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Abstract. Lennart Åqvist (1992) proposed a logical theory of legal evidence, based on the Bolding-
Ekelöf of degrees of evidential strength. This paper reformulates Åqvist’s model in terms of the
probabilistic version of the kappa calculus. Proving its acceptability in the legal context is beyond
the present scope, but the epistemological debate about Bayesian Law is clearly relevant. While the
present model is a possible link to that line of inquiry, we offer some considerations about the broader
picture of the potential of AI & Law in the evidentiary context. Whereas probabilistic reasoning is
well-researched in AI, calculations about the threshold of persuasion in litigation, whatever their
value, are just the tip of the iceberg. The bulk of the modeling desiderata is arguably elsewhere,
if one is to ideally make the most of AI’s distinctive contribution as envisaged for legal evidence
research.

1. Introduction

In his paper, “Towards a logical theory of legal evidence”, Lennart Åqvist (1992)
provides a grading mechanism on worlds, and then defines the degrees of evidential
strength on the basis of the grading mechanism. The idea of using a probability
measure as a grading mechanism is then explored in the paper. Åqvist’s model
draws its notion of degrees of evidential strength from two authors that are likewise
Swedish legal scientists: Bolding (1960) and Ekelöf (1964).

In this short paper, instead, we would like to draw the reader’s attention to an
already existing probabilistic grading mechanism, the so-called kappa calculus,
that bears several similarities to Åqvist’s scheme of degrees of evidence. The kappa
calculus was originally developed by Spohn (1988), but then adapted for probab-
ilistic reasoning in artificial intelligence, particularly for diagnostic reasoning and
a qualitative decision theory for actions (Pearl 1993; Henrion et al. 1994). In the
present paper, a semantic comparison between the schemes is made, followed by a
discussion of each mechanism’s advantages and deficiencies as relating to degrees
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of evidence in evidentiary reasoning. We then suggest ideas for overcoming defi-
ciencies existing in both schemes. More generally, we offer cautionary comments
relating to legal evidence.

We are not taking sides, in the debate about Bayesianism in legal evidence.
Important objections have been pointed out by various scholars, about the adequacy
of probabilistic models in modeling the decision-making processes of fact-finding:
not only about the probatory value of such calculations in litigation (which even
Bayesians usually do not argue for, other than for such restricted applications as
DNA frequencies), but even as analytic tools for grasping what happens in the
courtroom from the coign of vantage of academic discussion. On the other hand,
on occasion even decided Bayesiosketics have commended specific analyses from
Bayesian Law, e.g., Johan Bring vis-à-vis Kadane and Schum’s analysis of the
Sacco and Vanzetti evidence, in Bring’s commentary in the 1997 special issue of
the International Journal of Evidence and Proof on “Bayesianism and Juridical
Proof”, reviewed in this volume.

Our purpose here, instead, is to show how elegantly a given model of legal evid-
entiary weight can be reformulated, by means of a formalism from the forefront
of theoretical AI. Moreover, both Åqvist’s paper (which appeared in Martino’s
collection, Expert Systems in Law), and the disciplinary background of the present
co-authors, are in artificial intelligence, instead of Law or forensic statistics. Argu-
ably, it is an interesting exercise for its own sake, to rethink problems across the
disciplines (see also Nissan 2001).

Entries from recent debate over the Internet, two years ago, pondered, or rather
wondered, about whether and how (if at all) AI approaches grounded in Judea
Pearl’s probabilistic belief networks dovetails with Bayesian Law’s (if clearly not
Bayesioskeptic) goals. Whereas, within that public debate, Pearl briefly commen-
ted on a specific methodological point (without these authors intervening), we feel
it is appropriate for us to point out – especially as Shimony’s formative disciplin-
ary affiliation within AI research has been, indeed, closely associated with belief
networks and uncertainty as well as with abductive reasoning (e.g., Charniak and
Shimony 1990 sqq.; Shimony and Charniak 1990; Shimony 1993; Santos and Shi-
mony 1994) – that on the face of it, mutual amenability is not inconceivable, in
terms of representation syntax. Even if ancillary evidence in the legal context was
to require special treatment, then nevertheless (short of unnaturally making explicit
such causal relations that still defy precise pinpointing) one could figure out some
filter within an architecture, enabling such evidentiary contribution to be paramet-
rically attuned; or then, enabling such evidentiary contribution to be parametrically
attuned; or then, perhaps, one could well envisage the adoption of a convenient
probabilistic theory: to Nissan, Igal Kvart’s (1994) theory of overall positive causal
impact (or opci) occurs as a possible candidate: the theory is concerned with token
causal relations (i.e., such that hold between particular actual event tokens), instead
of type (i.e., generic) causal relations; and, most importantly, opci implies causal
relevance, but is a weaker notion that causing or being a cause; furthermore, Kvart
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distinguishes opci from both “purely positive causal impact”, and spci, i.e., “some
positive causal impact”. (In the rest of the paper, we’ll not be considering again
Kvart’s approach).

Yet, representational sophistication by itself does not clear the way of epistem-
ological concerns with whether, in principle, such a probabilistic approach would
be (technical self-gratulation apart) true to its purpose of capturing likelihood in as
complex a domain as legal evidence. Answering that question is beyond our present
scope. What we think, all camps would eventually agree about, is that probability
(in the Bayesian Law sense), or even plausibility (in Ron Allen’s sense) is anyway
part of a much broader picture: the commonsense of narrative conceptualization,
for example, is an enticing, perhaps exciting challenge for AI & Law, a challenge
to which the research community will hopefully respond across traditional discip-
linary compartments. In this sense, when we approached the task of rethinking
Åqvist’s paper, we were fully aware that it is merely concerned with the tip of
an iceberg. How to calculate the threshold of persuasion, in a legal burdens of
proof perspective, is not as interesting as the entire process of conceptualising and
handling whatever turns out in argumentation about evidence. Pinpointing truth
values in a legal probatory context would not be the right ambition, for AI model-
ing of legal evidence (even if we were to correctly distinguish between legal truth
and factual truth; on truth and verdicts, see, e.g., Jackson 1998b, c). Supporting –
by otherwise empowering – human judgment at such tasks is arguably the proper
practical one, in the set of appropriate goals that the new evidentiary subdiscipline
within Al & Law should (Nissan 1999; Martino and Nissan 1998b).

1.1. REVIEW OF ÅQVIST’S SCHEME

Several mechanisms were suggested in Åqvist’s paper, but rather than start with
his 4-level scheme and proceed to the general mechanism, we begin with his gen-
eralized notion of a grading mechanism, in the interest of conciseness. The scheme
uses a set W of disjoint, internally consistent, “possible worlds”, consisting of all
possible courses of events. Every fact X (a propositional logical formula) can be
either true or false in each of the possible worlds. A formula thus corresponds to
the set of worlds in which X is true. A grading mechanism is defined over the
possible worlds. We begin with the formal definition of the grading mechanism,
paraphrased from Åqvist’s paper, and correcting a number of typographical errors
found there in the relevant passages:

DEFINITION 1. A k-level grading mechanism on a set of possible worlds is a
structure G = (W. ≥, {C1, C2, . . . , Ck}) where
1. W is a non-empty, finite set of possible worlds.
2. ≥ is a weak ordering, i.e., a transitive and total binary relation on W . For any

worlds w, w′ ∈ W , the relation w ≥ w′ means that w is at least as probable as
w′.
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3. The set {C1, C2, . . . , Ck} is a partition of W , such that, if w ∈ Ci and w′ ∈ Cj ,
then w ≥ w′ if and only if i ≥ j .

Relative to the grading mechanism, Åqvist defines a notion of evidential strength,
in support of any formula X, with Pi denoting positive evidence:

PiX iff X is true in all the worlds in
⋃

j≥i
Cj ,

with P1X denoting strongest possible evidence for X, and Ri denoting negative
evidence:

RiX iff X is false in all the worlds in
⋃

j>k−i
Cj ,

this time with RkX denoting strongest possible evidence against X.
Åqvist shows that PiX if and only if Rk−i+1¬X, that PiX is inconsistent with

RjX for any i, j , and that PiX implies Pi+1X for positive integer i < k. Åqvist
proceeds to define a “non-vacuous” version of the above definition, where Ck must
be non-empty.

In Åqvist’s paper the initial definitions are in terms of k = 4, where the Ci
are identified with legal evidential grades, as follows. C1 is identified with the set
of “non approved” (non approbatur) members of W , C2 with “just approved” (ap-
probatur), C3 with “approved, not without distinction” (non sine laude approbatur),
and C4 with “approved with distinction” (cum laude approbatur). The PiX in this
case are named “obvious” for i = 1, “certain” for i = 2, “probable” for i = 3, and
“presumable” for i = 4.

A probability measure p is then imposed on the set W , consistent with the
axioms of probability theory, and with the grading mechanism, such that w ≥ w′
if and only if p(w) ≥ p(w′). The standard definitions of conditioning are intro-
duced. In order to avoid the collapse of all the grading structure, the principle of
preponderance is introduced , which requires that for anyX, if PiX then p(X) > 1

2 .

1.2. REVIEW OF KAPPA CALCULUS

As in the previous subsection, we have a set of disjoint possible worlds W and
formulas can be true or false in each possible world. Again, a propositional formula
φ is identified with the set of possible worlds in which it is true. Instead of a
grading mechanism, each possible world is given a kappa value, where kappa is
a function from worlds to non-negative integers: κ : W → N ∪ {0}, such that
k(w) = 0 for at least one w ∈ W . The kappa value of a possible world is the
degree of surprise in encountering that possible world. Intuitively, the lower the
kappa, the higher the probability, and worlds with κ = 0 are considered serious
possibilities. The definition of κ is extended to sets of possible worlds (propositions
and propositional formulas) via Spohn’s calculus, as follows:

κ(φ) = min
w∈φ κ(w), (1)
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where if φ is false in all possible worlds, κ(φ) is defined to be 1, and to
conditioning:

κ(φ|ψ) = κ(φ ∧ ψ)− κ(ψ). (2)

The kappa assignment is frequently (Pearl 1993) seen as an order-of-magnitude
approximation of a probability function p(w) defined over W , as follows: write
p(w) as a polynomial in some small quantity ε, and take the power of the most
significant term of that polynomial to be the kappa, i.e.:

p(w) ≈ Cεκ(w),
for some constant C. Treating ε as infinitesimally small, Spohn’s calculus is
consistent with (and follows from) the axioms of probability theory.

Note that seemingly the only way to state that a proposition φ is certain, or even
very likely, is to state that the degree of surprise in encountering ¬φ is high, i.e.,
stating that κ(¬φ) > 0.

Also, if ε < 1
2 then clearly κ(φ) > 0 implies κ(¬φ) = 0, but not vice versa

(i.e., it is certainly possible that κ(φ) = κ(¬φ) = 0).

2. Comparison of the Schemes

We begin by comparing kappa-calculus to Åqvist’s grading mechanisms without
considering probabilities. Later on we introduce the probability distribution and
continue the comparison.

2.1. EQUIVALENCE OF KAPPA-CALCULUS TO GRADING MECHANISMS

Ignoring for the moment the probability measure on the set of possible worlds, or
the value of ε for kappa calculus as an order-of-magnitude probability approxima-
tion, we begin defining a natural mapping between the schemata.

Given a k-level grading mechanism G over the set of possible worlds W , we
define a function G: W → N , the grade of a world, such that G(w) = i just
when w ∈ Ci in grading mechanism G. We now define a level-to-kappa mapping
function, Fk: N → N ∪ {0} as: Fk(i) = k− i. The mapping from a grading mech-
anism to kappa calculus is simply defining κ(w) = Fk(G(w)) for each w ∈ W ,
and extending the definition to sets of possible worlds as for the earlier definition
of κ in Equation (1) with the special case κ(∅) = ∞. It is clear (by construction)
that the grading mechanism G is non-vacuous (that is, Ck is non-empty) if and only
if there exists a world w ∈ W for which κ(w) = 0.

Likewise, define a kappa-to k-level mapping function F ′k: N ∪ {0} → N , as
follows: F ′k(i) = max(1, k − i). Now, given a set of possible worlds W , and a
kappa ranking, we define the k-level grading mechanism over W as the partition
uniquely determined by:

w ∈ Ci if and only if F ′k(κ(w)).
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The following theorem follows from the definitions:

THEOREM 1. F ′k is the left-inverse of Fk (that is, F ′k(Fk(i)) = i for any k, i ∈ N ),
and the k-level grading mechanism is equivalent to k-calculus where the κ values
are limited to the range { 0, . . . , k − 1,∞} .

Obviously, since the mapping is semi-invertible, kappa-calculus subsumes Åqvist’s
grading mechanisms (and if we allowed grading mechanisms to have an infinite
number of partitions, they would be equivalent). Åqvist could have just used kappa-
calculus directly in his paper, instead of having to invent grading mechanisms. The
degrees of evidential strength in Åqvist’s paper have no immediate counterpart in
kappa-calculus, but we could define them as follows:

DEFINITION 2. PiX if and only if κ(¬X) ≥ k − i + 1, and RiX if and only if
κ(X) ≥ i.
This definition is far more concise than the one made by Åqvist, yet is essentially
equivalent:

THEOREM 2. PiX in a k-level grading mechanism G, if and only if PiX in the
respective kappa-calculus representation (and likewise for RiX).

Proof: (→) Suppose PiX in a k-level grading mechanism. Then for every j ≥ i,
we have w ∈ Cj → w ∈ X, and thus G(w) ≥ i → w ∈ X, or alternatively, using
the k-level to kappa mapping, Fk(i) = k − i, we have κ(w) ≤ k − i → w ∈ X.
Thus, since possible worlds are internally consistent, the is no w ∈ ¬X such that
κ(w) ≤ k− i, and since the kappa value of a set of possible worlds is the minimum
kappa of the set, we have κ(¬X) ≥ k − i + 1, proving the implication.

(←) Suppose PiX in the kappa-calculus representation (that is, where κ(w) =
Fk(G(w))). Then κ(¬X) ≥ k − i + 1, and thus w ∈ ¬X→ κ(w) ≥ k − i + 1→
F ′k(κ(w)) ≤ i−1. Therefore, w ∈ ¬X→ G(w) ≤ i−1 (since F ′k is the left-inverse
of Fk), and thus Cj ∈ X for all j ≥ i. �

Proof of the theorem for RiX is similar, but also follows immediately from the
proof for PiX and the following theorem.

THEOREM 3. The degrees of evidential strength defined above for kappa-calculus
have the same properties as for grading mechanisms, i.e.,

1. PiX if and only if Rk−i+1¬X.
2. PiX is inconsistent with RjX for any i, j .
3. PiX implies Pi+1X for positive integer i < k.

Proof: Immediate from the definitions, as follows (item for item):

1. By Definition 2, PiX if and only if κ(¬X) ≥ k − i + 1, and Rk−i+1¬X if and
only if κ(¬X) ≥ k − i + 1, which is exactly the same term as for PiX.
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2. If PiX for some 1 ≤ i ≤ k then κ(¬X) ≥ k − i + 1 > 0. Suppose that
RjX for some 1 ≤ j ≤ k. Then by Definition 2, κ(X) ≥ j > 0. However,
every possible world w ∈ W must satisfy either X or ¬X (using the same
“excluded middle” assumption made by Åqvist), and there exists w ∈ W such
that κ(w) = 0. If this possible world w is in X, then by Equation (1), κ(X) =
0, a contradiction. Likewise if w ∈ ¬X.

3. By Definition 2 PiX implies κ(¬X) ≥ k − i + 1 ≥ k − i, and κ(¬X) ≥
k − i + 1 ≥ k − i, and κ(¬X) ≥ k − i implies Pi+1X. �

It is also possible to prove the theorem by applying Theorem 2.

2.2. RE-INTRODUCING THE PROBABILITIES

Now that we have a mapping between grading mechanisms and kappa-calculus
(which was just shown to be a variant, or slight extension, of grading mechanisms),
we can introduce the probability distribution over possible worlds. Note that the
common trend of using kappa-calculus as an approximation of order-of-magnitude
probabilities, implies that the “principle of preponderance” is obeyed.

We must point out, however, that kappa-calculus is strictly consistent with the
axioms of probability only if we use an infinitesimal ε. Thus, probabilities of pos-
sible worlds in different sets of the partition in the grading mechanism should also
be stratified by “an order-of-magnitude” probability ratio. It is not clear that this
is indeed the case in the definitions in legal reasoning. Nevertheless, perhaps the
mere institution of these grades in legal reasoning is an indication that at least
subjectively (i.e., probabilities subjectively assigned to such possible worlds by a
human) this is the case.

The main problem in combining probabilities with a grading-system was typi-
fied by the example given in Åqvist’s paper (for k = 4): a violation of the “principle
of preponderance”. That is, we get a case where a proposition is “presumable”, yet
is less likely than its negation. The suggestion (made by Åqvist) that we insist on
p(C4) >

1
2 is an obvious, albeit somewhat ad-hoc solution.

A more general statement of the problem is that, if probabilities in different sets
(i.e., different Ci) in the grading mechanism are not “orders of magnitude” apart,
then in fact the disjunction of several propositions can “graduate” to a higher grade,
if we only make such a disjunction into a primitive proposition (thereby modifying
the set of possible worlds, W ). It is thus the case that the grading mechanism is
very sensitive to the syntax of the propositional formulas, and to the set of possible
worlds which we allow to participate in the grading mechanism.

Forcing p(Ck) >
1
2 may prevent unlikely facts from being accepted as “prob-

able” or “presumable” or “certain”, but would not prevent us from passing merely
“probable” facts as “certain” without really changing the probability distribution,
but just the syntax of the propositional formulas. This is certainly an undesirable
property of the grading scheme.
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For example, paraphrasing Åqvist’s “cause of death” example (Åqvist 1992),
with possible worlds: w1 = poisoned by wife, w2 = accidental liquid poison-
ing, w3 = taking poison deliberately (suicide), w4 = murdered by someone else
(not wife), w5 = accidental gas poisoning, w0 = other cause of death. Suppose
now (modifying the original example) that the evidence is such that (with a 4-
level grading mechanism), we have C4 = {w1}, C3 = {w4}, C2 = { }, and
C1 = {w0, w2, w3, w5}. Suppose the following probability distribution is assigned:
p(w1) = 0.7 (thus obeying the “principle of preponderance”), p(w4) = 0.1, and
p(w0) = p(w2) = p(w3) = p(w5) = 0.05. Total probability is 1 as required.

Now, suppose we want to decide a case where the deceased’s brother is a
beneficiary of a life-insurance policy taken out on the deceased. The beneficiary
is claiming for double-indemnity, to be awarded in case of murder. In this ex-
ample, the proposition “death by murder”, entitling claimant to double indemnity
payments, is “certain” (since all possible worlds in C4, C3, C2 entail “death
by murder”). In this case, the claimant would win his double-indemnity case if
the required degree of evidence for such a claim were “certain”, “probable” or
“presumable”.

However, one could claim that this is incorrect, and state: all accidental deaths
are equivalent here, and thus we should not have both w2 and w5, but instead some
w6 = accidental poisoning, with a probability 0.1 (which is the same distribution,
just changing the syntax and creating a predicate that stands for a disjunction).
Intuitively, this should change nothing in the certainty of “death by murder”, but
this is not the case in this model. We have C3 = {w4, w6} and since w6 is not
in “death by murder”, then “death by murder” is only “presumable”. Now, if the
requirement for the evidence level is “certain” or “probable”, the claimant would
now lose his double-indemnity case, where he would have otherwise won it!

3. Suggested Solution

Observe that the above undesirable effect could not occur if we used kappa-
calculus with infinitesimal epsilon (or the equivalent probabilities in the grading
mechanism). Nevertheless, this would require that we consider facts “approved
not without distinction” as having infinitesimal probabilities, which is somewhat
counterintuitive.

To avoid this problem, it is sufficient if we required the following constraint, in
addition to Ck �= ∅, for all w ∈ W :

w ∈ ci → p(w) >
∑

j<i

∑

w′∈Cj
p(w′).

This constraint implies the principle of preponderance, and subsumes Åqvist’s
requirement that p(Ck) >

1
2 . Observe that the example in the previous sec-

tion, while obeying the principle of preponderance, violates our constraint, since
p(w4) = p(w2)+ p(w5) while w4 ∈ C3 and w2, w5 ∈ C1.



KAPPA CALCULUS AND EVIDENTIAL STRENGTH 161

4. Contextual Assessment of the Method

However mathematically sound the restatement of the Åqvist model may be, its
usefulness entirely depends on compatibility with the context that has to provide
the qualitative grading of the elements of evidence, that in turn the Åqvist model
uses as input.

What makes the Åqvist model (and, perhaps all the more so, our probabilistic
reformulation of it) quite problematic in the broad perspective of juridical proof,
is that it’s what lays upstream of it that perhaps defies modeling, and anyway it
is not addressed at all by either Åqvist’s model, or our restatement of the method.
The input is a subjective grading of the elements of evidence, and is supposed
to be provided by human experts. In elaborating the input they are to provide,
this is to be the end product of complex mental processing (not merely cognitive:
consider colouring by emotion). Such mental processing involves both perception
and “higher” (cognitive or noncognitive) functions which invoke each other re-
cursively, or, anyway, are pervasively interwoven (even the cultural vs. bio- or
physiological extremes are not uncontroversially demarcated; cf. Nissan 1997a).
Among the other things, a rather obvious aspect of this is that by reasoning, new
goals for perception are set, in both the investigation, and, say, cross-examination.
Explanation for alternative accounts of a narrative (see, e.g., Kuflik et al. 1991;
Fakher-Eldeen et al. 1993) involves more evidence to be assessed. However, at
the end of the day, the sad, inescapable fact remains that if anybody is to provide
subjective estimates as input to an automated or otherwise formal component em-
bodying the Åqvist model, then the virtual size of this component within the broad
picture of legal evidence and proof is quite diminutive.

Our contribution in the present paper has been to show that the formalism pro-
posed by Åqvist is entirely amenable to, and thus is fully compatible with, the
statement in terms of probabilistic reasoning of the kappa calculus. Probabilistic
reasoning is a well-researched, powerful tool outside as well as within artificial
intelligence. It can contribute to Bayesian Law, or to its critique, or, more usefully,
to overcoming the divide. For the latter purpose, however, it is other facets of the
extant panoply of AI & Law or just AI techniques that could most usefully contri-
bute: such themes as argumentation, agents’ epistemic states, narrative coherence,
and so forth, are all sides that deserve development. (For example, culture-laden li-
terary concepts of narrative improbability sometimes impinge on lay perceptions of
a crime narrative as reported by the media; cf. Nissan (2000), Nissan and Dragoni
(2000).)

Take temporal reasoning: thus far, chronologies had been dealt with in
MARSHALPLAN (see Schum 2001), but not in AI treatments of legal time (cf.
Martino and Nissan 1998a). Yet, time is a necessary facet, even though on occasion
(e.g., in Nissan 1995) it may be implicit in a representation. (More in general, see,
e.g., Jackson (1998a) on time and law; also consider legal and pragmatic space:
Nissan (1997b).) Such is the nitty-gritty of informational organization and present-
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ation: these two themes, quite likely in association with argumentation research,
arguably deserve the main thrust of efforts, in finding out how to enhance the
treatment of the body of evidence as being handled by any of the given professional
roles entrusted with it, in an investigation or litigational context. One incontrover-
sial statement, however, is that historically, absorbing concern with probabilities
paved the way for both its adepts and critics – as well as AI & Law’s eventual
awareness and inclusion of evidentiary research into its own agenda – for the
delineation of a new horizon of inquiry.
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