants” as a mark of formality. This characterization is
elucidated in a 1935 article co-authored by Lindenbaum: “Every relation
between objects (individuals, classes, relations) which can be expressed
by purely logical means is invariant with respect to cvery onc-one
mapping of the ‘world’ (i.e., the class of all individuals) onto itself.” ! In
particular, the logical terms themselves are invariant under such
mappings. l.e., given a model..¥ with a universe A and a 1-place formula
‘bx’, Y(vx)dx’ is true in . iff for any I-place formula ‘¥x' whose
extension in.vis obtained from that of ‘¥x’ by some permutation of A,
‘(Vx)¥x’ is true in .. Similarly for identity and the truth-functional
connectives. (We can think of ‘truth’ and ‘falsity’ as decnoting the
universal and empty set, respectively.) Borrowing a form of speech from
A. Mostowski,'* we can say that the standard logical operators are
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formal in not distinguishing between different elements in the universe of
a given model. Thus, if X is a logical consequence of K, this relationship
has nothing to do with the objects referred to by X and the sentences in
K, but only with a certain formal pattern of objects-possessing-properties
(standing-in-relations) which persists through all models for the language.

We sce that the logical consequences of standard Ist-order logic satisfy
Tarski’s intuitive requirements due to two facts: every possible state of
affairs rclative to a given Ist-order language is represented by some
model for the language, and all the standard logical terms are formal in
the sense indicated above. An example of a consequence which is not
logical according to Tarski’s definition would be ‘b is red all over;
therefore b is not blue all over’. It is easy to see that this consequence
does not satisfy (C2).

I think the conditions (C1) and (C2) on the key concept of logical
consequence delineate the scope as well as the limit of Tarski’s enterprise:
the development of a conceptual system in which the concept of logical
consequence ranges over all and only intuitively necessary-and-formal
consequences. (Since our intuitions leave some consequences undeter-
mined with respect to necessity and formality, the boundary of the enter-
prisc is: The system should be so defined as to exclude consequences
which are intuitively definitely not necessary-and-formal. This leaves a
gray area which is to be dealt with based on other considerations.)

We have seen that Tarskian semantics, applied to standard 1st-order
logic, classifies as logical only consequences which are both necessary
and formal. We now ask: Does standard Ist-order logic suffice to yield
all the necessary and formal consequences with a Ist-order (extensional)
vocabulary? Could not the standard system be extended so that new
consequences, satisfying the intuitive conditions but undetected within
the standard system, fall under Tarski’s definition? Tarski himself all but
asked the same question. He ended “On The Concept of Logical Conse-
quence” with the following note:

Underlying our whole construction is the division of all terms of the language discussed into
logical and extra-logical. This division is certainly not quite arbitrary. If, for example, we
were to include among the extra-logical signs the implication sign, or the universal
quantificr, then our definition of the concept of consequence would lead to results which
obviously contradict ordinary usage. On the other hand no objective grounds are known to
me which permit us to draw a sharp boundary between the two groups of terms. It seems to
be possible to include among logical terms some which are usually regarded by logicians as
extra-logical without running into consequences which stand in sharp contrast to ordinary
usage. . ..V’

The question ‘What is the full scope of Tarskian logic?’ we will ask in
the form: What is the widest notion of logical term for which the
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Tarskian definition of ‘logical consequence’ gives results compatible
with (C1) and (C2)? Tarski doubted that a general criterion for logical
terms will ever be found.!® I think his doubt is unjustificd: although a
definition in terms of (C1) and (C2) would be circular, (C1) and (C2) can
be used as a measure for an independent criterion. Below I will try to
show that Tarski’s own work naturally leads to such a criterion.

Ill. Logical and Extra-Logical Terms: Role in a System

What makes a term logical/extra-logical in Tarski’s system? Considering
the question from the ‘functional’ point of view suggested by Tharp, we
ask: How does the dual system of a formal language and its model-
theoretic semantics accomplish the task of logic? In particular, what is
the role of logical and extra-logical constants in determining logical
truths and consequences?

A. Extra-Logical Constants. Consider the statement:
(1) Some horses are white,

formalized in standard Ist-order logic by:
(2) (ax)(Hx.& Wx).

How does Tarski succeed in giving this statement truth conditions which
render it logically indeterminate (i.e., neither logically true nor logically
false), in accordance with our clear pretheoretical intuitions? The crucial
point is that the common noun ‘horse’ and the adjective ‘white’ are
interpreted within models in such a way that their intersection is empty in
some models, not empty in others. Similarly, for any natural number n,
the sentence

(3) There are n white horses
is logically indeterminate because in some, but not all, models ‘horse’ and
‘white’ are so interpreted as to make their intersection of cardinality n.
A similar configuration would make

(4) Finitely many horses are white
also logically indeterminate, provided we could express ‘finitely many’ in

the logic.
In short, what is special to extra-logical terms like ‘horse’ and ‘white’
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in Tarskian logic is their strong semantic variability. Extra-logical terms
have no independent meaning: they are interpreted only within models.
Their meaning in a given model is nothing more than the value the
denotation function D assigns them in that model. We cannot speak
about rhe meaning of an extra-logical term: being extra-logical implies
that nothing is ruled out with respect to such a term. Hence, the totality
of interpretations of any given extra-logical term in the class of all
models for the formal system is exactly the same as that of any other
extra-logical term of the same syntactic category. Given any set of
objeccts, any possible denotation of the extra-logical terms in this set of
objects (in accordance with their syntactic category) is represented by
some modecl. Since every set of objects is the universe of some model, any
possible state of affairs—configuration of individuals, properties,
relations and functions—vis-a-vis the extra-logical terms of a given
formalized language (possible, that is, with respect to their meaning prior
to formalization) is represented by some model.
Formally, we can define Tarskian extra-logical terms as follows:

(TET) le,.e;, ...} is the set of primitive extra-logical terms of a
Tarskian logicZiff for every set A and every function D which
assigns to e,,e,, ... denotations in A (in accordance with their
syntactic categories), there is a model & for £’ such that
A= <D,A>.

It follows from (TET) that primitive extra-logical terms are semantically
unrelated to one another. As a result, complex extra-logical terms,
produced by intersections, unions, etc. of primitive extra-logical terms
(c.g., ‘horse and white’) are strongly variable as well.

Note: It is essential to take into account the strong variability of extra-
logical terms in order to understand the meaning of various claims of
logicality. Consider, for instance, the statement

(5) (3x)(x = Jean-Paul-Sartre)

which is logically true in a Tarskian logic with ‘Jean-Paul-Sartre’ as an
extra-logical individual constant. Does the claim that (5) is logically true
mean that the existence (unspecified with respect to time) of the deceased
French philosopher Jean-Paul Sartre is a matter of logic? Obviously not.
The logical truth of (5) reflects the principle that if a term is used in a
language to name objects, then in every model for the language some
object is named by that term. But, since ‘Jean-Paul Sartre’ is a strongly
variable term, what (5) says is ‘There is a Jean-Paul Sartre’, not ‘[The
French philosopher] Jean-Paul Sartre exists’.
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B. Logical Constants. It has been said that to be a logical constant in a
Tarskian logic is to have the same interpretation in all models. Thus, for
‘red’ to be a logical constant in a logic 2, it has to have a constant
interpretation in all the models for £ 1 think this characterization is
faulty because it is vague. How do you interpret ‘red’ in the same way in
all models? ‘In the same way’ in what sense? Do you require that in cvery
model there be the same number of objects falling under ‘red’? But for
every number other than 1 there is a model which cannot satisfy this
requirement simply because it does not have enough elements. So at least
in some way—i.e., cardinality-wise—the interpretation of ‘red’ must
vary from model to model.

The same thing holds for the standard logical constants of Tarskian
logic. Take the universal quantifier: In every model for a Ist-order logic
Z’the universal quantifier is interpreted as a singleton set. But in a model
with 10 elements it is a set of a set with 10 elements, whereas in a model
with 9 elements it is a set of a set with 9 elements. Are these interpre-
tations the same?

I think that what distinguishes logical constants in Tarski’s semantics
is not the fact that their interpretation does not vary from model to
model (it does!), but the fact that they are interpreted owuiside the system
of models. The meaning of a logical constant is not given by the defi-
nitions of particular models, but is part of the same metatheoretical
machinery which is used to define models. The meaning of logical
constants is given by rules external to the system, and it is due to the
existence of such rules that Tarski could give his inductive definition of
truth (satisfaction) for well-formed formulas of any given language of
the logic. Syntactically, the logical constants are ‘fixed parameters’ in the
inductive definition of the set of well-formed formulas; semantically, the
rules for the logical constants are the functions on which the definition of
satisfaction by recursion (on the inductive structure of the set of well-
formed formulas) is based.

How would different choices of logical terms affect the extension of
‘logical consequence’? Well, if we contract the standard set of logical
terms, some consequences which are intuitively necessary-and-formal
(namely, logical consequences of standard Ist-order logic) will become
nonlogical. If, on the other hand, we take any term whatsoever as
logical, we will end up with new ‘logical’ consequences which are intui-
tively not necessary-and-formal. The first case does not require further
elaboration. As for the second case, take, for instance, the natural-
language terms ‘Jean-Paul Sartre’ and ‘accepted the Nobel Prize in
literature’ and suppose we use them as logical terms in a Tarskian logic
by keeping their usual denotation ‘fixed’. l.¢., the semantic counterpart
of ‘Jean-Paul Sartre’ will be the existentialist French philosopher Jean-
Paul Sartre, and the semantic counterpart of ‘accepted the Nobel Prize in
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literature’ will be the set of all actual persons up to the present who
accepted the Nobel Prize in literature. Then

(6) Jean-Paul Sartre accepted the Nobel Prize in literature

will come out false, according to Tarski’s rules of truth (satisfaction), no
matter what model we are considering. (This is because, when deter-
mining the truth of (6) in any given model.v for the logic, we do not have
to look in.v, but instead, we need to examine two fixed entities outside
the apparatus of models and determine whether the one is a member of
the other.) This renders (6) logically false, and any sentence of the
language we are considering follows logically from it according to
Tarski’s definition, in contradiction with the pretheoretical conditions
(C1) and (C2).

The case described above violates two principles of Tarskian
semantics: (i) ‘Jean-Paul Sartre’ and ‘accepted the Nobel Prize in
literature’ are not formal; (ii) the truth conditions for (6) bypass the very
device which serves, in Tarskian semantics, to distinguish material from
logical consequences, namely—the apparatus of models. No wonder the
definition of ‘logical consequence’ fails.

It is easy to see that each of the above violations by itself suffices to
undermine Tarski’s definition. (i) is obvious. As for (ii), suppose we
define a logical term formally but without reference to models. Say, we
interpret the universal quantifier as referring to some fixed ‘universe’
defined in a formal manner (e.g., the universe of natural numbers).
Then, a statement like

(7) Every object is different from at least three objects

will turn out logically true (assuming the ‘universal’ set has at least 4
members). But this result is obviously in disagreement with the condition
(Cl).

Tarski himself said that in the extreme circumstance in which all
terms of the language are construed as logical, the concept of logical
consequence will coincide with that of material consequence.'® Unlike
‘logical consequence’, the concept of material consequence is defined
without reference to models:

(MC) The sentence X is a material consequence of the sentences of the
class K iff at least one sentence of K is false or X is true.?0

| think Tarski’s last claim is inaccurate: By adding new logical con-
stants we can distort the distinction between logical and material truths
and consequences, but we cannot eliminate it altogether. This we can see
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as follows: Let £’ be a Ist-order logic with any new logical terms in
addition to the standard ones. Consider the sentence

(8) There is exactly one thing

or, formally, ‘(3x)(Vy)x=y’. Although (8) is materially false, it is not
logically false in the new logic. This is because for each cardinality «,
there is a model forZ’with a universe of cardinality «. Thus, in particular,

Z’has a model with a universe of cardinality 1. In this model (8) turns out
true. The fact that (8) is not logically false is invariant under expansions
of the set of logical terms. The case for logical vs. material consequence
is basically the same.

So Tarski conceded too much: No addition of new logical terms can
trivialize his definitions altogether. Tarski’s modecl-theoretic semantics
has a built-in barrier which prevents a complete mergence of logical and
material consequence. To turn all material consequences of a given
language into logical consequences requires relinquishing the apparatus
of models. But this apparatus is at the heart of Tarski’s semantics.

We can now see how Tarski’s method allows us to construct

(9) Everything is identical with itsclf

as a logical truth in agreement with our intuitions. The crucial point is
that the intuitive meanings of ‘is identical with’ and ‘cverything’ can be
expressed by formal rules that determine, for any given modecl, which
pairs of objects are ‘identical’ and which subsets of the universe constitute
‘everything’ in that universe. These rules make (9) true in every model.
(Note that if either ‘everything’ or ‘is identical with’ received a strongly
variable interpretation, (9) would not have been logically true.)

We saw that Tarski’s conception of logic does not allow any arbitrary
rule to be the semantic definition of a logical constant. At the same time,
as Tarski himself indicated, there are many terms other than the standard
logical constants which could be construed as logical without violating
the intuitive requirements. Consider, for instance, the 2nd-order
predicate ‘finitely many’. It appears, at least prima facie, that conse-
quences based on this predicate—e.g., ‘Exactly one French philosopher
refused the Nobel Prize in literature; therefore, finitely many French
philosophers did’—are both necessary and formal in Tarski’s scnse.

Below I will present a definition of ‘logical term’ which yiclds new
logical consequences in accordance with Tarski’s pretheoretical con-
ditions. Among these is the consequence mentioned above. This definition
is a natural outcome of our considerations on the nature and purpose of
Tarskian logic.

To recapitulate: The conditions (C1) and (C2) require (i) that every
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possible state of affairs vis-a-vis a given language be represented by some
modecl for the language, and (ii) that logical terms represent formal
features of possible states of affairs, i.e., formal properties of (relations
among) constituents of states of affairs. To satisfy these requirements
the Tarskian logician constructs a dual system, each member of which is
itself a complex, syntactic-semantic structure. Of the two subsystems,
one includes the extra-logical vocabulary (syntax) and the apparatus of
models (semantics). We will call this the base of the logic. (Note that only
extra-logical terms—not logical terms—play a role in constructing
models.) In standard 1st-order logic the base is strictly Ist-order: syntac-
tically, the extra-logical vocabulary includes only singular terms or terms
whose arguments are singular; semantically, in any given model the
extra-logical terms are assigned only individuals or properties (relations,
functions) of individuals.

The second subsystem includes the logical terms and their semantic
definitions. Its task is to introduce formal structure into the logic.
Syntactically, logical terms are formula-building operators; semantically,
they are assigned pre-fixed functions on models which express formal
propertics of, relations among, and functions of ‘elements of models’
(objects in the universe and constructs of these). Since logical terms are
meant to represent formal properties of elements of models correspond-
ing to the extra-logical vocabulary, their order is generally higher than
that of nonlogical terms. Thus, in standard Ist-order logic identity is the
only strictly Ist-order logical term. The universal and existential quan-
tifiers are 2nd-order, semantically as well as syntactically, and the logical
connectives, too, are not striétly Ist-order (in the sense indicated above).
As for singular terms, these can never be construed as logical. This is
because singular terms represent atomic components of models, and
atomic components, being atomic, have no structure (formal or in-
formal). We will say that the system of logical terms constitutes a super-
structure for the logic.

The two subsystems are combined by imposing the logical super-
structure upon the nonlogical base. Syntactically, this is done by rules for
forming well-formed formulas, and semantically—by rules for deter-
mining truth (satisfaction) in a model.

Now, to satisfy the conditions (C1) and (C2) it is essential that no
logical term represent a property or a relation which is intuitively
variable from one state of affairs to another. It is also essential that
logical terms be assigned formal denotations. Finally, it is essential that
logical terms be defined over models—all models—so that all possible
states of affairs are taken into account in determining logical truths and
conscquences.

It appears that if we can specify a series of conditions satisfied only by
properties, relations and functions as described above, we will have
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succeeded in defining ‘logical term’ in accordance with Tarski's basic
principles. In particular, the Tarskian definition of ‘logical consequence’
(and the other metalogical concepts) will give correct results, in agreement
with (C1) and (C2).

1V. Definition of Logical Terms for Tarskian lLogics

Preliminary remarks: We will not bother to specify conditions on Tarskian
truth-functional connectives, because the problem of identifying all the
truth-functional connectives that there are has already been solved and
the solution clearly satisfies Tarski’s requirements. (The standard logic
of truth-functional connectives has a base that consists, syntactically, of
sentential letters which are extra-logical, and semantically, of a list of all
possible assignments of truth-values to these letters. Any possible state of
affairs vis-a-vis the language is represented by some assignment. The
logical super-structure includes the truth-functional conncctives and
their semantic definitions. The connectives arc, both syntactically and
semantically, of a higher level than the sentential letters. Their semantic
definitions are pre-fixed: logical connectives are defined by Boolcan
functions which are formal, and whose arguments and values are the
kinds of things which represent possible states of affairs, i.c., truth
values and sequences of these. This structure ensures that truths and
consequences which hold in all ‘models’—i.e., under any assignment of
truth values to the sentential letters—are necessary and formal in
Tarski’s sense.)

As for modal operators, they, too, are outside the scope of our
investigation, though for different reasons. First, our definition is based
on analysis of the model-theoretic apparatus of Tarskian semantics, and
this apparatus is inadequate for the modals. Second, we cannot take it
for granted that the task of modal logic is the same as that of ‘math-
ematical’ logic. To determine the scope of modal logic and characterize
its operators, we need an independent study of its goals and principles.

With respect to the Tarskian conception of Ist-order (mathematical)
logic the question yet to be answered is: What are all the 1st- and 2nd-
order predicates and functions which can serve as logical terms in that
logic? The conditions on logical terms below are intended to answer this
question. In formulating these conditions I placed a higher value on
clarity of ideas than on economy. As a result the conditions are not
mutually independent.
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CONDITIONS ON LOGICAL CONSTANTS (OTHER THAN TRUTH-_
FUNCTIONAL CONNECTIVES) FOR TARSKIAN IST-ORDER LOGICS:

(A) A logical constant, C, is, syntactically, an n-place predicate or
functor of order 1 or 2, n being a positive integer.

(B) A logical constant, C, is defined by a single, extensional function
on models and is identified with its extension.

(C) A logical constant, C, is assigned, in any model (over which it is
defined), a denotation which is a construct of elements in the
modecl corresponding to its syntactic category. More specifically,
we require that C be defined by a function, f,., such that given a
model ./ (with universe A) in its domain:

(a) If C is a 1st-order n-place predicate, then f(+) is a subset
of AP,
(b) If C is a Ist-order n-place functor, then f(-} is a function
from AM into A.
(c) It Cis a 2nd-order n-place predicate, then f() is a subset of
B, x ... x B,,, where for | =i=n:
B = { A if i(C) is an individual,
! P(A™) if i(C) is an m-place predicate.
(i(C) is the i-th argument of C. ‘P’ stands for ‘power-set’.)
(d) If C is a 2nd-order n-place functor, then f.(+) is a function
from B, x ... x B, into B, ,,, where for I <i<n+1, B, is
defined as in (¢).

(D) A logical constant, C, is defined over all models.

(E) A logical constant, C, is defined by a function, f., which is
invariant under isomorphic structures. lL.e.:

(a) If Cis a Ist-order n-place predicate, v and.w are models with
universes A and A’ respectively,
<b,,...,b, >€A", <b’,....b",,>cA’'" and the structures
<A, <b,....b,>>, <A’,<b’},...,b", >> are isomorphic,
then <b,,....b,>el (M) iff <b’,....b" >ef(v).

(b) If C is a 2nd-order n-place predicate,.«vand.¥’ are models with
universes A and A’ respectively,
<D,,...,D,>eB,;x...xB,, <D’|,....D';>eB’, x...xB"
(where for | <i<n, B, and B’; are as in (C)(c)), and the
structures <A, <D,,...,D,>>, <A’,<D’,...,D’>> are
isomorphic, then:
<D,,....D,>ef (A iff <D’,,...,.D’>ef ().

(c) Analogously for functors.

Remarks:

Condition (A) reflects our conception of logical terms as structural com-
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ponents of the language. In particular, it rules out individual constants as
logical terms. Note, however, that although an individual by itself
cannot be represented by a logical term (since it lacks “inner” structure),
it can combine with functions, sets or relations to form a structure which
is representable by a logical term. Thus, in the examples below we define
a logical constant which represents the structure of the natural numbers
with their ordering relation and zero (taken as an individual).

Condition (B) ensures that logical terms are rigid. Each logical term has a
prefixed meaning in the meta-language. This meaning is unchangeable,
and is completely exhausted by its model-theoretic definition. That is to
say, from the point of view of Tarskian logic, there are no ‘possible
worlds’ of logical terms. Thus, qua logical terms, expressions like ‘the
number of planets’ and ‘9’ are indistinguishable. If you want to express
the intuition that the number of planets changes from one possible
‘world’ to another, construe this expression as an extra-logical term. If,
however, you are using it as a logical term (or in the definition of a
logical term) you are treating it merely as a ‘tag’, a synonym of ‘9’. By
requiring that logical terms be defined by fixed functions over models we
allow them to represent ‘fixed’ parameters of changeable situations.

(C) makes sure that logical terms do not bypass the apparatus of models.
At the same time, it takes care of the correspondence in categorics
between the syntax and the semantics.

(D) ascertains that all possible states of affairs are taken into account in
determining logical truths and consequences.

The conditions (B)-(D) express the requirement that logical terms are,
semantically, superimposed on the apparatus of models.

(E) provides a model-theoretic characterization of ‘formality’: to be
formal is not to distinguish between (be invariant under) isomorphic
structures. It might be worthwhile to trace the origins of this criterion:
The invariance condition first appeared in the literature (in a somewhat
different setting) in Lindenbaum and Tarski’s 1935 paper, “On the
Limitations of the Means of Expression of Deductive Theories” (sce
Section 11 above). A restricted version of (E) is stated in A. Mostowski’s
1957 pioneer paper, “On a Generalization of Quantifiers”?' (with
references to the Lindenbaum-Tarski paper and to a 1946 paper by
Mautner??). Per Lindstrom?? introduced the full criterion in his general-
ization of Mostowski’s system (1966). (More accurately, Lindstrom’s
definition is limited to relational structures.) Since then, the criterion
appeared in the linguistic literature but (as far as I know) the only
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thorough philosophical discussion of its significance is found in Timothy
McCarthy’s 1981 paper, “The Idea of a Logical Constant.”2 McCarthy
rejected (E) as a criterion for ‘logicality’ on the grounds that it does not
prevent the definition of logical terms by means of ‘contingent’ expres-
sions (i.e., expressions whose extension changes from one ‘possible
world’ to another); as a result, logical truth and logical consequence fail
to be truth preserving. As we saw above, the condition (B) guards against
this possibility.

We can now give a semantic definition of Tarskian logical terms:

(TLT) Cisa Tarskian logical term iff C is a truth-functional connective
or C satisfies the conditions (A)—-(E) above on logical constants.

We will call logical terms of the types (C)(a) and (C)(b) above logical
predicates and logical functors, respectively. Logical terms of type (C)(c)
we will call logical quantifiers, and logical terms of type (C)(d)—logical
quantifier-functors.

What kind of expressions satisfy (TLT)? Clearly, all the logical
constants of standard Ist-order logic do. Identity and the standard
quantifiers can be defined by total functions on models, f,, f, and f,,
such that, given a model.¥ with a universe A:

(10) f(») = {<a,b>:a,beA & a=b].
(1) () =(B: B=Al.
(12) fy(») = [B: BEA & B#¢].

The definitions of the truth-functional connectives remain unchanged.
Among the nonstandard terms satisfying (TLT) are the following:

(13) The ‘cardinal’ quantifiers (l1-place ‘predicative’ logical quan-
tifiers, i.e., quantifiers whose arguments are 1-place Ist-order
predicates), defined by: f (+) = [B: BCA & |B|=al, where « is
any cardinal number and ‘|B|’ stands for ‘the cardinality of B’.

(14) The 1-place predicative quantifiers ‘finitely many’ and ‘uncount-
ably many’, defined by: fp.(+) = (B: BEA & |B| <Ry} and
funcountably-many(®) = [B: BEA & |B| >Ry], respectively.

(15) The 1-place predicative quantifier ‘as many are . . . as are not’,
defined by: fo nany. (¥ = [B: BCA & |B| = |A-B||.

(16) The l-place predicative quantifier ‘most’ (as in ‘Most things are
B’s’), defined by: f},(+) = [B: BEA & |B| >|A-B]||.

(17) The 2-place predicative quantifier ‘most’ (as in ‘Most B’s are
C's’), defined by: f},(4 = [<B,C>:B,CCA & |BNC|>|B-C|].

(18) The ‘well-ordering’ quantifier (a I-place, ‘relational’ quantifier
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over 2-place relations), defined by:
fwo(#) = [R: RCA? & R is a strict linear ordering such that every
nonempty subset of FId(R) has a minimal element in R}.

(19) The ‘ordering-of-the-natural-numbers-with-0’ quantifier (a 2-place
relational quantifier over pairs of a 2-place relation and an indi-
vidual), defined by:
fono(® = [<R,a>: RCA? & aeA & and <A,R,a> is a model of
the natural numbers with their ordering relation and zero].

(20) ‘The first’ logical functors (n-place, for any n), defined by:
first(#) = the function g: A" — > A, such that for any n-tuple
<a,,...,a, >€A" g(a,,...,a,) =a,.

(21) The I-place ‘complement’ quantifier-functor, defined by:

fcomplement(#¥) = the function g:P(A) - >P(A) such that for any
BCA, g(B)=A-B.

Examples of constants which do not satisfy (TLT):

(22) The I-place predicate ‘identity with @’ (a is an individual constant
of the language), defined by: f_ () = [b:bcA & b= a?, wherea”
is the denotation of a in ..

(23) The I-place (predicative) ‘pebbles in the Red Sea’ quantifier,
defined by: fpebblest®) = [B: BCA & B is a nonempty set of
pebbles in the Red Sea].

(24) The Ist-order membership relation, defined by:
f(#=|<ab>:abeA &bisaset &aisamember of bl.

The definitions of these constants violate (E). (To see why (24) fails,
think of two models.¥ and ./" with universes {¢,|¢}} and {Jean-Paul
Sartre, Albert Camus], respectively.)

Another term which is not logical under (TLT) is the definite-descrip-
tion operator, 1. If we define 1 (a quantifier-functor) by a function f
which, given a model ./with a universe A, assigns to../a partial function h
from P(A) into A, then (C)(d) is violated. If we make h universal, using
some convention to define the value of h for subsets of A which are not
singletons, the convention is likely to violate (E). We can, however,
construct a 2-place predicative logical quantifier, ‘The’, which expresses
Russell’s contextual definition of the description operator:

(25) fppe()=1<B,C>: BECCA & B is a singleton set|.

We can add any collection of Tarskian logical terms to a standard
system of Ist-order logic by providing appropriate syntactic and semantic
definitions. E.g., the 2-place ‘most’ could be introduced, syntactically,
as a binary formula-building operator, defined by: If & and ¥ are well-
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formed formulas, then (most? x)[®,¥] is a well-formed formula. Its
inductive definition of satisfaction in a model could be formulated as
follows:

Given a model.#with a universe A and an assignment g of individuals
in A to the variables of the language:

If &, ¥ are well-formed formulas, then.« (most? x)[®, ¥][g] iff
<lacA:vkdb[g(x/a)}}, faeA vE¥[g(x/a)]}> € f3(+)

(where “¥[®[g]’ means: ‘g satisfies ¢ in.’, and [g(x/a)] is an assign-
ment which assigns a to x and otherwise is the same as g).

As can be seen from this example, the syntactic and semantic definitions
of logical terms under (TLT) are essentially Tarskian. We will call a
standard Ist-order logic with additional Tarskian logical terms and with
syntax and semantics as indicated above a generalized Ist-order system.
We can now define the notion of Tarskian Logic:

(TL) ’is a Ist-order Tarskian Logic iff £ is either a standard or a
generalized Ist-order system.

We claim that (TL) satisfies Tarski's pretheoretical requirements.
Namely, if-Z’is a Ist-order Tarskian logic, then the Tarskian definition of
‘logical consequence’ for £ gives results in accordance with (Cl) and
(C2).

(C1): We will show that the assumption (AS) holds for £/ (As we saw in
Scction 11 above, this is sufficient to prove that (Ct) holds for Z.) Let @
be the logical vocabulary of " and L—its extra-logical vocabulary. The
strong semantic variability of terms in L ensures that every possible state
of affairs relative to L is represented by some model.wv for ¥ We have to
show that the same holds for L. U%’, Claim: if @ is a well-formed formula
of 7, every possible extension of ® relative to the vocabulary of £is.
represented by some model for Z’(where the extension of a sentence is
taken to be a truth value, T or F).

I will sketch an outline of a proof. Suppose ¢ is an atomic formula of
the form ‘Px’, where P is an extra-logical constant. Then, since Pe¢L, the
claim holds for 4. Suppose ¢ is of the form ‘(Qx)¥x’, where Q is a
quantifier, and ‘¥x’ is (for the sake of simplicity) a formula with one free
variable, x. Assume the claim holds for ‘¥x’. Q is a logical constant
whose meaning is rigid: i.e., the mathematical interpretation of Q and its
intuitive meaning coincide. Therefore, it is intuitively possible for
‘(Qx)¥x' to have the extension T/F iff it is possible that ‘¥x’ has the kind
of extension which can be represented by a subset B of the universe of
some model -7 for Z’such that Bef(,()/Befo(+). By assumption, every
(relevant) possible extension of *¥x’ is represented by some model for %
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So, if it is possible for ‘¥x’ to have an extension as above, there is a
model which realizes this possibility. In this model the extension of
{(Qx)¥x' is T/F. (It is easy to extend this argument to the more general
case in which ‘¥x’ has other free variables besides x.) We can carry on
this inductive reasoning with respect to any type of logical terms under
(TLT).

(C2): Condition (E) expresses a notion of formality based on Tarski’s
criterion. To be formal is, semantically, to take only structure into
account. Within the scheme of model-theoretic semantics this means to
be invariant under isomorphic structures. Now languages without logical
constants cannot yield (nontrivial) logical consequences. (By a trivial
consequence of a set K of sentences I mean a sentence X such that X(K.)
Therefore, logical consequences are due to logical constants which, satis-
fying (E), are formal constituents of the language.

V. A New Conception of Logic

Our discussion so far has shown that (i) a distinction between logical and
extra-logical terms is essential for Tarskian logic in view of its purpose,
(ii) there exists an independent criterion for logical terms satisfying
Tarski’s requirements, and (iii) the list of logical terms under this
criterion far exceeds that of standard logic.

The answer to the question posed at the beginning of this paper is now
clear: The basic semantic principles of Tarskian logic are not exhausted
by the standard system. The logical consequences of standard Ist-order
mathematical logic are not all the necessary-and-formal consequences of
Ist-order languages (i.e., languages whose variables and nonlogical
constants are of the first order). It takes the complete range of Tarskian
Logics—TL—to fully realize Tarski’s program.

Given the prominent place of standard 1st-order logic in contemporary
philosophy, mathematics, and related disciplines, the question naturally
arises whether a revision in the ‘official’ doctrine of logic is called for. At
stake is a change in a very general and basic conceptual scheme, and the
pros and cons of revisions of this kind touch upon a variety of issues. In
the remainder of this paper I would like to dwell, if very briefly, upon
some of these.

REVISION IN LOGIC. Regarding the conditions under which conceptual
revision is justified, Putnam convincingly argued that a change in a
deeply ingrained conceptual scheme is seriously entertainable only if a
well-developed alternative has already been developed.?

Is there a serious alternative to standard logical theory incorporating
the principles of Tarskian Logics delineated above? The answer is: Yes,
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there exists a rich body of literature, in mathematics as well as in linguis-
tics, in which nonstandard systems of Ist-order logic satisfying (TL) have
been developed, studied, and applied. The first to propose a ‘generalized’
Ist-order logic was Andrzej Mostowski in his 1957 paper (see above).
Mostowski constructed a system of logical quantifiers defined by cardin-
ality functions like those in examples (13)-(16) above. A generalization
of Mostowski’s system was proposed by Per Lindstrom (see above) who
identified 1st-order quantifiers with classes of I1st-order relational
structures (of a given type) closed under isomorphism. All our examples
but (19) fall under Lindstrém’s definition. Among the most interesting
mathematical results concerning generalized systems of 1st-order logic is
a completeness theorem due to J. Keisler?® who proved that a 1st-order
system with the quantifier ‘there are uncountably many’ and a modest set
of logical axioms is complete. The applicability of nonstandard quan-
tifiers to natural-language semantics was first suggested by Jon Barwise
and Robin Cooper in their 1981 paper “Generalized Quantifiers and
Natural Language.”?’ Since then the linguistic scene has featured an
abundance of research on nonstandard quantifiers (logical as well as
nonlogical, according to our criterion). In particular, a new approach to
natural-language determiners is based on the analysis of determiners as
generalized quantifiers.28 Until now no one (to the best of my knowledge)
has brought a philosophical argument for the view that generalized logic,
in its full scope, is logic proper. If the philosophical analysis proposed in
this paper is sound, it adds to the support the new logic received from
other quarters.

THE LOGICIST THESIS. The logicist thesis says that mathematics is reduc-
ible to logic in the sense that all mathematical theories can be formulated
using purely logical means. l.e., all mathematical constants are definable
in terms of logical constants and all the theorems of (classical) math-
ematics are derivable from purely logical axioms using logical rules of
derivation (and definitions). Now, for the logicist thesis to be meaning-
ful, the notions of ‘logical constant’, ‘logical axiom’, ‘logical rule of
derivation’ and ‘definition’ must be well-defined and, moreover, be so
aefined as to make the reduction nontrivial. In particular, it is essential
that the reduction of mathematics to logic be carried out relative to a
system of logic in which mathematical constants do not, in general,
appear as primitive logical terms. The ‘fathers’ of logicism did not
engage in a critical examination of the concept ‘logical constant’ from
this point of view. That is, they took it for granted that there is a small
group of constants in terms of which the reduction is to be carried out:
the truth-functional connectives, the existential (universal) quantifier,
identity, and possibly the set-membership relation. The new conception
of logic, however, contests this assumption. If our analysis of the semantic
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principles underlying modern logic is correct, then any mathematical
predicate or functor satisfying (E) can play the role of a primitive logical
constant. Since mathematical constants in general satisfy (E) when
defined as higher order, the program of reducing mathematics to logic
becomes trivial. Indeed, even if the whole of mathematics could be
formulated within pure standard Ist-order logic, then (since the standard
logical constants are nothing more than certain particular mathematical
predicates) all that would have been accomplished is a reduction of some
mathematical notions to other mathematical notions.

While the logicist program is meaningless from the point of view of the
new conception of logic, its main tenet, that mathematical constants are
essentially logical, is, of course, strongly supported by this conception.
Indeed, Russell’s account of the ‘logicality’ of mathematics in /ntro-
duction to Mathematical Philosophy is in complete agreement with our
analysis:

There are words that express form . . . And in every symbolization hitherto invented of
mathematical logic there are symbols having constant formal meanings . . . Such words or
symbols express what are called ‘logical constants’. Logical constants may be detined
exactly as we defined forms; in fact, they are in essence the same thing . . . In this sense all
the ‘constants’ that occur in pure mathematics are logical constants, 2

Aside from ‘high-orderization’, the main difference between the new
conception and Russellian logicism is the direction from which the
equation of ‘logical’ with ‘mathematical’ via ‘formal’ is read. While the
traditional logicists say that mathematical constants arc ecsscentially
logical, the new conception claims that logical constants are essentially
mathematical. Thus, the ‘logical thesis of mathematics’ is replaced, in
the new conception, by the ‘mathematical thesis of logic’.

As for high-orderization, note that this requirement is, in some
respects, very Fregean. Frege’s logical definition of the natural numbers
takes numbers to be higher order entities, i.e., classes of classes or classes
of concepts. Indeed, the formulation of numerical statements as 1st-order
quantifications in Generalized Logic is exactly the same as in Frege’s The
Foundations of Arithmetic.3

MATHEMATICS AND LOGIC. Our discussion of logicism above highlighted
one aspect of the relationship between logic and mathematics: In Tarskian
Logics any mathematical constant can play the role of a logical term
subject to certain requirements on its syntactic and semantic definitions.
However, mathematical constants appear in Tarskian l.ogics also as
extra-logical constants, and this reflects another side of the relationship
between logic and mathematics: As logical terms, mathematical constants
are constituents of logical frameworks in which theories of various kinds
are formulated and their logical consequences are drawn. But the ‘pool’
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of formal terms which can figure as logical constants in Tarskian Logics
is created in mathematics. The semantic definition of, say, the logical
quantifier ‘there are uncountably many x’ is based on some mathematical
theory of sets. Similarly, the semantic definitions of the truth-functional
connectives and the universal (existential) quantifier are based on certain
simple Boolean algebras. These observations point to a difference
between logic and mathematics vis-a-vis formal terms: Formal terms are
generated in mathematics, while used in logic.

Now, since logic provides a framework for theories in general, the
mcanings of formal terms can be given by mathematical theories formu-
lated within logic. We can thus picture the interplay between logic and
mathematics as a cumulative process of definition and application.
Starting with a logical system which applies certain elementary, but
powerful mathematical functions (Boolean truth-functions, the universal/
existential-quantifier function and, usually, identity), to a Ist-order
extra-logical vocabulary, we construct various formal theories. Such
theories describe mathematical structures using extra-logical vocabulary
which is undefined in the language, but which receives specific meaning
by the theorems of the theory. Once mathematical (extra-logical) terms
are defined by theories within the framework of standard 1st-order logic,
they can be used to create a super-structure for a new, extended, system
of logic. As an example consider the Ist-order theory of Peano Arith-
metic. The arithmetic terms defined within this theory can be converted
into logical arithmetic quantifiers, to be included in the super-structure
of a new, extended system of logic. We will then use the new logical
framework to formulate theories—mathematical, physical, etc.—which
assume the existence of a machinery for counting and comparing sizes.
In these theories we will conclude logically that, say, there are 4 B’s,
given that there are 2 C’s and that the number of B’s is twice the number
of C’s. As we shall see below, there is an essential difference between
applying mathematics by using mathematical terms as part of the logical
super-structure and applying mathematics by adding extra-logical math-
ematical constants and axioms to a theory of standard Ist-order logic.

LOGIC AND ONTOLOGY. Quine is known for the thesis that the logical
structure of theories in a standard Ist-order formalization reflects their
ontological commitments. To determine the ontology of a theory.7
formulated in natural language (or a scientific ‘dialect’ thereof) we
formalize it as a (standard) Ist-order theory,.7 1, and examine those
models of .71 in which the extra-logical terms receive their intended
meaning../ is committed to the existence of such objects as populate the
universes of the intended models. Thus, if .7 includes a sentence of the
form:

(26) Uncountably many things have the property P,
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then, since the notion of uncountably many is not definable in pure
standard 1st-order logic, we have to expand ./l by combining it with
another theory, for example, some set theory with urelements, in which
‘uncountably many’ can be defined. We then formalize (26) as:

(27) (3x)[x is a set & x is uncountable &
(Yy)(yex — > y is an individual & Py)].

Through (27).7 is committed to the existence of sets.

Now, consider what happens if we formalize .7 by a theory./2 of a
Tarskian logic, ., obtained from standard Ist-order logic by adding the
logical quantifier ‘uncountably many’ together with appropriate axioms
(e.g., Keisler’s). Obviously, we do not need set theory in order to express
(26) in £/ The meaning of (26) is adequately captured by the sentence.

(28) (Uncountably many x) Px,

which does not commit .7 to the existence of sets. So, with a ‘right’
choice of logical vocabulary, .7 can make do with an ontology of mere
individuals.

We see that the new conception of logic allows us to save on ontology
by augmenting the logic. We can weaken the ontological commitments of
theories by parsing more terms as logical. We no longer talk about rhe
ontological commitment of a non-formal theory (there is no such thing!);
instead ontological considerations become a factor in choosing logical
frameworks for formalizing theories.

The examination of Quine’s principle from the perspective of Tarskian
Logics throws light on the crucial role played by logical constants in
deciding ontological commitments. Indeed, logical constants are central
to ontological commitment on other theories of logic and ontology as
well. Consider the simple, straightforward view that the commitment of
a theory.7 under a formalization #; is determined by what is common (o
all models of #;. Here, too, the difference in logical terms between the
formalizations 71 and 72 of .7 results in essentially different commit-
ments. The occurrence of the quantifier ‘uncountably many’ in (28)
ensures that in every model of.72 P is assigned an uncountable sct of
individuals. But, by the Skolem-Léwenheim theorem,.7 | has at least one
model in which the predicate ‘x is uncountable’ is given a nonstandard
interpretation and P is assigned a countable set. We can thus say that.72
is committed to an ontology of uncountably many objects, whercas.71
is not.

We see that logical terms are vehicles of strong ontological commit-
ment, while extra-logical terms transmit a relatively weak commitment.
This difference in ontological import between logical and extra-logical
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terms is explained by the fact that logical terms are, semantically, pre-
fixed, whereas the meaning of extra-logical terms is relative to models. In
Putnam’s form of speech, extra-logical terms are viewed from within
models, logical terms are viewed from the outside.’! Including formal
terms as part of the logical super-structure allows us to use them in the
logic with ‘a view from the outside’.

This distinction provides the explanation (promised earlier) for the
difference between using mathematical notions as part of the logical
‘machinery’ and using them as extra-logical terms of theories within the
logical framework. It also provides a guideline for choosing logical
frameworks: If you formulate, say, a physical theory, and you want to
use formal tools created elsewhere (i.e., in some mathematical theory),
you might as well include the mathematical apparatus as part of the
logical super-structure. This will reflect the fact that you are not
interested in specifying the meanings of the mathematical terms but in
saying something about the physical world using mathematical notions
which you take as given. The pre-fixed notions will enable you to make
some very strong claims about the physical world, strong in the sense that
what they say does not vary from one model of the theory to another. All
this will be done without compromising the usefulness of the logical
framework in determining necessary-and-formal consequences. If, on
the other hand, your goal is to define the mathematical notions them-
sclves, you cannot construe them as logical because as such their meaning
has to be given to begin with. You have to use undefined terms of the
language (i.e., extra-logical terms) and then construct a theory within
which these notions will receive a distinctive content.3?

PROOF THEORETICAL PERSPECTIVE. The philosophical justification of
the new conception of logic is based on an analysis of certain semantic
principles underlying Tarskian logic. What about proof theory? Does the
new conception satisfy the main principles of the modern theory of
proof ? One may be tempted to issue a quick verdict: The new logic fails
to satisfy the most important requirement of proof theory—a complete
proof procedure. 1 think this might be a premature judgment. The ‘new
conception of Tarskian logic’ is a result of re-examining the philosophical
ideas behind logical semantics in response to certain mathematical
generalizations of standard semantic notions (Mostowski et al.). There is
no sense in comparing the generalized semantics with current, un- or
pre-generalized, proof theory. To do justice to the new conception from
a proof-theoretic perspective one has to cast a new, critical look, at the
standard notion of proof. This task may be exacting because (as far as |
know) there is no rich body of mathematical generalizations in proof
theory parallel to ‘generalized logic’ in contemporary model theory.
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However, if the work in generalized semantics is philosophically signifi-
cant, it poses a challenge to proof-theory that cannot be overlooked. We
can put it this way: If Tarski is right about the basic intuitions underlying
our conception of logical truth and consequence, and if our analysis is
correct—namely, these intuitions are not exhausted by standard Ist-order
semantics—then, since standard Ist-order logic is complete, these in-
tuitions are not exhausted by standard (lst-order) proof-theory ecither.
Semantically, we have seen, it suffices to enrich the super-structure of
Ist-order logic by adding new logical terms. But what has to be done
proof-theoretically?

VI. Postscript: Tarski and the New Conception of lLogic

What would Tarski have thought about the conception of ‘Tarskian’
logic proposed in this paper? After the first few versions of the paper had
been completed I came upon a 1966 lecture by Tarski (first published in
1986) which provides a partial answer to our question. In this lecture,
titled “What are Logical Notions?”,3* Tarski proposed a definition of
‘logical term’ which is a restriction of our condition (E) to structures
within a given model:

Consider the class of all onc-one transformations of the space, or universe ol discourse, or
‘world’ onto itself. What will be the science which deals with the notions invariant under
this widest class of transformations? Here we will have . . . notions all of a very gencral
character. | suggest that they are the logical notions, that we call a notion *logical” if it is
invariant under all possible one-one transformations of the world onto itsell. ™

Tarski concluded that no singular term is logical, but any predicate
definable in standard higher order logic is. Thus, as a science of indi-
viduals mathematics is different from logic, but as a science of higher-
order structures mathematics is logic.

The main difference between Tarski’s lecture and the present paper
has to do with the grounds for the extension. Tarski introduced his
conception as a generalization of Klein’s classification of geometrical
disciplines according to the transformations of space under which the
geometrical concepts are invariant. Abstracting from Klein, Tarski
characterized logic as the science of all notions invariant under 1-1 trans-
formations of the universe of discourse (‘space’ in a generalized sense).
My own conclusions, on the other hand, were based on the analysis of
Tarski’s early views on the (philosophical) foundations of semantics and,
in light of these, of ‘how models work’. I will end this paper by saying
that what I called the ‘new’ conception of Tarskian logic is not really
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new: Tarski himself arrived at essentially the same conception, although
based on a different analysis from the one proposed here.

University of California, San Diego
La Jolla, California

* This paper is based on my Ph.D. thesis, “Generalized Logic: A Philosophical
Perspective With Linguistic Applications” (Columbia University, 1989). Special thanks are
due to my teacher and thesis director, Professor Charles Parsons. | would also like to thank
Richard Cartwright and Peter Sher and acknowledge my indebtedness to John
Etchemendy’s stimulating manuscript on Tarski.
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