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Abstract

The paper deals with a special type of filtration in modal logic called “canonical”. This
filtration has been known since the 1970s, but was used only occasionally. Applying
it in a systematic way allows us to prove new results on finite model property (and
in some cases — local tabularity) for different polymodal logics. In particular, we
consider products of logics of finite depth with S5 and DL, and also temporal logics
of finite depth.
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1 Introduction

The filtration method is a standard and powerful instrument in modal logic.
Filtrations for Kripke models were first introduced and studied by John Lem-
mon [9] and (in a general form) by Krister Segerberg [11], [12]

A filtration of a Kripke model M through a set of formulas Ψ is given by a
truth-preserving map h : M −→M ′ onto another Kripke model M ′. This map
is monotonic for all relations in M . So if we can prove that a certain modal
logic L is complete w.r.t a class of frames C and for any model over a C-frame
there exists a finite filtration M ′, also over a C-frame, then L has the finite
model property.

This definitely holds if we can construct finite filtrations, for which the
filtration map h is a p-morphism. For example, such an argument works in
model-theoretic proofs of the well-known Bull’s theorem, cf. [4]. In general
h need not be a p-morphism, but in some cases p-morphic filtrations can be
obtained in a regular way. The corresponding procedure was discovered also
by Segerberg [13] 2 . Viz., consider a Kripke model M = (W,R, θ) and a modal
logic L such that M � L. Let Ψ be the set of all modal m-formulas (i.e.,
formulas in proposition letters p1, . . . , pm), and let M ′ be the greatest filtration

1 shehtman@netscape.net
2 Segerberg used this filtration to show that every Kripke model is equivalent to a distin-
guished one. Applications to the fmp proofs were not realized at that time.
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of M through Ψ. We call such a filtration canonical. In this case M ′ can be
identified with a submodel of the weak canonical model MLdm, and one can
easily show that h is p-morphic whenever M ′ is finite.

So to prove the fmp of a certain logic L, we can try to find a class of models
characterizing L and prove that their canonical filtrations are finite. So far this
method has been used only occasionally [7], [8], but in this paper we will show
different situations when it is applicable. For the proofs of finiteness of canon-
ical filtrations we shall use the following strategy. Let ≡ be the equivalence
relation modulo Ψ. We construct its stratification, i.e., we present ≡ as the
intersection of a decreasing sequence of equivalence relations ≡0⊇≡1⊇ . . ., for
which the quotient sets W/ ≡n are finite. Now if the sequence (≡n) stabilizes,
this readily implies the finiteness of M ′.

Actually for many logics this argument proves not only the fmp, but local
tabularity, i.e., finiteness of all weak canonical models. Traditional proofs of
local tabularity were just by examining points in the canonical model; cf. for
example, the proof of Segerberg’s theorem on local tabularity of transitive logics
of finite depth [13]. However, canonical filtrations may simplify the job. To
this end, we first unravel a canonical model into a tree, then go back by the
canonical filtration and prove finiteness by stratification.

The plan of the paper is as follows. Section 2 contains basic material on
modal logic. The main result of section 3 is the local tabularity of products
of (finitely many) modal logics of finite depth with S5; hence we deduce the
fmp for S5×Kr. A similar argument is applied to DL×Kr. In section 4 we
consider temporal logics of finite depth and show their local tabularity.

2 Preliminaries

We begin with recalling some standard notions and facts.
In this paper we consider normal polymodal propositional logics under-

stood as usual, as sets of polymodal formulas. r-modal formulas are built from
a countable set PL = {p1, p2, . . . } of proposition letters, the classical connec-
tives →,⊥, and the modal connectives �1, . . . ,�n. A k-formula is a formula
using only proposition letters from the set PLdk := {p1, p2, . . . pk}. A formula
without proposition letters is called closed.
Lr (respectively, Lrdk) denotes the set of all r-modal formulas (respectively,

r-modal k-formulas).
An r-modal logic is a set of r-modal formulas containing the classical tau-

tologies, the axioms �i(p1 → p2)→ (�ip1 → �ip2), closed under Substitution,
Modus Ponens, and Necessitation. The k-restriction of a modal logic L is
Ldk := L ∩ Lndk. These sets Ldk are called k-weak modal logics.

Kr denotes the minimal r-modal logic; K = K1.
An r-temporal logic is a 2r-modal logic (with the modal connectives

�1, . . . ,�r,�−1, . . . ,�−r ) containing the axioms 3i�−ip → p, 3−i�ip → p.
K.tr denotes the minimal r-temporal logic; K.t = K.t1.
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For a modal formula A, md(A) denotes its modal depth defined by induction:

md(⊥) = md(pi) = 0, md(A→ B) = max(md(A),md(B)),
md(�jA) = md(A) + 1.

Recall that the fusion of two logics, r-modal L1 andm-modal L2 is L1∗L2 :=
Kr+m+L1 +L+r

2 , where L+r
2 is obtained from L2 by replacing every occurrence

of any �j with �j+r.
An (r-modal) Kripke frame is a tuple F = (W,R1, . . . , Rr), where W 6= ∅,

Ri ⊆W ×W .
We use the standard notation Ri(x) := {y ∈W | xRiy}.
A Kripke model over F is a pair M = (F, θ), where θ : PL −→ 2W is a

valuation.
M,x � A denotes that a formula A is true at a point x in a Kripke model

M ; the definition is standard.
A submodel of a Kripke model is its restriction to some subset of F . A

submodel M ′ of M is called reliable if M,x � A ⇔ M ′, x � A for any modal
formula A and x in M ′.

A k-weak Kripke model is M = (F, θ), where θ : PLdk −→ 2W is a k-
valuation; in this case we can find truth values only for k-formulas.

A formula A is valid in a frame F (notation: F � A) if it is true at every
world of every Kripke model over F. A set of formulas Γ is valid in F (notation:
F � Γ) if every A ∈ Γ is valid. In the latter case we also say that F is a Γ-frame.
The logic determined by a class of frames C is the set of all formulas valid in
all frames from C; it is denoted by L(C).

In particular, Kr is determined by all r-modal frames; K.tr by all n-
temporal frames of the form (W,R1, . . . , Rr, R

−1
1 , . . . , R−1

r ). The well-known
logic S5 is determined by clusters, i.e., frames of the form (W,W ×W ).

Definition 2.1 A p-morphism from a frame F = (W,R1, . . . , Rr) onto F ′ =
(W ′, R′1, . . . , R

′
r) is a surjective map f : W −→W ′ satisfying the conditions

• xRiy =⇒ f(x)R′if(y) (monotonicity),

• f(x)R′iz =⇒ ∃y (xRiy & f(y) = z) (the lift property).

A p-morphsim of a Kripke model M = (F, θ) onto M ′ = (F ′, θ′) should also
satisfy the condition

θ(p) = f−1(θ′(p))

for any i ≤ r, p ∈ PL (or PLdk if the models are k-weak).

f : F � F ′ denotes that f is a p-morphism from F onto F ′; the same
notation is used for Kripke frames.

Lemma 2.2 Let F , F ′ be r-modal Kripke frames, M , M ′ Kripke models over
them, A an r-modal formula.

(i) If f : F � F ′, then L(F ) ⊆ L(F ′).

(ii) For any x in F , M,x � A iff M ′, f(x) � A.
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(iii) If A is closed, then F � A iff F ′ � A.

Definition 2.3 Let F = (W,R1, . . . , Rr) be a frame, u, v ∈ W , m ≥ 1. A
path of length m from u to v is a sequence (u0, j0, u1, . . . , jm−1, um) such that
u = u0, v = um and for all i < m, uiRjiui+1. A singleton sequence (u) is the
path of length 0 (from u to u).

An r-temporal frame (W,R1, . . . , Rr, R
−1
1 , . . . , R−1

r ) will be denoted by
(W,R1, . . . , Rr, R−1, . . . , R−r) (where R−j := R−1

j ). Then paths are sequences
(u0, j0, u1, . . . , jm−1, um), in which j0, . . . , jm are integers.

Definition 2.4 A path (u0, j0, u1, . . . , jm−1, um) in an r-temporal frame
(W,R1, . . . , Rr, R−1, . . . , R−r) is called reduced if it does not contain adjacent
opposite arrows; speaking precisely, if there is no j such that uj−1 = uj+1 and
ij = −ij+1.

Definition 2.5 The depth of a point x in a frame F (denoted by d(x)) is the
maximum of lengths of paths in F beginning from x (if this maximum exists),
or ∞ otherwise.

The depth of x w.r.t. to the relation Ri (denoted by di(x)) is the depth of
x in the frame (W,Ri).

Similarly in a temporal frame we define the reduced depth of x (denoted by
rd(x)) as the maximum of lengths of reduced paths beginning from x.

The depth of a frame F (denoted by d(F )) is the maximal depth of its points
(if it exists) and ∞ otherwise; similarly for the reduced depth in a temporal
frame.

Definition 2.6 A cone in a frame F with root u (notation: F↑u) is the restric-
tion of F to the set of all points, to which there exists a path from u; similarly
a cone in a Kripke model M↑u is defined.

Lemma 2.7 (Generation Lemma)

(i) L(F ) =
⋂

u∈F
L(F↑u).

(ii) M↑u is a reliable submodel of M .

Definition 2.8 A tree with root u is a frame F such that F = F↑u and for
every v ∈ F there exists a unique path from u to v. The length of this path
is called the height of v and denoted by h(v). The height of F (h(F )) is the
maximal h(v) (if it exists), or ∞ otherwise.

Definition 2.9 For a 2r-modal tree G = (W,S1, . . . , S2r), the frame F =
(W,R1, . . . , Rr, R

−1
1 , . . . , R−1

r ), where Ri = Si ∪ S−1
r+i, is called the r-temporal

tree (with the pattern G). The height function in F is then defined as the height
function in G.

Speaking informally, a temporal tree is a modal tree, in which some of the
arrows are inverted.

There is an equivalent definition: an n-temporal tree with root r is an n-
temporal frame, in which for every point x there exists a unique reduced path
from r to x.
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Recall the standard unravelling construction (cf. [6]).

Definition 2.10 Let F = (W,R1, . . . , Rr) be a cone with root u. The unrav-

elling of F is the frame F ] = (W ], R]
1, . . . , R

]
r), in which W ] is the set of all

paths from u to points in F , and αR]
iβ iff β = (α, i, x) for some x.

Lemma 2.11 F ] is a tree. The map π sending every path to its endpoint is a
p-morphism F ] � F .

A similar construction exists in the temporal case [14]:

Definition 2.12 Let F = (W,R1, . . . , Rr, R
−1
1 , . . . , R−1

r ) be a cone with root
u. The temporal unravelling of F is the frame

F t] = (W ], Rt]
1 , . . . , R

t]
r , R

t]
−1, . . . , R

t]
−r),

in which W t] is the set of all reduced paths from u to points in F , and αRt]
i β

iff (β = (α, i, x) or α = (β,−i, x)) for some x.

Lemma 2.13 F t] is a temporal tree. The map π sending every path to its
endpoint is a p-morphism F t] � F .

Definition 2.14 The canonical frame for an r-modal logic (maybe weak) L is
FL = (WL, R1,L, . . . , Rr,L), where WL is the set of all maximal L-consistent
sets of formulas in the language of L; xRi,Ly iff for any A, �iA ∈ x implies
A ∈ y.

The canonical model for L is ML = (FL, θL), where
θL(pi) = {x | pi ∈ x}.
Theorem 2.15 (Canonical model theorem) For any formula A in the language
of L,

(1) ML, x � A iff A ∈ x;

(2) ML � A iff A ∈ L.
Lemma 2.16 (Rigidity lemma) In a canonical model, if there is an isomor-
phism of two cones ML↑x, ML↑y sending x to y, then x = y.

Proof. Since an isomorphism preserves the truth values of formulas, the same
formulas (in the language of L) are true in x and y. Hence x = y by 2.15(1).

Definition 2.17 A modal logic L is called canonical if FL � L (or equivalently,
L = L(FL)) and weakly canonical if FLdk � L for any finite k.

Definition 2.18 An r-modal logic L is called locally tabular if for any finite k
there exist finitely many r-modal k-formulas up to equivalence in L.

The local tabularity of L is obviously equivalent to the local finiteness of
the variety of L-algebras (which means finiteness of all finitely generated L-
algebras, cf. [10], Ch.6, Sec. 14).

Definition 2.19 An r-modal logic L is called tabular if L = L(F ) for some
finite r-modal frame F . L has the finite model property (fmp) if it is an inter-
section of tabular logics.
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The following simple facts are well-known:

Lemma 2.20 (1) A modal logic L is locally tabular iff every weak canonical
model MLdk is finite.

(2) Every extension of a locally tabular modal logic in the same language is
locally tabular.

(3) Every tabular logic is locally tabular.

(4) Every locally tabular logic has the fmp.

Definition 2.21 The product of Kripke frames F = (W,R1, . . . , Rr), G =
(V, S1, . . . , Sm) is the frame

F ×G = (W × V,R11, . . . , Rr1, S12, . . . , Sm2)

such that
(x, y)Ri1(x′, y′)⇔ xRix

′ & y = y′;

(x, y)Sj2(x′, y′)⇔ x = x′ & ySjy
′.

Definition 2.22 The product of an r-modal logic L1 and an m-modal logic
L2 is the (r +m)-modal logic

L1 × L2 := L({F1 × F2 | F1 � L1, F2 � L2}).
Definition 2.23 The commutative join of an r-modal logic L1 and anm-modal
logic L2 is obtained from their fusion L1 ∗ L2 by adding the axioms

3i�r+jp→ �r+j3ip, �i�r+jp↔�r+j�ip

for 1 ≤ i ≤ r, 1 ≤ j ≤ m.

Recall that the corresponding frame conditions are:

R−1
i ◦Rr+j ⊆ Rr+j ◦R−1

i , Rr+j ◦Ri = Ri ◦Rr+j .

Definition 2.24 Logics L1, L2 are called product-matching if L1 × L2 =
[L1, L2].

Recall a sufficient condition for the product matching property.

Definition 2.25 A modal formula is called Horn if the class of its frames is
first-order definable by a universal Horn sentence.

A modal logic is Horn axiomatizable if it is axiomatized by by adding closed
or Horn modal formulas.

Theorem 2.26 Every two complete Horn axiomatizable modal logics are
product-matching.

For the proof cf. Theorem 7.12 from [6] (a slightly weaker claim) or Theorem
5.9 from [5] (for 1-modal logics).
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Definition 2.27 Let M = (W,R1, . . . , Rr, θ) be an n-modal Kripke model, Ψ
a set of r-modal formulas closed under subformulas. For x ∈W let Ψx := {A ∈
Ψ | M,x � A}. Two worlds x, y ∈ W are called Ψ-equivalent in M (notation:
(M,x) ≡Ψ (M,y), or just x ≡Ψ y) if Ψx = Ψy. The map h : x 7→ x/ ≡Ψ sending
every world to its Ψ-equivalence class is called the filtration map (through Ψ).

Definition 2.28 (cf. [6]) Under the assumptions of Definition 2.27, a Kripke
model M ′ = (W ′, R′1, ..., R

′
r, θ
′) is called a filtration of M through Ψ if for any

x, y ∈W , for any formula A, 1 ≤ i ≤ r:
(f1) W ′ = W/ ≡Ψ;

(f2) xRiy =⇒ h(x)R′ih(y);

(f3) h(x)R′ih(y) & M,x � �iA & �iA ∈ Ψ =⇒M,y � A;

(f4) if q ∈ Ψ ∩ PL, then M,x � q ⇐⇒M ′, h(x) � q.

The greatest filtration of M through Ψ is defined by the conditions (f1), (f4),
and

(f3+) h(x)R′ih(y) iff for any A,
M,x � �iA & �iA ∈ Ψ =⇒M,y � A.

Lemma 2.29 (Filtration Lemma). Let M ′ be a filtration of M through Ψ.
Then for any x ∈W, for any A ∈ Ψ

M,x � A iff M ′, h(x) � A.

Definition 2.30 Let M be an n-modal Kripke model, Ψ the set of all n-modal
k-formulas. The greatest filtration of M through Ψ is called canonical.

For the canonical filtration we can obviously identify h(x) with Ψx, i.e.,
the set of all k-formulas true at M,x. For any modal logic L true in M , the
set Ψx is maximal L-consistent, i.e., Ψx ∈ WL (cf. Definition 2.14). So M ′ is
isomorphic to a reliable submodel of the canonical model MLdk.

In fact every p-morphism onto a reliable submodel of a canonical model is
a canonical filtration:

Lemma 2.31 Suppose h : M � M ′ for a reliable submodel M ′ of a weak
canonical model MLdk for some modal logic L. Then M ′ is a canonical filtration
of M through Ψ = Lndk and h is the filtration map.

Proof. For any k-formula A

M,x � A iff M ′, h(x) � A iff M,h(x) � A iff A ∈ h(x)

by Lemma 2.2, the reliability of M ′, and Theorem 2.15. Thus h(x) = Ψx.

Proposition 2.32 If the canonical filtration M ′ is finite, then the filtration
map h : M −→M ′ is a p-morphism.

Proof. By definition and the Filtration Lemma, h(x) = h(y) iff for any A ∈
Ψ, M ′, h(x) � A ⇔ M ′, h(y) � A. So every two different points in M ′ are
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distinguished by a formula from Ψ. Since M ′ is finite, for any u ∈ M ′ there
exists Au ∈ Ψ which is true exactly at u.

Now suppose h(x)R′ih(y). Then h(x) � 3iAh(y), and so x � 3iAh(y). Thus
there exists z ∈ Ri(x) such that z � Ah(y). Hence h(z) � Ah(y) implying that
h(z) = h(y).

3 Modal logics of finite depth

In the r-modal language we introduce the total box and diamond as abbrevia-
tions:

�A := �1A ∧ . . . ∧�rA, 3A := 31A ∨ . . . ∨3rA.

Lemma 3.1 Let F = (W,R1, . . . , Rr) be a frame, k ≥ 1. Then (in any model
over F ), for any x ∈W

x � �k+1⊥ iff d(x) ≤ k.

The proof is by induction, cf. [6], Lemma 9.2.

Theorem 3.2 Every logic Kr + �k⊥ is locally tabular.

This theorem was proved in [6] by examining weak canonical models: a
simple inductive argument shows that for any finite d there are finitely many
points of depth d in every weak canonical model MLdm. Since �k⊥ holds in
M , all points are of depth less than k; therefore M is finite.

However, let us sketch another proof in the style of the present paper.
Consider a cone M ′ in MLdm and its unravelling M (which is a model over an r-
modal tree of depth (k−1) (W,R1, . . . , Rr)). The canonical map h : M −→M ′

is a p-morphism.
We define the equivalence relations ≡n on W by induction:

• x ≡0 y iff x � q ⇔ y � q for any q ∈ PLdm,

• x ≡n+1 y iff x ≡0 y & ∀i (Ri(x)/ ≡n) = (Ri(y)/ ≡n).

Also put

x ∼n y := (x � A⇔ y � A for any m-formula A of depth ≤ n).

Lemma 3.3 If x ≡n y, then x ∼n y.

Proof. The proof is straightforward by induction.

Lemma 3.4 If d(x), d(y) ≤ n and x ≡n y, then x ≡n+1 y.

Proof. By induction on n.
The case n = 0 is trivial, since Ri(x) = Ri(y) = ∅.
Suppose the claim holds for n > 0, and consider points x, y of depth ≤ n+1

such that x ≡n+1 y. Then for any z ∈ Ri(x) there exists z′ ∈ Ri(y) such
that z ≡n z′. Then d(z), d(z′) ≤ n, so by IH z ≡n+1 z′. It follows that
(Ri(x)/ ≡n+1) ⊆ (Ri(y)/ ≡n+1). The converse follows by symmetry.



506 Canonical Filtrations and Local Tabularity

Thus by Lemma 3.4 x ≡k y implies x ≡n y for any n ≥ k; hence h(x) = h(y)
whenever x ≡k y. But the number of ≡k-classes is finite; this follows easily by
induction.

So every cone in the weak canonical model is finite of limited size. Since
this model is distinguishable, it is rigid in the following sense: every two points
with isomorphic cones and the same truth values of the proposition letters
p1, . . . , pm must coincide. Therefore the whole model is finite.

Let us use a similar method to prove a stronger result.
Consider the logics S5× (Kr + �s⊥). First note that S5× (Kr + �s⊥) =

[S5,Kr + �s⊥] by Theorem 2.26. The axioms of this logic are Sahlqvist for-
mulas, so it is canonical.

Proposition 3.5 Every cone validating Kn×Km = [Kn,Km] is a p-morphic
image of a product of an n-modal tree and an m-modal tree.

Proof. The proof is by applying a transfinite version of the “rectification
game”. Such a game for the countable case is constructed in the proof Lemma
5.2 from [5]. For a transfinite game just add the requirement that the network
at the limit stage is the union of all earlier networks.

Lemma 3.6 Every cone validating S5× (Kr + �s⊥) is a p-morphic image of
a product of a cluster and an r-modal tree of depth ≤ s− 1.

Proof. The argument is the same as in the proof of theorem 7.2 from [6]. Let
F = (W,R0, R1, . . . , Rr) be a given cone; then F � [K,Kr]. So by Proposition
3.5, there is a p-morphism f : F1×F2 � F , where F1, F2 are trees (respectively,
1-modal and r-modal). Let C be the cluster with the set of worlds of F1. Since
R0 is an equivalence, it follows that f : C×F2 � F . By lemma 2.2, the validity
of the closed formula �s⊥ is preserved in F1 × F2. Hence by Lemma 3.1, F2 is
of depth ≤ s− 1.

Theorem 3.7 Every logic S5× (Kr + �s⊥) is locally tabular.

Proof. Let L = S5× (Kr + �s⊥), and again let us show that all the cones in
MLdm are finite.

Consider a cone M1 = MLdm↑u; let M1 = (F1, θ1). By Lemma 3.6, F1 is a
p-morphic image of a product C × F of a cluster C and an r-modal tree F of
depth ≤ s− 1. So M1 is a p-morphic image of a model M over C × F .

Let R0, R1, . . . , Rr be the relations in M (so R0 is an equivalence).
We define the equivalence relations ≡n on M by induction:

• x ≡0 y iff x � q ⇔ y � q for any q ∈ PLdm,

• x ≡2n+1 y iff x ≡2n y & (R0(x)/ ≡2n) = (R0(y)/ ≡2n).

• x ≡2n+2 y iff x ≡2n+1 y & ∀i > 0 (Ri(x)/ ≡2n+1) = (Ri(y)/ ≡2n+1).

Lemma 3.8 The number of ≡n-classes in M is finite.

Proof. By induction we show that the set Wn := W/ ≡n is finite (where W is
the set of worlds in M).

Obviously W0 is finite, of cardinality at most 2m.
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Suppose W2n is finite. Note that every class x/ ≡2n+1 is fully determined
by the pair (x/ ≡2n, R0(x)/ ≡2n). Thus

|W2n+1| ≤ |W2n| · 2|W2n|.

(where | . . . | denotes the cardinality).
Similarly, (x/ ≡2n+2) is fully determined by the tuple

(x/ ≡2n+1, R1(x)/ ≡2n+1, . . . , Rr(x)/ ≡2n+1). Hence

|W2n+2| ≤ |W2n+1| · 2r|W2n+1|.

Lemma 3.9 If x ≡2n y, then x ∼n y.

Proof. By induction. The base is trivial. For the step, suppose x ≡2n+2 y.
If x � 3iA, i > 0, md(3iA) ≤ n + 1, then z � A for some z ∈ Ri(x), and

d(A) ≤ n. Since x ≡2n+2 y, there is z′ ∈ Ri(y) such that z′ ≡2n+1 z, and so
z′ ≡2n z. By the IH, z′ � A. It follows that y � 3iA.

If x � 30A, md(30A) ≤ n + 1, then z � A for some z ∈ R0(x), and
d(A) ≤ n. x ≡2n+2 y implies x ≡2n+1 y, so there is z′ ∈ R0(y) such that
z′ ≡2n z. By the IH, z′ � A. It follows that y � 30A.

By d(x) we denote the depth of a point of a point x ∈ M over the second
coordinate. More precisely, if x = (a, b), then d(x) is d(b) (in the tree F ).

Lemma 3.10 If d(x), d(y) ≤ n and x ≡2n+1 y, then x ≡k y for any k > 2n+1.

Proof. By induction on n.
(a) Consider the case n = 0. Suppose d(x) = d(y) = 0, x ≡1 y and show

that x ≡k y for any k > 1 by induction on k.
x ≡2j+1 y clearly implies x ≡2j+2 y, since Ri(x) = Ri(y) = ∅ for i > 0.
On the other hand, if x ≡2j+2 y, then x ≡2j+1 y, so

R0(x)/ ≡2j= R0(y)/ ≡2j . Let us show that R0(x)/ ≡2j+2= R0(y)/ ≡2j+2.
In fact, since x ≡2j+1 y, for any z ∈ R0(x) there is z′ ∈ R0(y) such that
z ≡2j z

′. Since R0(z) = R0(x) and R0(z′) = R0(y), we also have z ≡2j+1 z
′.

But d(z) = d(z′) = 0, so as we have noticed above, z ≡2j+2 z′. It follows
that R0(x)/ ≡2j+2⊆ R0(y)/ ≡2j+2, and we obtain the converse by symmetry.
Therefore x ≡2j+2 y implies x ≡2j+3 y.

(b) Now consider the induction step for the main induction on n. Suppose
d(x), d(y) ≤ n, x ≡2n+1 y and show that x ≡k y for any k > 2n+1 by induction
on k.

Suppose k = 2j + 1 > 2n+ 1 and the claim is proved for less k. x ≡2n+1 y
implies R0(x)/ ≡2n= R0(y)/ ≡2n, so for any z ∈ R0(x) there is z′ ∈ R0(y) such
that z ≡2n z

′. Then z ≡2n+1 z
′ (since R0(z) = R0(x), R0(z′) = R0(y)). Since

d(z), d(z′) ≤ n, by the IH (applied to z, z′) it follows that z ≡2j z
′. Thus we

have proved R0(x)/ ≡2j⊆ R0(y)/ ≡2j , and the converse follows by symmetry.
So we obtain x ≡k y.

Suppose k = 2j + 2 > 2n+ 1 and the claim is proved for less k. x ≡2n+1 y
implies x ≡2n y and thus Ri(x)/ ≡2n−1= Ri(y)/ ≡2n−1 for any i > 0. Now for
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any z ∈ Ri(x) there is z′ ∈ Ri(y) such that z ≡2n−1 z
′. But d(z), d(z′) ≤ n−1,

so by the IH of the main induction, z ≡2n−1 z′ implies z ≡2j+1 z′. So we
obtain Ri(x)/ ≡2j+1⊆ Ri(y)/ ≡2j+1, and the converse follows by symmetry.
Thus x ≡k y.

The argument in the proof of the theorem is now as in the case of Kr +�s⊥.
Since d(x), d(y) ≤ s−1, by Lemma 3.10 x ≡2s y implies x ≡k y for any k ≥ 2s;
hence by Lemma 3.9, h(x) = h(y) whenever x ≡2s y. Now Lemma 3.8 implies
that M1 is finite of limited size. Therefore up to isomorphism, there are finitely
many cones in the weak canonical model, so it is finite by rigidity.

Theorem 3.11 Every logic S5×Km has the fmp.

Proof. First note that

S5×Km = L({C × F1 × . . .× Fm | C is a cluster, F1, . . . , Fm are trees}.

This is proved similarly to proposition 4.10 from [6]. In fact, every cone in a
product G0×G1× . . . Gm has the form C×H1× . . .×Hm, where C is a cluster,
Hi are cones, so it is a p-morphic image of C × F1 × . . .× Fm, where Fi = H]

i .
Every formula refutable in C ×F1 × . . .×Fm is also refutable in a product

C × F−1 × . . .× F−m , where F−i is a tree of finite depth obtained by truncation
of Fi; this is similar to Lemma 9.11 from [6]. The product F−1 × . . . × F−m is
also of finite depth: if d(F−i ) < s, then d(F−1 × . . .× F−m) < ms. Therefore

S5×Km =
⋂
s

(S5× (Km + �s⊥)).

Note that the logic S5×(Km+�s⊥) contains S5×(Km+�s⊥), so it is locally
tabular by Theorem 3.2 and Lemma 2.20. Then it has the fmp (Lemma 2.20)
and eventually S5×Km has the fmp as an intersection of logics with the fmp.

The fmp for the logic S5×K was proved in [6] by another method giving
a better upper bound for the size of countermodels. The above theorem for
m > 1 seems new; however, all these logics are undecidable (this follows from
a general result by R. Hirsch, I. Hodkinson, and A. Kurucz, cf. Theorem 8.28
from [5]).

Now consider the difference logic DL. Recall that

DL = K + 3�p→ p+ p ∧�→ ��p.

DL-cones are of the form (W,R), where R contains the inequality relation
6=W := {(x, y) ∈W 2 | x 6= y} (cf. [3]).

Lemma 3.12 Every DL-cone (W,R) is a p-morphic image of some inequality
frame (V, 6=V ).

Proof. By a well-known construction: to obtain V duplicate the reflexive
points of W and make them irreflexive.
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Theorem 3.13 Every logic DL× (Kr + �s⊥) has the fmp.

Proof. Almost the same as in Theorem 3.7, but with another starting point.
Suppose a formula A in letters p1, . . . , pm is not in L = DL × (Kr + �s⊥).
Then it is refuted in a weak model M0 over a product of cones G × F , where
G � DL, F is of depth < s.

By Lemma 3.12 G is a p-morphic image of an inequality frame C; so A is
refuted in C × F , and thus in C × F ]; F ] is a tree of depth < s.

Next, we define the relations ≡n in the corresponding model M exactly as in
the proof of 3.7 and repeat the further proof (with a slight change in the proof
of 3.10: at the induction step for k = 2j+1 instead of R0(z) = R0(x), R0(z′) =
R0(y) we have R0(z)∪{z} = R0(x)∪{x}, R0(z′)∪{z} = R0(y)∪{y}). Therefore
the canonical filtration M ′ of M is finite, and we can apply Proposition 2.32.
Thus A is refuted in a finite L-frame.

Note that now we cannot claim the local tabularity, because we obtain a
p-morphism onto some submodel of MLdm, but not onto an arbitrary cone.

Theorem 3.14 Every logic DL×Km has the fmp.

Proof. Similar to 3.11. By truncation, refutability of a formula in a product
C × F1 × . . .× Fm, where C is an inequality frame, Fi are trees, is reduced to
refutability in C × F−1 × . . .× F−m , where F−i are trees of finite depth. Hence

DL×Km =
⋂
s

(DL× (Km + �s⊥)),

and we can apply Theorem 3.13.

4 Temporal logics of finite depth

Now let us modify some results of the previous section for temporal logics.

Definition 4.1 Consider the following r-temporal formulas

Rdi1...in := ¬(P0 ∧3i1(P1 ∧3i2(P2 ∧ . . . ∧3inPn) . . .))),

where ij ∈ {±1, . . . ,±r},
P0 := p0,

Pj+1 :=

{
pj+1 ∧ ¬pj−1 if ij+1 = −ij ,
pj+1 otherwise,

Rdn :=
∧
{Rdi1...in | i1, . . . , in ∈ {±1, . . . ,±r}}.

Proposition 4.2 For an r-temporal frame F

F � Rdn iff rd(F ) < n.
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Proof. (If.) Suppose in a model over F we have u0 � ¬Rdi1...in . Then there
are u1, . . . , un such that for any j ≥ 0, uj � Pj and ujRijuj+1. So u0, . . . , un
is a path in F . Note that ij+1 = −ij implies uj+1 6= uj−1, since in this case
Pj+1 = pj+1∧¬pj−1 and Pj−1 implies pj−1. Thus (u0, i1 . . . , in, un) is a reduced
path of length n.

(Only if.) Suppose there is a reduced path (u0, i1 . . . , in, un). Consider a
valuation θ in F such that θ(pj) = {uj}. Then we obtain a Kripke model, in
which uj � Pj and u0 � ¬Rdi1...in . Thus F 6�Rdn.

Now consider the logics K.tr +Rdn.

Proposition 4.3 K.tr +Rdn is weakly canonical.

Proof. Let L = K.tr + Rdn. Consider a weak canonical frame
FLdk = (W,R1, . . . , Rr, R−1, . . . , R−r) and suppose it has a reduced path
(u0, i1 . . . , in, un). Let Aj be a formula true at uj and false at all the
um differing from uj . Then in MLdk for any j uj � Aj , and uj+1 �
Aj+1 ∧ ¬Aj−1. It follows that u0 � ¬Rdi1...in(A0, . . . , An). At the same time
Ldk ` Rdi1...in(A0, . . . , An) contradicting the Canonical model theorem 2.15.
Therefore d(FLdk) < n, and thus L is weakly canonical by Proposition 4.2.

Theorem 4.4 Every logic K.tr +Rdn is locally tabular.

Proof. As we have just proved, the weak canonical frames are of reduced
depth < n. So by Lemma 2.13, every cone M ′ in a weak canonical model can
be unravelled into a model M over an r-temporal tree of height < n.

It remains to show that the canonical filtration of M (which coincides with
M ′ by Lemma 2.31) is finite. We do this again by an appropriate stratification.

Let Ri, i = ±1, . . . ± r, be the accessibility relations in M . For a point
x ∈ M (which is not a root) let x− be its predecessor in the tree, R•i (x) :=
Ri(x)− {x−}. For x, y ∈M we put

x ≈ y iff ∀i ∈ {±1, . . . ,±r}(x−Rix⇔ y−Riy).

For x, y ∈M we define x ≡n y by induction: x ≡0 y is the same as above;
x ≡n+1 y iff

x ≡n y & x ≈ y & x− ≡n y
− & ∀i (R•i (x)/ ≡n) = (R•i (y)/ ≡n).

Lemma 4.5 x ≡n y implies x ∼n y

Proof. By induction. For the induction step: suppose the claim holds for n
and x ≡n+1 y; consider a formula 3iA of depth (n+1). If x � 3iA, then z � A
for some z ∈ Ri(x). Note that then there is z′ ∈ Ri(y) such that z ≡n z

′. In
fact, if xR•i z, this follows from (R•i (x)/ ≡n) = (R•i (y)/ ≡n). If xRiz = x−,
then x ≈ y implies yRiy

−; since x− ≡n y
−, we can take z′ = y−.

Thus we have z′ � A, y � 3iA.
The proof for 3−iA is similar.

d(x) denotes the depth and h(x) the height of a point x in the tree M (more
precisely, in its pattern).
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Lemma 4.6 If h(x) = h(y), max(d(x), d(y)) ≤ n, x ≡n y, x ≈ y and x− ≡n

y−, then x ≡n+1 y.

Proof. By induction on k := max(d(x), d(y)). The case k = 0 is obvious.
Suppose the claim holds for k, and max(d(x), d(y)) = k + 1. To show that

x ≡n+1 y, we have to check (R•i (x)/ ≡n) = (R•i (y)/ ≡n).
First suppose n > 0. If xR•i z, then d(z) < d(x) and there exists z′ ∈ R•i (y)

such that z ≡n−1 z′ (since x ≡n y). Then max(d(z), d(z′)) ≤ k, so by IH,
z ≡n z′ (note that z ≈ z′, since z− = x, z′− = y, xRiz, yRiz

′). Thus
(R•i (x)/ ≡n) ⊆ (R•i (y)/ ≡n); and the converse holds by symmetry.

Now suppose n = 0, i.e., d(x) = d(y) = 0. Then R•i (x) = R•i (y) = ∅, and
we readily obtain x ≡1 y.

Next we define x−k as the k − th predecessor of x (and x−0 = x). For x, y
of the same height h put

x ≈+ y iff ∀m < h(x−m ≈ y−m & x−m ≡r y
−m)

Lemma 4.7 If x ≈+ y, then x ≡Ψ y.

Proof. By induction on h. If h = 0, then we have the root x = y.
Suppose the claim holds for h− 1. By induction we prove that x ≡n y for

n ≥ r. The base is given. Supposing x ≡n y let us check x ≡n+1 y.
In fact, since x ≈+ y, we have x ≈ y and x− ≡r y

−. Hence x− ≡n y
− by

the IH of the main induction (on h). Therefore x ≡n+1 y by Lemma 4.6.

Since the height of M is finite, Lemma 4.7 implies the finiteness of M ′.

5 Conclusion

The method developed in this paper can probably be modified for different
kinds of logics: intuitionistic, intuitionistic modal and maybe others. There
are more applications within modal logic as well; for example, theorems 3.7,
3.13 can be extended to the temporal case. We hope to publish further results
in the sequel.

The study of locally tabular logics can be made within a general context
of locally finite varieties of algebras. Cf. [1], where in particular, an algebraic
proof of Segerberg’s theorem is proposed. It is likely that the results of the
present paper can also be proved using the technique from [1].

The paper [2] proves other interesting results on local tabularity using an
algebraic technique; in particular, it shows that every proper extension of S52

is locally tabular. Our model-theoretic method is probably applicable to this
case as well, but this not so obvious.

I would like to thank the anonymous referees for useful comments and ref-
erences.
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