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Computational modeling plays an important role in prediction and optimization of real systems and processes. Models usually
have some parameters which should be set up to the proper value. Therefore, parameter estimation is known as an important part
of the modeling and system identification. It usually refers to the process of using sampled data to estimate the optimum values of
parameters. The accuracy of model can be increased by adjusting its parameters to the optimum value which need a richer dataset.
One simple solution for having a richer dataset is increasing the amount of data, but that can be costly and time consuming.
When using data from animals or people, it is especially important to have a proper plan. There are several available methods for
parameter estimation in dynamical systems; however there are some basic differences in chaotic systems due to their sensitivity to
initial condition (butterfly effect). Accordingly, in this paper, a new cost function which is proper for chaotic systems is applied to
the chaotic one-dimensional map. Then the efficiency of a newly introduced intelligent method experimental design in extracting
proper data is investigated. The results show the success of the proposed method.

1. Introduction

Computational modeling plays an important role in the
advancement of science by helping us to predict, optimize,
simulate, and study the behavior of complex systems. There
are many different ways to generate computational models
but they can be divided into categories like white box and
black box models. White box models are those in which
every connection between input(s) and output(s) of a system
can be tracked and analyzed correctly [1–3]. Unfortunately,
understanding the interactions among components of a
complex system in the real world bears some difficulties.
Therefore, the choice is limited by two options: finding amore
suitable way for modeling and not using any model. Since
models have many advantages, an alternative kind of models
called black box has been presented [1]. In fact, these models
mimic the behavior of the original systems so they need to be
trained, although their structures and parameters may have
no relation to the actual structures of the systems. Thus, it is
better to select the most appropriate model for the intended

purpose. For example, two widely used structures which
have shown good performance in real world applications are
neural networks [4] and neurofuzzy models [5]. While the
former is more efficient in extrapolation and more robust
against high dimensional problems, the latter is very good
for interpolation and providing better interpretation [1].
However, proper performance of the selected structure is
highly dependent on the real experimental data used to
train it [6–8]. The richness of the training set increases the
accuracy of a model. If the dataset is not sufficiently rich,
the model may be inaccurate, at least in the area where
there was a paucity of training data [8]. A solution for
obtaining a richer dataset is increasing the number of data
points. However, in real problems, generation of additional
data may require considerable effort, time, and money [7,
8]. Thus it is important to find a way to generate datasets
that are as rich as possible using experimental design (ED)
methods [6–8]. Although experimental design methods are
not directly involved in the modeling procedure, they are
equally important.
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Control and synchronization of chaotic systems have
attracted lots of interest in a variety of areas of science
in recent years [9, 10]. They usually require tuning the
parameters of the model. However, direct measurement of
parameters in a real system is often difficult. Therefore,
estimation of parameters from an observed chaotic scalar
time series has become an active area of research [11–14]. A
basic method for achieving this goal involves optimization in
which the model parameters are chosen to minimize some
cost functions. In this work, we investigate the efficiency of
the recently proposed EDmethod called the TwilightMethod
Experimental Design (TMED) [15] for extracting rich data
from a one-dimensional map. The main characteristic of
the TMED is the use of prior knowledge obtained from
the gathered data in extracting new data in a biologically
inspired way. We show that this method not only has that
advantage but also can be tuned for special purposes such
as optimization, which usually is the main goal in modeling
[16]. The remainder of the paper is organized as follows: in
the next section we introduce the problemwhich involves the
details about the chaoticmapwedeal with and the proper cost
function which we want to optimize. In the third section, we
describe the TMED in detail. Section 4 gives the numerical
results, and Section 5 is the conclusion.

2. The Optimization Problem

Periodic flashes of light have been applied to examine proper-
ties of the visual system.The authors in [17] proposed a simple
map (1) which can mimic the flicker vision of a salamander
[17].Themodel uses nonlinear feedback to account for period
doubling in the ERG response to periodic flashes. For more
detail about the model, see [17].

𝑦 (𝑛 + 1) = 𝛼
𝐴 + 𝐵𝑦 (𝑛)4

+ 𝐶. (1)

This system has fixed-point in every 𝑦∗ which is correct in

𝑦∗ = 𝛼
𝐴 + 𝐵𝑦∗4

+ 𝐶 󳨀→

𝐵𝑦∗5 − 𝐶𝐵𝑦∗4 + 𝐴𝑦∗ − 𝛼 − 𝐶𝐴 = 0.
(2)

This equation has 5 roots which can be real or complex. For
each fixed-point, if |𝑦∗| < 1 that fixed-point is stable and if it
is |𝑦∗| > 1, it is unstable.The values of parameters are chosen
as 𝛼 = 4.1, 𝐴 = 1, 𝐵 = 1, and 𝐶 = −2.65 according to [17].

Although chaotic systems have random-like behavior in
the time domain, they are ordered in state space and have
a specific topology. Here, we propose using the geometrical
similarity between these attractors as the objective function
for parameter estimation [18, 19].

The first step to achieve our purpose is constructing a
return map based on one real observed time series and the
data from the model. Then, we perform the following steps:

(a) For each point of the real return map, we find
its nearest neighbor in the model return map and
calculate its Euclidean distance separation.

(b) For each point of the model return map, we find its
nearest neighbor in the real return map and calculate
its Euclidean distance separation.

We take the cost function as the average of those distances
over the whole dataset.

3. Twilight Method Experimental Design

The TMED [15] is a kind of sequential experimental design
inspired by evolutionary algorithms. In this algorithm, we
first determine the number of data points we want to
extract based on limitations such as cost and time (call this
number𝑀). Then we obtain an initial shadow of the system
behavior by extracting some of those 𝑀 data points in a
way that they cover the input space area (here we have used
factorial design). The number of these initial data points is
𝑁 (obviously 𝑁 < 𝑀). In other words, these 𝑁 data are
initial conditions for the TMED.We consider each data point
as an individual in a population of honey bees. Now we
want to produce new individuals (data) using the current
population. To do this, an individual is selected as queen to
reproduce a new offspring. Like almost all of evolutionary
algorithms, we need to define a fitness function (FF) so that
we can select the best individual as the queen. We are free
to define a FF based on what we want the ED to accomplish.
But they can be divided into two categories which are a FF for
extracting data in nonsmooth areas of the system and another
FF for extracting data in optimum areas of system (see [15]
for more detail). Here our goal is to achieve the optimum
value for model’s parameters so we use second group of FFs
which is for extracting data in optimum areas of system.
The flowchart of the mentioned procedure can be seen in
Figure 1.

3.1. FFs for Extracting Data in Optimum Areas of the System.
In this stage, a new term is designed so that the local optimum
(without losing generality, here minimum) points become
prominent.

Heuristically, the higher the number of neighbor points
that have a value greater than a point under consideration is,
the greater the prominence of that point should be. Thus the
fitness function is multiplied by a correction term as follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻

∑
𝑗=1

[0.5 × sign (𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑗))]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, (3)

where [⋅] represents the nearest integer function, 𝑥𝑖 is the
considered data, 𝑥𝑗 is its 𝑗th neighbor, and 𝑓 is the cost
function.

If the value of the function 𝑓 in 𝑥𝑖 is less than the value of
𝑓 at the neighbors of that point, sign(𝑓(𝑥𝑖) − 𝑓(𝑥𝑗)) is equal
to −1 for all 𝑗. The nearest integer function changes numbers
between −1 and 0 into −1. Also, values between 0 and 1 (which
represent data points for which the value of 𝑓 is greater than
that at the point under consideration) are mapped into 0.
Therefore, (3) describes the number of neighbors of a point
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Figure 1: (a) Flowchart of the neighbor selection algorithm. (b) Flowchart of the proposed algorithm.

in which the value of 𝑓 is less than that point. Finally, the FF
will be

FF (𝑥𝑖) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻

∑
𝑗=1

[0.5 × sign (𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑗))]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻

∑
𝑗=1

(𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑗))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
×
𝐻

∏
𝑗=1

𝑑𝑗,

(4)

where [⋅] represents the nearest integer function, 𝑥𝑖 is the
considered data, 𝑥𝑗 is its 𝑗th neighbor, 𝑓 is the cost function,
and 𝑑𝑗 is the Euclidean distance between 𝑥𝑖 and 𝑥𝑗.

This FF gives higher scores to points which (a) are local
minimum, (b) have sharper slope with their neighbors, and
(c) are located in areas with lower densities of data.

3.2. Modified TMED (MTMED): New Approach for Finding
Optimum Value. An alternative method is provided in this

section. In this approach we choose the best answer in each
iteration as a queen. Then a new term (a noise) is added
in order to construct new data. This new term is like a
perturbation to seek the neighbor’s point for better answer.
Since the experimental design method is very sensitive to
localminimum, this approach solves this problem by creating
turbulence in the search space. So the only difference is that
when the queen is selected (here queen is the point which has
optimum value) and the best neighbor of queen is calculated,
a little perturbation (white Gaussian noise) is added to the
queen in the direction of the best neighbor to achieve new
data.

4. Results

We have applied both TMED and MTMED on system (1), in
order to find the optimum values of the parameters. In both,
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Figure 2: Process of finding the best parameters using TMED algorithm. (a), (b), (c), and (d) represent the first, 5th, 10th, and 15th iteration,
respectively. It can be seen that the individuals (points) converge to the optimum area. Red, green, and black points show the first, newly
generated, and queen data in every iteration.

the algorithm starts with 36 initial data items and then 15
more data items are created.

Figure 2 shows the process of finding the best parameters
using TEDM algorithm. Parts (a), (b), (c), and (d) represent
the first, 5th, 10th, and 15th iteration, respectively. It can be
seen that the individuals (points) converge to the optimum
area. Red, green, and black points show the first, newly
generated, and queen data in every iteration.

The final population is shown in Figure 3.
Figure 4 shows the process of finding the best parameters

usingMTEDMalgorithm. Parts (a), (b), (c), and (d) represent
the first, 5th, 10th, and 15th iteration, respectively. It can be
seen that the individuals (points) converge to the optimum

area. Red, green, and black points show the first, newly
generated, and queen data in every iteration.

The final population is shown in Figure 5.
Comparing Figures 3 and 5, it can be seen that although

TMED tries to converge to better areas, it cannot do it in 51
steps (36 + 15), while MTMED does it very well.

5. Conclusion

Modeling of systems and processes plays an essential role in
their optimization and prediction. Since many real systems
are complex and we do not know the exact relations among
their components, black box models have increasingly been
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Figure 3: Final population (51 individuals) resulted from TMED algorithm. The black dot is the optimum location.
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Figure 4: Process of finding the best parameters usingMTMED algorithm. (a), (b), (c), and (d) represent the first, 5th, 10th, and 15th iteration,
respectively. It can be seen that the individuals (points) converge to the optimum area. Red, green, and black points show the first, newly
generated, and queen data in every iteration.
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Figure 5: Final population (51 individuals) resulted from MTMED
algorithm. The black dot is the optimum location.

of interest in modeling. A proper black box model requires a
rich dataset for training.Having a rich datasetmay be difficult
due to cost and time. In this paper, we have investigated the
efficiency of a newly proposed experimental design method
on gathering proper data for parameter estimation of a
chaotic one-dimensional map. This method is a biologically
inspired intelligent method which can be tuned to select data
according to the purpose of the modeling. We are not aware
of any such intelligent ED method. Considering the possible
costs of gathering biological data which deal with human
health, we believe that any improvement in ED techniques is
of great value. Furthermore, there are some basic differences
in parameter estimation of chaotic systems due to their
sensitivity to initial condition or butterfly effect. Accordingly,
a new cost function which is proper for chaotic systems is
used in this work. We have tested the proposed methods on
a chaotic one-dimensional map which is a simple model of
nonlinear feedback to account for period doubling in the
ERG response to periodic flashes, and the results clearly show
its efficiency.
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