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Abstract

Arnold Sommerfeld introduced the fine-structure constant that determines the strength
of the electromagnetic interaction. Following Sommerfeld, Wolfgang Pauli left several
clues to calculating the fine-structure constant with his research on Johannes Kepler’s
view of nature and Pythagorean geometry. The Laplace limit of Kepler’s equation
in classical mechanics, the Bohr-Sommerfeld model of the hydrogen atom and Julian
Schwinger’s research enable a calculation of the electron magnetic moment anomaly.
Considerations of fundamental lengths such as the charge radius of the proton and mass
ratios suggest some further foundational interpretations of quantum electrodynamics.

1. Introduction

In addition to introducing the fine-structure constant [1]-[5], Arnold Sommerfeld added
elliptic orbits to Bohr’s atomic model deriving the Bohr-Sommerfeld model [6, 7]. Then
Wolfgang Pauli was influenced by Sommerfeld’s search for the Platonic connections that
were implied by the mystery of the fine-structure constant [2, 8, 9]. As the fine-structure
constant determines the electromagnetic strength its theoretical origin was for Pauli
a key unsolved physical problem, also considered especially significant by Max Born,
Richard Feynman and many other physicists [10].

The fine-structure constant, alpha, has a variety of physical interpretations from which
various determinations have been made; atom interferometry and Bloch oscillations, the
neutron Compton wavelength measurement, AC Josephson effect, quantum Hall effect
in condensed matter physics [11], hydrogen and muonium hyperfine structure, precision
measurements of helium fine-structure, absorption of light in graphene [12], also the topo-
logical phenomena in condensed matter physics [13], the relative optical transparency of
a plasmonic system [14], elementary particle lifetimes [15] and the anomalous magnetic
moment of the electron in quantum electrodynamics [16]. Slightly different values of
the fine-structure constant are found from different experimental measurements [17] and
finally there is also the question of its variation from the subatomic to the cosmological
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scale [18]. The fine-structure constant is viewed in this work from both a mathematical
and a physical perspective, as Hemmo and Hagar maintain that “... in current spacetime
physics there can be no dynamical derivation of primitive geometrical notions such as
length.” In several cases, “... geometrical notions are assumed rather than derived.” [19].

Max Born considered the idea of a fundamental length to be associated with the
mystery of the fine-structure constant, see Eq. (25) [20]. The “primacy of geometry” is a
mathematical assumption made in the work that follows, with the aim of progress toward
additional physical understanding of the fine-structure constant [21]-[23]. Relevant to
this, Wolfgang Pauli’s World Clock involved basic geometric constructions depicting the
cycles of time. His World Clock was likened to Kepler’s first geometrical ordering of
the solar system found in ancient geometry [8] and related to geometric constructions
involving the Pythagorean right triangle [24].

2. Calculating the fine-structure constant

The fine-structure constant was proposed by Sommerfeld as the ratio of the speed of the
electron in the ground state of Bohr’s hydrogen atom model to the speed of light [5]:

α = v/c = e2/~c, (1)

with the elementary charge e, Planck’s constant h = 2π~ and the speed of light c in cgs
units; where the Coulomb constant or the permittivity factor (found in the fine-structure
formula with SI units) is one and dimensionless.

An interpretation of the fine-structure constant related to Wolfgang Pauli’s World
Clock geometry is the standard perspective of action, product of energy and time. Two
elementary particles separated by a distance r have an electrostatic energy of e2/r and
the time for light to travel a distance r is r/c, so the action is (e2/r) × (r/c) = e2/c.
Since the unit of quantum action for light is ~ (from E = ~ω), the ratio of the electrical
action to the quantum action is then e2/~c = α.

The fine structure constant is in the formula for the energy levels of the hydrogen
atom first given by Sommerfeld. Before the discovery of the Schrödinger equation,
Pauli applied the elliptical eccentricity invariant from the classical Kepler problem with
the “Pauli vector” (Laplace–Runge–Lenz vector) in calculating the hydrogen spectrum
[25]. In the alternative Rydberg formula for the energy levels of the hydrogen atom
En = −hcR∞/n2 with the Rydberg constant R∞ = α2/2λe, having the fine-structure
constant and Compton wavelength of the electron.

Julian Schwinger was noted for his introduction of α/2π in the corrective calculation
for the anomalous magnetic moment of the electron and his zeta function regularization
in the renormalization effort [26]. α/2π is equal to the classical electron radius divided
by its Compton wavelength, see Eq. (24) discussion.

The most recent value of the inverse fine-structure constant determined by theoretical
and experimental work: α−1 = 137.035 999 173 (35) in research by T. Aoyama, et al.
“Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine
Structure Constant,” [27]. Another form of calculation involves traditional Pythagorean
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triangles [24] together with the prime constant [28], described as a binary expansion
corresponding to an indicator function for the set of prime numbers. Calculation of the
inverse fine-structure constant as an approximate derivation from prime number theory:

α−1 ≃ 157− 337ρ/7, (2)

with an approximate value of α−1 ≃ 137.035 999 168, with three prime numbers and
the prime constant. The square of the diagonal of a “prime constant rectangle” is
1 + ρ2 ≃ κ/e2 ≃ 5/3

√
2. The polygon circumscribing constant κ is the reciprocal of the

Kepler–Bouwkamp constant [29] related to “Pauli’s triangle” with sides approximately
proportional to 1, ϕ,

√
ϕ
√
5 with the golden ratio ϕ = (1 +

√
5)/2 [30]. 180 − 23 = 157

and 360 − 23 = 337. 23 + 37 = 60 and 60/ϕ ≃ 37 [24]. The triangles 85, 132, 157 and
175, 288, 337 are primitive Pythagorean triples. Defining ρ for p(k) as the k-th prime:

ρ =

∞∑
k=1

2−p(k) ≃ ϕ
√
5/κ, (3)

with the prime constant ρ ≃ 0.414 682 509 851 111 and κ again as a reciprocal of the
Kepler–Bouwkamp constant [29]. Also, ρ ≃

√
2 − 1, ϕ

√
5 ≃ 1 + ϕ2 = 3ϕ3 − 5ϕ2 + 4 =

(5 +
√
5)/2 ≃ 3/2ρ and

√
5 = 2 cosh(lnϕ). Additionally, sinα−1 ≃ 504/85κ ≈ 2π/

√
85.

sinα−1 ≃ 7!/(713 + 137)κ, (4)

with the approximate value of α−1 ≃ 137.035 999 168, same value as determined in Eq. (2)
from above. Plato’s favorite symbolic number 5040 = 7!. The polygon circumscribing
constant, the reciprocal of the Kepler–Bouwkamp constant [29], is also formulated as
a converging series involving the Riemann zeta function ζ(s) found in the perturbative
determination of the electron magnetic moment anomaly from quantum electrodynamics.

κ =

∞∏
n=3

sec(π
n
) ≃ ϕ

√
5/ρ. (5)

Polygon circumscribing constant κ ≃ 8.700 036 625 208. Again approximating, κ ≃ 14/ϕ
and κ−1 ≃ ρ2λ, where λ is the Laplace limit of Kepler’s equation, defined in Eq. (15).

ϕ = (1 +
√
5)/2 = 2 cos(π/5) ≃ ρκ/

√
5, (6)

with the approximate value of ϕ ≃ 1.618 033 988 749 ≃
√
2πρ and sinα−1 ≃ 4/ sinh2 ϕ.

Also,
√
ρk ≃ 5/ϕ2 ≃ 6/π ≃ 3

√
7, which is the cube-sphere ratio (also the approximate

diagonal of a golden rectangle with sides 1 and ϕ, see references in [24]) and ρκ ≃ 3ζ(3) ≃
πR ≃ (π/2) csc(π/7) with heptagon radius R and Apéry’s constant ζ(3) for the value of
the Riemann zeta function ζ(s), generalization of the harmonic series. Kepler showed
the golden ratio ϕ [30] as the limit of the ratio of consecutive Fibonacci numbers [31].

sinα−1 ≃ cosh ρ

ˆ ∞

0
cosx2dx ≃ (κ/8)

√
π/8, (7)

with the Fresnel integral [32] from optical physics. From hyperbolic [33] and heptagon
geometry [24], see the discussion below of Eq. (12), cosh ρ = cos iρ ≃ κ/8 ≃ sec(π/7).
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3. Euler’s constant and Kepler’s equation

The Euler-Mascheroni constant is γ, also known as Euler’s constant [34]. The numerical
value of Euler’s constant γ ≃ 0.577 215 664 901 532. With the harmonic number Hn:

γ = lim
n→∞

(Hn − lnn) =

∞∑
k=2

(−1)kζ(k)/k ≃ ρκ/2π. (8)

Related approximations include γ ≃ sechR ≃ 4/7 and D = 2R = csc(π/7) ≃ κ/πζ(3) ≃
S/

√
2 ≃ 4/

√
3, which is the approximate diameter of the circumscribing circle of the

regular heptagon with side equal to one; also Apéry’s constant again from the Riemann
zeta function ζ(s) and the silver constant S ≃ 3.247 [35] basic to the geometry of the
regular heptagon. The heptagon radius is R ≃ 2γ ≃ cot2 α−1 and 2ρκ ≃ π csc(π/7).

From optical physics, α/2π ≃ exp(−πϕn) where n is the index of refraction for water.
Snell’s Law: n1 sin θ1 = n2 sin θ2, where θ1 is the angle between the ray and the surface
normal in the first medium, θ2 is the angle between the ray and the surface normal in
the second medium and n1 and n2 are indices of refraction (n1 ≃ 1 in a near vacuum and
n2 > 1 in a transparent substance). With angle of incidence 45◦ the angle of refraction
is 32◦ (Pauli’s World Clock [24]) for water and n2 ≃ 1.33 ≃ R2 ≃

√
7/2 ≃ 1/ρ

√
S ≃

γ csc(π/7). Also approximating, cscα−1 ≃
√
ϕn, S ≃ 1 +

√
πϕ and ϕπ2 ≃ S ln(α−1).

sinα−1 ≃ 2γ sin(π/5) ≃ 2/γπϕ, (9)

relating the golden ratio and inverse fine-structure constant. Other approximations,
sinα−1 ≃ π/2D ≃ (π − 1)/π ≃ γ sec 32◦. Also, 2 cos(π/7) =

√
S and csc(2π/7) ≃

√
ϕ.

sinα−1 ≃
√
2 tan(π/7) ≃ 1/2γ

√
ϕ. (10)

The eccentricity of a golden ellipse [36] is ε = 1/
√
ϕ ≃ cscα−1 − sinα−1 ≈ µλ, see

Eq. (14). The constant µ is the real fixed point of the hyperbolic cotangent and λ is
the Laplace limit of Kepler’s equation [37]. Kepler’s equation for calculating orbits:
M = E − ε sinE, where M is the mean anomaly, E is the eccentric anomaly and
ε is the eccentricity [38]-[42]. With suggestive elliptic connections from the study of
polarized light, Tse and MacDonald [43], in their theory of “magneto-optical Faraday
and Kerr effects of thin topological insulator films,” find a “Faraday angle equal to the
fine structure constant” and an approximate π/2 Kerr rotation [44, 45]. If the eccentricity
ε = λ, which is the Laplace limit of Kepler’s equation, and E = tan−1(α−1) ≃ π/2 in
the parametric form of Kepler’s equation with radians; then the mean anomaly M is:

M = E − λ sinE ≃ Eγ ≃ 2π/7. (11)

M ≃
√
S/2 ≃ 2

√
2/π ≃ πD/8 ≃ cos(π/7) and the sec(2π/7) ≃ ϕ [24]. From Kepler’s

triangle (1,
√
ϕ, ϕ) and the heptagon, tan(2π/7) ≃

√
π/2 and tan−1(

√
ϕ) is an approx-

imate heptagon angle 2π/7, with
√
ϕ ≃ 4/π. The diameter of the circumscribing sphere

of the regular dodecahedron with side equal to one is ρκ ≃ 2πγ. Also, the outer radius
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of the dodecahedron (
√
3 +

√
15)/4 ≃ γ/ρ and cscα−1 ≃ R

√
ϕ. The square root of phi

is described by the dodecahedron proportions. The silver constant from the heptagon:

S = 2 + 2 cos(2π/7) = 4 cos2(π/7) ≃ πϕ/eγ. (12)

The regular heptagon is related to the origin of calculus, the cycloid curve, the least
action principle and the squaring of the circle; see the historical references in [24]. Silver
constant S ≃ 2/λγϕ ≃ 2µ/γ

√
ϕ ≃

√
ϕ coth ρ ≃ cothπ−1 ≃

√
2D. The real fixed point

of the hyperbolic cotangent is µ and γ ≃ µ/λπ [46], with the Laplace limit of Kepler’s
equation again, see Eq. (14). The cosh ρ ≃ sec(π/7) = 2/

√
S. In another reference

relating to relevant geometry Li, Ji and Cao discovered that Fibonacci spirals found on
conical patterns in nature can be effectively modeled as a least energy configuration [47].

4. Electron magnetic moment anomaly

In quantum electrodynamics the g-factor of the electron is represented in theory as a
series expansion in powers of α/2π, with the latest experimental value by the Gabrielse
Research Group: g/2 ≃ 1.001 159 652 180 73 (28) [48, 49]. Anomalous magnetic moment:

a−1
e = 2/(g − 2) ≃ 26(34− µ−1), (13)

approximating the value of ae ≃ 0.001 159 652 180 69 and the real fixed point of the
hyperbolic cotangent µ ≃ 1.199 678 640 255 773. 26/34 = 13/17 ≃ 2µ/π ≃ 2/ϕ2. 60/26 ≃
D, 60/34 ≃ 2/R. With g/2 again recalling the work of Schwinger and others [24, 26, 50].

µ = cothµ =
√

λ2 + 1 ≃ λ
√
S ≃ π/ϕ2. (14)

Laplace limit of Kepler’s equation λ ≃ 0.662 743 419 349 181 and “... the Laplace limit is
the maximum value of the eccentricity for which the series solution to Kepler’s equation
converges.” [37]. The sinα−1 ≈ µ−2, µ ≈ 12

√
κ, λ ≈ 12

√
α, α ≃ λ/µκ2 and µ ≃ κ/πD;

see the Pythagorean references in [24]. Also, µ/λ ≃
√
S and S ≃

√
2D. ϕ−2 ≃ γλ and

µ ≃ cosh(ϕ−1) ≃ cosh(π/5) ≃ 6/πϕ ≃ DS/2π, see Eq. (6) discussion. The cothx also
appears in the Brillouin function and the Langevin function, L(x) = cothx − x−1, in
the statistical mechanics of magnetic moments [51]. L(µ) ≃ R/π ≃ µ/S ≃ 1/e. R is the
radius of the regular heptagon with side equal to one. The golden rhombus has angles
similar to Pauli’s World Clock geometry. A golden rhombus of unit edge length has long
diagonal length 2ϕ/

√
ϕ
√
5 ≃ D2/π ≃

√
2µ ≃ (8/9)(6/π), with the squared-circle ratio.

λ = cschµ =
√
µ2 − 1 ≃ µ/

√
S ≃ 1/γϕ2, (15)

showing the Laplace limit of Kepler’s equation as the hyperbolic cosecant [52] of µ.
λ ≃ γR ≃ sinh(π/5) ≃ ρϕ ≃ γ cosh(1/

√
π). µ ≃ ζ(3) ≃ γ/ lnϕ ≃ π/ϕ2 ≃ πγλ ≃ ρκγ2 ≃

λ csc(π/7) and ρκ ≃ 2µ/λ. The 7/5 ratio, relevant to Pauli’s World Clock geometry, is
the approximate outer radius of the dodecahedron. The golden ratio, ϕ ≃ 7π/5e ≃ 5e/7µ
and µ ≃ S tanh(e/7) ≃ S/e, see Eq. (24) discussion. Also, the sinhϕ ≃ 5ϕf/7≃ 2µ and
ϕf is the reciprocal Fibonacci constant [53], see the parabolic constant following Eq. (24).
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The Laplace limit of Kepler’s equation and a 5th degree polynomial having coefficients
with a factor of 5 also gives another good approximation for the fine-structure constant:

α−1 ≃ ηπλ, where η is a root of (16)

x5 − 65x4 − 55x3 + 80x2 − 5x+ 40 = 0. (17)

The value for α−1 ≃ 137.035 999 168 and root η ≃ 65.817 195 651 9 for Eq. (16). The
eccentricity of a golden ellipse ε = 1/

√
ϕ ≃ sin(2π/7) ≈ µλ, see discussion of Eq. (10).

µ−1 ≃ 2ρ ≃ 2/
√
κλ and ρϕ ≈ λ. Also, λ−2 ≃ 1 +

√
ϕ ≃

√
πϕ ≃ ϕ2/R. With x = α/2π:

g/2 ≃ 1 + x− (ϕx/
√
2)2 + (x/γ)3 − (λx)4 + (ϕx)5, (18)

with alpha value from Eq. (2), g/2 ≃ 1.001 159 652 180 69. ϕ/
√
2 ≃ 3/L ≃ 3µ/π ≃ lnπ

where L is the lemniscate constant [54]. L ≃ π/µ ≃ 8
√
κ/9, the 8/9 ratio relates to

the classical construction of squaring the circle; see Eq. (14) discussion and references
in [24]. Also, λ ≃ 1/µ

√
ϕ. Eq. (18) involves a convergence of Julian Schwinger’s work

with Green’s functions [26]. Julian Schwinger introduced α/2π to the problem of the
anomalous magnetic moment of the electron in quantum electrodynamics [26]. In the
dodecahedron related to Pauli’s World Clock geometry, from the center to the mid-edge
the mid-radius equals ϕ2/2 = (3 +

√
5)/4 ≃ 34/26 ≃ πρ [55], see Eq. (6). The silver

constant S = 2 + 2 cos(2π/7) ≃ 1 +
√
πϕ ≃

√
2D ≃ 2L/ϕ ≃ 2 ln(πϕ) ≃ eµ. A golden

ellipse of unit length minor radius and major radius of length ϕ has an area equal to πϕ
[36] and the sinα−1 ≃ 6γ/πϕ with the cube-sphere ratio, see the discussion of Eq. (6).

cothα ≃ τ, where τ is a root of (19)

x4 − 137x3 − 6x2 − 98x+ 343 = 0, (20)

also gives the value for α−1 ≃ 137.035 999 168 with Eq. (19) and the value for τ ≃
137.038 431 610. The factor of 7 also appears as 2 × 72 = 98 and 73 = 343. Eq. (20)
represents a particular quartic plane curve, different combinations of the coefficients of
the general curve give rise to the lemniscate of Bernoulli. Gauss’s and Euler’s study of
the arc length of Bernoulli’s lemniscate, a polar curve having the general form of a toric
section, led to later work on elliptic functions. Some forms for Gauss’s constant [56]:

G = L/π =
2

π

ˆ 1

0
(1− x4)−

1
2dx =

ˆ ∞

0
(cosh(πx))−

1
2dx. (21)

Lemniscate constant L = πG ≃ 2.622 057 554 292 119 ≃ coshϕ and G ≃ 0.8346 is Gauss’s
constant, the reciprocal of the arithmetic-geometric mean of 1 and

√
2, the basis for

his exploration of the lemniscate function [54]. Gauss’s constant is also linked with
the beta function, the gamma function at argument 1/4 and Jacobi theta functions.
G−1 ≃ µ ≃ λ

√
S ≃ πϕ/3

√
2, see Eq. (14) above. The sinα−1 ≃ DiG. Di=

√
6/3, the

diameter of the inscribing sphere of the octahedron. The lemniscate, inverse curve of
the hyperbola with respect to its center, has the lemniscate constant L which functions
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like π does for the circle [54]. The lemniscate L ≃ Sϕ/2 ≃ coshϕ ≈ 1/γλ ≈ ϕ2. With
coefficients 3/L, Lλ, 5/L and S in place of ϕ/

√
2, 1/γ, λ and ϕ there is for x = α/2π:

g/2 ≃ 1 + x− (3x/L)2 + (Lλx)3 − (5x/L)4 + (Sx)5. (22)

With alpha value from Eq. (2), g/2 ≃ 1.001 159 652 180 69. Also, ρκ ≃ L+1, see Eq. (8).

5. Ratios of fundamental physics

Some fundamental mass ratios have approximations with hyperbolic functions. The 80.4
GeV W boson from electroweak theory and 125−126 GeV Higgs boson [57], mw/mH◦ ≃
ν/µ ≃ 2/π, see Eq. (28). The fixed point of the hyperbolic secant ν = sech ν, Eq. (27).
Higgs boson and the 136.5 GeV Higgs-like resonance [58], mH◦/mH∗ ≃ νµ ≃ 1/

√
µ. The

91.2 GeV Z boson from electroweak theory and Higgs boson, mz/mH◦ ≃ (λ+ 1/2)/ϕ.

mH◦/mz ≃ mt/mH◦ ≃ κ/2π. (23)

Again, κ is the reciprocal of the Kepler–Bouwkamp constant [29], see Eq. (5). Also,
the Higgs boson and 172.9 GeV top quark from quantum chromodynamics, mt/mH◦ ≃
πλ2 ≃

√
6/π ≃ γ/ρ ≃ 7/πϕ ≃

√
µϕ ≃ µR ≃ ρκ/ϕ2 ≃ 1+ϕ−2, see Eq. (6) discussion and

Eq. (8). The Weinberg angle of the electroweak interaction cos θW = mw/mz ≃
√
ϕ/µ2.

The proton/electron mass ratio [59]: mp/me ≈ exp(2πµ) and 2µ ≃ 2π/ϕ2 with the
golden angle in radians [60, 61]. mp/me ≃ exp(σπ)/α ≃ 1836.152 672 37 where σ ≃
0.826 072 743 917 8 is a root of 13x3 + 28x2 + 37x − 57. This is compared to the latest
determination of mp/me = 1836.152 672 45 (75) [59]. Also, σ ≈ µ−1 and σ2 ≈ sinα−1.
Suggesting a squared-circle for classical electron radius/charge radius of the proton [62]:

re/rp ≃ S sec(1/4). (24)

Radius re = αλe/2π ≃ 2.81794× 10−15m, where λe ≃ 2.4263× 10−12m is the Compton
wavelength of the electron. Eq. (24) gives rp ≃ 0.84089 fm and the latest experimental
result is rp ≃ 0.84087(39) fm [62]. The ratio re/rp ≃ πDS/7, πD is the circumference
of a regular heptagon with side equal to one and D = 2R. The ratio re/rp ≃ cothS−1 ≃
7µ/

√
2π ≃ π/

√
2λ ≃ λπϕ. Also, R ≃ L/

√
πϕ ≃ 5ϕ/7 ≃ π/e, another approximation

with Bernoulli’s lemniscate constant. Other suggestive numerical coincidences rp/re ≃
δs/5ϕ ≃ tanhS−1 ≃ tan2(1/2), where δs is the silver ratio [63]. δs = 1+

√
2 = cot(π/8) ≃

2µ and cosh(ln δs) =
√
2. The silver ratio is the inner diameter of a regular octagon with

side equal to one. The ln δs ≃
√
ϕ/µ2. The universal parabolic constant [64] P =√

2 + ln δs ≃ S/
√
2 and sinα−1 ≃ P/ϕf , where ϕf is the reciprocal Fibonacci constant

[53]. Also, ϕf ≃ λπϕ and ln(α−1) ≃ S
√
P . The ln δs is an inflection point of sechx, the

hyperbolic secant function [65], which is a special case of the Jacobi elliptic function.
The fundamental length gM is from the work of Mendel Sachs [66] on the spinor-

quaternion formulation for the wave function of the electron in hydrogen and prediction
for the Lamb shift of the hydrogen spectrum. Sachs presents another viewpoint on
the anomalous magnetic moment of the electron, developing a continuous field concept
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without assuming point charges and their problems with infinities. The explanation has
some correlations with the golden ratio geometry of Wolfgang Pauli’s World Clock [24].

gM/re ≃ 2πϕα. (25)

gM/λe ≃ ϕα2 and gM ≃ 2.087×10−16m. Also, gM/re ≃ 2π/85 and the sinα−1 ≈ 2π/
√
85.

The omega constant [67] is defined as Lambert W (1) [68, 69], the attractive fixed point
of e−x: W (1) = Ω = exp(−Ω) ≃ 0.567 ≃ 1/

√
π ≃ ϕ2/2D and 17/13 ≃ πρ ≃ ϕ2/2 ≃ DΩ.

Ω = exp(−Ω) ≃ sinh−1(µ/2). (26)

W (x), the Lambert W -function, is an analog of the golden ratio for exponentials as
exp[−W (1)] = W (1). The sinα−1 ≈ 6Ω/πϕ. The coshΩ ≃ λ/Ω and the csch ν ≃ µ,
where µ again is equal to the cothµ and ν is the real fixed point of the hyperbolic secant:

ν = sech ν ≃ 1/DΩ ≃ µ
√

ϕ/2. (27)

Again, csch ν ≃ µ and ν ≃ 13/17 ≃ δs/π ≃ 1−ζ(2)/7 ≃ 1/πρ ≃ 2/ϕ2 ≃ 0.765. With the
Weinberg angle of the electroweak interaction cos θW = mw/mz ≃ 1/2Ω ≃ λ/ν. From
Adamchik’s integral for the omega constant [67] the value is (1+Ω)−1 ≃ R/

√
S ≃ 0.638.

ν/µ ≃ (1 + Ω)−1 =

ˆ +∞

−∞
((ex − x)2 + π2)−1dx. (28)

Also, mw/mH◦ ≃ ν/µ ≃
√
ϕ/2 ≃ 2/π, an approximation with the golden ratio geometry.

From the Foundation Stone of classical harmonic theory, the alpha harmonic is equal
to the sum of the golden ratio harmonic and the omega constant harmonic, relating the
Greek Pythagorean form of the fine-structure constant to the golden ratio geometry [24].

6. Conclusion

From Arnold Sommerfeld’s introduction of the fine-structure constant and Wolfgang
Pauli’s search for an explanation, approximate values for the fine-structure constant
have been determined. With an extension of the Keplerian intuition regarding the fun-
damental geometry of basic polygons, conic sections and Platonic polyhedra included in
Wolfgang Pauli’s World Clock geometry; the mathematical and physical model for the
calculations is an alternative to accounting for individual contributions of the interac-
tions between field quanta and begins to address some of the questions raised by Richard
Feynman, Freeman Dyson, Paul Dirac and others about quantum electrodynamics [70].

The polygon circumscribing constant, reciprocal of the Kepler–Bouwkamp constant,
has interesting geometric connections with the torus topology relating the relativity of
Einstein with the geometry of classical and quantum mechanics. The nature of this
topology was pursued by Wolfgang Pauli and is suggested in the Keplerian paradigm of
Pythagorean harmonic proportions from ancient geometry [24]. Quantum mechanics is
thus found to be an approximation theory based on the classical mathematical problem
of squaring the circle, with all of its complex analogies and philosophical implications.
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