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Abstract. The number of studies related to natural and artificial mechanisms of learn-

ing rapidly increases. However, there is no general theory of learning that could provide
a unifying basis for exploring different directions in this growing field. For a long time
the development of such a theory has been hindered by nativists’ belief that the develop-

ment of a biological organism during ontogeny should be viewed as parameterization of
an innate, encoded in the genome structure by an innate algorithm, and nothing essentially
new is created during this process. Noam Chomsky has claimed, therefore, that the creation of
a non-trivial general mathematical theory of learning is not feasible, since any algorithm

cannot produce a more complex algorithm. This study refutes the above argumentation by
developing a counter-example based on the mathematical theory of algorithms and comput-
able functions. It introduces a novel concept of a Universal Learning System (ULS) capable

of learning to control in an optimal way any given constructive system from a certain
class. The necessary conditions for the existence of a ULS and its main functional proper-
ties are investigated. The impossibility of building an algorithmic ULS for a suffi-

ciently complex class of controlled objects is shown, and a proof of the existence of a non-
algorithmic ULS based on the axioms of classical mathematics is presented. It is argued
that a non-algorithmic ULS is a legitimate object of not only mathematics, but also the
world of nature. These results indicate that an algorithmic description of the organization

and adaptive development of biological systems in general is not sufficient. At the same
time, it is possible to create a rigorous non-algorithmic general theory of learning as a the-
ory of ULS. The utilization of this framework for integrating learning-related studies is

discussed.
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1. Introduction

There are at least three main reasons for studying mechanisms and processes
of learning. First, we need to understand the nature of learning processes in
order to develop better educational programs, help people with learning
deficits, and develop further our learning capacities. Second, the creation of
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intelligent machines capable of adapting to a complex, changing environment
and knowledge acquisition requires a rigorous and powerful theory of
learning systems. Third, from a basic-research perspective, the capacity to
learn and adapt is one of the most important, essential features of all bio-
logical organisms, particularly those endowed with a developed nervous
system. In biology, this feature is no less fundamental than, for instance,
mechanical properties in physics.

Learning-related phenomena are studied in many fields of scientific
research such as psychology, linguistics, neurophysiology, genetics, and arti-
ficial intelligence. Each field has its own experimental basis, terminology,
and theoretical concepts, which develop mostly in parallel, without much
of interaction. At the same time, there obviously is a need for exchang-
ing useful terms and concepts between these fields. For instance,
so-called genetic algorithms become increasingly popular in the com-
puter modeling of learning in neuronal nets. The nets are ‘mutat-
ing’, exchanging ‘genetic information’ as a results of ‘cross-over’
operation, etc (Mitchell, 1996). The concept of reinforcement borrowed from
the psychology of learning behavior is now extensively used in the ‘rein-
forcement learning’ methods in neuronal net models (Barto et al., 1983;
Sutton and Barto, 1998). The neuronal net approach, in its turn, was found
to be quite useful in the field of language learning (Calvin and Bickerton,
2000).

The amount of learning-related experimental data and models dealing
with certain clusters of those data has already become almost unmanageably
large and it is rapidly growing. This situation is not at all new to the history
of science. It is well known that a good general theory usually is capable of
packing knowledge into a system based on a mathematical description of a
relatively small number of concepts and laws. Such a system makes it possible
for the students to learn just the concepts and laws themselves, instead of
spending years on studying separate facts related to the manifestation of
those laws in a huge number of particular cases. Furthermore, it would
enable them of not only recreating the known experimental data, but also
predicting the results of new experiments. The process of theory creation
happened already many times in different parts of science, which by itself is
one of the most important experimental facts related to learning. Yet, there is
no mathematically rigorous general theory of learning (GTL), which could
serve as a unifying and integrative basis for different domains of learning-
related research. An obvious question arises, ‘‘What prevents one from cre-
ating a GTL?’’ More than 25 years ago, Noam Chomsky, world-known
mathematical linguist alleged that there was no formal GTL that could be
analyzed based on a mathematical apparatus, and that the creation of such a
theory did not seem to be feasible (Chomsky, 1980). What was his reason for
such a strong assertion?
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This question is directly related to the old problem of finding the role of
innateness and learning in determining the phenotype of an organism (so-
called ‘nature/nurture’ problem). It has been one of the central issues in
biology for decades, concerning virtually all parts of biology, from genetics to
ethology. The ‘nature/nurture’ problem is marked by a vast diversity of
opinions among scientists, which was fully expressed in 1975 at the Great
Debate between Jean Piaget and Noam Chomsky. It was a 4-days meeting
during which many most prominent scientists of the world, including Nobel
laureates in biology and leading figures in behavioral sciences, philosophy,
mathematics, and artificial intelligence, were engaged in vigorous discussions.

From Piaget’s point of view, knowledge including new skills and such
high-level functions as language can be acquired through learning based on
the constructions of sensorimotor intelligence (Piaget, 1980). He viewed the
process of learning as an interaction of organic auto-regulating mechanisms
with the environment (Piaget, 1972). Although Piaget’s reasoning was not
supported by a formal mathematical theory, it strongly appealed to the
audience’s intuition.

Chomsky maintained that language and other cognitive functions were
innate (i.e. encoded in human genes). Moreover, he argued against the use-
fulness of the notion of learning on the premise that the process of developing
language and other higher-level functions could be described as the work of
an innate algorithm setting parameters in the innate structure of the nervous
system. In the case of language, this structure should represent a ‘generative
grammar’, a common semantic root for grammars of different human lan-
guages (Chomsky, 1966). According to the nativists’ point of view, nothing
essentially new is created during ontogeny, and any act of creativity (e.g., the
development of a new scientific theory) should be attributed to the random
process of gene mutations. This, for example, is what Chomsky had to say at
the Great Debate in response to Bateson’s comment regarding learning in
chimpanzees (Piatelli-Palmarini, 1980, pp. 262–263): ‘‘. . . suppose now we
went ahead and found out what was involved in his [the chimpanzee’s, Y.S.]
making the next step, and then we ask, what is the origin of that next thing X
that is involved in it? You answer, trivially, that it is genetic determination,
and you keep doing it at every point where you get an answer, because there
aren’t any other possibilities.’’ At that time, no one could find a significant
contra-argument.

As one can see, the ‘nature/nurture’ issue actually is equivalent to the
fundamentally important question ‘‘What is the origin of the mind’s creativity?’’
This problem was not resolved at the Great Debate, and it has not progressed
much toward a resolution since then. Despite numerous papers written on it,
no agreement has been reached on this issue, although some advancement
has been made toward the integration of the two viewpoints. For instance,
the concept of an algorithm has been successfully incorporated into the
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definition of a teleonomic process (Mayr, 1982), a key notion from the field
of genetic epistemology originating from Piaget’s studies. At the same time,
from Piatelli-Palmarini’s statement, in which he expresses his agreement with
those who say that the term ‘learning’ is less than useful in science (Piatelli-
Palmarini, 1989), one can conclude that nativists do not feel less strongly
about their position. A significant support for this position comes from
theoreticians of machine learning who acknowledge that the mathematical
theory of learning has been developed thus far as a theory of learning
algorithms (Langley, 1996). Nothing essentially new has occurred in attempts
to use the recent achievements in modeling the acquisition of a behavior by
artificial neuronal networks in order to solve the ‘nature/nurture’ problem
(Elman et al., 1996). Although the authors’ arguments are directed against
nativism, they demonstrate that a behavior can be acquired based on an
algorithm of parameter adjustments in a neuronal network, which actually
supports the nativists’ viewpoint.

It seems impossible to find the origin of creativity based on experimental
research alone, without an extensive theoretical investigation. One of the
main problems is that the same experimental observation (e.g., on the
development of a child’s mental or sensorimotor capacities) can be inter-
preted by developmentalists as an example of ‘true’ (i.e. creative) learning
and by nativists as the work of an innate algorithm setting parameters in the
innate structure of the corresponding part of the nervous system. In order to
challenge the nativists’ arguments on theoretical grounds, the analysis of the
‘nature/nurture’ issue apparently must be performed at the same level of
mathematical rigor by applying the powerful mathematical apparatus of
formal logic, which allowed Chomsky to disperse so easily the non-formal,
intuitive arguments of his opponents. Since the Great Debate, several papers
have been published in which a generalization of certain mathematical as-
pects of learning has been proposed (Pla-Lopez, 1988; Amari, 1991) although
with no visible regard to Chomsky’s arguments. After the first version of this
paper has been completed, the author became aware of Marcus Hutter’s
work (Hutter, 2001). Although not explicitly related to the above issue, it
provides a strong mathematical background for a GTL (Section 3.2).

It should be emphasized that the main goal of this paper is to demonstrate
that a non-trivial, mathematically rigorous GTL can be created and determine
its main features, rather than to solve the nature/nurture issue or disprove
Chomsky’s arguments against learning as a process during which something
not innate is created. The problem of creativity origin is regarded here as a
beacon that indicates where the initial effort should be directed, for two
reasons. First, one obviously cannot avoid the challenge posed by this
problem when creating a GTL. Second and more important, one can expect
intuitively that systematic efforts to solve such fundamental and difficult
problem would provide a substantial insight into the GTL development per se.
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2. Existing Conceptual Bases

From a very general perspective, learning is a function performed by a
physical system, which interacts with a certain environment. Before venturing
into mathematical formalization of learning, it seems important to realize that
we do not know a prioriwhich physical properties of either the learning system
or its environment are essential for performing that function. Furthermore,
from a physical viewpoint, we also need to explicitly assume existence of an
external observer, who performs physical measurements on both above sys-
tems and, therefore, unavoidably (from a quantum-mechanical perspective)
interferes with their behavior. When abstracting ourselves from these details,
we should remember to go back and try reinstating some of them, in case a
principal problem is found in the course of theory development.

During a process of learning, the modification of the function performed
by the learning system is achieved through the modification of the system’s
substrate. The main mathematical approaches to describing these two
properties are the theory of optimal control and the theory of algorithms,
respectively.

2.1. OPTIMAL CONTROL THEORY

A learning process, being it an adaptation of a population of organisms to a
new environments or a child’s learning its mother tongue, always is associ-
ated with a certain (explicit or implicit) measure of behavior quality that is
supposed to be improved as a result of learning. This fact suggests that
learning can be described mathematically as optimization. From another
perspective, the theory of optimal control is based on the same Hamilton’s
principle that unifies all parts of contemporary theoretical physics (Lawrie,
1990). It is well known that the more complex the physical system, the more
beneficial and important the utilization of this principle. For instance, one
does not need to use Hamilton’s principle (based on Lagrange’s approach) in
mechanics when dealing with a mass point - Newton’s laws are quite suffi-
cient for calculating the point’s trajectory. However, with an increase in the
mechanical system’s complexity, the differential equation system describing
its motion quickly becomes practically unmanageable (e.g., this is true al-
ready for a three-segmented limb with seven degrees of freedom in 3-D). At
the same time, the formula for the corresponding Lagrangian function usu-
ally is incomparably shorter. It should be emphasized that the differential
equation system describing the mechanical system’s motion can be derived
from the Lagrangian automatically, just as a function’s values can be cal-
culated by substituting concrete values of its arguments in the corresponding
formula.
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Since biological systems (especially the brain) are the most complex
known physical systems, it seems quite logical to try Hamilton’s approach (in
the form of optimal control theory) when seeking an efficient mathematical
model of their behavior. The possibility of modeling the behavior of bio-
logical systems based on the concept of optimal control has gained consid-
erable attention from biologists. It has been shown that the neural control of
movements can be described successfully as the functioning of an optimal
control system (Uno et al., 1989; Johansson and Magnusson, 1991; Shoucri,
1991; Viviani and Flash, 1995; Lan, 1997; Bhushan and Shadmehr, 1999;
Shimansky, 2000; Shimansky et al., 2004). The theory of stochastic optimal
control (in the form of so-called ‘reinforcement learning’) has proved also
quite successful for modeling the process of learning to play antagonistic
games (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998).

2.2. THEORY OF ALGORITHMS

The theory of optimal control does not deal explicitly with the implemen-
tation of the functions involved. In a general case, however, the criterion of
learning system’s optimality can include the complexity of its implementation
(e.g., the amount of physical matter and energy required). This consideration
touches upon a very general principle, the law of parsimony (a.k.a. rule of
Ockham’s razor), which states that the descriptive complexity of a model of
reality should be minimized. This law dictates the development of the sim-
plest theory that fits the entire amount of experimental data and is capable of
predicting results of new experiments. This important, although informal
idea finds a perfect mathematical formalization in the theory of algorithms
and recursive functions as Kolmogorov complexity (Li and Vitanyi, 1997).

The mathematical notion of an algorithm is the result of generalizing the
idea of an effective procedure that can be performed in a finite number of
steps by executing an elementary operation at each step. It should be
emphasized that many different formal mathematical models of an effectively
performable procedure have been created, and all of them have appeared to
be equivalent to each other (Uspensky and Semenov, 1993). This fact
apparently should be considered a result of series of independently performed
physical experiments, for as much as the brain is a physical system generating
on its output a solution to a given problem. It strongly indicates the fun-
damental character of the notion of an algorithm. Perhaps the most fre-
quently used mathematical model of an algorithm is a finite sequence of
commands (a program) that can be performed by a certain automaton, e.g., a
Turing machine, the mathematical prototype of current computers.

For many years after the development of the Turing machine, many
scientists have been thinking that the brain itself is a very large natural
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computer, ever so complex due to the complexity of the working algorithm.
However, over time this identity has become less obvious. Some scientists
have argued that while the human brain can learn, a computer cannot. It has
been shown that in many cases learning can be modeled successfully by an
algorithm (Hebb, 1949; Rosenblatt, 1962; Kirkpatrick et al., 1983; Rumel-
hart et al., 1986). The most serious arguments against the Turing machine as
a functionally complete brain model allude to the capability of the human
brain to set up a problem and create new ideas. It also has been suggested
that consciousness is the critical function that makes the brain more than a
machine (e.g., Penrose, 1994). However, no one has been able to define these
functions sufficiently well to compare the functional power of the brain with
that of a computer on a rigorous mathematical basis. Thus, the Turing
machine, a universal computer (i.e. an automaton capable of performing any
algorithmic function the description of which is sent to the its input), still is
the closest known mathematical approximation of the brain as an informa-
tion processor.

The universal computer model of the brain’s functioning focuses attention
on its computational properties. Are these features sufficient for under-
standing the functioning and development of the brain, a super-complex
physical system continuously interacting with the environment? Many
additional questions emerge from this perspective. For instance, what func-
tion should the brain perform in a certain state of the external world? A mere
computational model of the brain is capable of telling only how such func-
tion can be implemented in a neuronal network, provided the description of a
corresponding algorithm is available. According to the theory of algorithms,
any computable (i.e. describable by an algorithm) function can be performed
by an infinite number of different algorithms (Cutland, 1980). Which one of
them should be chosen? Why should the system perform this particular
function? What factors determine the physical design of the brain? The
‘Universal Computer’ model in itself apparently has no room for answers to
such questions.

From a different perspective, the theory of algorithms and recursive
functions can help to see a similarity between objects of different nature. For
example, consider language and arm movement. On the first sight, they seem
to be completely different in their nature, which might imply a great difference
in the mechanisms and processes of their learning. However, the inspection of
mathematical descriptions of these objects reveals a great deal of similarity. A
language grammar, i.e. the set of rules describing the set of syntactically
correct sentences, is usually described as a set of recursive equations. A system
of differential (i.e. also recursive) equations describing the arm as a mechan-
ical system is, in fact, the ‘grammar’ of arm movements. For example, one can
think of a set of sentences describing a certain thought and a set of arm
trajectories associated with the attainment of a certain goal. If one adds a
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measure of quality defined on such a set, a problem of finding an optimal
member of the set (optimal sentence, optimal trajectory) can be posed. This
would be a large step in the direction of the optimal control theory.

One easily can notice that the concepts of a universal computer and
optimal control system complement each other. According to the former, a
system’s behavior is completely defined by providing a program that de-
scribes an algorithm for computing the system’s function based on a uni-
versal computer. However, the question ‘Why should the system perform this
particular function?’ is irrelevant in this case. In the second concept’s
framework, a system’s behavior is defined as a solution to the optimal control
problem by specifying the description of the controlled object including the
criterion of optimality. Thus, the concept of optimal control provides a
causal link between the properties of the environment and the system’s
behavior, although in general it does not give a constructive way of imple-
menting the system’s function.

3. The Idea of a Universal Learning System

It apparently is desirable for a GTL to possess the above-mentioned features
pertaining to the concepts of algorithm, universal computer, and optimal
control. Since the theory of algorithms constitutes the meta-mathematical
core of so-called constructive mathematics, a combination of the above two
ideas can be presented in the form of a constructive control system, that is a
control system whose functioning can be described by an algorithm. Formal
mathematical definitions of a constructive system in general and a con-
structive optimal control system are given in Appendix.

This paper introduces a new mathematical concept, the concept of a
Universal Learning System (ULS), which essentially is based on the idea of
constructive optimal control. Before considering its definition, note that
many, if not most, mathematical constructions are finite descriptions of
infinite sets. For instance, an algorithm is a finite description of an infinite in
general set of pairs hargument, function valuei, a grammar is a finite
description of a set of syntactically correct sentences constituting a certain
language, and an optimal control system describes an optimal set of hsensory
input, control actioni pairs. Very often, they use similar constructions of
higher orders. For example, a universal computer is an automaton that can
perform any computable function whose algorithm’s description (a program)
is presented on its input; Chomsky’s hypothetical generative grammar is a
finite construction describing a set of grammars for the class of all possible
human languages. Similarly, a ULS is defined here as a system capable of
learning to control in an optimal way any constructive system from a given class
(see Appendix for mathematical details).
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Based on this definition of a ULS, one can describe a theory of learning as
a theory studying the features of a ULS for different important classes of
controlled systems. For instance, a neural system controlling arm movements
can be described as a universal learning control system, whose class of
controlled objects contains arms with different mechanical parameters
determined by the mass of different muscles, the mass of fat tissue, various
constraints due to a possible trauma, extra characteristics determined by
objects held in the hand, etc. For a ULS as a functional model of a biological
organism’s interaction with the environment, the class of controlled objects
may be associated with a set of objects and states of the physical environment
limited by the corresponding ecological niche. In lower species, for instance,
learning capabilities seem to be rather limited, which apparently reflects the
relative simplicity of the corresponding class of controlled objects that can be
learned, rather than contradicting the ULS model. In the course of the
evolution of biological systems, one observes an increase in the complexity of
the class of controlled objects and the corresponding prolongation of
learning processes.

3.1. FUNCTIONAL ARCHITECTURE OF A ULS

A very simple, yet non-trivial ULS organization includes two levels of
functional hierarchy (Figure 1). It corresponds to a decomposition of the
controlled object into two parts: (1) variable part (or state) that changes with
each time step according to a certain dynamics, and (2) constant part that is
time-invariant, but differs between the members of the class of controlled
objects. Note that, although no dynamics of switching between the elements

Learning Control System

Learning Subsystem

Controlling Subsystem

Controlled Object

Control Law
Parameters

Control
Action

Afferent
Feedback

Figure 1. The hierarchy of a Universal Learning System.
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of the class is specified, it is assumed that the ULS is required to be capable of
re-learning after its current controlled object is substituted with a different
one from the same class, thus allowing for non-stationarity of the controlled
object. The ULS architecture is a result of generalization across many par-
ticular cases. For instance, in terms of the theory of automatic control, the
lower level represents the control law (e.g., implemented based on an artificial
neuronal net), and the higher level optimizes its parameters (e.g., synaptic
weights). A detailed description of a highly efficient computer model of
learning to move a mechanical object, which is based on this paradigm, is
given in (Shimansky et al., 2004). In a different example, the upper level is
responsible for finding an adequate set of axioms describing a scientific
theory (here viewed as parameters downloaded to the lower level), and the
lower subsystem’s task is to perform experiments (either directly on the
external reality, or the internal model of it) and test the axiomatic theory on
their results. In order to do that, the lower-level subsystem encodes the
experimental data in the language of the axiomatic theory and then attempts
to prove or disprove the resulting statement as a theorem. Gold’s paradigm
of language learning (Gold, 1967) can be viewed as a particular case of this
category.

After having generalized across the above two (and many other) examples,
one can arrive at the following formalization. The lower level is a universal
computing device (e.g., a universal Turing machine) that performs a so-called
universal function (one of the central concepts in the theory of recursive
functions) UðC;XÞ, where C is the code of a computer program and X is
input data. The task of the upper subsystem in the above architecture of ULS
is to find Copt that is optimal with respect to a certain criterion. It appears
that, in general, there is no algorithm for solving this task. In order to prove
this, a certain level of mathematical formalization is required. For the
reader’s convenience, the formal constructions are taken outside of the main
text and presented in Appendix A. The most important conclusions from the
theorems that are proved there are recapitulated in an informal way below.

3.2. PROOF OF NON-COMPUTABILITY OF ULS FOR SUFFICIENTLY COMPLEX

CONTROLLED OBJECT CLASSES

A formalized mathematical analysis of necessary and sufficient conditions for
the existence of a ULS for a certain, relatively simple, class of controlled
objects is presented in Appendix. It is based on the following idea. A general
function that can be described by a computer program (known as partial
recursive function, PRF) may not be defined on certain values of its argu-
ments, indicating that the process of computation will never be finished on
such inputs. In order to make our mathematical model adequate with regard
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to the physical reality, it must be required that the behavior of each system
from the class of controlled objects for a given ULS be described by a
completely defined computable function (total recursive function, TRF).

It is proved (Theorem 1) that a ULS in general must be capable of enu-
merating the set of TRFs corresponding to the given class of controlled
objects. The proof is based on constructing the criterion of control optimality
so that the ULS has to create a functionally exact internal model of the
controlled object. It is well known that the enumeration of a set of TRFs in
general may not be computable (i.e. it may not be possible to describe the
enumeration procedure by an algorithm). For instance, the set of all TRFs is
not algorithmically enumerable (Cutland, 1980). Hence, the behavior of a
ULS in general cannot be described by an algorithm.

The possibility to enumerate a given class of computable functions ap-
pears to be not only necessary, but also sufficient for the existence of a ULS
for a given set of controlled systems (Theorem 2). In classical mathematics,
this allows one to prove the existence of a ULS for any class of controlled
systems regardless of whether it is algorithmically enumerable or not. This
proof (Theorem 3) is based on an application of the so-called axiom of choice,
which asserts the existence of a possibility to choose an element from any
given set (since the set of TRFs is countable, only the countable version of the
axiom of choice is needed). This axiom plays a truly unique role in mathe-
matics by allowing proof of the existence of a mathematical object without
providing an algorithm for its construction. Such an algorithm is required in
constructive mathematics but not in classical mathematics. It immediately
follows from the axiom of choice that there is a way (though not necessarily
an algorithmic procedure) to enumerate any given set. Although this provides
a possibility to prove the existence of a ULS for any given class of controlled
systems, it does not help one to understand how to create a ULS for a class
that is not algorithmically enumerable.

It is important to note that the set of all PRFs (including all TRFs) can be
enumerated by an algorithm. However, there is no contradiction between this
fact and the absence of an algorithm for enumerating all TRFs. It is possible
to create a list of PRF codes, but it is impossible to distinguish (algorith-
mically) between TRF and PRF codes. This is very similar to being able to
make a list of all finite sequences of printable characters when looking for an
answer to a certain question, without knowing how to select a sequence
representing the right answer, or how to select a sequence that would make
any sense at all.

In the theory of recursive functions, the notion of an oracle, a hypothetical
external device utilized for performing an extra function as an elementary
operation, plays a very important role. A so-called halting oracle can be used
for determining whether a given computer program will stop on a given
input. If available, it provides a possibility to distinguish between PRFs and
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TRFs in a list of all PRFs, and, consequently, enumerate TRFs. This pos-
sibility might seem to have only pure theoretical importance. However, as
will be mentioned below (Section 5), it appears feasible, at least in principle,
to implement a quantum-mechanical halting oracle and, consequently, a non-
computable ULS.

The above approach to defining the paradigm of universal learning and a
ULS is not the only possible. Hutter (2003) defines a ULS (Universal Arti-
ficial Intelligence Model in his terminology) as an intelligent agent whose
goal is to maximize future rewards in a probabilistic environment that con-
sists of a certain (but unknown a priori) computable stationary probability
distribution over a set of deterministic environments (i.e. a set of all PRFs).
The main problem addressed in that study is to determine the actual prob-
ability distribution. A simple and elegant solution of this problem is based on
Solomonoff s theory of universal induction, which combines Kolmogorov’s
measure of algorithmic complexity and Bayesian prediction. At the same
time, the assumption of stationarity of the above probability distribution
and, therefore, the entire stochastic environment can be viewed as imposing
serious limitation on the paradigm’s applicability to modeling adaptation of
biological systems to environmental changes. Hutter’s model of ULS appears
to be also non-computable, which is fully consistent with the proof described
in the previous section. He also describes a computable version of the AI
model, which is the best among those bounded by given complexity and time
limits.

4. GTL as a Theory of ULS

A general theory of learning (GTL) has to be more complex than just an
algorithmic theory to qualify as a counter-example to argue against Chom-
sky’s denial of a possibility to create a non-trivial theory of learning. The
above-described results of the mathematical treatment of this issue
unequivocally demonstrate that an algorithmic approach is not sufficient for
developing a GTL. The establishment of the non-trivial character of a GTL
as a general theory of Universal Learning Systems constitutes the main result
of this study. It appears that the functioning of a ULS for a sufficiently wide
class of controlled systems cannot be described by an algorithm, indicating
that a GTL has to be essentially non-algorithmic.

4.1. ULS THEORY AND NATURE/NURTURE ISSUE

Let us recall once more nativists’ scheme of the development of a biological
organism. Any new feature (compared to the organism’s progenitor) is
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created at the time of genome mutation and recombination. Then the genetic
program starts to function, and the ontogenesis essentially is the processing
of information obtained from a specific environment by the genetic program.
In different terms, the epigenetic rules automatically ‘fill out’ the innate
matrix with data received from the environment. Thus, the only ‘truly
creative’, non-algorithmic aspect in the process of the creation of a new
biological organism is the mechanism of random modification in the genes. Is
this mechanism creative from a mathematical perspective, however?

It is well known that probabilistic algorithms (such algorithms include
calls to a random number generator) do not extend the class of computable
functions (Leeuw et al., 1956). This is so primarily because one can substitute
a random number generator with a deterministic algorithm for enumerating
finite sequences of ‘0’-s and ‘1’-s, provided the parameters of the required
probability distribution (e.g., the probability of ‘1’) are specified as com-
putable numbers. Randomness helps when the enumeration of sequences of
objects rather than objects themselves is required. As an alternative to ran-
domness, one would have to have an infinite memory not to repeat the same
sequence infinitely many times. Thus, the utilization of a random number
generator as an oracle (i.e. an external device utilized for performing an extra
function) instead of a sophisticated deterministic algorithm greatly simplifies
the enumeration task. However, non-deterministic algorithms do not provide
any extra creative power.

This well-known mathematical result may seem somewhat unexpected to a
biologist, since it usually seems intuitively ‘obvious’ that randomness plays a
critical role in learning. For instance, it has been proposed that novel prop-
erties of biological systems can emerge from the random recombination of
elementary building blocks (Cziko, 1995). The creative power of this mech-
anism, however, does not reach beyond the domain of computable functions,
since all possible DNA sequences (as all finite sequences of characters from a
finite alphabet) clearly can be enumerated by a relatively simple algorithm. In
different terms, the process of gene modification itself can be viewed as just
‘filling out’ the corresponding set of DNA sequences as a ‘matrix’.

Let us recall now that Chomsky ascribed creativity to the mechanism of
gene mutation not because of some positive reason, but rather as a last resort,
just since it ‘cannot be anywhere else’ (see Section 1). It is clear from the
above analysis that if random changes in the network of billions of neurons
in the brain do not provide creative power, then such modifications in
incomparably simpler structure of DNA sequences would so much the less.
Thus, one has to conclude that the nativists’ model of the development of
biological organisms is wrong. The nature’s creativity in the development of
biological organisms cannot be reduced to random changes in their genome.
At the same time, only non-innate mechanisms can be responsible for the non-
algorithmic characteristics of an organism’s development.
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Hence, we are left with two main alternatives with regard to the model of
the development of biological systems. Namely, either there is no creation (as
a non-algorithmic process) at all, or the process of creation affects the entire
biological system at any stage of its development. Before going any further, it
should be noticed that this philosophical dilemma is of a much greater scale
and much older than the nature/nurture issue. A few more steps along this
direction will be made below with the main purpose to demonstrate that the
conceptual basis of ULS is adequate for dealing with this problem.
According to the first alternative, everything has been created by a Mega-
Algorithm of tremendous complexity, and we do not perceive it as such just
because the complexity of the algorithm of our brains’ functioning is much
smaller. In this case, all creative power has been already used for creating the
Mega-Algorithm (or one could assume that it always existed). Second, acts of
(non-algorithmic) creation do occur, at least once in a while. As Niels Bohr
(a Nobel laureate in physics, one of the fathers of quantum mechanics),
mentioned, physics is concerned with how we can describe the reality, rather
than what the reality is. It is very important to acknowledge that, given a
certain complexity of the model of physical reality in the brain of the
investigator, the investigator would not be able to distinguish between the
case in which there is a Mega-Algorithm complexity of which is greater than
that of the algorithm of brain functioning (and consequently the model’s
complexity) and the alternative situation in which the reality cannot be fully
described by an algorithm in principle. In both cases, however, an increase in
the complexity of the algorithm of a brain’s functioning apparently is pos-
sible!

It should be emphasized that, based on our current knowledge about the
physical reality, the above two models are not equal in their likelihood. There
are two facts: (1) the mathematical foundation of modern physical theory
requires the axiom of choice (or its analog) and (2) this axiom allows the
enumeration of sets that are not algorithmically enumerable, thus permitting
the existence of a non-algorithmic ULS. Therefore, the ‘true creation’
alternative appears to be in much better correspondence with the general
model of our universe created so far (note that the term ‘created’ here relates
to both the ‘model’ and ‘universe’!). Some other important arguments in
favor of developing a theory of non-algorithmic ULS (in addition to that of
algorithmic ones) will be presented farther below.

4.2. STRUCTURE OF ULS THEORY

It has been demonstrated that a non-trivial GTL can be developed in the
form of a ULS theory. The term ‘general’ here by no means is intended to
indicate that the only goal is to find the ‘largest common denominator’ for
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the adaptation of a primitive unicellular organism to its surroundings and
development of scientific theories. The goal is to create a scalable theory that
would help to get into details of each adaptive process. The general structure
of this theory can be presented as a tree. The root node should include
features common to ULS corresponding to different classes of control ob-
jects. One of the main such functional features, for instance, is the concept of
internal model of the controlled object (Baev and Shimansky, 1992; Gerdes
and Happee, 1994; Wolpert et al., 1995; Shimansky, 2000). An internal model
itself also can be presented as a ULS, where the lower level is responsible for
the identification of the controlled object’s current state, and the upper level,
for the identification of the IM’s parameters. Special parts of the root stra-
tum of the ULS theory should be allocated to the classification of internal
model types, functional decomposition of a complex internal model, inter-
action between the internal models and other functional components, etc.
Every important class of controlled objects (such as devices without internal
memory, finite automata, systems with finite-dimensional continuous state
space stack automata, etc.) requires a special subdivision (i.e. a ‘node’) of the
ULS theory. Each node includes theoretical concepts common to the cor-
responding controlled object subclass and further classification. Needless to
say that the tree will grow as theory development progresses, and a significant
amount of interaction between theoretical directions corresponding to dif-
ferent nodes should be expected.

The results of this study emphasize the importance of the problem of
enumerating objects from a certain class. Computationally, this problem is of
the most difficult type. It may not seems so urgent for relatively simple classes
objects of which have the same complexity and can be parameterized by a
finite set of variables. The problem of enumerating such objects optimally, so
that the corresponding ULS learns fast enough, apparently is the most
critical (a typical example is an adaptive system for movement control). A
different situation exists in those cases in which controlled object complexity
significantly varies between different elements of the class (e.g., in such tasks
as orientation in an extra-personal space and language learning). In that
situation, the mere problem of enumerating the objects becomes computa-
tionally challenging enough to appear in the forefront. A complex controlled
system usually can be presented as a combination of simpler subsystems,
which allows one to organize the enumeration of a class of such controlled
objects based on enumerating the subsystem classes and the patterns of their
combination. Similarly, the control of a complex controlled object involves
controlling each subsystem. Hence, development of a complex ULS should
be based on simpler ULS as subsystems. The possibility of performing a
functional decomposition of a complex learning system into simpler sub-
systems of the same general type is an important advantage of the ULS
framework.
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4.2.1. Algorithmic ULS

The recent progress in computer technology makes of high practical
importance the development of ULS that can be implemented based on a
computer. In fact, all known models of learning mechanisms are algorithmic.
The ULS approach is not an alternative to existing learning-related para-
digms, such as machine learning methods, unsupervised learning algorithms,
error back-propagation networks, reinforcement learning approach, etc. It is
supposed to be developed as a unifying basis for integrating the existing
methods and concepts in order to make them available and useful for
experimental research. Regrettably, because of paper size limitation, an
analysis required to demonstrate that the ULS approach indeed can provide
such a constructive basis cannot be included here. At the same time, a theory
of computational ULS apparently should be developed much further than
just a basis for existing theories of learning. It can be demonstrated that
based on the concept of so-called constructive object, which is no less fun-
damental than the notion of an algorithm, but so far much less well known
(Uspensky and Semenov, 1993), one can develop a theory of learning systems
with complex, hierarchical parameter structures and multiple optimization
criteria with their own hierarchy.

4.2.2. Non-Algorithmic ULS

It has been shown that a non-algorithmic ULS is a valid mathematical object.
Moreover, the possibility of its existence does not seem to contradict any
known physical law. Hence, a GTL can be developed as a theory of ULS.
However, this possibility by itself does not necessarily mean that such a theory
should be developed. Indeed, it would be quite a peculiar entity, since by
definition it cannot be constructive in the usual sense of algorithmic con-
structiveness. Is there a more general type of constructiveness than algorith-
mic? So far, we only know that all attempts to mathematically formalize a
system capable of performing an effective procedure led to a schema equiv-
alent to Turing machine (i.e. to a Universal Computer). At the same time, we
know that an algorithmic procedure is not sufficient in general for describing
the reality. This awareness began at the beginning of 20th century from
G€odel’s theorem that effectively put an end to Hilbert’s program of fully
automating mathematical proofs. From another perspective, classical math-
ematical analysis, the foundation of contemporary theoretical physics, re-
quires the axiom of choice (at least for countable sets). Perhaps few scientists
would try to deny the importance of working on the development of a non-
algorithmic GTL from the perspective of fundamental research. Nonetheless,
would such a theory have any practical value? Before trying to answer this
question, it is important to clarify the advantage of using a more computa-
tionally powerful device in general. Consider the following two examples.
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The first example is the calculation of the factorial function of an integer
number fðnÞ ¼ 1 � 2 � 3 � � � ðn� 1Þn. To calculate this function with a device
without internal memory based on a feed-forward computational scheme,
one has to provide a direct calculation formula. However, the length of an
instruction for factorial computation based on a direct formula is propor-
tional to the value of the function argument. Writing and transmitting such
instruction for a large n each time one wants to compute the function con-
stitutes a problem by itself. If the computing device is of a finite automaton
(FA) type (i.e. with a finite amount of internal memory), a much more
concise and elegant way of describing computation of the factorial function
can be used. It is based on recursion: fð0Þ ¼ 1, fðnþ 1Þ ¼ ðnþ 1ÞfðnÞ. This
description’s length is invariant with relation to n (here we do not consider
the length of the representation of n itself). This instruction needs to be sent
to a computer only once before computing the function for a set of argument
values.

The second example is the task of navigating through a maze. For prac-
tical reasons, we may consider the maze complexity limited, so that a FA of
sufficiently large state space could be used. It could be easily shown that the
description of the corresponding schema of state transitions for the FA
would be enormous, even for classes of relatively small mazes. With a uni-
versal computer, however, a program that solves the same task based on the
stack technique (which requires dynamic memory allocation) can be
incomparably smaller.

The above examples illustrate the general fact that a more computation-
ally powerful device allows a more concise coding of knowledge. A universal
computer is the most powerful automaton, meaning that it can perform any
algorithmic procedure. A ULS in general is required to have more than
algorithmic power. Making an inductive inference (Figure 2), one can expect
the ULS theory to ultimately provide a still more powerful way of encoding
knowledge.

5. Non-Computable ULS as a Physical System

The fact that the idea of a non-algorithmic ULS is consistent with classical
mathematics is a strong indication of a possibility that such a ULS exists as a
physical system. It follows from the above analysis that the computational
properties of physical systems are not sufficient in general for constructing a
ULS, but it is not immediately clear which other physical properties could be
used for that. Whatever those properties are, they obviously cannot be
adequately described based on a computer model. Strong evidence that such
properties exist comes from the theory of quantum mechanics. First, quan-
tum mechanics is inconsistent with a local hidden-variable model (Bell, 1966).
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Stated differently, quantum mechanical systems are of non-deterministic
nature not because an external observer lacks information about it, but ra-
ther because any deterministic model with hidden parameters, in which
physical systems are not allowed to interact with speeds higher that the speed
of light, is inadequate. Since the code of a computer program can be con-
sidered a generalization of a hidden variable’s value, the above principle
indicates that quantum-mechanical systems in general cannot be modeled by
an algorithmic procedure. Second, it appears that there exist a quantum-
mechanical solution to the tenth problem of Hilbert (finding integer roots of
diophantine equations in finite number of steps), which is known to be
equivalent to the non-computable problem of determining whether a given
computer program will halt on a given input (Kieu, 2003). Stated differently,
current theory of quantum mechanics is consistent with the possibility of
creating a quantum-mechanical halting oracle, which, as it was mentioned
above, can solve the problem of TRF enumeration.

Since quantum mechanics is the most precise physical theory to date
(Lawrie, 1990), the above theoretical observations strongly indicate that non-
algorithmic ULSs exist in the form of a physical system. One may hypoth-
esize, for example, that the brain is such a system. Furthermore, one can
intuitively expect that the most powerful learning functions of the brain be
based on non-algorithmic properties of it as a physical system. In this regard,
an important question arises, ‘How such properties can help increase the
learning power of a ULS?’ Some possible approaches to finding an answer to
this question are outlined below.

No internal memory
Feed-forward System

Dynamic memory allocation
Constant algorithm

Universal Computer

Dynamic modification of algorithm
Universal Learning System

Finite internal memory (constant size)
Dynamic modification of memory state

Finite Automaton

Figure 2. Inductive series of devices with increasing computational power.
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5.1. SIMPLE SOLUTION OF NON-STOPPING PROBLEM

In order to understand better the ‘game rules’ in the physical world, let us
look at a possible interaction between a physical control system and a
physical controlled object. For concreteness, we can assume that the control
system design is based on a universal electronic computer, since the latter is a
physical realization of a Turing machine, and the controlled object is just
another physical system. The computer cannot enumerate all and only TRFs,
but it can enumerate PRFs by enumerating algorithm descriptions, i.e.
programs. In this case, however, a program generated may work without
stopping after having received an input from the controlled object. In
physical reality, it takes non-zero time to perform an elementary step. Since
the computer is not supposed to interact with the controlled object until the
computation of control action is finished, it may never resume its interaction
with the controlled object. From another perspective, the absence of control
signals in general is just one of the logistically possible control actions, since
the controlled object does not have to wait for a signal from the control
system. Therefore, the controlled object would continue moving along the
‘ballistic’ phase trajectory, which obviously may be far from being optimal.
Thus, not only the control action should be computed in a finite number of
steps, but also the computation time must be small enough to satisfy time
constraints imposed by the controlled object dynamics.

This complication, however, is accompanied with an important benefit. A
physical controlled object would not wait for the control system to finish its
computations, but for the same reason it can interrupt the computational
process by sending a special signal to the control system. That signal can force
the computer to generate the next PRF and start performing it. If an inter-
ruption signal is sent every time and only when the state of the controlled
object is ‘undesirable’, the problem of non-stopping can be eliminated.
However, the price of it appears to be quite substantial: now the control
system must learn not only to compute optimal control actions, but also to
finish the computation in time, i.e. before the state of the controlled object
becomes ‘undesirable’ and an interruption is initiated. There are infinitely
many programs for the computation of a given TRF. If a program exists that
can compute an optimal TRF within the time limits imposed by the controlled
object behavioral properties, it can be found by the above enumeration
mechanism in the finite number of steps. This is so because there are a finite
number of items in the list of all PRFs until an optimal TRF is generated, and
it takes a finite number of steps between generations of two successive PRFs.

It looks like the above method eliminated the problem of internal inability
to determine whether a given program will stop on a certain input. The
problem is not resolved, though; it rather is bypassed by introducing a new
type of feedback signal, namely, process interruption. Stated differently, the
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ULS is relieved from the task of making decision when to stop computation;
the task is transferred to the environment, and the ULS now just passively
complies with the decision. Note that in general it is not possible to predict
the occurrence of the interruption signal based on an algorithm. Otherwise,
one could combine that algorithm with the procedure of PRF enumeration to
create an algorithmic ULS that would not need any interruption signal.

5.2. ENUMERATION OF PHYSICAL DESIGNS

It may seem on the first sight that we did obtain a constructive enumeration
of TRFs. However, by having opened the Pandora’s box of the physical
world, we let out many other problems. In order to find a control system
whose response time fits the above constraints, enumeration of computer
programs is not sufficient; it is also necessary to enumerate physical designs of
the universal computer, because the computation time substantially depends
on it. The history of computers shows how big the range of serial computer
speed is depending on the physical implementation of the processor, memory
and other parts. One can expect that the speed of parallel computers and
computational networks depend even more dramatically on their physical
design. Furthermore, when dealing with the problem of physical design
enumeration, one should consider the design of the information interface. An
enhancement of the input part (e.g., increase in the speed of information
transfer, creation of new channels) can increase the observability of the
controlled object and consequently the speed of the system’s performance.
Similarly, a development of the output effector part can increase the con-
trolled object controllability, which may contribute even more to the overall
efficacy of the entire control system. Such changes in a control system are
hardly ever considered as a part of the learning process. They can be quite
important, though, because a lack in observability or controllability of the
controlled object due to an underdevelopment of the control system’s
interface may not be compensable by any increase in the computational
power of the ‘thinking’ part. Thus, the process of physical design enumera-
tion must include all the parts of the control system.

There are at least two main different methods for modifying a system’s
physical design. First method consists in switching between elements of a
certain pre-determined set of alternatives expressed in terms of the system’s
structure and parameters. A computational model of physical design enu-
meration according to this method apparently can be developed. The second
method is characterized by permitting modifications that affect not only the
system’s motion along its existing degrees of freedom, but alter these degrees,
including the creation of new ones. This can be done in practice by simply
infusing a certain amount of energy into the system, which is another example
of feedback type that cannot be used, if only computational properties of
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physical systems are considered. If the hypothesis that physical processes in
general are non-computable is correct, enumeration of a non-recursive set of
physical designs can be achieved based on the second method. This apparently
can bring greater learning power at the expense of a possibility of altering the
system to such an extent where it no longer would be capable of performing its
function, which, for a biological organism, would mean its death. It is con-
ceivable that there are many different types of non-algorithmic modifications
of physical design; consequently, a compromise between the capacity to learn
and functional stability has to be found for each ULS.

6. Conclusions

It has been demonstrated that neither computational properties of physical
systems, nor random mutations in the genome of a biological organism can
account for the creativity that manifests itself in acquiring new skills and
developing scientific theories. This conclusion conforms to the intuitive idea
that learning function of the brain, the most complex known physical system,
is essentially more than an innate program for processing sensory informa-
tion. There are strong indications that the main source of the creative power
of learning is related to physical interactions of a ULS with its environment.
However, it is not yet clear what other physical properties are critically
important for creating a ULS. This problem apparently should constitute a
substantial part of GTL.

Perhaps the main conclusion from this study is that a non-trivial and
rigorous GTL can be developed essentially as a theory of ULS. It cannot be a
pure mathematical theory, for it has to include non-computable aspects of
physical reality. Therefore, it needs to be developed essentially as a physical
theory. Its subject, unlike that of any other theory, includes formalization of
theory creation in general, which makes it applicable to itself, thus consti-
tuting a significant element of self-awareness. This unique feature should
make GTL attractive to increasing number of scientists who strive to for-
malize the idea of consciousness. The ULS approach opens an entirely new
perspective on creating a theory of brain functioning and the processes of
biological systems evolvement. It becomes clear that the development of such
a theory will require collaboration between biologists, physicists, and
mathematicians on a new level.
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Appendix A

The material given below serves a double purpose. First, it provides math-
ematical formalizations for the main ideas informally presented in the main
part of the paper. Second, it outlines a few initial steps along the development
of a general mathematical theory of learning systems. It includes formal
definitions of a constructive system and a Universal Learning System (ULS),
necessary lemmas and three theorems with proofs that describe necessary and
sufficient conditions for ULS existence. The definitions and proofs are based
on the notions and ideas of the theory of algorithms and recursive functions.
A simple and clear description of the latter can be found in Cutland (1980). A
good overview of the fundamental concepts and the main achievements of
this theory are given in Uspensky and Semenov (1993). All the theoretical
results that are referred to below without giving a source can be found in
either book. The main terms are described below as a brief reminder for the
reader’s convenience.

We shall use the standard symbol N to denote the set of natural numbers
f0; 1; 2; . . .g, and, as usual, N n denotes the set of ordered n-tuples
fðx1; . . . ;xnÞ;x1 2 N; . . . ;xn 2 Ng. The set of all finite sequences of natural
numbers is denoted as N* (for any set A, A* designates the set of all finite
sequences of A elements). For all the functions we will be dealing with below,
the domain is a subset of N n and the range is a subset of N (short notation:
Domð f Þ � N n;Ranð f Þ � NÞ. A function from N n to N domain of which is
known to be the whole of Nn ðDomð f Þ ¼ N nÞ is called a total function,
otherwise (when it is not known whether the function is total or not, or when it
is known that the function is not total) it is called a partial function. Therefore,
the set of total functions is a subset of the set of partial functions. If an algo-
rithm exists for calculating a given function, the function is usually described in
such terms as effectively calculable, or computable. Computable functions are
also called recursive functions. An algorithm for computing a certain partial
recursive function (PRF) will stop in a finite number of steps on all and only
those inputs that belong to its domain, and will not stop on any other input.
Thus, an algorithm for a total recursive function (TRF) will stop on any input.

For a given set A � N a function qAðxÞ defined as qAðxÞ ¼ 1, if x 2 A,
otherwise qAðxÞ ¼ 0 is called the characteristic function of the set A. If that
function is computable, the set A is called a recursive set. A set A � N is
called recursively enumerable (or just enumerable) if there exists a computable
function gAðxÞ defined as qAðxÞ ¼ 1, if x 2 A, otherwise qAðxÞ is undefined.
Any recursively enumerable set is a domain of a partial recursive function. At
the same time, it is a range of a total recursive function (which can be used to
generate the set’s elements).

The set of all computable functions (i.e. all PRFs) can be generated by a
certain calculus that includes three simple basic functions (zero function,
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successor function, and projection function) and three operators (functions
whose arguments and values are functions) of substitution, recursion, and
minimalisation.

A description of an algorithm for computing a certain PRF on a certain
automaton is called a program. Programs (and therefore algorithms and
corresponding PRFs) can be effectively encoded by natural numbers. There
exists a universal algorithm that takes such a code on its input, decodes it,
and then works according to the resulting description. In terms of recursive
functions, one of the corresponding universal function’s arguments is a
description of a particular recursive function. Universal computers (including
the universal Turing machine) are actually automatons that work according
to a universal algorithm.

A1. MAIN DEFINITIONS

In order to describe the setup of the problem of optimal control and the
process of learning to control in an optimal way, it is necessary to define first
the notions of system and control process. A good description of the modern
theory of optimal control can be found in Bertsekas (2000). A universal
learning problem setup that is very similar to the one presented below is
described in Hutter (2001).

System. A system is defined here as a functional aggregate that includes
input, output, internal memory, and processor. A variable and a certain set of
its possible values are associated with each one of the first three parts: input
X 2 X ¼ Nm, output Y 2 Y ¼ Nn, internal state S 2 S ¼ N*. The processor
performs the system’s function f : X� S ! Y� S, that can be presented as a
composition of two functions fY and F S : S ¼ f SðX;SÞ;Y ¼ fYðX;SÞ. A
system works by steps. On each step i, the current values of input Xi and
internal state Si are transformed into the output value Yiþ1 and the next
internal state Siþ1 according to the corresponding system’s functions. So a
system is a structure hX;S;Y; f i. It is important to emphasize that the notion
of control system used here is pure functional and should not be mixed with a
concept of control system as a physical entity.

There are two fundamental properties of a system as an object of control:
observability and controllability.

Observability is a possibility to obtain information about the system’s state
based on a finite history of its output. It can be formally defined as the
following. A system hX;S;Y; f i is observable if for its every state Si 2 S there
exist a number m and a total function h such that Si ¼ hðYi;Yiþ1; . . . ;YiþmÞ.
A system is fully, or immediately observable if and only if the smallest m is
equal to zero for every state, i.e. if any state can be unambiguously deter-
mined based on the corresponding output at the same step.
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Controllability is related to the freedom of moving the system in its state
space by acting on its input. A system hX;S;Y; f i is controllable if it can be
moved from any state Si to any state Sj by applying a finite sequence of
control actions ðXi;Xiþ1; . . . ;XiþmÞ to it’s input. A system is fully controllable
if and only if the smallest m is equal to zero for every pair of its states, i.e. the
system can be moved from any state to any state in one step.

Recursive system. A system is recursive by definition, if its functions are
computable. In other words, the behavior of a recursive system can be de-
scribed by an algorithm. Similarly, a system’s properties are recursive, if the
functions involved in their description are recursive.

Constructive system. An observable and controllable recursive system,
whose properties are also recursive, is defined as constructive. Note that the
functions that describe a constructive system’s properties are total recursive.

The functioning of a recursive system can be emulated by a Turing ma-
chine or any other universal computational automaton. It should be noted
that the internal memory is a pure functional (software) notion and should
not be mixed up with a (hardware) memory like Turing machine’s tape that is
necessary to compute the function.

Optimal control process. In the scheme of a control process, two systems
are inter-connected so that the output of each one of them is connected to the
input of the other. One of those two systems is called a control system, and
the other is called a controlled object. The asymmetry in naming the systems
reflects mainly the difference in our viewing their functional roles in their
interaction with each other, rather than an objective difference between these
systems. The process of control also can be viewed as a game between two or
more systems, one of which is separated out to study its optimal functioning
determined by the game objective. That system is called a control system. The
rest of the systems are viewed in combination as a controlled object. It is
assumed below that the controlled object is a constructive system.

A control system A ¼ hXA;SA;YA; fAi and a controlled object B ¼
hXB;SB;YB; fBi, where XA ¼ YB ¼ X, XB ¼ YA ¼ U, interact with each other
in the following way. Let us designate by iA and iB step numbers in A and B
respectively. At each step i ¼ iB of the control process, the control system
receives information XiðiA ¼ iÞ from the controlled object and computes a
control action Ui ¼ UiAþ1 ¼ fYA ðXi;SAiÞ and a new internal state SiAþ1 ¼
f S
A ðXi;SAiÞ. Then a new output Xiþ1 ¼ XiBþ1 ¼ fYB ðUi;SBiÞ and a new internal
state SiBþ1 ¼ f S

B ðUi;SBiÞ are computed in the controlled object, and the step
numbers are updated: iB :¼ iB þ 1, iA ¼ iA þ 1 and i :¼ iþ 1. For an ade-
quacy of this mathematical model, it is required that controlled objects will
not work without stopping, therefore it is assumed that the functions f S

A and
f S
B are total in every controlled object.
The criterion of control optimally is based on an estimate that determines

the extent of ‘undesirability’ of controlled object state for the control system.
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Such estimate can be introduced in different ways. Here the set of criterial
values E ¼ f0; 1g is defined as a one-dimensional subspace of X. So the latter
can be presented as a Cartesian product: X ¼ Z� E, where Z and E are the
informational and criterial parts of the control system’s input, respectively.
Control optimization is defined for a step interval ½i;m� of the control process
as a minimization of the criterial sum

Pm
i ¼

Pm
j¼1 ej , where ej 2 E. Having

introduced
P

i ¼ limm!1
Pm

i and defined that
P

i <
P0

i if and only if
9M 8m > Mð

Pm
i <

P0m
i Þ, where

Pm
i and

P0m
i correspond to different in-

stances of the control process, we can expand the definition of the optimality
criterion by including the cases of infinite step interval and divergence of the
criterial sum. A function performed by the control system is optimal if it
minimizes the above criterion. For the purposes of the analysis presented
below, we can assume that there always exists a total computable control
function such that the criterial value ei becomes zero after finite number of
steps, which ensures finiteness of the corresponding criterial sum, thus
eliminating complications arising in connection with the general case of
infinite-horizon problem (Bertsekas, 2000).

Learning system. Here a learning system is defined as a two-level hierar-
chical construction (Figure 2). The lower-level system (controlling) subsystem
C ¼ hXC;SC;YC; fCi directly controls an object A ¼ hXA;SA;YA; fAi, and
receives input information from both the controlled object A and the upper
level system (learning subsystem) L ¼ hXL;SL;YL; fLi which, in turn, receives
input from the controlled object A and sends control actions to the lower
subsystem C. According to the described connections, XL ¼ YA ¼ X,
XC ¼ X� YL, XA ¼ YC ¼ U. The learning subsystem’s output YL 2 YL can
be viewed as a set of parameters P ¼ fLðX; SLÞ downloaded to the controlling
subsystem. The theory of recursive functions offers a natural generalization of
P: the function fC is a universal function that treats P as a code of a particular
function to be performed by the controlling subsystem. Thus, the learning
subsystem’s role is to find a code of an optimal control function and download
it to the controlling subsystem that directly acts on the controlled object.
From another perspective, the learning subsystem computes a function
P ¼ LðaXÞ, where aX 2 X* is a finite sequence of the controlled object’s output
values. This function will be referred to below as to a learning function.

This definition by no means pretends to be the most complete definition of
learning system; nevertheless, it is sufficient for the learning problem analysis
given below.

Universal Learning System (ULS). This is the central notion of the theory
of learning. A ULS is defined here as a learning system that, for any object
from a certain class, is capable of finding an optimal strategy of controlling
the object in finite number of steps after having been connected to that object.
The operation of connecting a learning system to an object should not be
viewed as an establishing of a physical link. It consists of assigning a new
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value to the variable ‘controlled object’ and initializing the internal memory
of the learning system.

It is extremely important to note that the function codes generated by the
learning subsystem of a ULS and downloaded to its controlling subsystem
must be the codes of total functions only. Otherwise, the whole system might
work without stopping on a certain input from the controlled object, which
contradicts the above definition of a ULS. Note also that this definition of a
ULS is not specific to any particular class of controlled objects.

A2. THE PROBLEM OF ULS CREATION

Before analyzing the problem of learning to control an object in an optimal
way, let us first take a look at a simple particular case of the optimal control
problem, the problem of finding an argument corresponding to the global
minimum of a total function f : xmin ¼ argminx½ fðxÞ�, assuming it has one.
The function f is computed by an external device, i.e. fðxÞ is obtained on its
output after having sent x to its input. If the global minimum value fmin is
known a priori, the problem can be solved in a finite number of steps based
on the operator of minimalisation: Xmin ¼ lx½ fðxÞ ¼ fmin�. This notation
corresponds to the following algorithm: enumerate x values starting from
zero until the first (i.e. the smallest) one that satisfies the equation shown in
brackets is found. If the global minimum is just known to be finite, but its
exact value fmin is not known a priori, xmin and fmin still can be found in a
finite number of steps by the following simple algorithm: set xmin ¼ x ¼ 0,
fmin ¼ fðxÞ, update xmin and fmin, while enumerating x, each time when
fðxÞ < fmin. However, there is no criterion for stopping in this case: there is no
guarantee that a value still less than the current fmin cannot be found by
continuing the search no matter for how many steps in a row fmin has not
been updated.

For the domain of multi-argument functions, the argmin function can
serve as an operator: gðYÞ ¼ argminC½ f ðC;YÞ�, where C is a code for the
combination of optimized parameters. In a general case, C is a code of a
computer program that takes Y on its input. Here we assume that the
operator application does not lead outside of the class of total functions. This
operator can be combined with other operators defined on recursive func-
tions. We assume here that the control optimization problem has only one
criterion; therefore, only one instance of argmin operator is needed.

The absence of a criterion for stopping is one of the most general features
of a learning process. In a case in which the problem of ULS existence for the
class of all recursive objects is considered, the existence of such criterion
would mean a possibility to fully identify any controlled object by a finite
history of its behavior. In terms of the recursive function theory, this means
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identifying any recursive function by a finite set of argument-value pairs,
which is obviously impossible. Thus, in the most general case, we cannot
require that a ULS is capable of stopping in a finite number of steps after the
best solution has been found. We can only require that it seek a better
solution and be capable of finding the best one in a finite number of steps, if it
exists. Stated differently, an adequate requirement for a ULS is that it must
be capable of continuing the process of learning. Note that the problem of
optimization speed is not addressed here.

A3. NECESSITY OF THE ENUMERATION OF TOTAL RECURSIVE FUNCTIONS

FOR LEARNING UNIVERSALITY

The main purpose of this section is to show that there exist classes of con-
trolled objects that require a non-constructive ULS. One such class, R0, is
constructed below. For every controlled object A ¼ hU;S;X ¼ Z� E; f i
from R0, it is assumed that:

(1) A is fully observable and fully controllable;
(2) the set of criterial values E is f0; 1g;
(3) for any internal state of A at a step i, an optimal control action

Ui ¼ Uopt 2 U exists such that the criterial value eiþ1 ¼ 0.

It is clear from the definition of an optimal control function (see section
Al) that it should be a TRF. A question arises whether the set of all
TRFs is sufficiently rich for providing an optimal control function for every
(constructive) control object. The following lemma gives a positive answer to
it.

LEMMA 1. For any controlled object from R0, an optimal control function
exists in the form of a TRF.

Proof. Let a controlled object A ¼ hU;S;X ¼ Z� E; f i be given. At an
arbitrary step i, it produces an output Xi. Since the object is fully observable
by definition, a TRF h exists such that Si ¼ hðXiÞ. Then, due to condition (2),
an optimal control action can be computed in the following way:
Uopt ¼ lU½ fEðU; hðXiÞÞ ¼ 0�, where l is the operator of minimalisation and
fE describes the criterial value output. This optimal control law is a TRF
according to the condition (3) in the above definition of the class R0 of
controlled objects. h

The next lemma asserts that any TRF can be presented as the only optimal
control function for a certain controlled object.
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LEMMA 2. For any given TRF g that satisfies condition (2), there exists a
controlled object in RO, such that, regardless of its initial state, it can be
controlled in an optimal way by and only by g.

Proof. Let a total computable function g : X ! U be given, where X ¼ Nm.
A construction of a desired controlled object is based on the two following
ideas. First, at each step i, the criterial variable e should be equal to zero if
and only if Ui ¼ gðXiÞ. Second, the controlled object’s functioning should be
organized in such a way that, regardless of its current internal state, any point
from X appears at least once on the object’s output. This would ensure that,
whenever a control system C ¼ hX;�;U; ri starts working, if there exists a
point Xj 2 X such that rðXjÞ 6¼ gðXiÞ and therefore ej ¼ 1, it will be
encountered in a finite number of steps and thus the non-optimality of r will
be revealed.

Let A ¼ hU;S;Y ¼ X� E; f i be a controlled object. The first requirement
is easily satisfied by setting

eiþ1 ¼ fEðUi;SiÞ ¼
0; if Ui ¼ gðXiÞ,
1; if Ui 6¼ gðXiÞ.

�

Note that this definition is very similar to the analogous part of Gold’s
paradigm for language learning (Gold, 1967). The second requirement can be
satisfied in several different ways. One of them is the following. Let S be
equal to N, and let f SðU; sÞ be defined as sþ 1, i.e. siþ1 ¼ si;þ1. A definition
for fXðU; sÞ has to be somewhat more complex. Let the k-th element of
Xiþ1 ¼ ðx1; x2; . . . ;xmÞ be obtained from si by finding the power of the k-th
prime number in the representation of si as a product of prime numbers.
Since such representation is unique for any natural number, we have a
functional relationship between s and Z, which defines fXðU; sÞ. For any
X ¼ ðx1; x2; . . . ;xmÞ, there is an infinite number of natural numbers that can
be presented as Px1

1 � Px2
2 � . . . � pxmm � q where pj is they jth prime number, and q

is a number that is not a multiple of any one of the prime numbers
p1; p2; . . . ; pm. Thus, the second requirement is satisfied, and a construction of
a desired controlled object is finished, which proves the Lemma. (

THEOREM 1. A universal learning function (ULF) for R0 is not computable.

Proof. Let us assume the opposite. Then a universal learning algorithm
(ULA) exists for computing the ULF. It will be shown that such an algorithm
can be used for the enumeration of the set of all TRFs. Suppose that we can
enumerate all controlled objects from the class R0. Then we can perform that
enumeration while connecting the objects to a ULS and taking function
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codes from the output of its learning subsystem. According to Lemma 1,
any such object can be optimally controlled by a TRF, and, according to
Lemma 2, for any given TRF f there exists an object such that it can be
controlled in an optimal way by f only. An existence of a ULA means that
the corresponding ULS will produce a code of f (by computing the learning
function, see ULS definition) in a finite number of steps after having been
connected to the object. Thus a desired enumeration of all TRFs can be
obtained.
However, the enumeration of controlled objects is not less problematic

than the enumeration of TRFs. Fortunately, it appears that we actually do
not need to enumerate the objects themselves. A ULA computes the learning
function L : X*! N translating finite sequences of a current controlled ob-
ject’s outputs into the code of an optimal control TRF. In other words, for
any given TRF f, there is a finite sequence of X elements such that if arrived
at the ULS’s input, would be converted by the ULA into the code of f. Since
X* is effectively enumerable, we can enumerate this set instead of the class R0,
thus obtaining an algorithm enumerating all TRFs as a combination of an
algorithm enumerating X* with the ULA.

It is well known in the theory of recursive functions, that the set of all
TRFs is not recursively enumerable. Thus, the theorem is proved by con-
tradiction. (

Conclusion: a ULS in general is not constructive.

A4. SUFFICIENCY OF TRF ENUMERATION

It was proved above that enumeration of the set of all TRFs is necessary for
ULS functioning. Is it also sufficient? A positive answer to this is given by the
following theorem.

THEOREM 2. It is possible to create a ULS based on a mechanism that
enumerates the set of all TRFs in R0.

Proof. Let us assume the existence of such a mechanism. Then it can be
used in the following way. After the code of a TRF (representing the control
function) is generated, a universal algorithm starts computing this function.
If the criterial variable becomes non-zero at a certain step i, the generation of
the next TRF is initiated. Otherwise, the current TRF is kept for processing
the next input from the controlled object. Lemma 1 guarantees that an
optimal control function can be found among TRFs for any controlled ob-
ject. Thus, if an optimal control function exists, it will be found after a finite
number of steps, which proves the theorem. (
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This positive result is proved here for the particular case of the defined
above narrow class R0 of fully observable and fully controllable objects. One
can show without much difficulty that Theorem 2 also holds in the most
general case (i.e. for the entire class R). In order to demonstrate that, a notion
of an internal model of the controlled object in a learning control system
should be introduced as a subsystem of the latter. It can be proved that such
a subsystem can be effectively created based on the assumption of Theorem 2.
Then a ULS can be constructed using the operator of perpetual search for a
global extremum of a total function and the assumed mechanism of enu-
merating TRFs. A complete proof, however, is too lengthy to be included in
this paper.

It is important to note that, although the finiteness of search for an
optimal control function is guaranteed by Theorem 2, there is no criterion for
determining the exact moment at which an optimal algorithm is found.
Stated differently, there is no basis for stopping learning, because there is no
guarantee that a criterial signal will not appear after processing the next input
from the controlled object, no matter how long the control system has been
working already.

A5. THE AXIOM OF CHOICE AND UNIVERSAL LEARNING

The ‘classical’ mathematics (including integral and differential calculi and all
other tools the functional analysis is based on) is separated from the con-
structive mathematics mainly by the axiom of choice. That axiom asserts a
possibility to choose an element from a set whose description (not necessarily
constructive) is given. Despite the superficial simplicity of this statement, it is
in fact a very strong assumption. It almost immediately follows from the
axiom of choice that any given set can be arranged in a linear order, which
means that any countable set can be enumerated. Let us assume that we have
already chosen several elements (set Am) from a given set A. The axiom says
that we can choose an element from AnAm (Am complement to A), i.e. a new
element from A. By continuing this process, we can actually enumerate ele-
ments from A. To prove the existence of a ULS, we need only the axiom of
choice reduced to countable sets:

THEOREM 3. A Universal Learning System exists in the realm of classical
mathematics.

Proof. The set of all PRF’s is countable, since it is effectively enumerable.
Any set of TRF’s (including the set of all TRF’s) is also countable, as a
subset of the above set. Consequently, it is possible to enumerate any set of
TRFs, according to the axiom of choice for countable sets. Then a ULS for
this set exists according to the Theorem 2. (
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