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Abstract. Lexical ontologies cluster words by categories. Rarely they
provide information about the inner relationships between words in a
single category, particularly the order relation. We discuss the human
perception of order among members of a single semantic category and
introduce a novel computational method, Word Sequences, that arranges
words by a commonly perceived order. We use proximity-search to ac-
quire properties of order from the English webpages. The effectiveness
of the proposed method is verified in a preliminary experimental set-
tings against orders provided by human subjects. The method might be
applied for enrichment of existing ontologies with order relation, and
might be used for planning tasks, recommendation systems and second
language acquisition purposes.
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1 Introduction

Cognitive Linguistics provides a large body of research on categorization [1].
Many categories or lexical sets do not have a particular order among their mem-
bers. Others are commonly perceived as ordered. Days of week, for instance,
is a lexical set commonly ordered as Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday in English.

Lexical ontologies, such as WordNet [2] represent information on lexical re-
lations, however, they do not provide order information among each category’s
members, such as co-hyponyms. We propose a method to enhance the existing
relationships, by order information.

What is “commonly perceived” is rather vague. For the purpose of this study
we approximated this notion by collection of sequences that seemed “common” to
the authors of this paper and three additional human subjects. We approximate
“common” by gathering the knowledge from the Web that averages out and
emphasizes the common human beliefs about the world.

The proposed method orders a given set of words as illustrated in the schematic
in Fig. 1. It is based on the observation that words that are part of common
sequences tend to appear sequentially in texts (e.g. one tends to appear before
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three in human expression). We extract the information about the appearance
of the words by utilizing statistical properties of the partial orders of the terms
of the corpus’ documents, in particular, document frequency (df).

In many cases only partial ordering of a sequence is available from a single
resource. Sometimes, the full sequence information available is misleading when
it is biased to particular pages. While most of the pages lack the total order
information, but do have partial. For this reason, we estimate the total order of
terms from partial orders.

In the following subsections we discuss the varieties of existing lexical se-
quences and provide an overview of possible applications of the proposed method.
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Fig. 1. Proposed sequence ordering method

1.1 Sequence Types

Some words are typically ordered by a certain semantic feature. Consider the
order by the time feature past, present, future and breakfast,lunch,dinner,supper,
or the dimensional feature line, circle, sphere. Some words are ordered by an
arbitrary parameter, such as the lexicographic order. Some words are ordered
compositionally, from the most general term to the most specific one, or vice
versa, as in universe, galaxy, solar system, planet earth. Some sequences are well
defined, consider winter, spring, summer, autumn, while others are much more
fuzzy, as in one, couple, few, several, many, lots.

The differences in the types of sequences may affect the extraction results
and require an extensive research. Also, some items may be ordered differently
in different domains. In this study, we try to extract the most salient order of
any type, leaving the differences for later investigation.

1.2 Applications

Having a computational method that will sort given lexical sets by commonly-
perceived order will be beneficial for recommendation systems, planning appli-
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cations, First and Second Language Acquisition, and for cognitive research in
general.

A possible use is in recommendation systems. Content-based recommenda-
tion systems [3], [4], [5] attempt to predict user’s preferences for items based on
their descriptions. Which restaurant should the system recommend to users from
reviews that include horrible, edible, good, delicious? Which teacher should it
choose, incompetent, adequate, skilful, or masterful? What should it learn from
the clue-words loath, dislike, like, fond, love?

Planning tasks deal with sorting of actions by the order of their performance
[6], [7]. Machine, or a robot that constructs a plan for basic human actions, may
use an automatic method to extract the order that is a matter of common sense
for people. For instance, the rough plan for baking a pie will comprise the stages
of washing the ingredients, cutting them, baking them and serving the pie. Our
method approximates the typical order of the words as wash, cut, bake, serve,
and could assist in knowledge base construction for planning tasks.

A method for extraction of the common order might serve as a textbook
authoring tool for teachers, and as an exploratory device for students. Several
language textbooks for children and beginner second language learners organize
vocabulary in lexical sets [8]. One of the tasks that is commonly used is ordering
actions or words in the new language. For instance, New English File Elementary
textbook [9] provides the following exercise for students.

Example 1. What’s the next word? Example: one, two, three

1. ten, twenty,
2. Monday, Tuesday,
3. July, August,
4. spring, summer,

Combination with WordSets for SLA WordSets [10] method builds lexical
sets suitable for language learners. Given several input example words, such as
Monday and Tuesday, it will provide the user with a set of words so that:

– semantically similar to examples he knows. For instance, January is not a
good output word, since it is not a day of week.

– similar to the given examples by their level of typicality of usage. Both Mon-
day and Tuesday are very basic and prototypical words, and so is Saturday,
but not Sabbath.

The filtering provided by WordSets protects the learners from receiving redun-
dant information, when they search for words similar to the examples they al-
ready know. It may also provide a useful extension for a dictionary or serve
textbooks authors allowing them to extract lexical sets, suitable for learners
level.

Consider a learner that knows the words Monday and Sunday. The combined
method will provide the learner with similar words that are from the same con-
ceptual category of days of week, omitting such non-typical words as Sabbath
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that will overwhelm the learner with unneeded information. The method for or-
dering these words will suggest the user that these words are typically ordered
as Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday. Combi-
nation of the two methods will provide further enhancement for thesauri and
textbook authoring, for exercises such as in Example 1.

2 Related Work

Much work in Computational Linguistics explores lexical relatedness between
words, clustering of words or concepts by shared meaning, and so forth. Some
methods [11] extract the similarity information from high-quality ontologies con-
structed manually by experts, such as WordNet [2]. Others exploit various com-
putational techniques to measure similarity in a large corpus, such as the Web
[12]. Weeds and Weir [13] provide an excellent survey on distributional similar-
ity techniques. Some works aim to distinguish a specific relation between words,
hyponym-hypernym relation, being particularly popular [14]. However, we are
not aware of studies that extract or represent the relation of order among similar
words, or members in a cluster.

The similarity and clustering approaches in their current state are not suit-
able for the task of ordering as shown by our evaluation in section 4.2. These
approaches are complementary to our work, in a sense, that we add directionality
to the undirected lexical sets that may be acquired using one of them.

Inkpen and Hirst [15] introduce a method to acquire information about the
differences among sets of near-synonyms, such as error, mistake, slip and blunt.
They present a pattern-based approach to gather detailed information on the
differences among synonyms from a dictionary. Their approach is relevant to
our work and its incorporation may be useful in our future work. Our work is
different from theirs in that we focus on the order relation between any given
similar words.

Recent works such as [12] show the advantages of using document frequency
measure provided by most of the search engines to measure similarity between
two words. We also use df , but extract the commonly perceived order relation
among given words.

3 Proposed Approach

We are looking for a sequence S of terms as {ti}ni=1 to maximize a relation
R that gives the highest value to the most probable sequence. We formulate
the problem in terms of graph theory. It is equivalent to a Hamiltonian path
problem [16]. Let terms {ti}ni=1 = {vi}ni=1 = T = V be the vertices in the
graph G = (V,E). The weight of an arbitrary edge (vj , vk) = ej,k ∈ E, where
vj , vk ∈ V and vj 6= vk is defined by a score function as R(ej,k) = R(vj , vk). In
graph G there is an edge between every two vertices ∀vj ,vk

∃(vj , vk). The path
(sequence) S is defined as the set of edges that connects terms in the desired
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order. The goal is to find the sequence S such that the path score is maximized,
i.e. arg maxS R(S) =

∏
e∈S R(e) .

3.1 Implementation

Modern search engines provide implicit or explicit proximity search capability.
In our method, we assume the availability of proximity search; in particular, we
use the operator roughly equivalent to FollowedBy(term1, term2). Yahoo [17] and
Google [18] search engines, each in a slightly different manner provide the binary
wildcard (∗) operator to represent up to two words between items. Although,
this method is extendable to any of the search engines that provide proximity
search capability, in this paper we present experiments conducted with Yahoo.
We calculate the probability of occurrence of “tj ∗ tk” as

P (“tj ∗ tk”) =
df(“tj ∗ tk”)
|D|

(1)

where |D| is the total number of pages indexed by the search engine in use; and
df(“tj ∗ tk”) is the number of the documents that contain “tj ∗ tk” in its text.

3.2 Sequence Score Estimation

In this section we define a method that assigns a score to the sequence of terms S.
We calculate the score of the sequence as the aggregation of its pair wise relations.
The simplest choices to aggregate relations are sum or product operators. Using
the product as the aggregation operator allows us to penalize sequences that
contain weak relations, resulting in more stable sequences scored higher, than
by sum aggregator, as shown in the example in Fig. 2. Therefore, we define the
sequence score as R(S) =

∏
e∈S R(e) .

va

vb

vc

vd

1.0 1.0

2.0 0.4

scoreprod(R(va, vb), R(vb, vd) = 1 > scoreprod(R(va, vc), R(vc, vd) = 0.8
scoresum(R(va, vb), R(vb, vd) = 2 < scoresum(R(va, vc), R(vc, vd) = 2.4

Fig. 2. Illustration of stability preference by product aggregation
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3.3 Optimization

In the task of obtaining term ordering, efficiency is an important issue. If all the
permutations are evaluated, time complexity of the algorithm is O(n!), equiva-
lent to the NP-Complete Asymmetric Travel Salesman Problem (ATSP). Hence,
the implementation of the task presents a trade-off among availability of infor-
mation, precision, and efficiency. Tractable methods for approximating order are
described in the following subsections.

Time Complexity Optimization (TCO) In order to approximate the order
in a feasible manner, given a sequence of terms to order, we sort them using one
of the available sorting algorithms. Standard sort algorithms, such as quick-sort
are based on O(n log n) comparisons between pairs. For a pair of terms (tj , tk),
if P (“tj ∗ tk”) is bigger than P (“tk ∗ tj”) we assume that the term tj tends
to precede the term tk and return tj < tk for the sorting algorithm, and vice
versa. The efficiency of this approach is O(n2) in the worst case. This approach
is equivalent to a greedy solution of ATSP, and may not be optimal in terms of
precision. Therefore, we present an extension to this approach in section 3.3.

Precision Optimization (PO) In order to improve the precision of the re-
sults acquired by the time-complexity optimization, once the sorted sequence is
acquired, we use it as the heuristic to check all the permutations that are within
a single transposition of neighboring terms in it. Due to the many times unclear
ascending or descending fashion of a given sequence, the inverse transposition
of the sorted sequence and all its permutations within a single transposition are
tested. The permutations that are acquired using the described heuristics are
sorted by their score as described in section 3.2. The procedure may be illus-
trated by the following example. Given a lexical set stand, walk, run, we sort it
and acquire additional permutations using the sorted result as heuristics.

1. run, stand, walk - acquired by the sorting procedure
2. stand,run, walk - stand and run transposed
3. run, walk, stand - walk and stand transposed
4. walk, stand, run - inverse transposition
5. stand, walk, run - stand and walk transposed after inversion
6. walk, run, stand - run and stand transposed after inversion

We acquire the information about the document frequency of pairs from the
Web. The total amount of pairs is n ∗ (n− 1), for n as number of members in a
set.

P (“stand ∗ walk”)1 = df (“stand * walk”)
|D| = 300,000

10×109 = 3× 10−5

1 The df numbers provided here may change as they are dependent on the index state
of the search engine on a certain day. In this example they are true for April 26,
2007
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P (“walk ∗ stand”) = 1.26× 10−5

P (“stand ∗ run”) = 4.69× 10−6

P (“run ∗ stand”) = 1.16× 10−5

P (“walk ∗ run”) = 7.86× 10−5

P (“run ∗ walk”) = 8.75× 10−5

The acquired sequences are ranked according to their scores as follows.

1. run, walk, stand - 1.10× 10−9

2. stand, walk, run - 2.37× 10−9

3. run, stand, walk - 3.48× 10−10

4. stand, run, walk - 4.10× 10−10

5. walk, stand, run - 5.91× 10−11

6. walk, run, stand - 9.20× 10−11

The ranking shows how likely is each order. The reverse sequence run,walk, stand
was ranked as the top-sequence, i.e. the most probable. Second top-ranked is the
intended sequence stand, walk, run. In the example above, there were only 3
members in the sequence, so all the possible permutations were examined. How-
ever, for any given n, this approach will examine no more than n2 sequences,
and request information about n!

(n−2)! pairs, keeping it computationally feasible.

3.4 Straightforward Approach (SA)

Our task is construction of total order from partial order information. In order
to evaluate total order acquisition from total order information, we define the
straightforward approach (SA) in this section.

In SA we check the df of the query “t1 ∗ t2 ∗ ... ∗ tn”. To keep the polynomial
runtime of the procedure, we extract the df for the intended ordered sequence,
and all the other orders that were acquired as the result of the precision op-
timization (section 3.3). In the best case the correctly ordered sequence or its
inverse transposition receives the highest value of df .

4 Evaluation

The evaluation presented in this paper is preliminary. The test set for the experi-
ments comprised 73 sequences of words that were collected in the following man-
ner. Three computer science students were the subjects of sequences collection.
Two of them were native English speakers. Each one of the subjects suggested
some sequences and verifies all the sequences by others. The sequences that were
not unanimously agreed upon were removed from the test set, or changed to sat-
isfy all the subjects. All the sequences that appear in this paper as examples are
taken from that test set.

There is no previous study on automatic sorting of sets that simulates human
way of sorting. Therefore, baseline for evaluation is difficult to determine. We
show good precision results that are superior to an undirectional approach of
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lexical similarity measuring of Normalized Google Distance (NGD) as described
in 4.2 and to a straightforward approach of checking the document frequency
of the sequence as a proximity-search query. The comparative results of NGD,
the proposed straightforward approach (SA), the proposed time-complexity op-
timization (TCO), and the proposed precision optimization (PO) are shown in
Table 1.

Table 1. Comparison of methods for commonly perceived order extraction

NGD SA TCO PO

Avg. length of correct top-sequences 3.3 4.3 5.5 5.1
Correctly top-ranked sequences 7 26 29 23

(9.5%) (35.6%) (39.7%) (31.5%)
Kendall Tau for the top-sequence 0.39 0.42 0.63 0.66

NGD: Normalized Google Distance
SA: Straightforward Approach
TCO: Time-Complexity Optimization
PO: Precision Optimization

4.1 Evaluation Method

To evaluate the quality of the acquired sequences in comparison with the se-
quences proposed by the human subjects, we use Kendall Tau measure [19]
normalized to reward the inverse transpositions equally to the original order.
Using Kendall Tau, we do not only judge whether the acquired order was right
or wrong, but also approximate the quality of the order by a range of [0, 1]. 1
stands for identical sequences or for the inversely transposed sequence, and 0 for
the non-correlated sequences. To evaluate an order acquired by our approach, we
measure the distance between the expected correct sequence s1 and the acquired
order of the same sequence s2 by equation (2).

KT (s1, s2) = abs(
4|(i, j) : i < j, s1(i) < s1(j) ∧ s2(i) > s2(j)|

n(n− 1)
)− 1 (2)

4.2 Comparison with Lexical Similarity Measures

In this section we examine performance of the lexical similarity measures to
the task of term ordering. Lexical similarity approaches allow to group terms
together, however ordering of the terms is not intended, and not suited for ob-
taining term ordering as confirmed by our evaluation results. We use Normalized
Google Distance (NGD) [12] since it allows to determine the relation between
any two terms. We chose it for comparison, because it also uses df in Web search
engines to extract similarity information.

For each ordered sequence acquired by precision optimization, we calculated
the product of the NGD values among its pairs, similarly to the product we
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compute using our method. Then we resorted the sequences, ranking them pro-
portionally to the products of their NGD values. We calculated Kendall Tau
distance between the top-sequence in terms of NGD values product and the
expected sequence for each lexical set in our test set.

4.3 Comparison with Straightforward Approach

In the Straightforward Approach, out of 73 sequences, 28 sequences, 38% had
df = 0. Further 20% had df < 50 . The quality of the order acquired by this
approach is impressively high, Kendall-Tau of 0.96 for sequences that were scored
as top with df > 50. However, even in a huge corpus, not all the information
is available, and in more than 50% of the cases it was difficult to acquire all
the needed information from a single webpage for all the top-sequences. With
df < 50 sequences , Kendall-Tau for top scored sequences was merely 0.42.

To illustrate usefulness of partial-information based methods, consider the
query “wash ∗ cut ∗ bake ∗ serve” that represents rough order of actions for
baking a dish. The query results in df = 0 . Its inverse transposition as well as
other transpositions, all resulted in df = 0. However, using the proposed method
of combining the partial information using the precision optimization returned
the expected wash, cut, bake, serve as the top result.

4.4 Sequence Types Analysis

The sequences were manually categorized (see 1.1). The highest accuracy for the
proposed method was achieved within the largest group of 22 sequences ordered
by time. 18 of them (82%) were sorted correctly by the proposed method. Nu-
merical sequences, such as first, second, ..., tenth and spatial sequences, such
as Sun, Mercury, Venus, Mars also showed good results. 7 sequences were cat-
egorized in each group and the proposed method sorted 5 (71%) correctly in
each. Compositionally ordered sequences, however, imposed a difficulty for our
method, out of 7 collected sequences that were categorized as such, none were or-
dered correctly. The high quality for time-based sequences might be explained by
tendency of terms to appear chronologically in texts. Compositional sequences
or meronym-holonym chains that might not be as easy to determine by order of
appearance. We plan to investigate the characteristics of various sequence types
further in the future.

5 Discussion

We introduced common word sequences and the applications of their automatic
extraction in planning, education, and recommendation systems. Based on the
observation that words that are part of a sequence, tend to appear after each
other in text, we used the available proximity search functionality to extract
order information. In some cases words may be mentioned in a different order,



10 Commonly Perceived Order within a Category

however, these biases are averaged out by the huge size of the Web. The re-
sults were better than a baseline of NGD. They might have been affected by
inaccuracies in the proximity search functionality. Experiments with various im-
plementations of proximity search are needed.

There are several trade-offs that should be taken into account when finding
the optimal sequence based on probabilities. Examination of all possible permu-
tations leads to O(n!) time complexity that is hard in terms of computation for
sequences of as small as 7 items, and unfeasible for relatively long sequences.
We show that we can keep fairly good precision, performing the ordering task
heuristically with only a polynomial time complexity.

Another trade-off to consider is the availability of information as opposed to
precision. As we have shown using the straightforward method, its precision was
superb, but the df information was available only in 50% of the cases. Using
the partial information such as the ordering between pairs of words increases
the recall. The proposed method provides the lexical equivalent of total order
construction given partial order information.

Word Sequences provides sorting of a given sequence of items. We plan to
expand its functionality to extract probable sequence members, given only its
start and end-points. Items similar to the start and end-points might be extracted
from ontology such as WordNet, or by combination with WordSets method that
will not only extract similar members from an appropriate lexical set, but also
provide the user with differentiating information between more useful and more
obscure words for learners.
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