Skip to main content

Advertisement

Log in

Thermosynthetic Life

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Two categories of life are currently recognized—chemosynthetic and photosynthetic—indicating their principal free energy resource as either chemicals or electromagnetic radiation. Building on recent developments in thermodynamics, we posit a third category of life—thermosynthetic life (TL)—which relies on environmental heat rather than traditional free energy sources. Since thermal energy is more abundant than chemicals or light in many settings, thermosynthesis offers compelling evolutionary possibilities for new life forms. Based on variants of standard cellular machinery, a physical model is proposed for the conversion of thermal energy into biochemical work. Conditions favorable to thermosynthetic life and prospects for its discovery are assessed. Terrestrially, deep-subsurface unicellular anaerobic superthermophiles are deduced to be likely TL candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kurzynski, M.: The Thermodynamic Machinery of Life. Springer, Berlin (2006)

    Google Scholar 

  2. Nelson, P.: Biological Physics: Energy, Information, Life. Freeman, New York (2004)

    Google Scholar 

  3. Phillips, R., Quake, S.R.: The biological frontier of physics. Phys. Today 59(5), 38 (2006)

    Article  ADS  Google Scholar 

  4. Ward, P.D., Brownlee, D.: Rare Earth: Why Complex Life is Uncommon in the Universe. Copernicus, New York (2000)

    Google Scholar 

  5. Ward, P.D., Brownlee, D.: The Life and Death of Planet Earth. Henry Holt and Co., New York (2002)

    Google Scholar 

  6. Cavicchioli, R.: Extremophiles and the search for extraterrestrial life. Astrobiology 2, 281 (2002)

    Article  ADS  Google Scholar 

  7. Uffink, J.: Bluff your way into the second law of thermodynamics. Stud. Hist. Philos. Mod. Phys. 32, 305 (2001)

    Article  MathSciNet  Google Scholar 

  8. Kestin, J.: The Second Law of Thermodynamics. Dowden Hutchinson Ross, Stroutburg (1976)

    Google Scholar 

  9. König, F.O.: On the various statements of the second law of thermodynamics. Surv. Prog. Chem. 7, 149 (1976)

    Google Scholar 

  10. Čápek, V., Sheehan, D.P.: Challenges to the Second Law of Thermodynamics. Fundamental Theories of Physics, vol. 146. Springer, Dordrecht (2005)

    MATH  Google Scholar 

  11. Gordon, L.G.M.: Brownian movement and microscopic irreversibility. Found. Phys. 11, 103 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gordon, L.G.M.: Maxwell’s demon and detailed balancing. Found. Phys. 13, 989 (1983)

    Article  ADS  Google Scholar 

  13. Gordon, L.G.M.: The molecular-kinetic theory and the second law. J. Coll. Interf. Sci. 162, 512 (1994)

    Article  ADS  Google Scholar 

  14. Gordon, L.G.M.: The decrease in entropy via fluctuations. Entropy 6, 38 (2004)

    ADS  Google Scholar 

  15. Gordon, L.G.M.: A Maxwellian valve based on centrifugal forces. Entropy 6, 87 (2004)

    ADS  Google Scholar 

  16. Gordon, L.G.M.: Smoluchowski’s trapdoor. Entropy 6, 96 (2004)

    Article  ADS  Google Scholar 

  17. Čápek, V.: Isothermal Maxwell daemon and active binding pairs of particles. J. Phys. A: Math. Gen. 30, 5245 (1997)

    Article  ADS  MATH  Google Scholar 

  18. Čápek, V.: From convolutionless generalized master to finite-coupling Pauli master equations. Czech. J. Phys. 48, 993 (1998)

    Article  ADS  Google Scholar 

  19. Čápek, V.: Isothermal Maxwell daemon. Czech. J. Phys. 47, 845 (1997)

    Article  ADS  Google Scholar 

  20. Čápek, V.: Isothermal Maxwell daemon: swing (fish-trap) model of particle pumping. Czech. J. Phys. 48, 879 (1998)

    Article  ADS  Google Scholar 

  21. Čápek, V.: Twilight of a dogma of statistical thermodynamics. Molec. Cryst. Liq. Cryst. 335, 13 (2001)

    Google Scholar 

  22. Čápek, V., Bok, J.: Isothermal Maxwell daemon: numerical results in a simplified model. J. Phys. A: Math. Gen. 31, 8745 (1998)

    Article  ADS  MATH  Google Scholar 

  23. Čápek, V., Bok, J.: Violation of the second law of thermodynamics in the quantum microworld. Physica A 290, 379 (2001)

    ADS  MATH  Google Scholar 

  24. Čápek, V., Mančal, T.: Isothermal Maxwell daemon as a molecular rectifier. Europhys. Lett. 48, 365 (1999)

    Article  Google Scholar 

  25. Čápek, V., Mančal, T.: Phonon mode cooperating with particle serving as Maxwell gate and rectifier. J. Phys. A: Math. Gen. 35, 2111 (2002)

    Article  MATH  Google Scholar 

  26. Čápek, V., Sheehan, D.P.: Quantum mechanical model of a plasma system: a challenge to the second law of thermodynamics. Physica A 304, 461 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Bok, J., Čápek, V.: Langevin approach to the Porto system. Entropy 6, 57 (2004)

    MathSciNet  ADS  Google Scholar 

  28. Crosignani, B., Di Porto, P., Segev, M.: Approach to thermal equilibrium in a system with adiabatic constraints. Am. J. Phys. 64, 610 (1996)

    Article  ADS  Google Scholar 

  29. Crosignani, B., Di Porto, P.: On the validity of the second law of thermodynamics in the mesoscopic realm. Europhys. Lett. 53, 290 (2001)

    Article  ADS  Google Scholar 

  30. Crosignani, B., Di Porto, P., Conti, C.: The adiabatic piston and the second law of thermodynamics. In: Quantum Limits to the Second Law, p. 267. AIP Press, Melville (2002)

    Google Scholar 

  31. Crosignani, B., Di Porto, P., Conti, C.: Entropy decrease in an isolated mesoscopic system. arXiv:physics/0305072v2 (2003)

  32. Crosignani, B., Di Porto, P., Conti, C.: The adiabatic piston: a perpetuum mobile in the mesoscopic realm. Entropy 6, 50 (2004)

    ADS  Google Scholar 

  33. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Extraction of work from a single thermal bath in the quantum regime. Phys. Rev. Lett. 85, 1799 (2000)

    Article  ADS  Google Scholar 

  34. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Breakdown of the Landauer bound for information erasure in the quantum regime. Phys. Rev. E 64, 056117 (2001)

    ADS  Google Scholar 

  35. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Testing the violation of the Clausius inequality in nanoscale electric circuits. Phys. Rev. B 66, 115309 (2003)

    Article  ADS  Google Scholar 

  36. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Bath-generated work extraction and inversion-free gain in two-level systems. J. Phys. A: Math. Gen. 36, 875 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. Nieuwenhuizen, Th.M., Allahverdyan, A.E.: Statistical thermodynamics of quantum Brownian motion: construction of perpetuum mobile of the second kind. Phys. Rev. E 66, 036102 (2002)

    ADS  Google Scholar 

  38. Denur, J.: The Doppler demon. Am. J. Phys. 49, 352 (1981)

    Article  ADS  Google Scholar 

  39. Denur, J.: Velocity-dependent fluctuations: breaking the randomness of Brownian motion. Phys. Rev. A 40, 5390 (1989)

    Article  ADS  Google Scholar 

  40. Denur, J.: Modified Feynmann ratchet with velocity-dependent fluctuations. Entropy 6, 76 (2004)

    MathSciNet  ADS  Google Scholar 

  41. Sheehan, D.P., Glick, J., Means, J.D.: Steady-state work by an asymmetrically inelastic gravitator in a gas: a second law paradox. Found. Phys. 30, 1227 (2000)

    Article  Google Scholar 

  42. Sheehan, D.P., Glick, J., Duncan, T., Langton, J.A., Gagliardi, M.J., Tobe, R.: Phase space protraits of an unresolved gravitational Maxwell demon. Found. Phys. 32, 441 (2002)

    Article  MathSciNet  Google Scholar 

  43. Keefe, P.: Quantum limit to the second law by magneto-caloric effect, adiabatic phase transition of mesoscopic-size type I superconductor particles. Physica E 29, 104 (2005)

    ADS  Google Scholar 

  44. Keefe, P.: Second law violation by magneto-caloric effect adiabatic phase transition of type I superconductor particles. Entropy 6, 116 (2004)

    ADS  Google Scholar 

  45. Berger, J.: Noise rectification by a superconducting loop with two weak links. Phys. Rev. B 70, 024524 (2004)

    Article  ADS  Google Scholar 

  46. Dubonos, S.V., Kuznetsov, V.I., Zhilyaev, I.N., Nikulov, A.V., Firsov, A.A.: Observation of the external-ac-current-induced dc voltage proportional to the steady current in superconducting loops. JETP Lett. 77, 371 (2003)

    Article  ADS  Google Scholar 

  47. Trupp, A.: Second law violations in the wake of the electrocaloric effect in liquid dielectrics. In: Quantum Limits to the Second Law, p. 201. AIP Press, Melville (2002)

    Google Scholar 

  48. Trupp, A.: Second law violations by means of a stratification of temperature due to force fields. In: Quantum Limits to the Second Law, p. 231. AIP Press, Melville (2002)

    Google Scholar 

  49. Nikulov, A.V.: Quantum force in a superconductor. Phys. Rev. B 64, 012505 (2001)

    Article  ADS  Google Scholar 

  50. Nikulov, A.V., Zhilyaev, I.N.: The Little-Parks effect in an inhomogeneous superconducting ring. J. Low Temp. Phys. 112, 227 (1998)

    Article  Google Scholar 

  51. Pombo, C., Allahverdyan, A.E., Nieuwenhuizen, T.M.: Bath generated work extraction in two-level systems. In: Quantum Limits to the Second Law, p. 254. AIP Press, Melville (2002)

    Google Scholar 

  52. Sheehan, D.P.: A paradox involving the second law of thermodynamics. Phys. Plasmas 2, 1893 (1995)

    Article  ADS  Google Scholar 

  53. Sheehan, D.P.: Another paradox involving the second law of thermodynamics. Phys. Plasmas 3, 104 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  54. Sheehan, D.P., Means, J.D.: Minimum requirement for second law violation: a paradox revisited. Phys. Plasmas 5, 2469 (1998)

    Article  ADS  Google Scholar 

  55. Sheehan, D.P., Wright, J.H., Putnam, A.R.: A solid-state Maxwell demon. Found. Phys. 32, 1557 (2002)

    Article  Google Scholar 

  56. Wright, J.H.: A novel sub-micron electrostatic motor. In: First International Conference on Quantum Limits to the Second Law, p. 308. AIP Press, Melville (2002)

    Google Scholar 

  57. Putnam, A.R.: Two-dimensional numerical simulations of a solid state Maxwell demon. In: First International Conference on Quantum Limits to the Second Law, p. 314. AIP Press, Melville (2002)

    Google Scholar 

  58. Wright, J.H., Sheehan, D.P., Putnam, A.R.: Modeling a submicrometer electrostatic motor. J. Nanosci. Nanotech. 3, 329 (2003)

    Article  Google Scholar 

  59. Sheehan, D.P.: Dynamically-maintained steady-state pressure gradients. Phys. Rev. E 57, 6660 (1998)

    Article  ADS  Google Scholar 

  60. Sheehan, D.P.: The second law and chemically-induced, steady-state pressure gradients: controversy, corroboration and caveats. Physica A 280, 185 (2001)

    Google Scholar 

  61. Sheehan, D.P., Wright, J.H., Putnam, A.R., Perttu, E.K.: Intrinsically biased, resonant NEMS-MEMS oscillator and the second law of thermodynamics. Physica E 29, 87 (2005)

    ADS  Google Scholar 

  62. Sheehan, D.P., Seideman, T.: Intrinsically biased electrocapacitive catalysis. J. Chem. Phys. 122, 204713 (2005)

    Article  ADS  Google Scholar 

  63. Sheehan, D.P. (ed.): In: First International Conference on Quantum Limits to the Second Law. AIP Conference Proceedings, vol. 643. AIP Press, Melville (2002)

  64. Physical and Quantum Electronics, Snowbird, Utah, 2003, 2004

  65. Frontiers of Quantum and Mesoscopic Thermodynamics, Prague, Czech Republic, 2004

  66. The Second Law of Thermodynamics: Foundations and Status, In 87th Annual Meeting of the Pacific Division of the AAAS, San Diego, California, 2006

  67. Nikulov, A.V., Sheehan, D.P. (eds.): Entropy 6, 1–232 (2004); Special Issue: Quantum Limits to the Second Law of Thermodynamics

  68. Maxwell, J.C.: Letter to P.G. Tait, 11 Dec. 1867. In: Knott, C.G. (ed.) Life and Work of Peter Guthrie Tait, p. 213. Cambridge University Press, London (1911)

    Google Scholar 

  69. Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing. Institute of Physics, Bristol (2003)

  70. Uwins, P.J.R., Webb, R.I., Taylor, A.P.: Novel nano-organisms from Australian sandstones. Am. Minerol. 83, 1541 (1998)

    Google Scholar 

  71. Gold, T.: The hot deep biosphere. Proc. Natl. Acad. Sci. USA 89, 6045 (1992)

    Article  ADS  Google Scholar 

  72. Szewzyk, U., Szewzyk, R., Stenstrom, T.: Thermophilic, anaerobic bacteria isolated from a deep borehole in granite in Sweden. Proc. Natl. Acad. Sci. USA 91, 1810 (1994)

    Article  ADS  Google Scholar 

  73. Kashefi, K., Lovley, D.R.: Extending the upper temperature limit for life. Science 301, 934 (2003)

    Article  Google Scholar 

  74. Brock, T.D.: Life at high temperatures. Science 230, 132 (1985)

    Article  ADS  Google Scholar 

  75. Stetter, K.O., Fiala, G., Huber, R., Huber, G., Segerer, A.: Life above the boiling point of water? Experientia 42, 1187 (1986)

    Article  Google Scholar 

  76. Jaenicke, R.: Protein stability and molecular adaptation to extreme conditions. Eur. J. Biochem. 202, 715 (1991)

    Article  Google Scholar 

  77. Leibrock, E., Bayer, P., Lüdemann, H.-D.: Nonenzymatic hydrolysis of adenosinetriphosphate (ATP) at high temperatures and high pressures. Biophys. Chem. 54, 175 (1995)

    Article  Google Scholar 

  78. Baross, J.A., Holden, J.F.: Overview of hyperthermophiles and their heat-shock proteins. Adv. Protein Chem. 48, 1 (1996)

    Article  Google Scholar 

  79. Gold, T.: The Deep Hot Biosphere. Springer, New York (1999)

    Google Scholar 

  80. Hochachka, P.W., Somero, G.N.: Biochemical Adaptation. Oxford University Press, New York (2002)

    Google Scholar 

  81. Vreeland, R.H., Rosenzweig, W.D., Powers, D.W.: Isolation of a 250-million-year-old halotolerant bacterium from a primary salt crystal. Nature 407, 897 (2000)

    Article  ADS  Google Scholar 

  82. Sheehan, D.P.: Four paradoxes involving the second law of thermodynamics. J. Sci. Explor. 12, 303 (1998)

    Google Scholar 

  83. Sheehan, D.P.: Four paradoxes involving the second law of thermodynamics. Infin. Energy 9/49, 17 (2003)

    Google Scholar 

  84. Sheehan, D.P.: Macroscopic potential gradients: experimentally-testable challenges to the second law. In: First International Conference on Quantum Limits to the Second Law, p. 195. AIP Press, Melville (2002)

    Google Scholar 

  85. Leegwater, J.A.: Coherent versus incoherent energy transfer and trapping in photosynthetic antenna complexes. J. Phys. Chem. 100, 14403 (1996)

    Article  Google Scholar 

  86. Engel, G.S., et al.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782 (2007)

    Article  ADS  Google Scholar 

  87. Reguera, G., et al.: Extracellular electron transfer via microbial nanowires. Nature 435, 1098 (2005)

    Article  ADS  Google Scholar 

  88. Ellenbogen, J.C., Love, C.J.: Architectures for molecular electronic computers. In: Goddard, W.A., III, Brenner, D.W., Lyshevski, S.E., Iafrate, G.J. (eds.) Handbook of Nanoscience, Engineering, and Technology, CRC Press, Boca Raton (2003)

    Google Scholar 

  89. Zhou, C., Deshpande, M.R., Reed, M.A., Tour, J.M.: Nanoscale metal/self-assembled monolayer/metal heterostructures. Appl. Phys. Lett. 71, 611 (1997)

    Article  ADS  Google Scholar 

  90. Metzger, R.M., et al.: Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J. Am. Chem. Soc. 119, 10455 (1997)

    Article  Google Scholar 

  91. Campbell, N.A., Reece, J.B., Mitchell, L.G.: Biology, 5th edn. Addison Wesley, Menlo Park (1999)

    Google Scholar 

  92. Becker, W.M., Reece, J.B., Poenie, M.F.: The World of the Cell. Benjamin/Cummings, Menlo Park (1996), chaps. 7, 8

    Google Scholar 

  93. Bustamante, C., Liphardt, J., Ritort, F.: The nonequilibrium thermodynamics of small systems. Phys. Today 58.7, 43 (2005)

    Article  ADS  Google Scholar 

  94. Kováč, L.: Overview: Bioenergetics between chemistry, genetics, and physics. Curr. Top. Bioenerg. 15, 331 (1987)

    Google Scholar 

  95. Chernavski, D.S., Khurgin, Y.I., Shnol, S.E.: Biophysics (Moscow) 32, 775 (1987)

    Google Scholar 

  96. Williams, R.J.P.: Are enzymes mechanical devices? TIBS 18, 115 (1993)

    Google Scholar 

  97. Shaitan, K.V., Rubin, A.B.: Conformational dynamics of proteins and simple molecular ‘machines’. Biophysics (USSR) 27, 386 (1982)

    Google Scholar 

  98. Frautschi, S.: Entropy in an expanding universe. Science 217, 593 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Sheehan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheehan, D.P. Thermosynthetic Life. Found Phys 37, 1774–1797 (2007). https://doi.org/10.1007/s10701-007-9168-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9168-y

Keywords

Navigation