Skip to main content
Log in

Schwarzschild Black Hole Perturbed by a Force-Free Magnetic Field

  • Published:
Foundations of Physics Aims and scope Submit manuscript

“Space-time tells matter how to move; matter tells space-time how to curve”

John Archibald Wheeler

Abstract

We envisage a black hole perturbed by a force-free magnetic field (FFMF) outside and attempt to determine its structure. We suppose the metric that describes this black hole is of the static spherical type, that is Schwarzschild, and the energy–momentum tensor emanating from an FFMF source perturbs this background metric, in this regard one can imagine a magnetic accretion disk around the black hole. By solving the equations for such a configuration, we will show that in addition to modifying the diagonal elements of the background metric, we will also see the non-zeroing of the off-diagonal elements of the general metric, one of the immediate consequences of which will be a static to stationary transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. Aschwanden, M.J.: Physics of the Solar Corona. An Introduction. Praxis Publishing Ltd., Springer-Verlag, Chichester, Berlin (2004)

    Google Scholar 

  2. Chandrasekhar, S., Kendall, P.C.: On force-free magnetic fields. Astrophys. J. 126, 457C (1957)

    Article  ADS  MathSciNet  Google Scholar 

  3. Priest, E.: Magnetohydrodynamics of the Sun. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  4. Marsh, G.E.: Force-Free Magnetic Fields: Solutions, Topology and Applications. World Scientific Publishing Co., Pte. Ltd., Singapore (1996)

    Book  Google Scholar 

  5. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability, 1st edn. Courier Corporation 2013, New York (1961)

    MATH  Google Scholar 

  6. Akiyama, K. et al.: First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring Astrophys. J. Lett. 875, ( pp 17) (2019)

  7. Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. Mon. Notices R. Astron. Soc. 179, 433 (1977)

    Article  ADS  Google Scholar 

  8. MacDonald, D., Thorne, K.S.: Black-hole electrodynamics: an absolutespace/universal-time formulation. Mon. Notices R. Astron. Soc. 198, 345 (1982)

    Article  ADS  Google Scholar 

  9. McKinney, J.C., Narayan, R.: Disc–jet coupling in black hole accretion systems—I. General relativistic magnetohydrodynamical models. Mon. Not. R. Astron. Soc. 375, 513 (2007)

    Article  ADS  Google Scholar 

  10. Thorne, K.S., MacDonald, D.: Electrodynamics in curved spacetime: 3 + 1 formulation. Mon. Notices R. Astron. Soc. 198, 339 (1982)

    Article  ADS  Google Scholar 

  11. Thorne, K.S., Price, R.H., MacDonald, D.: Black Holes: The Membrane Paradigm. Yale, New Haven (1986)

    MATH  Google Scholar 

  12. Semenov, V., Dyadechkin, S., Punsly, B.: Simulations of jets driven by black hole rotation. Science 305, 978 (2004)

    Article  ADS  Google Scholar 

  13. Punsly, B.: Black Hole Gravitohydromagnetics. Springer, Berlin (2001)

    Book  Google Scholar 

  14. Brennan, T.D., Gralla, S.E., Jacobson, T.: Exact solutions to force-free electrodynamics in black hole backgrounds. Class. Quantum Gravity 30, 195012 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Blinder, S. M.: [arXiv:gr-qc/0409025 [gr-qc]]

  16. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, 1st edn. Wiley, New York (1972)

    Google Scholar 

  17. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, 21th printing, W. H. Company, New York (1998)

  18. Padmanabhan, T.: Gravitation Foundations and Frontiers, 1st printing. Cambridge University Press, Cambridge (2010)

  19. Ryder, L.: Introduction to General Relativity, 1st printing. Cambridge University Press, Cambridge (2009)

  20. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, Hoboken (1999)

    MATH  Google Scholar 

  21. Reissner, H.: Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Annalen der Physik 50(9), 106 (1916) (in German)

    Article  ADS  Google Scholar 

  22. Newman, E.T., et al.: Metric of a rotating, charged mass. J. Math. Phys. 6, 918–919 (1965)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

H.S. is grateful to Y. Sobouti who basically taught him the physics of the FFMFs.

Author information

Authors and Affiliations

Authors

Contributions

HS: Conceptualization, Investigation, Methodology, Visualization, Writing—original draft, review & editing.

Corresponding author

Correspondence to Haidar Sheikhahmadi.

Ethics declarations

Competing Interests

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhahmadi, H. Schwarzschild Black Hole Perturbed by a Force-Free Magnetic Field. Found Phys 52, 93 (2022). https://doi.org/10.1007/s10701-022-00612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00612-7

Keywords

Navigation