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Abstract

When reasoning about self-locating belief, one should reason as if one were a randomly selected bit

of information. This principle can be considered to be an application of Bostrom’s Strong Self-Sampling

Assumption(SSSA)[2] according to which one should reason as if one were a randomly selected element

of some suitable reference class of observer-moments. The reference class is the class of all observer-

moments. In order to randomly select an observer-moment from the reference class, one first randomly

chooses a possible world w and then selects an observer-moment z from world w. The probability that

one selects z given that one has chosen w should be proportional to the amount of information that z

is capable of representing. There are both wagering arguments and relative frequency arguments that

support our theory of anthropic reasoning. Our theory works best when the amount of information

represented is finite. The infinite case is represented as a limit of a finite cases. We can learn from

experience how best to represent the infinite case as a limit of finite cases and also learn from experience

whether our theory or some other theory is the superior theory of anthropic reasoning. In order to test

which theory is best, we use standard Bayesian methodology: We just need prior probabilities for the

theories that are being tested and then we only have to use Bayes’ rule.

1 Reasoning about Self-Locating Belief

In this paper, we describe a general, Bayesian theory of anthropic reasoning. We use the expressions “an-

thropic reasoning” and “reasoning about self-locating belief” to refer to reasoning about our identity or

our temporal location. If we are suffering from amnesia, we need to figure out who we are. If we have an

appointment to meet someone at a certain time, we might wish to know the current time. Sometimes, we

1



do not really care about our identity or temporal location except for the fact that reasoning about identity

or temporal location might help us figure out which worlds are most likely to be actual.

Anthropic reasoning is ubiquitous in both science and everyday life, but there are many difficult to

analyze puzzles involving probabilistic anthropic reasoning such as Sleeping Beauty[8], Doomsday[13, 7],

Lazy Adam[2], and Absent-Minded Driver[19]. We need a general theory that will allow us to analyze any

anthropic reasoning problem.

There already exists a well-known general rule for reasoning about self-locating belief. According to the

Self-Sampling Assumption (SSA)[2], one should reason as if one were a observer randomly selected from some

suitable reference class of observers. Here, by an observer is meant something that is capable of reasoning

about self-locating belief. This is a very crude and imprecise definition of what it means to be an observer,

but it will suffice for now. However we make the definition more precise, we want to be able to model normal

adult humans as observers.

The SSA is almost good enough but because observers can believe and desire different things at different

times or make different choices at different times, we need the Strong Self-Sampling Assumption (SSSA)[2]

according to which we should reason as if we were a randomly selected element of some suitable class of

observer-moments. By an observer-moment we mean an ordered pair consisting of an observer and a time

interval (and that time interval might just be a single point in time). We would use observer-moments to

represent a time-slice of an observer. But there might be other relevant ways to split an observer into parts

with each part being modelled as being capable of having its own coherent beliefs and desires and making

its own coherent decisions. In that case, we would consider each of these parts to be a separate observer-

moment. For example, if someone is suffering from multiple personality disorder and thus might be modelled

as consisting of several different personalities that exist at the same time, we might consider temporal slices

of these personalities to be observer-moments.

The SSSA is a perfectly fine general principle, but it is too underspecified. We need to know what is and

what is not an observer. The random selection from the reference class presupposes the existence of a prior

probability distribution on that reference class and the question arises what probability distribution should

be used1. We do not expect a theory of anthropic reasoning to tell us how to distribute prior probability

among the many different possible worlds2, but we do expect the theory to tell us how the prior probability

that is given to a possible world is apportioned to the several observer-moments that inhabit that world.

1And we, of course, also need to know how to choose reasonable reference classes.
2However, it might be unrealistic to believe that we should separately analyze the nonanthropic and anthropic aspects of

the problem of selecting a prior.
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We need a precise theory that will tell us which prior probability distributions should be used by observer-

moments. Almost any reasonable theory of anthropic reasoning can be interpreted as an application of the

SSSA or can be interpreted to be equivalent to the SSSA and the SSSA does allow us to apply standard

techniques for reasoning about probabilities. We are not saying very much if we just say that we should use

the SSSA. Even in the nonanthropic case, it is of limited use to just say that we are going to apply Bayesian

methodology or that we will be doing Bayesian statistics if we do not say anything about how we choose our

priors; we could (in the nonanthropic case) use reference priors[1], we could try to use a universal prior[10],

we could use empirical Bayes[6], or we could do something else that would allow us to choose priors in a

systematic way. In the anthropic case, we also need to be precise about how we generate our priors.

The rest of this paper is organized as follows: In section 2 we introduce our centered possible worlds

formalism and some notation that will make it easier to analyze wagers. In section 3 we justify a limited in-

difference principle[9]; if we know which world is actual, but we do not know which of two observer-moments

we are and those observer-moments are in identical subjective psychological states, we should believe our-

selves equally likely to be either observer-moment. This limited indifference principle is surprisingly difficult

to justify. In section 4 we generalize our indifference principle to the case where the two-observer-moments

are not in the same subjective psychological state but they still live in the same world. In this case, there is

no question of our not knowing which of these two observer-moments we are. But we might still ask what we

should believe if we do not take into account any anthropic information when estimating probability. This is

a question about prior probability or about the random selection process used in the SSSA. We argue that

if x and y live in the same possible world and have the same capacity for representing information and they

both belong to the relevant reference class, then they should have equal probability of being chosen by the

random selection process.

Section 5 analyzes exactly what is and what is not an observer and then shows how we might derive

a certain popular assumption, the Self-Indication Assumption[5] if we add enough ghost observer-moments

to each possible world so that all worlds have the same number of observer-moments according to some

reasonable way of counting observer-moments. Section 6 discusses the SIA in more detail and explains why

we do not favor the SIA.

In section 7, we discuss the issue of choosing reference classes. Once we see that if we use maximal

reference classes, counterintuitive results can be derived both with and without using the SIA, we might

notice that we can avoid some of our problems if we use minimal reference classes. But then, as section

7.1 points out, we will not be making full use of anthropic evidence that we actually do have. In 7.2 we
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show that if minimal reference classes are used, we might be vulnerible to a collective Dutch Book. 7.2

also presents several arguments in favor of the use of almost maximal reference classes. One argument is

a Dutch Book argument and another argument is a relative frequency argument. None of these arguments

is incontrovertible and we have not really described how to handle the infinite case. We have to see which

theory of anthropic reasoning works best in practice and which method for analyzing infinite scenarios works

best.

The testing of anthropic reasoning theories can be represented using standard Bayesian methodol-

ogy(Section 8). But we have to be careful about P (E|T ), the probability that we would observe the evidence

E that we actually observe given that the theory T of anthropic reasoning is correct. If the theory T is

allowed to make use of knowledge of E in order to predict E, the fact that T can predict we observe E is

not very surprising.

Section 9 briefly describes why the mere fact that we seem to be atypical is not a reason to say that

anthropic reasoning conflicts with observation.

Section 10 relates our theory to the idea that updating is communication[16].

Section 11 discusses an application of anthropic reasoning to a puzzle (Lazy Adam) in which the decisions

of one observer (Adam) determine whether other observers exist.

Section 12 contains our conclusion and summary.

2 Formalism and Notation

In this section, we first introduce our centered world formalism (2.1), then discuss when certain information

might be considered irrelevant to estimating a posterior probability (2.2) and finally describe a notation for

representing wagers (2.3). We might judge a theory of probabilistic reasoning by how successful rational

agents are if they use the theory in order to determine how to solve decision problems; many decision

problems can be represented as problems involving wagers.

2.1 The Centered Possible Worlds Formalism

We let W represent the class of possible worlds of interest to us. W , in general, will not represent all worlds,

only the interesting worlds, and if w ∈ W , w might not actually be a possible world, but an equivalence

class of worlds. If the differences between two possible worlds are irrelevant3 , we consider them equivalent

3To say that the difference between worlds v and w is irrelevant is to say the difference is neither directly relevant or indirectly
relevant. The difference would be directly relevant if we cared about whether w is more likely to be actual than v. But even

4



and refuse to distinguish between them.

All observer-moments of interest to us will be assumed able to reason coherently about which of the

worlds in W is actual. But observer-moments do not have to be perfectly rational; some reasoning problems

might be too hard for some of the observer-moments living in W . There might be some larger set V ⊃ W

of worlds such that some observer-moments living in W cannot reason coherently about which of the worlds

in V is actual.

Observer-moments of interest do have to be able to do more than just reason coherently about how likely

they think various worlds in W are to be actual. They also have to be able to reason coherently while using

only some of the knowledge that they actually have. Thus if an observer-moment actually knows K, and

K̄ is only part of her knowledge K and X ⊂ W , she should be able to reason as if she only knew K̄ and

reason coherently about how likely it is that the actual world lies in the set X. We might not impose this

requirement for all possible K̄, but we should require it for certain important K̄. One important knowledge

set is the set of propositions known to be true by all observer-moments who live in worlds in W .

But it is not just (bare) possible worlds that are of interest to us. We are really more concerned with

centered worlds[14]. A centered world is just an ordered pair consisting of a (bare) world w and a center c.

In general, many different kinds of center are possible, but in the centered worlds (w, c) that we analyze, c

will be an observer-moment that inhabits world w.

We let W∗ represent the class of centered possible worlds of interest to us. We assume that every z ∈W∗

is obtained by enriching a world w ∈ W with a center c so that z = (w, c) and that for every w ∈ W , there

exists at least one c such that (w, c) ∈ W∗. All z ∈ W∗ are assumed to know4 that they belong to W∗ and

to be able to reason probabilistically about who they are among the elements of W∗. They are assumed to

know how to apply the SSSA.

if the difference is not directly relevant, it might be indirectly relevant. If we are suffering from amnesia and want to know
whether we are named George or Bill, we might not really be very interested in whether we live in a world v in which there are
more people named George than Bill or a world w in which more are named Bill than George except for the fact that learning
v rather than w is actual might tend to cause us to increase our estimate for how likely it is that we are named George. A
precise definition of irrelevance will be provided in section 2.2.

4When we refer to z ∈ W∗ knowing or believing or getting utility from something, what we mean is the following: z is an
ordered pair (w, c) where c is an observer-moment in world w. So we should be refering to the knowledge or beliefs or utility
of c in w when we refer to something being known or believed by or the utility of z.

A problem arises when we refer to what z believes or knows or to the utility of z; z might change her beliefs or desires. She
might acquire knowledge or forget. Thus we cannot necessarily say about some proposition p that z believes that p or z does
not believe that p. Both might be true but at different times. We also have the problem of in-between-believing[20]. At certain
points in time, there might be no fact of the matter as to whether z believes that p. From some perspectives, she might be
said to believe and from others, she might be said not to believe. We shall temporarily ignore these problems and assume that
z has definite beliefs, desires, and knowledge.

We also have the problem alluded to by Weatherson[21] of vague belief states. We can either just assume that observer-
moments have crisp and not vague beliefs or we can say that if it seems that it is vague whether some observer-moment z living
in world w ∈W believes p and does not believe q or vice versa, what is really happening is that w is really two different worlds
in one of which z believes p and in the other of which z believes q.
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We assume that all z ∈ W∗ agree on a nonanthropic prior P . If w ∈ W , then P (w) represents the prior

probability that world w is actual. It would be more precise to say that P (w) represents the conditional

probability that w is actual given that the actual world lies in W (and not taking into account any knowledge

that one observer-moment in W∗ has and another does not have). Observer-moments might give nonzero

prior probability to the possibility that some world outside of W is actual, but they might be uninterested

in such a possibility or have difficulty reasoning about worlds outside of W . Thus strictly speaking observer-

moments in W∗ do not necessarily know they belong to W∗, but they reason as if they knew they belonged

to W∗.

In order to analyze the set W , it is helpful to study W∗; in order to analyze some subset V ⊂W , it will

be helpful to study a certain set V ∗ of centered possible worlds. We shall generalize the star notation so

that if V ⊂ W , z ∈ V ∗ if and only if there exists v ∈ V such that there is a center c with z = (v, c) ∈ W∗.

Thus V ∗ is the set of centered worlds in W∗ that can be obtained by enriching a world in V with a center.

In the case where V = {v} is a singleton set, we write v∗ and not {v}∗.

The star notation lets us go from bare worlds to centered worlds; in order to go in the reverse direction, if

Z ⊂W∗, we define Ẑ ⊂W as the set of w ∈W such that there exists c with (w, c) ∈ Z. If we think of (w, c)

as part of w, then Ẑ might be thought of as the set of bare worlds which contain elements of Z. If Z = {z}

is a singleton set, we write ẑ rather than Ẑ. In that case, ẑ is a singleton set consisting of just a single world;

we shall be careless about distinguishing between the singleton set and the one world it contains.

What a z ∈W∗ needs to do is the following: Given an interesting subset V ⊂W∗, compute the posterior

probability that she belongs to V . First she needs a prior probability Pz(V ∩ Rz) where Rz ⊂ W∗ is the

reference class used by z. The observer-moment is reasoning as if she were a random element of Rz and

the prior distribution Pz used to do the random selection should satisfy a certain constraint that relates the

nonanthropic prior P to the anthropic prior Pz. We require for all A ⊂ W that Pz(A ∗ ∩Rz) = P (A|R̂z).

We want the probability P (A|R̂z) to be obtainable5 by summing the probabilities of the observer-moments

(in the reference class) that belong to worlds in A.

Once z has a prior probability for V , she can compute her posterior Pz(V ∩Rz|Kz) where Kz represents

what z knows. The set Kz is a set such that y ∈ Kz if and only if z would say to herself that for all she

knows she might be y.

5when A contains only a finite number of observer-moments
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2.2 Irrelevance

We know that W∗ might not actually represent possible centered worlds but instead represent equivalence

classes of centered worlds and that if the difference between two worlds is irrelevant we might consider them

equivalent. We should be more precise about what irrelevance means.

So let us start with an actual set W of (bare) possible worlds and an actual set W∗ of centered worlds

rather than equivalence classes of worlds and centered worlds. We consider some observer-moment z ∈ W∗

who wants to estimate Pz(A|Kz) for some A ⊂W∗ and ask ourselves when it is acceptable for z to consider

certain (bare) worlds and consider certain centered worlds equivalent.

Let ≡ ∗ represent an equivalence relation on W∗. Let ≡ represent an equivalence relation on W . We

would normally expect there to exist some relationship between these two equivalence relations. If an

observer-moment i can exist in two different possible worlds, v and w, we might consider (v, i) and (w, i) to

be counterparts of each other and then if v ≡ w, we would expect (v, i) ≡ ∗(w, i); more generally we might

define a natural counterpart relationship between observer-moments living in different (bare) worlds and if

i living in v is a counterpart of j living in w and v ≡ w, we would expect (i, v) ≡ ∗(j, w).

If V ⊂W , then we write V≡ to represent the closure of V under ≡. Thus if w is a (bare) world, w ∈ V≡

if and only if there exists a v ∈ V with v ≡ w. If Z ⊂W∗, we write Z≡∗ to represent the closure of Z under

≡ ∗. Thus z ∈ Z≡∗ if and only if there exists y ∈ Z with y ≡ ∗z. If C is any set and R is an equivence

relation on C, then we can generate the set G of equivalence classes of C modulo R. We have g ∈ G if and

only if there exists a c ∈ C such that g is the set of elements d ∈ C with dR c. If B ⊂ C, then B mod R

refers to the set of g ∈ G with g ∩B 6= ∅.

We shall make statements about closures Z≡∗ and V≡, but it should be easy to translate these statements

into statements about equivalence classes Z mod ≡ ∗ and V mod ≡. For example, in order to evaluate a

probability for Z mod ≡ ∗, it suffices to evaluate the probability of Z≡∗. It just simplifies the exposition

to use closures rather than equivalence classes.

In order to work with closures, we need to insure that Pz is defined on all of W∗ not just on Rz, but that

is simple enough if we just specify that for all X ⊂ W∗ with X ∩ Rz = ∅, Pz(X) = 0. We might assume

that the set A whose posterior probability z wants to estimate is closed under ≡ ∗. Then what z really cares

about is whether

Pz(A|Kz) = Pz(A|(Kz)≡∗)
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and thus we care whether

Pz(A ∩Kz)

Pz(Kz)
=

Pz(A ∩ (Kz)≡∗)

Pz((Kz)≡∗)
.

Assuming that Pz(A|Kz) 6= 0, that means that we care about whether

Pz(Kz)

Pz((Kz)≡∗)
=

Pz(A ∩Kz)

Pz(A ∩ (Kz)≡∗)
.

In words, this is requiring that the probability that a random element of the closure (Kz)≡∗ of the knowledge

set is actually an element of the knowledge set Kz be independent of whether that random element is also

an element of A. If this condition is true, than z can refuse to distinguish between equivalent bare worlds

and equivalent centered worlds when estimating the probability of A.

Of course in the previous paragraph, z is using the fact that the closure of her knowledge state is (Kz)≡∗

and there might exist an observer-moment y ≡ ∗z such that (Ky)≡∗ 6= (Kz)≡∗; in that case the difference

between equivalent observer-moments is not totally irrelevant even if it is basically irrelevant for z who only

cares about the posterior probability of A. If the only subsets of W∗ about which z cares are sets B that are

closed under ≡ ∗ and the differences between equivalent uncentered worlds and equivalent centered worlds

is basically irrelevant with respect to any such set B and for all z ≡ ∗y, (Kz)≡∗ = (Ky)≡∗, then from z’s

point of view, the differences between equivalent worlds and equivalent centered worlds is totally irrelevant.

2.3 Wagers

We also need some special notation to represent wagers. A wager is represented by a function f from W∗ to

R where R represents the real numbers. If z ∈ W∗, f(z) is the amount of utility that z gains by accepting

rather than rejecting the wager. We assume that the amount gained by z is independent of how other y ∈W∗

decide when offered the wager f and also independent of any other wagers that might be offered. We let f

have domain all of W∗ so that no useful information about one’s location within W∗ can be gained from the

fact that one is offered a certain wager. The return from a wager is a utility value rather than a monetary

value because utility is not necessarily linear in monetary return. We assume all z ∈ W∗ try to maximize

their expected utility
∑

y∈Kz
Pz(y)f(y)6.

We shall have occasion to add the utilities of two y and z such that Ky 6= Kz. If Ky = Kz, then z might

have to compute an expected utility and thus might have to be able to compare y utility and z utility. She

6We are assuming that there is no overlap: If x 6= y are two observer-moments in W∗, then it is not possible to be both x
and y. Thus if x and y represent time-slices of the same observer in the same possible world, the time-intervals during which x
and y live are disjoint.
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will have to be able to measure y utility and z utility on a common scale so that one unit of y utility is as

valuable as one unit of z utility. But if Ky 6= Kz, no one actually needs to measure y utility and z utility

on a common scale in order to decide what to do. But we can ask how an observer-moment would make

decisions if she did not know whether she was y or z but knew that she had a certain probability of being y

and a certain probability of being z. This really means that she has a certainly probability of being someone

just like y and a certain probability of being someone just like z7 because anyone who actually might be y

knows she is not z and vice versa. But in any case it should be possible to perform an act of imagination

and imagine that one does not know whether one is y or z and then try to figure out how one would make

decisions when not sure whether one is y or z. Even if it really does not make sense to compare y utility

and z utility if Ky 6= Kz, it is not impossible that there might be some preferred way to scale the utilities

of y and z so that one unit of y utility and one unit of z utility are equally valuable. Theories of anthropic

reasoning should work if it turns out that it makes sense to add the utilities of observer-moments y and z

with Ky 6= Kz and it will make sense to add the utilities if it is possible to measure the utilities of y and z

using a common scale.

3 A Limited Indifference Principle

In this section, we argue for a limited indifference principle that if x, y ∈W∗ with x̂ = ŷ and Kx = Ky, then

Px(x) = Px(y)[9]8. This is a very limited principle. It only says that if there are two observer-moments who

live in the same possible world and who are in the same subjective psychogical state and for all we know we

might be one of these observer-moments, then we are no more likely to be one of them than to be the other

one.

We shall present several possible arguments for this principle. Some of these arguments are more con-

vincing than others but we do need a principle that will enable us to compute Px(x)
Px(y)

.

When trying to construct an argument for our limited indifference principle, we must keep in mind

that the argument should not be too easily generalizable. We do not expect a human observer-moment

that lasts ten million seconds to have the same prior probability as one that lasts one second; these two

observer-moments will not be in the same (relevant) subjective psychological state (or sequence of states).

We also need to be very clear about how limited our principle is. It is certainly not true that if Kx = Ky

and x and y inhabit different worlds that they necessarily have the same prior probability. Nor do we have

7Someone who has preferences and experiences that are very similar to the preferences and experiences of z.
8Elga’s[9] discussion refers to observers, rather than observer-moments, but his principle is in essence the same as ours.
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the principle that if x, y, z live in the same world and are in the same subjective psychological state, then

Pz({x, y}) = 2Pz(z). The problem is that there might be overlap. In the worst case x and y might be the

same observer-moment. Or they might share some of their computational hardware. Or x and y might not

be making independent observations of their environment so there might be a sense in which if I am x, then

I am also in part y. This happens with human observer-moments if x and y are observer-moments that

belong to the same observer9 and y occurs immediately after x and thus regardless of how radically and how

quickly the external environment might be changing, it takes time to correct the obsolete information y has

received from x.

The first argument for the limited indifference principle is that it is a simple principle that is not obviously

absurd and it is hard to think of another principle that is equally simple and that is workable. If Kx = Ky

and x̂ = ŷ and Px(x)
Px(y)

6= 1, what is the ratio to be? We might say that Px(y) and Px(x) should depend on

the lengths of the briefest descriptions of y and x in some canonical language. But then we have the added

complexity of discovering the ideal canonical language.

The problem with this argument is that it is too easily generalizable to the case where x and y live in

different possible worlds. We certainly do not want to say that if Kx = Ky with x̂ = v 6= w = ŷ and w is a

world in which with a few exceptions every observer is a brain in a vat but v is a world more like the actual

world, that Px(x) should equal Px(y). We are not all that likely to be a brain in a vat.

The second argument is a wagering argument. We can without loss of generality restrict to the case

where both x and y know they both belong to a certain world w and they both know they are either x or

y but they do not know which one and we assume there is no overlap. If there were overlap, we could just

find some reasonable way of modifying our Px so that Px(x|x or y) + Px(y|x or y) = 1

Because Kx = Ky, we must have Px = Py. Assume that Px(y) = rPx(x) with r > 1. So Py(y) = rPy(x).

If there is a wager f such that f(y) = 1 and f(x) = −s with 1 < s < r while f(z) = 0 unless z is either x

or y, then both x and y will compute an expected value of r
r+1 −

s
r+1 > 0 and accept the wager. But then

it is inevitable that the total return is 1 − s < 0. So it seems it would have been better if both x and y

had rejected the offer. And since x and y are in the same subjective psychological state, they would either

both accept or both reject. Thus the best option is for them to both reject and that appears to show that

if Px(y) = rPx(x), then r should not be greater than 1. A very similar argument would show that r should

not be less than 1. Thus Px(y) = Px(x).

This wagering argument is too similar to an argument that in the Prisoners dilemma scenario it is rational

9We say that x, y ∈ W∗ belong to the same observer if they are temporal slices of the same observer in the same possible
world.
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for both prisoners to cooperate because it is better that they both cooperate than that they both defect.

However, each individual prisoner is better off if she defects regardless of what the other prisoner does. The

mere fact that one prisoner cooperates does not force the other to cooperate.

In our scenario both x and y can say: “I am much more likely to be y than x. So it makes sense for me

to accept a wager f with f(y) = 1 and f(x) = −2. I know the other guy (x if I am y and y if I am x) thinks

the same thing but she is mistaken. It is not desirable that the other guy accept, but that should not stop

me from accepting because I am more likely to be y.”

It is certainly consistent to say that x and y should have equal prior probability but it is also consistent to

say that y should have ten times as much prior probability. Yet it seems intuitively reasonable if we have to

choose between two possible solutions to the problem of choosing priors that we prefer the one that results in

greater total utility and greater average utility. This argument about what is intuitively reasonable does not

generalize to the case where x and y live in different worlds; we really only care about the total or average

utility of the observer-moments who actually exist. If x and y live in the same world we can assume that we

have scaled the utility functions of x and y in such a way that it makes sense to compute a simple sum or

average of the utilities of x and y. If x̂ 6= ŷ, then we would be more interested in a weighted sum or average

of the utilities of x and y where the weights of x and y are proportional to P (x̂) and P (ŷ) respectively.

Our third argument is that there is a sense in which it is not consistent to say that y should have greater

(for example, three times as much) prior probability, than x. If I am x (or y) and I say that “The other guy

has only a probability of 1
4 of being y even though the other guy is in the same subjective psychological state

as I am and I believe I have a probability of 3
4 of being y”, there is no obvious justification for the difference

between what I believe is my probability of being y and what I believe is the other guy’s probability. The

third argument does not generalize to the case where only one of the observer-moments x, y exists. In that

case, there would be one big difference between me and the other guy: I exist and she doesn’t.

The fourth argument is a simplified version of an argument of Elga’s[9]. The argument involves comparing

three different scenarios and is based on the assumption that similar scenarios should be analyzed similarly.

The argument is not quite convincing but it is still worth analyzing.

In the first scenario, there is only one possible world and in that world, there are only two observers,

Al and AlDup (a duplicate of Al). Originally, there was just one observer, but then at a certain point t0

in time, a duplicate of Al appeared. At any point in time subsequent to t0, Al and AlDup are in the exact

same subjective psychological state. At some time t1 after t0, Al wants to estimate the probability that

he is Al rather than AlDup. (Of course, AlDup also wants to estimate the probability that he is Al.) We
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might analyze the scenario as containing two relevant observer-moments, Al at time t1
10 and AlDup at time

t1
11. We would like to show that Al at time t1 should believe the probability that he is Al to be .5. If

we could demonstrate this, it should not be too hard to show that our limited indifference principle that

Px(x) = Px(y) if Kx = Ky and x̂ = ŷ should be true in general.

In order to help us analyze this first scenario, we consider a second scenario in which there are two possible

worlds, H and T. These worlds differ only in how an unfair coin tossed by a robot lands. If the coin lands

heads, H is actual (probability .1) and if the coin lands tails, T is actual (probability .9). In both worlds Al

and AlDup are the only observers and in both worlds at any time after time t0, Al and AlDup are in the

exact same subjective psychological state. The duplication and coin-tossing are assumed to be completely

independent processes. The coin-tossing does not affect the subjective psychological state of either Al or

AlDup. We might analyze this scenario as containing four relevant observer-moment Hal (Al at time t1 in

the heads world), Tal (Al at time t1 in the tails world), HalDup (AlDup at time t1 in the heads world) and

TalDup (AlDup at time t1 in the tails world).

Since the coin-tossing is entirely independent of the duplication, in order to show that in the first scenario

Al should believe the probability he is Al equals .5, it suffices to show that in the second scenario Hal (as

well as Tal, HalDup, and TalDup) should believe that the probability that he is Al (i.e. that he is either Hal

or Tal) to be .5.

We consider a third scenario, that is exactly like the second scenario except that at a certain time t2

later than t1 one of the two observers goes into a coma. In H, it is AlDup who goes into a coma and in T, it

is Al. At some time t3 later than t2, Al in the world H wants to estimate the probability that he is Al. Al

at time t3 in H is in the same subjective psychological state as AlDup at time t3 in T. So AlDup at t3 in T

also wants to estimate the probability that he is Al.

We might analyze the third scenario as containing six relevant observer-moments. We have the same four

relevant observer-moments that we had in the second scenario: Hal, Tal, HalDup, and TalDup. These are

all in the same subjective psychological state. We also have Hal2 (Al at time t3 in H) and TalDup2 (AlDup

at time t3 in T). Hal2 and TalDup2 are in the same subjective psychological state but their subjective

psychological state is different than the state of Hal, Tal, HalDup, and TalDup.

If we assume that Hal2 uses {Hal2,TalDup2} as his reference class, clearly Hal2 should believe that

the probability that he is Hal2 is .1. The other reasonable choice of reference class is the class consisting

10t1 might be a short time-interval rather than just a point in time.
11The reason we might consider these two observer-moments to be the only relevant observer-moments is that nothing essential

changes if we assume that both Al and AlDup are unconscious except at t1.
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of all six observer-moments. Because the coin tossing is assumed irrelevant, we would like to assert that

PHal2(Hal2|H) = PHal2(TalDup2|T ) because that would allow us to conclude that even if the larger ref-

erence class is used, Hal2’s posterior probability estimate for his being Hal2 should still be .1. However,

unfortunately, it is perfectly consistent to give Hal2 and Hal twice the prior probability of HalDup and give

Tal twice the prior probability of TalDup and TalDup2. (Regardless of how the coin falls originals have twice

the prior probability of duplicates.)

Let us just assume that Hal2 should conclude that the posterior probability of H is .1. If we could

assume that PHal(Hal|Hal or TalDup) = PHal2(Hal2|Hal2 or TalDup2) = .1, simple algebra would show

that PHal(Hal|Hal or HalDup) = .5. And then given the assumption that similar scenarios should have

similar analyses, we would have the result that in the first scenario, Al should believe that he is as

likely to be Al as AlDup. Unfortunately, Hal and Hal2 are different and it need not be the case that

PHal(Hal|Hal or TalDup) = PHal2(Hal2|Hal2 or TalDup2). It would be the case if a certain continuity as-

sumption is true, but it is not clear that the continuity assumption in question is any more obvious and any

less in need of proof than our limited indifference principle.

Assuming that our four arguments demonstrate the truth of the indifference principle that if Kx = Ky

with x̂ = ŷ, then Px(x) = Py(x), we find it natural to believe that if Kx = Ky with x̂ = ŷ, then Pz(x) = Pz(y),

for any z ∈W∗ such that x, y ∈ Rz. A general argument for this result is that Pz(x)
Pz(x)+Pz(y)

is z’s estimate of

how likely she should think it is that she is x given that she knows that she is either x or y12. But someone

who knows that she is either x or y would be in knowledge state Kx and thus would believe it as likely that

she be x as that she be y. Therefore, we should have Pz(x)
Pz(x)+Pz(y)

= .5 and Pz(x) = Pz(y).

We would also like to say something about the ratio of the prior probabilities of x and y when x and y

live in the same possible world but are not in the same subjective psychological state.

4 Assuming x̂ = ŷ what should be the value of Pz(y)
Pz(x) when y, x ∈ Rz?

If x and y are in different knowledge states (Kx 6= Ky), then there is no question of an observer-moment not

knowing whether she is x or she is y, but the ratio Pz(y)
Pz(x)

still matters. To see why, consider the following

simple scenario.

The Fundamental Scenario:

There are only two possible worlds, v and w. If they ignore anthropic information, the observer-

12We are still assuming that overlap is not a problem.
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moments in v and w would have no reason to think one of these worlds more likely to be actual

than the other world. But observer-moments do have anthropic information available. In both

worlds, there are exactly two possible subjective psychological states, A and B. We can represent

v as containing c observer-moments in state A and d observer-moments in state B. The world

w consists of e observer-moments in state A and f in state B. The numbers c, d, e, f are all

finite. We have no problem with overlap. All the different observer-moments in each world are

genuinely distinct observer-moments and thus for example, the c observer-moments in world v

who are in state A are all distinct and do not share resources or inhibit each other’s capacity for

believing and desiring and accepting or rejecting offers to wager. Every observer-moment needs

to estimate the probability the actual world is v taking into account the anthropic information

she actually does have.

We call this scenario fundamental because if we know how to analyze this scenario, we know how to

analyze most scenarios that can be represented as having only a finite number of possible worlds with

observers and in which every world has no more than a finite number of observer-moments.

In this scenario, all observer-moments are assumed to know all the details of the scenario and to know

which subjective psychological state they are in, but in general, they do not know which world they inhabit

and have only limited information about their identity and temporal location: They just know that they are

in state A or they know they are in state B.

Assume all observer-moments in the same possible world have equal prior probability and let z be an

observer-moment who is in state A. We assume that z uses a reference class consisting of all c + d + e + f

observer-moments. Not taking into account her anthropic information, z would say that the prior probability

that both v is actual and she is in state A is Pz(A and v) = ( c
c+d )( 1

2 ). The prior probability that she is in state

A and that w is actual is ( e
e+f )( 1

2 ). After taking into account her knowledge that she is in state A, we obtain

a posterior probability of
c

c+d
c

c+d+
e

e+f
for v being actual. This simplifies to c(e+f)

c(e+f)+e(c+d) . If, however, z had

assumed that observer-moments in state A had many times more prior probability than observer-moments

in state B, she would arrive at a very different posterior probability. If she assumed that observer-moments

in state A had infinitely many times as much prior probability as those in state B, she would arrive at a

posterior probability of .5.

A natural hypothesis about Pz(x)
Pz(y)

in the case when x̂ = ŷ and x, y ∈ Rz is that prior probability should

be proportional to cognitive complexity. This is implicitly assumed in, for example, [2]. Since we want

Pz(x) = Pz(y) if Kx = Ky and x̂ = ŷ, we shall assume that observer-moments in the same subjective
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psychological state have the same amount of cognitive complexity. We do not have to make the assumption,

but if we did not make the assumption, instead of discussing the cognitive complexity I(x) of a certain

observer-moment x, we would have to discuss the average complexity of an observer-moment in world x̂ and

subjective psychological state Kx. So instead of saying that Pz(x) = P (x̂) I(x)
I(x̂) where I(x) represents the

complexity of x and I(x̂) represents the cognitive complexity of the whole set of observer-moments living in

the same world as x and we assume that the total complexity is finite, we could use the same formula but

I(x) would have to represent the average complexity of the observer-moments in x̂ ∩ Kx. Our arguments

and our exposition can be simplified if we assume that if Kx = Ky, then I(x) = I(y).

One measure of the cognitive complexity of an observer-moment z is the amount of (relevant) information

I(z) that she is capable of representing. This suggests that we should have Pz(x)
Pz(y)

= I(x)
I(y) in the case where

I(x) and I(y) are both finite.

The basic reason is that we believe our information theoretic rule to be correct is that it is simple and

intuitively appealing. We also have a wagering argument for our rule and an argument based on the concept

of indecomposable or atomic moment and the idea that we should be able to represent W∗ as a union of

independent atomic moments.

We first give our wagering argument. We assume that W and W∗ are really equivalence classes of worlds

and centered worlds and that if we just specify z ∈W∗, we have not specified certain potentially important

information about z; we have not specified which decision problems13 z needs to solve. Maybe she does

not need to explicitly represent which problems she is trying to solve but she does need to devote cognitive

resources to solving these problems. Our key assumption is that the total amount of cognitive resources that

an observer-moment can devote to solving decision problems is proportional to the amount of information she

is capable of representing about who she is among the observer-moments in W∗. Or we might just assume

that the amount of information that z can store about which problems she is trying to solve is proportional

to the amount of information she is capable of representing about who she is among the elements of W∗14.

In any case, we are assuming that computational resources that can be used to solve decision problems

are scarce. In order to solve a certain decision problem, an observer-moment might need to make use of her

posterior probability estimate for how likely it is that she belongs to some set Z ⊂W∗. Even if Pz(Z|Kz) is

trivial to compute, some computational resources will be spent when z computes the probability and then

uses the probability to optimize her decision-making.

13Wagering problems are decision problem. We might also regard probability estimation problems as decision problems in
which an observer-moment is trying to maximize some kind of epistemic utility.

14Thus we are treating information storage space as the only scare resource.
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Given that scarcity of computational resources exists, we will explain why the scarcity matters. We

will use a wagering argument. Not every decision problem is a wagering problem but our argument can be

generalized to apply to decision problems that are not wagering problems. We are interested in Pz, a prior

that supposedly does not take into account any information that z has and other observer-moments in W∗

do not have. Thus we shall not take into account which wagering problem z is trying to solve. We just

assume it is some random wagering problem. We assume because computational resources are scarce and

the fact that z is a rational agent is only demonstrated when z is trying to solve some decision problem

and because there are so many possible decision problems that she might need to solve, that the probability

that z will have the computational resources available to solve a given randomly chosen decision problem

is small15 and we assume the probability is proportional to the amount of information she is capable of

representing about her location among the observer-moments in W∗. This assumption is most reasonable

for simple, easy to describe decision problems but more complex problems can be represented as a sequence

of simpler problems.

We want the observer-moments in W∗ to choose their prior probabilities in such a way as to optimize

expected utility when faced with a random wagering problem D. When computing this expected utility, we

will ignore those observer-moments who do not have the resources available to solve the wagering problem.

If we could restrict to the case where in each w ∈ W , there is at most one y ∈ w∗ who has the resources to

solve D, then the probability that a given z will actually be trying to solve D is the product of P (ẑ), the

probability that z lives in the actual world, and I(z)
I(ẑ) . And that would be a reason for prior probabilities to

be proportional to amount of information represented.

In reality, there might be some worlds where many observer-moments have the resources to solve D, but

we might pretend that D comes in several different variants. There is no essential difference between the

variants, between the different ways that a decision problem might be formulated. We might describe our

situation as one in which all an observer-moment knows is that she is dealing with a random variant of a

random decision problem. If there are enough variants, then it is quite likely to be true that in each world

only at most one observer-moment will have the resources available to solve a specific random variant of

D. And we have to analyze each variant differently since each variant is a different problem and for each

variant there is a different set of observer-moments who have the available cognitive resources to deal with

the variant. Introducing these imaginary variants should not affect which prior Pz should be used. But with

the help of these variants we could see why prior probability should be proportional to cognitive complexity.

15We are assuming that which other decision problems need to be solved by z is determined by some stochastic process.
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This argument might seem to similar to an argument that in the fundamental scenario if c = e = 1 (in

both v and w, there is one observer-moment in state A) and f = 10100, then an observer-moment z in state

A should believe the two possible worlds equally probable. But this argument for Pz(v) = Pz(w) would be

ignoring the fact that observer-moments in state B exist in world w.

In our wagering argument, we treat observer-moments who do not have the resources to handle a random

problem as if they were not observer-moments. We are treating them as if they do not exist16. We are

only using our wagering argument to determine a prior. We need some way of constraining our prior. We

are following the general philosophy of making our prior as uninformed as possible, taking into account as

little as possible. If we actually have more information, we can conditionalize. Thus we will have wagering

arguments constraining what Pz is, but we will not try to provide a wagering argument to constrain the

posterior Pz( |Kz).

We also have another justification of our information-theoretic rule based on indecomposability (i.e.

atomicity).

To understand why we care about indecomposability, reflect about the fact that some observer-moments

live too long to be analyzed as unified observer-moments and should really be decomposed into sets of

shorter-lived observer-moments. There is a sense in which it is difficult to conceive of a human observer-

moment z that lasts ten thousand seconds as having definite beliefs or making definite decisions or being

in a definite subjective psychological state. In ten thousand seconds, the external environment can change

drastically. There can be justifiable drastic changes of relevant belief during those ten thousand seconds.

It might be quite misleading to reason about z as if she had a definite knowledge state Kz. Wagering or

decision-theoretic arguments based on the assumption that observer-moments have definite beliefs and make

definite decisions based on those beliefs and a computation of the action that leads to greatest expected

utility might not really be applicable (even approximately) to an observer-moment like z. A wager offered

to z during the last three hundred seconds of her life might be something about which she was ignorant for

most of her life. There is a sense in which we should not try to model z as if she were a single rational agent

with definite desires and beliefs.

It might be true just by happenstance that the long-lived observer-moment z does have definite desires

and beliefs, but if z lives long enough, it could easily be the case that one part of z is exposed to different

evidence than another part of z and thus different parts of z have different beliefs. If it makes sense to split

16This is very different from saying we want to compute the posterior probability of some specific set A and then ignoring
observer-moments who do not need to know this probability. When we know that we need to know the probability of A and
other observer-moments do not need to know this probability, we know some information that is not common knowledge to all
z ∈W∗. But we can picture all observer-moments as knowing that they are trying to solve some random decision problem.
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z into a set of smaller observer-moments and these smaller observer-moments have the capacity to disagree

about some relevant topic, then we cannot consider z to be indecomposable.

But if z is sufficiently short-lived, it might not be possible to meaningfully view z as a union of two

independent observer-moments z1 and z2 and thus we might not be able to split up z any further. We

might be able to represent z as a union of z1 and z2, but it might be the case that z1 and z2 are human

observer-moments who only live one ten-thousandth of a second and who belong to the same observer in

the same world with z2 starting her existence at the exact time z1 ceases to exist. In this situation, there is

no meaningful sense in which we could really think of z1 and z2 as being completely distinct agents who are

free to make their own decisions, arrive at their own beliefs, and independently observe their environment.

The observer-moment z2 just does not have any time to respond to new evidence that she has access to and

z1 does not have access to. It takes time to process information and formulate new beliefs and make new

decisions. We cannot reasonably represent z2 and z1 as independent rational agents.

Of course, there is always some dependence between two observer-moments y and x that belong to

the same human observer. But it can be convenient to model W∗ as consisting of a set of independent,

indecomposable observer-moments. This modelling is an idealization, but sometimes it can be a useful

approximate description.

We have explained what indecomposability means; we need to say a little more about what independence

means. If y is just another name for z, then certainly y is not independent of z. But if z and y live in the same

world and have virtually identical beliefs and would make virtually identical decisions if faced with the same

decision problems, that does not necessarily mean that z and y are extremely dependent. The similarity

between y and z might just arise because y and z are exposed to very similar external environments. If y and

z were exposed to very different environments, they would have different beliefs; in that case y and z could

be quite independent. But if the very fact that y has a certain belief or chooses to accept or reject a certain

offer to wager forces it to be the case that z has the same belief or makes the same decision about accepting

or rejecting the wager, then we have substantial dependence. There could also be complete dependence

between y and z even if Ky and Kz are very different: There would be complete dependence if once we

know Ky, we could predict what Kz would be without knowledge of the environment to which z has been

exposed. That means that even if z were exposed to a very different environment than y and even if that

environment were very different from the environment that any observer-moment in W∗ is exposed to, we

could still predict Kz knowing just Ky.
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A few more worlds about independence. The test for independence involves counterfactuals, but these

counterfactuals should not involve worlds that are too different from the actual world. We are interested, for

example, in what human observer-moments who last only one thousandth of a second actually are capable

of; we are not interested in what they could do if they could think ten thousand times more quickly than

they actually can. In the case of two observer-moments y and z both of whom live for .0001 seconds and

one of whom begins life as soon as the other dies, we are interested in the actual relationship between the

cognitive capacities of y and z, we are interested in the fact that they actually do share hardware because

thinking and learning takes time and we are not interested in some alternative world where y and z do not

share hardware.

Another point is that independence is really a relationship involving sets of observer-moments. The

observer-moment z might be capable of representing much information that is not represented by x and

capable of representing much information not represented by y, but if one knows both Kx and Ky, one

might be able to accurately predict Kz without knowing the evidence to which z has been exposed. In this

case z is highly dependent on the set of observer-moments {x, y}.

A further point is that whether z is independent of X ⊂ ẑ might be determined by a stochastic process.

Some random process A in the brain of z might determine whether we have independence. Technically, if A

can have different possible results I and II, then ẑ is not really just one possible world, but an equivalence

class of worlds: A world in which A has a result I is different from one in which it has result II, but we are

not distinguishing between these two different worlds.

The stochastic element that determines whether z is independent of X ⊂ ẑ might not be a random

process A in the brain of z; it might be some other element of the environment that is incompletely modelled

when we choose to use W as the set of all possible worlds. For example, W might not fully take into account

which questions observer-moments in W find it interesting to answer.

There can be much more said about the nature of independence, but at this point we shall just assume

that it can be reasonable to regard W∗ as a set of independent, indecomposable (i.e. atomic) moments

and we assume that if two atomic moments belong to the same possible world, they should be given the

same prior probability. The rationale for this is that prior probability should represent what we would

believe if we did not take into account any knowledge we might have that is not also known to every other

observer-moment in W∗. If we do not take into account any such knowledge, then we can treat atomic

moments x and y as if they were in the same knowledge state (as if Kx = Ky). Then if x̂ = ŷ, we would

apply our limited indifference principle and conclude that x and y should have equal prior probability. Our
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argument should not be generalized to nonatomic moments because nonatomic moments do not necessarily

have definite knowledge states.

Our assumption about atomic moments can be translated into an information-theoretic criterion. We

necessarily have for all z ∈W∗ that z ∈ Kz. But aside from having to satisfy this one simple constraint, the

knowledge state of z can be any subset of W∗ independent of the knowledge states of all other elements of

W∗. Thus each atomic observer-moment can represent |W ∗ |− 1 bits of information where |W ∗ | represents

the number of elements in W∗. And in fact our information theoretic criterion is verified: Pz(x)
Pz(y)

= I(x)
I(y) if

|W ∗ | is finite. This criterion would also be verified for observer-moments x and y that could be represented

as finite unions of atomic moments.

The version of the atomic moments procedure that we have just described is unrealistic in several different

ways, but it still might be useful to reason as if it were true. One primary reason that modelling W∗ as

consisting of independent atomic moments is unrealistic is that in any realistic scenario in which all the

possibly relevant details are taken into account, |W ∗ | is huge. It is not reasonable to conceive of the z ∈W∗

as independently representing information: |W ∗ | is too many bits for one indecomposable rational agent to

know. If we work with huge equivalence classes of observer-moments so that each z ∈ W∗ is really a huge

equivalence class and |W ∗ | is very small, then the idea that W∗ consists of independent atomic moments is

more plausible.

Another reason that our modelling of W∗ as consisting of independent atomic moments might be con-

sidered unrealistic is that it takes time for an observer-moment to make inferences and while in the process

of making inferences, an observer changes her subjective psychological state. We make the idealization that

observers can take as much time as they want to apply the rules of logic and probability theory to to their

knowledge about who they are among the observer-moments in W∗. All an observer-moment z ∈ W∗ has

to do is specify which subset Kz ⊂ W∗ represents her state of knowledge; it might be some other observer-

moment who makes inferences based on that state of knowledge. Or we might model our observer-moments

as being logically omniscient and able to instaneously derive any needed conclusions17. In nonanthropic

Bayesian reasoning, we also presuppose a certain amount of logical omniscience so it should be no surprise

that we might need to model observer-moments as being perfect at logic.

We now describe a second version of our modelling of W∗ as consisting of a set of atomic moments and

in this version, we do not assume independence. It is still the case that the z ∈W∗ cannot usefully be split

into smaller observer-moments. But here the underlying assumption is that it takes a certain amount of

17or more precisely they are able to make decisions as if they could instaneously derive any needed conclusion.
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time to create a new belief, a new intention, a new decision. So excessively small observer-moments are not

meaningful. Atomic observer-moments are, by definition, moments that are large enough to be meaningful,

but not so large that they are capable of having subparts with contradictory beliefs. In this version of the

definition, an atomic observer-moment is supposed to represent a minimal unit of consciousness.

The observer-moments in W∗ are not assumed independent but for any z ∈ W∗, we can still ask how

much information is z capable of representing that is not represented by other observer-moments (i.e. how

much new information, how much unique information can z represent? Not how much is actually new but

how much could be new.). We assume that all atomic moments living in the same possible world are capable

of representing the same amount of new (relevant) information.

But even if we did not make the assumption about new information, we still might argue that atomic

moments living in the same world should have the same prior probability. If we really are reasoning as if

we did not have any anthropic knowledge about who we are among the observer-moments in world w and

x and y are atomic moments in w, we should think ourselves as likely to be x as to be y. This argument

does not generalize to the case of nonatomic moments because if x or y is nonatomic, she might have no

definite probabilistic belief about who she is among the observer-moments in W∗ (there is no unique Kx or

no unique Ky.) or no definite belief about which decision problem she has to solve.

5 The SIA and What is an Observer?

We now address the issue of exactly what is and what is not an observer or observer-moment. Our first

comment is that an observer has to be able not only to represent information but also to use that information

in a sensible manner. If faced with a decision problem, an observer needs to make sensible decisions and

these decisions should be based on a computation of expected utilities. The computation of expected utilities

requires posterior probabilities to be estimated based on the information available. There might be other

reasons an observer might want to estimate posterior probabilities. In any case, an observer, actually an

observer-moment, must be capable of having coherent probabilistic beliefs about who she is among the

observer-moments in W∗ and making coherent decisions based on those beliefs or acting as if she were

making coherent decisions based on those beliefs18,19.

18Of course if z is an observer-moment, it might take time for her compute the necessary posterior probabilities and expected
utilities and the actual computation of probabilities and utilities might be done by some other observer-moment based on the
information available to z.

19In section 4, we discussed the possibility that observer-moments may not have the computational resources to solve all the
problems they need to solve, but we can still model observers as being able to solve any given (simple) problem; we might model
observer-moments as being born with partial solutions to many problems (they might have learned from previous observer-
moments who belong to the same observer, for example), but they have difficulty handling a large amount of new information
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As specified so far, there is a certain amount of circularity in our explanation of what an observer-moment

is. A certain set W of worlds is interesting and then we enrich worlds in W with centers in order to obtain

a set W∗. This set is a set of observer-moments if each element of the set W∗ is capable of reasoning

coherently about who she is among the elements of W∗. If we had chosen a different set X of possible worlds

to start with, then we would also choose a different set of centered worlds X∗ and there might be elements

in X ∗ ∩W∗ that can be rational when reasoning about X∗ but not when reasoning about W∗. Thus the

concept of observer-moment is not absolute.

Aside from a few ways in which we can easily take into account lack of logical perfection such as the

fact that observer-moments in W∗ do not have to be able to reason well about worlds outside of W , we are

modelling observer-moments as being perfectly rational in making use of the information they have. Since

ours is a prescriptive rather than a descriptive theory, observer-moments do not actually have to be rational

in the way we model them as being rational. They just have to have the capacity to be rational. Even

modelling them as having the capacity to be rational might be a bit of an idealization, but it still might be a

useful idealization that can result in helpful advice being given to observer-moments about how they should

estimate posterior probabilities.

We just want to make sure that we are not idealizing excessively. We would like to model normal adult

humans as observers. But humans are very bad at estimating exact prior probabilities and even well-educated

people with mathematical and scientific training can easily make bad mistakes in logic or fail to notice an

argument that uses a long and complicated proof. That is true enough. But when the stakes are high enough,

humans can and will make reasonable approximate probability and utility estimates especially if they can

use artificial aids such as computers or obtain advice from expert observer-moments whom they trust.

A human z ∈ W∗ might not be able to articulately describe a good prior probability distribution P for

W , but that does not mean she does not have some implicit intuitions about the ratios of likelihoods of

worlds in W and even intuitions about what these ratios would be if she had different information available

than the information she actually does have. And these intuitions are not ad hoc or random but based on

some guiding principles of which she might only have implicit knowledge. She might not know how either

implicitly or explicitly to convert intuitive principles into prior and posterior probability distributions, but

she could do so if she had sufficient help from experts or computational devices and sufficient time. There

could, of course, be apparent contradictions in her intuitions but then she would just have to regard her

intuitions as firstly only approximate and secondly only reliable with a certain probability that is less than

about which problems they are supposed to solve.
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one. It still might be possible to arrive at reasonable prior and posterior probabilities at least for certain

W∗.

In any case, nonanthropic Bayesian reasoning if interpreted as giving advice to human decision-makers

implicitly assumes that humans have a kind of rationality they really do not possess. But nonanthropic

Bayesian reasoning is useful. In an anthropic context, it might also be useful to model humans as rational

when dealing with certain issues.

So then, yes, humans are observers. What about superhuman intelligences? They are also observers

although they might not be part of the same reference classes as humans. What about chimpanzees?

Probably not for most W∗ of interest to us, but there is much that we still do not understand about

chimpanzees. What about Neanderthals? They are very much like humans and thus should probably be

considered to be observers.

Certainly stones or even mosquitos are not observers for any interesting W∗. But if we adopt a very

liberal definition of what it means to be an observer or an observer-moment, we can reach an interesting

conclusion.

Assume we have a set W of possible worlds that contains a finite set of actually minimally rational

observers. We also imagine that each world contains a huge quantity of observers that are not minimally

rational. Assume that if we include these extra observers, then all worlds have the same number of observers.

Let us also assume that all observers, including not minimally rational observers, in the same possible world

have the same prior probability. Now let us calculate a posterior probability in stages. We want the posterior

probability that world w ∈W is actual. We start with a prior probabiiity P (w). This is just the nonanthropic

prior probability of w. Since we actually are a minimally rational observer, let us just conditionalize on

the information that we are minimally rational. After conditionalization on this information, we obtain a

semiprior probability Q(w) = NwP (w)∑
v∈W NvP (v) where for any v ∈ W , Nv is the number of minimally rational

observers in v. This follows because each observer in world w has prior probability P (w)
M where M is the total

number of observers in a possible world. Thus the prior probability of being a minimally rational observer

in world w is NwP (w)
M and for any world v, the prior probability of being a minimally rational observer in

world v is NvP (v)
M . Thus Q(w) is the conditional probability of w being actual given that we are minimally

rational. The semiprior gives more probability, other things being equal, to worlds with more observers.

Thus in essence we have made the Self-Indication Assumption[5] (SIA) according to which we need to first

adjust our nonanthropic prior probability distribution to take into account the fact that we exist and are

at least minimally rational. Then we can conditionalize on any more specific information that we have. In

23



essence it is as if we are using Q rather than P as our nonathropic prior probability distribution since we

really do not have to account for the imaginary not even minimally rational observers and whatever they

might know and believe and decide.

It is amusing that we can derive the SIA as a special case of the SSA and we could also obtain a version

of the SIA as a special case of the SSSA. We would just need to have a measure on the observer-moments in

W∗. For example, we might use the information theoretic measure. Then we would let Nv equal the total

number of bits of information represented by the observer-moments in world v rather than the total number

of minimally rational observers and apply the same formula as in the previous paragraph for computing a

semiprior given a nonanthropic prior. But this SIA seems ill-motivated and unjustified. It really is ultimately

an assumption that we should reject, but it has many advocates and there are some appealing arguments in

favor of the SIA which do not involve vague references to taking into account the mere fact that we exist as

conscious rational beings and do not involve artifical nonrational observers.

6 The SIA

The SIA does start to seem appealing if we consider a scenario where there are only two possible worlds

v, w ∈W and no two observer-moments in the same possible world are in the same subjective psychological

state. We assume that P (v) = P (w) and that there is some observer-moment z in v who does not know

which world is actual. For all she knows she might be y who lives in world w. Given that one cannot have

two different observer-moments in the same subjective psychological state in the same world, that means

Kz = Ky = {y, z}. If we apply the SIA, then we obtain that Q(v) = Nv

Nv+Nw
. But since here we are

dealing with observer-moments rather than observers, Nv and Nw should represent the total amounts of

information that are represented by observer-moments in worlds v and w respectively. Let a be the amount

of information that y and hence z can represent. We have then Pz(z|Kz) = ( a
Nv

) Nv

Nv+Nw
= a

Nv+Nw
and a

similar computation shows that Pz(y|Ky) = a
Nv+Nw

= Pz(z|Kz). This seems satisfying: The worlds v and

w are equally likely. That means y and z are equally likely to exist. So if all an observer-moment knows is

that she is either y or z, should she not believe both options equally likely? If we did not apply the SIA and

Nv 6= Nw, then z would derive from the fact that observer-moments in knowledge state Kz are not equally

atypical in the two worlds the conclusion that the two worlds are not equally likely.

The SIA also has unfortunate consequences20. If there are only two possible worlds v and w and both

20The argument against the SIA presented in this paragraph is similar to an argument (the Presumptuous Philosopher’s
Scenario) presented in [5].
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worlds would be considered equally likely if we did not take into account any information we have that

other observer-moments do not have and the capacity of an average observer to represent information is the

approximately the same in the two worlds but w has 1010
100

times as many observers as v, the SIA would

make it very difficult for us to learn that v is the actual world. Before we acquire any evidence, we would

think w virtually certain to be actual and given the very real possibility (probability at least 10−1000) of

error in observation or interpretation of any sequence of observations, it is difficult to see how that initial

bias in favor of w could be overcome. Therefore, a Presumptuous Philosopher might tell us that it is really

unnecessary to expend any effort collecting evidence; the actual world is w. Given the fact that there are

viable cosmological theories that disagree about how many observers there are but do not disagree radically

about how atypical we are, the Presumptuous Philosopher Scenario is a real problem for the SIA.

But we might have the problem that it is difficult for additional evidence to overcome a strong initial

bias even if we do not make the Self-Indication Assumption. We might consider again the example where

there are only two possible worlds and no two observer-moments in the same possible world can be in the

same subjective psychological state. If we are observer-moment z in world v or observer-moment y in world

w with Kz = Ky, then our posterior probability estimate for v will be
a

2Nv
a

2Nv
+ a

2Nw

if we do not apply the SIA.

But we might have Nw = 1010
100

Nv. In that case, v would seem virtually certain to be actual. Instead of

the nonanthropic evidence giving about equal support to the theory that v is actual and the theory that w

is actual, we might have strong nonanthropic evidence in favor of w being actual. But it is very hard to

counteract the effect of the huge size of Nw

Nv
.

We might note that if the number of observers in the actual world is huge, the assumption that no

other observer-moment is in the same subjective psychological state as we are becomes rather doubtful. Our

argument in the previous paragraph depended on our being very atypical if world w is the actual world. It

is only reasonable to think that we might be all that atypical in world w if in w there is a huge number of

subjective psychological states that are actually instantiated by some observer-moment in w (huge compared

with the number of instantiated states in v). Should one try to maximize number of observers (as the SIA

would tend to lead us to do) or minimize subjective psychological states (as we would tend to do without

the SIA)? The latter seems more reasonable and more reminiscent of Occam’s razor.

Or we might take a different approach to the problem of untestability. Perhaps there is something wrong

with how we choose our supposedly nonanthropic priors when huge numbers are involved. There are problems

both with and without the SIA. Or maybe it is not our anthropic reasoning theories that are responsible

for our difficulties; there are nonanthropic reasoning theories that tells us that (on entirely nonanthropic
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grounds) one hypothesis is 10100 times more likely than another hypothesis. Here again we will run into

problems because it will be difficult to use empirical evidence to overcome that factor of 10100.

To judge the SIA, we need to return to fundamentals rather than examine what happens when we apply

the SIA to scenarios involving huge numbers. And the transition from the prior P to the semiprior Q really

is inadequately motivated. The strongest argument for the SIA is the argument involving the scenario with

the two worlds v and w and two observer-moments z and y and the fact that if we apply the SIA, we do get

Pz(w|Kz) = Pz(v|Kz). And thus z (as well as y) should consider herself as likely to be y as to be z.

But this argument is not totally convincing. It is true that objectively it would be better if both y and z

agree that that the posterior probability of v being actual is .5 rather than agreeing on some other number

and since y and z are in the same subjective psychological state, they will agree on some number. To see

that it is better if they choose .5 rather than some other number, we just have to consider wagers f with

f(x) = 0 for all observer-moments except y and z. If we use the objective, nonanthropic prior probability

of .5 for v, we see that if .5(f(y) + f(z)) > 0, it is better that both observer-moments accept the wager. If

.5(f(y) + f(z)) < 0, it is better if both reject. This seems to suggests that y and z should use a posterior

probability of .5 for v. Both y and z can even agree that it would be better if they both used the posterior

probability of .5 rather than both using some other value but y and z do not get to have a dialogue about

what to believe. They make separate decisions. If either y or z applies the SSSA and not the SIA and Nw

is much bigger than Nv, then she (y or z) will conclude that v is much more probable than w and hence she

is much more likely to be z than y.

Both y and z could say, “If I were to believe that I am as likely to be z as to be y, that would not force

the other guy (z if I am y and y if I am z) to believe the same thing and in any case, I am more likely to be

z than y. I know that means that the other guy is more likely to be y than z. But the other guy is in the

same subjective psychological state as me and will think herself to be much more likely to be z than y and

she will be wrong. But so what? She does not exist.”

We might also consider applying the SIA to a scenario where there are two possible worlds, v and w,

P (v) = P (w), Nv = 1, Nw = 10100 and all observer-moments in both worlds are in the same subjective

psychological state. If there is a wager f such that f(z) = −109 if z ∈ v and f(z) = 1 if z ∈ w, then if all

observer-moments make the Self-Indication Assumption, they will all accept the wager and the expected total

return is .5(−109)+.5(10100) which is huge and positive. Thus it would seem, given that all observer-moments

care about expected total rather than expected average utility, that it is better that all observer-moments

accept rather than all reject. All observer-moments will accept if they believe the SIA and thus believe it
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vritually certain w is actual. They will all reject if the SIA is not used. But even if it is better that all accept

rather than all reject, we should keep in mind that decisions are not made by a committee of all observers.

If in both worlds all observer-moments except one accept and that one observer-moment rejects, than the

total expected return is .5(10100 − 1) > .5(10100 − 109) and that would be a reason for each individual

observer-moment to reject if she believes all other observer-moment (if there are other observer-moments)

will accept. Each individual observer-moment would reject if she did not use the SIA. Of course, if every

observer-moment rejects, inferior results are obtained, but each individual observer-moment makes her own

decisions.

In the previous paragraph, we used the nonanthropic prior probability P (v) = P (w) = .5 to compute

expected total return. If we really believe the SIA, we might suggest that when computing expected total

return, we should consider w much more likely than v; after all if all observer-moments believe the SIA,

they will all believe w much more likely. But if we took that suggestion, we would run into other problems.

We might consider a scenario where v and w would be considered equally likely if we ignored the SIA, but

Nw = 10Nv and all observer-moments are in the same knowledge state. We have a wager f such that

f(z) = −50 for z living in v and f(z) = 1 for z living in w. Even if the SIA is applied, w will not be

considered to be even 50 times as likely as v to be actual and all observer-moments will reject f . But if we

compute an expected total return in which w is ten times as likely as v because there are ten times as many

observers (or ten times as much information capacity to store information), then the expected total return if

all observer-moments accept f is positive: It is −50Nv

11 + 10(10Nv)
11 . This suggests that if a wagering argument

based on the wager of the previous paragraph is a reason to believe the SIA, then this paragraph provides

a reason to believe a strong form of the SIA which would give w 100 times as much prior probability as v

rather than just 10 times. And then we could easily enough construct an argument for a superstrong SIA.

7 Choosing A Reference Class

7.1 Should Rz = Kz?

We have analyzed the application of the SSA and SSSA both with and without the SIA. In both cases,

there were difficulties. If we use the SIA in a version of the fundamental scenario in which c = e = 1 (one

observer-moment in state A in both worlds),f > 1 and d = 0 (observer-moments in state B only exist in

world w), observer-moments in state A will be believe v and w equally likely and that might be what we

want. Without the SIA, v and w would not be believed equally likely.
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If we apply the SIA to a scenario in which there are only two possible worlds, v and w with P (v) = P (w),

Kx = Ky for any x, y ∈ {v, w}∗ and Nw = 109Nv, then (as in the Presumptuous Philosopher Scenario) w

will be thought much more likely than v. If we do not apply the SIA, we can see that observer-moments will

realize that v and w are equally likely.

But all this assumed the use of maximal reference class. If we do not use maximal reference classes

Rz = W∗ but instead use minimal reference classes Rz = Kz, then we could have a probability estimate of

.5 in all these scenario. The use of minimal reference classes, at least in certain scenarios (but which ones?)

has been advocated by [4].

There are three main problems with minimal reference classes. The first is that if for all z ∈ W∗ and

all w ∈ W , Kz ∩ w∗ 6= ∅, then no observer-moment will ever learn very much about which world is actual.

All observer-moments have in common a certain amount of knowledge. That is why they can agree on a

nonanthropic prior P . But no observer-moment will be able to learn very much from the fact that she has

some observational evidence that other observer-moments do not have. If z has evidence E, then in every

world in W , there is some observer-moment who also has evidence E. Thus she cannot exclude any world w

as impossible just because she has observed E. She will compute Pz(w ∗ |Kz) = Pz(w∗∩Kz)
Pz(Kz)

but Pz(w ∗ ∩Kz)

is just Pz(w∗) because there are no observer-moments in world w who are in the reference class but not in

Kz. Also Pz(Kz) = 1 because Kz is the whole reference class. Thus the posterior probability of w∗ is the

same as the prior probabilty. It is impossible to learn from observation. We might in fact be faced with a

situation similar to this in cosmology. There might be many plausible cosmological theories which do not

differ in their predictions as to which subjective psychological states will be experienced by at least one

observer-moment[3].

The second problem is best illustrated by a scenario in which there are only two possible worlds, v and w

and only two possible subjective psychological states A and B. In both v and w, there is just one observer-

moment in state A. In v, she is the only observer. In w, there are millions of observers. The prior probability

of v is .5. If an observer-moment is in state B, then she has conclusive evidence against v being actual. That

would lead us to think that learning that one is not in state B but rather in state A would be evidence in

favor of v being actual. But if we use Rz = Kz for all observer-moments, then the observer-moment who is

in state A would believe the posterior probability of v to be .5. and not use the fact that she has failed to

observe B as evidence.

The third problem is that in many cases, if minimal reference classes are used, a collective Dutch Book

can be constructed. A collective Dutch Book can also often be constructed even if reference classes other than
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minimal are used. We shall analyze below why we need to use not just nonminimal but actually maximal

reference classes and one of our arguments for our position will be a collective Dutch Book argument.

7.2 Why should Rz = W∗?

We believe that almost maximal reference classes should be used: Rz = W∗. W∗ might not, strictly speaking

be maximal because it might be the case that there are observer-moments X who do not belong to W∗ but

there are some observer-moments in W∗ who cannot reason coherently about whether they are elements of

X.

Keeping in mind that W∗ need not be all possible centered worlds, we can present our arguments for

why we should have Rz = W∗ for all z ∈ W∗. We will still assume that that W∗ is finite. We also assume

that if x, y, z ∈ W∗ with x̂ = ŷ and x, y ∈ Rz, then the ratio Pz(y)
Pz(x)

is equal to the ratio of the amounts of

information that x and y are capable of representing. These amounts are assumed to be a finite number of

bits.

The first argument is a conceptual argument. Rz = W∗ is a simple rule. Perhaps Rz = Kz is even

simpler, but that choice can run into problems for reasons we discussed above. A reason to think Rz = W∗

is especially simple is that the rule Rz = W∗ is consistent with the philosophy that priors should represent

maximal ignorance and we represent more informed knowledge states by conditionalization of the prior. This

is a simple and elegant philosophy.

The second argument is a collective Dutch Book argument. We assume that there exists four observer-

moments v1, v2, w1, w2 with Kv1 = Kw1 and Kv2 = Kw2 6= Kw1 as well as v̂1 = v̂2 (let v represent the

world v1 and v2 both inhabit) and ŵ1 = ŵ2 so we shall say that both w1 and w2 live in w. We shall set up

a collective Dutch Book. Observer-moments v1 and w1 will be betting on whether they are v1 or w1 and

observer-moments v2 and w2 will be betting on whether they are v2 or w2. So we need to know the ratios of

the posterior probabilities of v1 and w1 and the ratio of the posterior probabilities of v2 and w2. To compute

these ratios, we make use of the fact that for all z ∈ W∗, if y ∈ Kz the rato Pz(z|Kz)
Pz(y|Kz)

= Pz(z)
Pz(y)

and thus

we need only compute ratios of prior probabilities. First we see what happens if all observer-moments use

maximal reference classes.

We make a simple computation.
Pv1 (v1)

Pv1
(w1)

=
P (v)(

I(v1)

I(v∗) )

P (w)(
I(v1)

I(w∗) )
taking into account the fact that I(v1) = I(w1).

Thus the ratio of the prior probabilities of v1 and w1 is equal to P (v)I(w∗)
P (w)I(v∗) . This will also be the ratio of the

prior probabilities of v2 and w2. But if we do not use maximal reference classes there is no guarantee that

these probability ratios are equal. If they are not equal, we can set up a collective Dutch Book.
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The Dutch Book argument requires that the utilities of different observer-moments be combined. If we

need to combine the utilities of v1 and v2, we cannot simply add up or average their utilities. If we are some

observer-moment z ∈ W∗ reasoning as if we do not know who we are among the observer-moments in Rz,

we would try to act in such a way as to maximize
∑

y∈Rz
Pz(y)U(y)21 where U stands for utility. This tells

us that when we combine the utilities of v1 and v2, we need to compute a weighted average with weights

being proportional to prior probabilities. But if two observer-moments in Rz both live in the same world

their prior probabilities are proportional to the amount of information they can represent.

We are now ready to define a wager that sets up a Dutch Book. Assume that nonmaximal reference

classes are used and as a consequence
Pv1 (v1)

Pv1
(w1)

> r > s >
Pv2 (v2)

Pv2
(w2)

for some real numbers r, s. Let I(v1)
I(v2)

= q.

So we can use qU(v1) + U(v2) and qU(w1) + U(w2) to combine utilities of observer-moments in the same

world22. Let a > 1 be chosen so sa < r. Finally define the wager f so that f(v1) = 1
q , f(v2) = −a,

f(w1) = − r
q , f(w2) = as, and f(z) = 0 for any observer-moment z other than v1, v2, w1, w2. Then v1 (and

w1) will accept the wager because she thinks herself more than r times as likely to be v1 as to be w1. The

observer-moment w1 (and w2) will accept the wager because she believes herself less than s times more likely

to be w1 than to be w2. But then when we combine the utilities of the observer-moments in world v, we get

q( 1
q )− a < 0 and −q( r

q ) + as < 0. So no matter which world is actual, we have a loss of utility.

Our third argument is a relative frequency argument. In order to test the adequacy of our theory of

anthropic reasoning, we consider what happens if a scenario is repeated many times. We ask ourselves if

there is an approximate equality between relative frequencies and our posterior probability estimates. Let

us consider a finite scenario. Thus both W and W∗ are finite. In order to completely describe our scenario,

we would have to specify the values of I(z) for all z ∈W∗ and also specify a nonanthropic prior probability

distribution P on W . Now let M be some very large number and let us repeat our scenario M times. In

order for the relative frequencies we compute to be most meaningful, we want the different repetitions of the

same scenario to be independent repetitions.

Thus we will define a product scenario(actually a power scenario). The set of all possible worlds is

WM . Thus WM is the set of length M sequences of worlds belonging to W . Any observer-moment living

in a world w = (w1, w2, w3, . . . , wM ) ∈ WM is a sequence (z1, z2, z3, . . . , zn) such that for 1 ≤ i ≤ M ,

zi is an observer-moment belonging to wi. We have P (w) =
∏

1≤i≤M P (wi) if w = (w1, w2, w3, . . . wM )

where P (wi) is the prior probability of wi in the unrepeated scenario. We want I(z) =
∏

i≤i≤M I(zi) where

z = (z1, z2, z3, . . . , zM ). Of course the prior probability of (w1, w2, w3, . . . , wM ) should be the product of the

21We assume that overlap is not a problem.
22But we can set up our Dutch Book for any q > 0.
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prior probabilities of the wi if we are going to be independently repeating the same scenario M times. It is

not quite as intuitive why the amount of information is also computed by taking a product, but if we imagine

that z1 has six different places where it can store information and z2 has five different places, then there are

six times five ways of obtaining an ordered pair of places for storing information with the first member of

the ordered pair coming from z1 and the second from z2. We also need to define knowledge states. We do

so in the obvious way: Kz =
∏

Kzi if z = (z1, z2, z3, . . . , zM ).

For any world v ∈ W , if we choose a world w at random from WM , we see that if M is large enough

that it is virtually certain that the proportion of wi in the M -tuple (w1, w2, w3, . . . , wM ) such that wi = v

is approximately equal to P (v). Thus the number of indexes i such that wi = v should be approximately

MP (v). This is one examle of relative frequencies in the repeated scenario and probabilities in the unrepeated

scenario being approximately equal. But we are more interested in probabilities that take into account

anthropic knowledge.

Let us choose an observer-moment z = (z1, z2, z3, . . . , zM ) who lives in the random world w. We want to

analyze what z knows and that means we need to analyze what each zi knows. We are actually not interested

in all indexes. We will pick some possible knowledge state K ⊆ W∗ and some world v ∈ W . (So we are

analyzing some world of the unrepeated scenario and some possible state of knowledge of observer-moments

in that scenario.) We are interested in the sets iK and iv where iK is the set of i such that Kzi = K and iV

is the set of i such that wi = V .

Let nK,v be the total amount of information that can be represented by the set of observer-moments z

in world v who have Kz = K. If z is a typical observer-moment in the product scenario and M is large

enough, we expect the number of indexes i that are in iK ∩ iv to be approximately equal to P (v)M(
nK,v

I(v∗) ).

If i ∈ iv, the probability that i ∈ iK is
nK,v

I(v∗) if z is a typical observer-moment in (W∗)M (and hence zi is

a typical element of wi = v) and if M is large, it typically will be the case that a fraction approximately

equal to
nK,v

I(v∗) of the i ∈ iv will also be in iK . The number of indexes i in iK should be approximately

equal to M
∑

x∈W P (x)
nK,x

I(x∗) if M is large enough. Thus if M is large enough the proportion of indexes

in iK that actually belong to iK ∩ iv is approximately equal to the posterior probability for world v that

would be computed by an observer-moment in knowledge state K in the unrepeated scenario (assuming the

observer-moment uses maximal reference classes). So if we want relative frequencies to be approximately

equal to probabilities, we should use maximal reference classes.

All this assumes that z is typical. The typicality was computed using a prior probability distribution on

centered worlds in the product scenario. This distribution implicitly assumed that maximal reference classes
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should be used but if we are discussing how unusual we are among all the observer-moments who live in

WM , there really is no natural alternative to maximal reference classes. We need a probability distribution

that is defined for the whole set of observer-moments who live in w23. . But z could be atypical. So we have

not proven our theory to be the only reasonable theory of anthropic reasoning. There are other nonabsurd

theories of anthropic reasoning. And we have barely discussed the infinite case. In the next section we

discuss both issues.

8 The Infinite Case and Learning from Experience

Up until this point we have focused on the case where the total number of worlds or equivalence classes of

worlds is finite, the number of observers in each world is finite and each observer could only represent a finite

amount of information. But the actual world might contain an infinity of observers. So we have to be able

to analyze the infinite case.

Scenarios involving infinite sets can be problematic even if no anthropic reasoning is involved. There

really is no magic formula for handling the infinite case. We just have to represent the infinite case as a

limit of finite cases which we know how to handle. The problem is that there are many different ways of

representing an infinite scenario as a limit of finite scenarios which are intended to approximate the infinite

scenario.

We could approximate an infinite case by saying that all except finitely many observers in finitely many

worlds are irrelevant. We could approximate an infinite case by saying that we shall work with equivalence

classes of worlds and observer-moments and only deal with a finite number of equivalence classes. Thus

perhaps each centered world can be represented in a canonical way as an infinite sequence of bits and we

shall not distinguish between centered worlds whose first few bits are the same. Or we could combines the

idea of working with equivalence classes with the idea of working with subsets.

23One might object to the whole idea of using a product scenario in which a typical observer-moment z = (z1, z2, z3, · · · , zm)
can be represented by a list of zi with very different reference classes. We might think that relative frequencies in such a product
scenario tells us nothing about the unrepeated scenario because it mixes up observer-moments in different reference classes but
if all that is different about the observer-moments is how much they know and what they know, it does not seem strange to
mix up observer-moments of different kinds. I might conduct an experiment which can have several possible results and some
of the information about the results might be known to some observer-moments but not other observers in the certain possible
worlds. If I repeat the experiment several times, it might be quite likely that which set of observers know which of the results
might change and the results themselves might also be different. If we use minimal reference classes, observer-moments zi would
use different reference classes just because they know different things and yet it seems to perfectly reasonable to mix up these
different observer-moments in one product scenario. If we use the fundamental scenario as our unrepeated scenario and specify
that the only reason that some observer-moments are in state A and others are in state B is that they have reached different
conclusions after following the same experimental protocal and they have only reached different conclusions because they have
read a different number on a dial, then it seems perfectly reasonable to mix up state A and state B observer-moments in a
repeated (i.e. product) scenario.
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But there are too many possible ways of representing an infinite scenario as a limit of finite scenarios. It

is difficult to think of a purely theoretical and totally convincing reason for preferring one method to another

method. We have to learn from experience which method works best. Even in the finite case, our arguments

for our theory of anthropic reasoning are not incontrovertible. Someone else might have a different theory

that is not implausible and ultimately we will rely on our experience to determine which theory is better.

We use standard Bayesian methodology for using experience to determine which of two theories T1, T2 of

anthropic reasoning is superior. We judge theories by their prior probability of being the correct theory. (So

we assume we know P (T1) and P (T2), the prior probabilities of the two theories. Different researchers will

disagree about what these probabilities should be, but we can hope that the disagreement is not so great that

there cannot be agreement on which theory has the greater posterior probability.) We also judge theories by

how well they predict the available evidence E. So we need to know P (E|T1) and P (E|T2). In our intended

application, if we are an observer-moment z, our available evidence is represented by our knowledge state

Kz. So P (E|Ti) would represent the prior probability Pz(Kz) that according to theory Ti, z should give to

Kz. We can compute the odds ratio:

P (T1|E)

P (T2|E)
=

P (T1)P (E|T1)

P (T2)P (E|T2)

in order to compare the adequacy of the two theories.

There are two important points that need to be made about our approach for testing theories. One point

that needs to be made is that we are only comparing theories of anthropic reasoning; T1 and T2 are assumed

to agree on the correct nonanthropic probability distribution for W . Another point is that we are assuming

that both T1 and T2 use the SSSA (or SSA) and that our formalism makes sense when applied to T1 and T2

but the SSSA formalism is quite flexible. We can choose to use whatever Rz and Pz we please provided our

Pz is consistent with the nonanthropic prior P and we can even add artificial observer-moments to W∗. So

W∗ might include stones.

There are also pitfalls associated with our Bayesian methodology. Any theory T that uses minimal

reference classes Rz = Kz will have P (E|T ) = Pz(Kz) = 1. Thus T gets too much credit for predicting

the evidence E. One way to compensate for this is to declare that T has low prior probability. Another

approach is to require of T more than just that it work in predicting what we experience; we might also

require that it work when used by other observer-moments. But if we are z and we are assessing how well

T worked when used by some other observer-moment y, we can assess things other than how well Ky is
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predicted. For example, y and z might be observer-moments belonging to the same observer o with z being

the unique observer-moment who lives four hours after y in world ŷ = ẑ. The observer-moment y might

make probabilistic predictions about what z will observe and we can assess how true those predictions are.

To formalize and generalize what is happening, we introduce the formalism of special relationships: One

special relationship might be being the best friend of and another special relationship might be belonging to

the same observer-moment in the same possible world but living four hours later. The formalism of special

relationships allows us to refer to observer-moments using relative rather than absolute vocabulary. A special

relationship S is just a relation S ⊂ W ∗ ×W∗ such that if aSb, then â = b̂. Thus a special relationship is

just a set of pairs of centered worlds in which each pair is a pair representing observer-moments living in the

same (bare) possible world. A special relationship is not necessarily a function or the inverse of a function:

We can have a special relationship S and a, b, c,∈ W∗ with a 6= c with both aSb and cSb and can have a

special relationship with b 6= c, aSb and aSc.

If y ∈ W∗ and y knows she is y (i.e. Ky = {y}) and S is a special relationship, y can consider

S(y) = {z : ySz}. For any z in W∗, she can compute Py(Kz|S(y)), the probability that a random observer-

moment in relationship S with y will be in knowledge state Kz. If y does not know that she is y, but only

that she is in the larger set Ky, she can still predict P (y, S,Kz) =
∑

x∈Ky
Py(x|Ky)Px(Kz|S(x)). This would

be y’s prediction of the probability that a random observer-moment in relationship S to herself is in state

Kz.

But we are not the predictor y, but some other observer-moment z testing the accuracy of y’s predictions.

Assume that there is only one special relationship S of interest to us and that for any x ∈ Kz, there is at most

one observer-moment y such that ySx. If ySx, use the notation S−1(x) to refer to y. In this situation, we

might say that P (E|T ) =
∑

Pz(x)P (S−1(x), S,Kz) where we sum over all x ∈ Kz such that S−1(x) exists.

We assume that at least one such x exists. We are evaluating how likely it is that the observer-moment who

is in relationship S with us will predict that the observer-moment with whom she is in relationship S will

be in knowledge state Kz.

If there are several different relationships of interest to us or if there exists x ∈ Kz such that there

is more than one y with ySx, then our calculation becomes more problematic. To treat the case where

there can be several different y in the relationship with a given x ∈ Kz, we redefine S−1(x) to refer to

the set of y such that ySx and then we might write P (E|T ) =
∑

Pz(x)
∑

CyP (y, S,Kz) where the second

summation is over all y ∈ S−1(x) and the Cy are weighting coefficients such that
∑

y∈S−1(x) Cy = 1. These

Cy weight the relative importance of the different y. We would like to use prior probabilities to determine
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the weights, but which prior probabilities? We cannot assume that according to theory T , any of the y

are in Rz. We cannot assume that there is any v ∈ W∗ such that S−1(x) ⊂ Rv. We might just have to

say that the Cy are some measure of how much we care about each y; perhaps the Cy have to be obtained

by using some other theory than T to compute prior probabilities. If there were two different special

relationships S1, S2 but both S−11 (x) and S−12 (x) never contained more than one element, we would have to

compute
∑

Pz(x)(C1P (S−11 (x), S1,Kz) + C2P (S−12 (x), S2,Kz)) where C1, C2 are weights that have to be

determined. These weights might represent how much we care about the different special relationships.

Even if there is only one special relationship S of interest to us and S−1(x) never has more than one

element for x ∈ Kz, our test might not be very adequate if we might be too similar to the S−1(x). If there

is not very much that we know and the S−1(x) do not know, then there will not be much actual predicting

for us to test.

9 Has Anthropic Reasoning Already Been Disconfirmed by Ob-

servation?

It has been claimed that anthropic reasoning has already been disconfirmed by experience[18]. But that is

impossible. If we have to estimate posterior probabilities and we have strictly anthropic knowledge, then we

have to use some theory of anthropic reasoning even if our theory is that we should use minimal reference

classes, which means that we are ignoring our anthropic information if we only want to predict nonanthropic

facts. Although it cannot be true that anthropic reasoning is mistaken; it can be true that there exists a

theory of anthropic reasoning is that is superior to the one we advocate or that no one has yet successfully

constructed a plausible and usable general theory of anthropic reasoning that actually works and allows us

to make useful predictions.

There are several reasons one might think that anthropic reasoning has already been disconfirmed. For

example, if we use anthropic reasoning of the kind advocated in this paper, we might find it remarkable that

we are observer-moments who are living in a civilization with a relatively small capacity for representing

information24. But these arguments against anthropic reasoning depend on assumptions about nonanthropic

priors. We might be using the wrong nonanthropoic priors. Another possibility is that our nonanthropic

priors might not be prior enough. If we really did not know whether we inhabited a region of space-time

with civilizations which currently can represent amounts of information that are much greater than what our

24That is how we would translate into our terminology [17]’s concern that there might be a conflict between anthropic
reasoning and observation because we are part of a civilization with only a few observers.
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civilization can represent, we might use very different priors. Another possibility is that our information-

theoretic criterion is incorrect. Or perhaps we are incapable of reasoning coherently about most of the

observer-moments who live in other civilizations and in that case anthropic reasoning really would not apply.

10 On Ignoring Anthropic Information and Updating As Commu-

nication

A point that needs to be made is that for most of this paper, we have not assumed that there is any special

relationship between observer-moments who belong to the same observer. So there is no reason that anything

like Meacham’s Learning Principle[15] be valid.25 But in practice, we usually update by a procedure that

is fairly close to conditionalization of a chronologically prior distribubtion (a distribution believed in by a

previous observer-moment who is part of the same observer as we) and we often ignore anthropic information

when computing probabilities if all we care about is the posterior probabilities of uncentered possible worlds.

And we might wonder why this is often acceptable. It is often acceptable for the reason that we are allowed

to conditionalize on the knowledge Kz in stages, rather than do all the conditionalization in one step.

If we are z ∈W∗, we might divide our knowledge Kz into parts Ki such that ∩i∈IKi = Kz and split the

process of conditionalization on Kz into a set of processes of conditionalizing on each Ki. Some of these Ki

might represent messages we receive from other observer-moments and some might represent other kinds of

knowledge (i.e. they might represent what we are currently observing now). So we might first conditionalize

on the knowledge we receive from other observer-moments and then conditionalize on the knowledge we

receive from our current observation. So we are viewing updating as communication[16].

All any other observer-moment y can truthfully tell us is that she (y) belongs to some superset K of

Ky
26 (i.e. K ⊃ Ky). She will not necessarily direct that message only to us or direct the message to

all other observer-moments who live in the same world; instead we assume that the message goes to all

observer-moments x such that yRx where R is some special relationship. So we might use the notation

MK,R to refer to messages we think we have received. If we think we have received MK,R that means we

25According to the Learning Principle, “A sequential updating rule R should be such that the subject’s current de dicto
credences lie in the span of the credences R prescribes to her extended doxastic epistemic successors.” In Meacham’s formulation,
a doxastic successor of observer-moment z is a later time-slice of the observer to which z belongs. We need to allow for extended
successors because observers might die or become unconscious and in that case R should just assign reasonable credences to
imaginary observer-moments that would have existed if only certain observers were not dead or unconscious during certain
time-intervals. But regardless of how we fill in the details of what it means to be an extended successor, in our formulation,
there is no special relationship between observer-moments merely because they belong to the same observer.

26She might try to tell us something about her posterior probability distribution Py( |Ky) but since her anthropic prior Py

should be the same as ours, the most she can really tell us is that she belongs to Ky .
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believe that someone in relationship R to us has sent us a message that they know that they belong to K.

It is, possible, that we have misread or misinterpreted the message. It is possible that we are just imagining

that we have received a message when we really have not received any such message. It is possible that the

observer-moment who sent us the message might be intentionally or unintentionally deceiving us. Or that

when we receive a message MK,R, the message really means more than just that some observer-moment in

relationship R to us knows K; it means more because certain observer-moments who know K and are in

relationship R to us do not send us the message MK,R because they are inarticulate. All this is possible but

under favorable circumstances, we should be able to compute reasonable posterior probabilities by a simple

procedure that makes use of the information in our messages.

Assume that we do not have to worry about misreading or misinterpreting messages or observer-moments

lying about what they know or observer-moments being inarticulate. Thus we might consider an observer-

moment in world w who actually receives the message MK,R as being equivalent to any observer-moment

y ∈ w∗ such that there exists x ∈ w∗ with xRy and Kx ⊂ K. Assume also that we might consider observer-

moments in relationship R to each other to be equivalent. Finally assume that the difference between

equivalent observer-moments is basically irrelevant. All these assumptions might be true if R represents the

relationship of belonging to the same observer in the same world but living one moment earlier and we do

not care about our temporal location. Under these assumption we might reason as if K contained part of

our relevant knowledge; actually we might know that we do not belong to K (an earlier time-stage of us

belonged to K) but if we ignore irrelevant details, we might regard ourselves as belonging to K. We can use

the relevant knowledge in K to define a probability distribution on W∗ that we might regard as a prior and

then conditionalize on the additional relevant knowledge that we have.

11 Lazy Adam

At this point, we would like to discuss a particularly perplexing scenario the Lazy Adam scenario[2]. What

makes the scenario particularly perplexing is that it involves one observer-moment making decisions that

affect the total number of observers that exist (and the total amount of information that can be represented).

One observer, Adam, can make a decision that will affect whether other observers exists. But certainly

observer-moments can affect whether other observer-moments exist: People can choose to or choose not to

reproduce and they can choose to take or not to take potentially suicidal risks.

We shall introduce the Lazy Adam scenario (actually a streamlined version of Bostrom’s scenario) by first
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describing simpler scenarios and then gradually modifying them until we obtain a Lazy Adam sceanario. We

start with a version of the Fundamental Scenario in which c = e = 1 while d = 0 and f = 10100. Thus world

v has exactly one observer-moment and that observer-moment is in knowledge state A. The world w also

has one observer-moment in state A as well 10100 in state B. We might assume that there is some stochastic

cosmological process h that took place early in the history of the universe (before there were any observers)

that is responsible for the actual world being v or w and that h is a typical instance of a well-understand

class H of processes and based on what every observer-moment knows about H, there is no reason to think

v more likely to be actual than w, but once an observer-moment z who is in state A takes into account that

she is in state A, she will believe it virtually certain that the actual world is v.

Nothing essential changes if instead of observer-moments just knowing whether they are in state A or

state B, they also know some irrelevant information. We assume that every observer consists of just one

observer-moment and that all observers know their birth rank; an observer has birth rank i if there were

exactly i − 1 observers who were born before her. But what really matters is whether an observer is low

rank (rank 1) or high rank (rank greater than 1). Once one knows whether one is low or high rank, then it

is irrelevant what one’s exact rank is.

Nothing essential changes if we allow each observer to consist of a large number of atomic observer-

moments representing different time-slices of an observer’s existence. Every observer is composed of the

same number of atomic moments and every atomic moment knows not only her birth rank but also her

moment rank. An atomic observer-moment z belonging to observer o is of moment rank i if exactly i − 1

atomic moments belonging to o lived before z started her life. The scenario we are describing in this

paragraph is a simplified version of the Doomsday Argument scenario. A low birth rank observer-moment

will think it virtually certain that the actual world is v.

Many researchers believe the conclusion of the Doomsday Argument (that world v is virtually certain to

be actual) to be highly problematic. We believe the Doomsday Argument to be valid because the natural

ways to avoid the Doomsday Argument conclusion do not work. The SIA is not an assumption we wish

to make. If we use minimal reference classes, we can be Dutch Booked. There are good arguments for

using universal reference classes. But in this section, we are not concerned primarily with whether the

Doomsday Argument is valid but with whether the Lazy Adam scenario is really any more paradoxical than

the Doomsday Argument scenario and our answer is no.

It does not really matter if it is a stochastic cosmological process or a stochastic process in the brain of

some observer (the observer with birth rank one and let us call him Adam) that determines whether the
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actual world is v or w. The stochastic process in Adam’s brain might determine whether or not he pushes a

certain button of a cloning machine at a certain time t. If the button is pressed at time t, 10100 − 1 clones

of Adam will be constructed. Adam knows enough about biology and physics to know that the cloning

machine works. If at time t, the button is not pressed, Adam will be the only observer. Adam, and in fact

all observer-moments, know all this. They also all know that not taking into account any knowledge that one

observer-moment has and another observer does not have but just taking into account objective physics and

biology including neurology, they should believe that the probability that the button is pressed is 1− 2−100.

Our calculations will be affected by the fact that the nonanthropic probability of v is 2−100 rather than

.5. In order to explain our calculations, we also need to say more about the knowledge states of observer-

moments. Time t is the kth moment of Adam’s life. Every observer other than Adam knows at any time

during his life which world is actual. The first k − 1 moments of Adam only know their birth and moment

rank27, but do not know which world is actual. All other moments of Adam do know which world is actual.

Assume z is one of the first k − 1 moments of Adam. Because z is so much more atypical (10100 times as

atypical) in world w than world v, z will believe v virtually certain to be actual. The factor of 10100 is much

greater than the ratio P (w)
P (v) = 2100 − 1 of the nonanthropic probabilities of the two possible worlds.

We might have P (w)
P (v) = 2100 − 1 if Adam is under a compulsion to press the button at time t if a certain

fair coin does not land heads 100 times in a row when it is tossed. We assume that the results of the one

hundred tosses are independent and that Adam (and all other observers) know enough about physics and

about the coin in question to know that the coin is in fact fair and the results of the tosses independent.

What that means is that Adam before time t will predict that it is almost certain the coin in question will

land heads one hundred times in a row. If Adam does not take into account the fact that he knows he is

Adam or if all observers had a phase of their lives when they are totally ignorant of their birth rank and

Adam were currently in that phase, then Adam will conclude that the coin almost certainly will not land

heads one hundred times in a row. But if Adam does know he is Adam, he should use that information,

but then he will predict that the coin will almost certainly land heads one hundred times in a row. If there

were no connection between the coin toss sequence and Adam’s pressing the button, he would predict the

coin almost certainly would not land heads one hundred times in a row. This might seem like a spooky

correlation (it seems that there is a spooky correlation between whether Adam has made a resolution to

press the button and whether the coin will land heads one hundred times in a row) but the basic anomaly is

the difference between anthropic (taking into account the anthropic knowledge Adam has that he is Adam)

27Adam does not see the actual tosses on a one by one basis; he just knows at moment k whether they all landed heads or
not
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and nonanthropic probability estimates for the probability that w is actual. Once there is an anomaly, it will

usually not be too hard to play around with the anomaly and make it seem very striking. That there will

sometimes exist a difference (a difference we might view as anomolous) between anthropic and nonanthropic

probabilities is inevitable if we make it a policy to take into account anthropic information when estimating

the probabilities of (bare) possible worlds.

We might now modify our scenario so that Adam is not necessarily under a compulsion to press the

button if the coin does not land heads one hundred times in a row. He could cure himself of the compulsion

if he wants to. If he cures himself, there is no cloning. So then Adam is really making a decision whether to

make an irrevocable conditional resolution. This is a resolution to press the button if and only if the coin

lands tails at least once during the one hundred toss sequence. The question is: Should Adam make the

resolution?

We might first ask ourselves why Adam might want to make the resolution. One reason might be

that Adam really wants that coin to land heads one hundred times in a row and he thinks by making that

resolution, he can prevent the coin from landing tails even one out of a hundred times. If we are skeptical that

Adam really cares that much about how the coin falls, we might imagine some other objectively improbable

event like a wounded deer wandering into Adam’s backyard.

But if Adam really wants that coin to land heads one hundred times in a row and there is no cost to

making the resolution, why shouldn’t he make the resolution? It might actually work. So we have to assume

that there is a cost because making the resolution is inevitably part of a larger strategy. Adam will rely on

the strategy working and thus bet on the improbable event occurring. In the case where the improbable event

is a wounded dear walking into Adam’s yard, the bet would mean that Adam would stay home and not go

out hunting and gathering because he is confident the improbable event will happen. If it does not happen,

he will be hungry. The bet is not worth making unless it is highly likely that the objectively improbable

event occurs.

Should Adam make the resolution? If we apply causal decision theory correctly, we see that the answer

is no. Assume Adam does not make the resolution. And the coin did not land heads one hundred times

in a row. Then it would not have landed heads one hundred times in a row if he had made the resolution.

There is no objective causal relationship between coin tosses and making the resolution and Adam knows

that28. Another way to see what is going on is to notice that the decision maker is Adam regardless of

28Adam knows that if he does not take into account the fact that he knows he is Adam, he would conclude that even if Adam
makes the resolution, the probability that there will one hundred heads in a row is very small. If Adam does not makes the
resolution and just throws the coin one hundred times and does not take into account the fact that he is Adam and only draws
conclusions from what he knows about the physics of coin-tossing, he will also conclude that the coin is very unlikely to land
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which world is actual. Once Adam has made a computation of how likely v is given the fact that he knows

that in the actual world he is Adam, he does not get another chance to draw inferences from the fact that

it is remarkable that he is Adam. If in the actual world, he is Adam, he will inevitably be Adam in the

counterfactual world in which he made a different decision than the decision actually made.

Thus if Adam decides not to make the resolution and the coin did not land head one hundred times in

a row, it would not have landed heads one hundred times in a row if he had not made the resolution and

if Adam decides to make the resolution and the coin lands heads one hundred times in a row, it would still

have landed one heads one hundred times in a row.

12 Conclusion

In this section we summarize our theory and mention some topics that need further investigation.

A simple elegant theory of anthropic reasoning can be developed (at least in the finite case) by making

precise Bostrom’s SSSA. An observer-moment z living a certain possible world wants to know the probability

that a certain proposition is true. This proposition will be about which world is actual and about her identity

within the actual world. Thus what z really wants to know is the probability that she belongs to a certain

set A of centered worlds ( where centered worlds are pairs consisting of a world w and an observer-moment

o. If z is observer-moment o living in w, then we say z is the centered world (w, o).). She will begin with a

nonathropic prior probability distribution P on a set W of possible worlds and then our theory will enable

her to use P to construct a prior probability distribution on some subset Rz of the set W∗ of possible

centered worlds.

The assumption that we should first generate a nonanthropic prior based on information common to all

observer-moments and then use a theory of anthropic reason to construct Pz might be doubted. Perhaps

the prior Pz should be constructed in one step; maybe we should just require that if y ∈ W∗, Pz(y) should

be proportional to the complexity of the shortest description of y in some canonical language; something

similar to this is suggested by Hutter[11]. The problem is that it is difficult to know which language should

be chosen as the canonical language. If a minimal description length approach is properly implemented,

perhaps we might arrive at posterior probability estimates not that different from those suggested by our

theory.

Assuming we are going to separate the nonanthropic and anthropic parts of the task of generating Pz,

heads one hundred times in a row.
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we still have to decide before we worry about how the probability P (w) that is given to a world should be

split up among the observer-moments belonging to that world, whether we should use the SIA to revise P

to give more probability to worlds with more observers or observer-moments. But the SIA is unmotivated.

Wagering arguments that might be used in favor of the SIA do not work because they ignore the fact that

decisions are made by individual observer-moments belonging to particular worlds. Decisions are not made

by a committee of observer-moments who might belong to different worlds.

We next have to chose a reference class on a non ad-hoc basis and the simplest choice is Rz = W∗. Both

relative frequency and Dutch Book arguments can be given in favor of this Rz = W∗. An other possible

simple rule is Rz = Kz but that rule does not allow observer-moments to use strictly anthropic information

to revise their probabilities for (bare) possible worlds and if we are to link cosmology with observation, we

will sometimes have to let strictly anthropic information affect judgements about which possible world is

most likely to be actual. There is no obvious alternative to Rz = W∗ if we want a simple rule that analyzes

simple scenarios similarly and that arrives at reasonable results.

Next we have to specify a rule for constructing Pz on Rz. We have the limited indifference principle that

if x and y are two observer-moments in the same subjective psychological state that live in the same world

w, Pz(x) = Pz(y). There are several arguments for this intuively natural principle, but the basic justification

aside from the simplicity of the rule is that if we knew that w is actual, then both x and y exist and if x

believes she is more likely to be x than y, then since x and y are in the same knowledge state, y will also

believe that she is more likely to be x than y. But x and y have the same information available and they

cannot both be more likely to be x than y.

It is a little more difficult to know how to allocate probability in the case where x and y know different

things. We contend that if x and y belong to the same world, then Pz(x)
Pz(y)

should equal I(x)
I(y) where I stands

for the amount of information that an observer-moment can represent. We might also use another criterion:

Let x and y be indecomposable observer-moments, which cannot meaningfully be represented as a union of

smaller observer-moments. (If, for example, it takes a certain amount of time to acquire new information

or a new belief or because conscious awareness requires a certain minimal amount of complexity, it might

not be meaningful to split certain observer-moments into smaller parts.) If x and y live in the same possible

world, then because they are both atomic, they should have the same prior probability.

Still other criteria might be explored. For example, we might suggest that the ratio of the prior prob-

abilities of x and y should equal the ratio of the complexities of the shortest descriptions of the subjective

psychological states of x and y.
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Ultimately what matters is what works in practice and we can use fairly standard Bayesian methodology

to test theories of anthropic reasoning and that includes testing rules for representing infinite scenarios as

limits of finite scenarios. A big problem with testing theories of anthropic reasoning is determining prior

probabilities that a theory is correct. More work needs to be done on that issue.

We might also evaluate theories of anthropic reasoning by how well they maximize expected epistemic

utility [12]. But that computation requires combining the utilities of different observer-moments who live

in the same possible world and may not be in the same subjective psychological state. It is not clear that

when combining these utilities, we should use a simple summation or averaging rather than a weighted sum

or average where weights are proportional to prior probabilities of observer-moments (however it is these

very probabilities that we have difficulty estimating). Another issue is that we want a simple theory that

applies to several different possible W∗ and that means that we might have to combine the utilities of

observer-moments who live in several different W∗ and the question arises how that should be done.

In any case, our theory is a simple theory. Like any theory of anthropic reasoning, it will have some

unfortunate consequences: We have to accept the validity of the Doomsday Argument. We also have to

accept strange coincidences in the Lazy Adam scenario. We do not have to advocate Adam making an

intuitively implausible decision, but we do have to accept a strange coincidence. But in some scenarios,

our theory will lead observer-moments to make decisions that would have worse consequences than if all

observer-moments agreed on a different theory of anthropic reasoning. However, it needs to be reiterated

that decisions are made by individual observer-moments and not by committees of observer-moments (not

even by a committee consisting of all the observer-moments that belong to a certain observer in a certain

possible world).

Our theory does have some problematic consequences, but it is simple and natural and avoids many of

the problems (such as vulneribility to Dutch Books) of some other theories.
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