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3.1 General Information About the Project MI 4

3.1.1 Topic

Agent-oriented Proof Planning

3.1.2 Discipline and Field

The disciplines are computer science and artificial intelligence (AI).

3.1.3 Directors

Name, date of birth: Prof. Dr (PhD) Siekmann, Jörg1, 5.8.1941
Dr. Autexier, Serge2, 02.10.1971
Dr. Benzmüller, Christoph3, 8.9.1968

Work address: 1,3 FR 6.2 Informatik, Saarland University, P.O.
Box 15 11 50, 66041 Saarbrücken, Germany

2 Deutsches Forschungszentrum für
künstliche Intelligenz (DFKI GmbH),
Stuhlsatzenhausweg 3, 66123 Saarbrücken,
Germany

Phone number: 1 +49-681-302-4754 3 +49-681-302-4574
2 +49-681-302-5073

Fax number: 1,3 +49-681-302-5076 2 +49-681-302-2235

Email address: 1 siekmann@ags.uni-sb.de
2 autexier@dfki.de
3 chris@ags.uni-sb.de

Is the position of any of the project directors temporary?
Prof. Jörg Siekmann: [X] No [ ] Yes, ending on
Dr. Serge Autexier: [ ] No [X] Yes, ending on 31.08.2004
Dr. Christoph Benzmüller: [ ] No [X] Yes, ending on 31.12.2006
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3.1.4 Transfer of the Project

The project is not being transferred to the Transfer Center.

3.1.5 Planned Studies

The following studies are planned as part of the project:
Studies with human subjects [ ] Yes [X] No

Studies with human embryonal stem cells [ ] Yes [X] No

Clinical studies on somatic cell or gene therapy [ ] Yes [X] No

Experiments with animals [ ] Yes [X] No

Studies involving genetic technology [ ] Yes [X] No

3.1.6 Previous and proposed funding of the project so far in the context of the
collaborative research center (external funding)

Fiscal Personnel Administrative Investments Total
year costs expenses

Through 2001 375.5

2002 140.5

2003 140.5

2004 140.5

Subtotal 797.0 24.0

2005 166.8 4

2006 166.8 4

2007 166.8 4
(Amounts in 1000s of EUR)

3.2 Summary EDNOTE!
Dies muss
kom-
plett neu
geschrieben
werden

mehr high-level vision des systems, das man nun die enwtickelten techniken mit an-
deren kombineiren will, den reasoning level hochsetzen, um ein system zu bekom-
men, mit dem man dann math. Aktiv. unterstuetzen kann, wie z.b. publikationen
und tutoring.

The main objectives of the project OMEGA (MI4) are to further improve and better integrate
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reactive and deliberative proof planning and to extend the mathematical assistant by mecha-
nisms in order to enable its integration into typical mathematical activities.

With respect to proof planning, the deliberative and reactive approaches provide complemen-
tary technologies for the encoding of mathematical problem solving techniques. On the basis
of this technologically stable proof planning paradigms, the last phase of this project concen-
trates on the qualitative enhancement of proof planning by exchanging the underlying natural
deduction calculus for the CORE-calculus which supports proof development directly on the
assertion level. This should overcome the limitations imposed by the cumbersome natural de-
duction calculus to the proof planning process. Furthermore, from a knowledge engineering
point of view, it will result in a much leaner and mathematically more concise collection of
proof planning knowledge, which again will increase proof planning efficiency, yield more
concise proof plans, increase acceptance by humans and reduce the maintenance effort.

The possibility for proof development on the assertion level paired with more concise proof
plans will foster a better integration of the mathematical assistant system directly into typical
mathematical activities, such as writing publications. Furthermore, the goal to provide support
for typical mathematical activities gives rise to research tasks concerned with the maintenance
of mathematical knowledge, for instance formalized mathematical theories, domain specific
proof planning methods as well as proofs and proof plans for specific problems. To this end
starting from techniques developed for the management of large formal software develop-
ments we will investigate how these techniques can be transfered and extended to provide
efficient management support for the aforementioned kinds of mathematical knowledge.

This results in a tool for mathematical knowledge management in a mathematical assistant,
which should not only be a passive database of mathematical knowledge, but should incorpo-
rate mechanisms to pro-actively search and provide additional knowledge to the proof plan-
ning process. Thereby we investigate how the reactive suggestion mechanism developed in
previous phases of the project could be adapted to design agents that actively extract avail-
able knowledge from the database which could contribute to the solution of an actual proof
planning problem.

The developed technological solutions with respect to assertion level proof planning, manage-
ment of mathematical knowledge and intelligent querying and integration of available mathe-
matical knowledge will be evaluated by considering two typical mathematical activities. The
first activity is the preparation of mathematical publications, and there especially the devel-
opment of proofs in a style as can be found in mathematical textbooks. The second activity
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is tutoring mathematics students and will take place in cooperation with the SFB project DI-
ALOG (MI3). Thereby, the mathematical assistant will be used as a formal backend to the
proof manager developed in the DIALOG project in order to represent partial assertion level
proofs resp. proof plans. Furthermore, it shall provide as far as possible feedback to the proof
manager of the DIALOG-system about the relevancy by using proof planning technology.

3.3 State of the Art

The current state of the art, especially with respect to assertion level proof development,
proof plannning, mathematical knowledge management, integration of mathematical knowl-
edge into a reasoning process, and system support for typical mathematical activities has been
partly shaped by the proposers. In the following sections we first give an overview of the state
of the art and present in more detail the specific contributions of the proposers in Section 3.4.
Furthermore, we refer to the SFB report for the project OMEGA (MI4).

Assertion-level Proof Development. Assertion-level proofs have long been recognised as a
proof style that comes close to the style proofs are written by humans. The key inference
rule is the application of assertions, which is a generic term to denote usable axioms, lemmas
and hypotheses and they have been used as a basis for the generation of proof presentations
in natural language (Huang, 1994a; Fiedler, 2001a). However, so far proofs are usually not
directly constructed on the assertion level, but are obtained by transformation of an underlying
proof, e.g. in natural deduction or resolution. The only exceptions are the focusing proofs for
linear logic (Andreoli, 2000) and the assertion-level proof format for constructive first-order
logic of (Abel, Chang, & Pfenning, 2001). The former derives new sequent calculus inference
rules from assertions which can then be used during proof construction. However, it provides
no support for the application of assertions to subformulas, as for instance the application
of conditional equations. The latter builds up on the idea of focusing proofs to define proof
checking rules for assertion-level proofs written by humans, e.g. by students, and provides no
support to compute the actual assertion application.

Proof-Planning.

Proof planning was first introduced by Bundy in 1988. Bundy’s key idea was to augment
individual tactics with pre- and postconditions that specify the applicability of the tactic as
well as its effects with respect to a proof state. This results in AI-planning operators, so-
called methods. A proof planner searches for a plan, i.e., a sequence of methods, that derives
the theorem from the given assumptions. The representation of a proof, at least while it is
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developed, consists of a sequence of abstract steps. The complete abstract proof (or parts of
it) can be expanded to a logic-level proof. This enables automated proof search at an abstract
level and a separated checking process.

Bundy and his group developed the first proof planner, CLAM (Bundy, Harmelen, Hesketh, &
Smaill, 1991), in the early 1990s and applied it to prove theorems by mathematical induction.
To guide the search of inductive proofs the rippling search heuristic for difference reduc-
tion (Hutter, 1990; Bundy, Harmelen, Ireland, & Smaill, 1990) is encoded into CLAM meth-
ods. Later on CLAM was re-implemented their the system λCLAM (Bundy, Harmelen, Horn,
& Smaill, 1990; Richardson, Smaill, & Green, 1998). Thereby they introduced a tactical-like
language to describe proof plan strategies and the expansion of complex methods. These tech-
niques are now used in the ISAPLANNER (Dixon & Fleuriot, 2003) which is currently under
development.

Another proof planner is part of the ΩMEGA system (Siekmann, Benzmüller, Fiedler, Meier,
& Pollet, 2002). ΩMEGA is a proof development system for knowledge-based interactive and
automated proof construction developed in our group since the mid 1990s (e.g., see (Huang
et al., 1994; Benzmüller et al., 1997)). The development of ΩMEGA was motivated by the con-
viction that the solution of main-stream mathematical problems requires the combination of
theorem proving based on mathematical knowledge with powerful reasoning experts such as
machine-oriented theorem provers, computer algebra systems, or constraint solvers. ΩMEGA

employs proof planning as the main tool for automated proof construction as a means to inte-
grate mathematical knowledge and external expert systems into the theorem proving process.

One difference between proof planning in ΩMEGA and CLAM is the handling of heuristic
control knowledge. Methods in CLAM (resp. λCLAM) include heuristic conditions about the
desirability of the application of the method, while methods ΩMEGA include only the legal
conditions. The heuristic conditions are explicitly encoded as control rules and are explicit
parameters to the proof planner. Within the planner they guiding the search by reasoning on al-
ternatives at choice points. Thereby control rules can encode both general and domain-specific
mathematical control knowledge, since they can reason about the current proof planning state
as well as the entire history of the proof planning process.

Mathematical Knowledge Management. This topic is of growing interest worldwide, which
is documented by the many research initiatives that try to gradually increase the amount of
computer-based support into mathematical practice. Prominent examples are EULER (www.
emis.de/projects/EULER/), MKMNet (monet.nag.co.uk/mkm/index.html),
MKM North America (imps.mcmaster.ca/na-mkm-2004/), Trial Solution (www.
trial-solution.de/), LIMES (www.emis.de/projects/LIMES/description.
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html), ERAM (www.emis.de/projects/JFM/), OPENMATH and MOWGLI (www.
mowgli.cs.unibo.it/), and the American QPQ (www.qpq.org) repository of deduc-
tive software tools.

Most theorem proving systems have their own database1 or at least a collection of files con-
taining formalized theories, but typically in the proprietary input format of the theorem prov-
ing system. The research about cooperation of theorem proving systems on the one hand
side and the interest in databases for mathematical documents with different levels of formal-
izations on the other hand showed that databases for mathematical documents are necessary,
which are not tailored to specific systems, are distributed over different places, and provide
intelligent facilities to query the mathematical documents. This spurred the development of
standard languages to encode mathematical knowledge, such as the OPENMATH-standard
and its extension OMDOC and databases such as MBASE (Franke & Kohlhase, 2000; Franke,
2003). These databases, like the proprietary database of COQ, provide so far possibilities to
add or change (parts of) mathematical documents and simple syntactical querying facilities,
such as searching for symbols or pattern matching inside formulas.

Integration of Mathematical Knowledge. The mathematical knowledge that can be fruit-
fully integrated into a theorem proving process can be anything that may help the proof search
process. This are axioms or lemmas not yet included into the lemma-base of the theorem
prover, additional tactics, methods, control rules and strategies for a proof planner, as well as
values computed by external computer algebra systems, models computed by model genera-
tors, or proofs of subgoals performed by an external theorem prover.

Little research has been devoted so far to the incremental integration of further axioms and
lemmas that goes beyond simple querying in the database. More research has been devoted
to the integration of external computer algebra systems or automatic theorem provers. For in-
stance was the proof-planner λCLAM connected to the HOL interactive theorem prover (Gor-
don & Melham, 1993), the inductive theorem prover INKA was integrated into the tool for
formal software development VSE, and an open platform to integrate CAV and CASE-tools
was developed in the PROSPER project (Dennis et al., 2000).

The MATHWEB-software bus (Franke & Kohlhase, 1999; Zimmer & Kohlhase, 2002) was
developed in our own group to provide a virtual software bus of mathematical tools, like for
instance computer algebra systems, automated theorem provers, and model generators, which
are distributed over the internet. The network is organized with brokers, on which clients
can request specific mathematical services. Although so far a client has to know the input

1Even sometimes distributed, as for instance the Coq libraries(Team, 2003).
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format of the requested tool the MATHWEB is already heavily used by various partners in
Europe and the USA (Zimmer, Armando, & Giromini, 2001; Zimmer, Franke, Colton, &
Sutcliffe, 2002; Benzmüller, Giromini, Nonnengart, & Zimmer, 2002; Zimmer & Dennis,
2002). However, it is currently under re-development to provide a problem oriented interface
for the clients and include limited automatic reasoning capabilities into the brokers to find and
possibly combine mathematical service to solve these stated problems (Zimmer, 2004). This
work is executed in cooperation with the development of the MATHBROKER-tool (Caprotti
& Schreiner, November, 2002), which, however, is more oriented towards computer algebra
systems.

Support for Typical Mathematical Activities. There is a lot of activities towards integrat-
ing theorem proving tools into mathematical practice. One of the earliest projects in this
perspective and with the objective to write formalized and yet readable mathematical docu-
ments was the Automath-Project (DeBruijn, 1970), which aimed at defining a mathematical
vernacular and still is an active research topic (Kamareddine & Nederpelt, 2004). The The-
orema project (Buchberger et al., 1997) has similar objectives, and develops extensions to
the computer algebra system MATHEMATICA by domain specific theorem provers. It already
provides some support for the preparation of mathematical documents with formal contents
by exploiting the Mathematica notebook facilities.

Similar research has been conducted in the COQ community, by connecting a WYSIWIG-
editor to the Coq proof assistant (Audebaud & Rideau, 2003) or providing graphical presen-
tation tools to present proofs for geometrical problems performed in COQ (Bertot, Guilhot, &
Pottier, 2003).

Aside from these activities to support the preparation of mathematical publications, research
is devoted to use proof assistants for teaching mathematics. Thereby the proof assistant is
used as part of an interactive learning environment not only to teach mathematics, but also to
assist the student in solving exercises or proving mathematical properties. Examples are the
SFB project DIALOG (MI 3), the Activemath project (Melis & Ullrich, 2001), (Abel et al.,
2001), and the Carnegie Proof Tutor (CPT) (Scheines & Sieg, 1993).

3.4 Relevant Previous Work of the Proposers

Previous work of the proposers is discussed in more detail in the SFB report. Here we will
only summarize the most relevant aspects; the focus will be on: assertion-level proof devel-
opment, proof planning, mathematical knowledge management, integration of mathematical
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knowledge and support for mathematical activities.

Assertion-Level Proof Development. The notion of assertion-level proofs was coined in our
group in the early nineties and use as an intermediate representation suitable for the natural
language presentation of formal proofs (Huang, 1994b; Fiedler, 2001b, 2001a). However,
direct proof construction on the assertion level was only possible by specialised tactics con-
structing a natural deduction derivation validating the assertion application. The support for
direct assertion-level proof construction was enabled by the CORE-system (Autexier, 2003)
within the last phase of the SFB. The CORE-system defines a communication infrastructure
as a mediator between the user and the automatic reasoning procedures. It is based on the
CORE-calculus, which is a uniform meta proof theory for contextual reasoning and encom-
passes most aspects of communication from the presentation of the proof state, via the supply
of relevant contextual information about possible proof continuations, to the support for a hi-
erarchical proof development. The proof theory is uniform for a variety of logics and exploits
proof theoretic annotations in formulas to provide an assertion-level contextual reasoning style
to the user and the automatic proof procedures. It is thus as far as possible intuitive for the user
while at the same time still adequate for automatic reasoning procedures. Furthermore, the
CORE-system provides the infrastructure required to accomodate both the use and the explicit
representation of hierarchies that are inherent in problem solving in general.

Proof-Planning and Interactive Theorem Proving. The ΩMEGA-project is one of the lead-
ing groups in proof-planning research and developed the areas of knowledge-based proof
planning. We first separately developed the deliberative proof-planner MULTI and the reac-
tive, ressource-adaptive agent-based techniques for interactive theorem proving.

The MULTI-system is a general proof-planner parameterised over heuristic mathematical
knowledge, like methods and control rules, as well as different strategies for checking the
applicability of methods, selection of applicable methods, instantiation of meta-variables and
backtracking. We developed several general and domain-specific strategies, which were suc-
cessuflly evaluated in different mathematical domains. Case studies were performed in the
following proof-planning domains: limit problems (Melis & Siekmann, 1999; Meier, 2004),
residue class problems (Meier, Pollet, & Sorge, 2001), problems of permutation groups (Co-
hen, Murray, Pollet, & Sorge, 2003), homomorphism problems (Meier, 2004), and problems
about the irrationality of square roots of natural numbers (Meier, 2004).

In these case studies mathematical meta-reasoning was developed as control rules for MULTI.
More specifically, meta-reasoning on failed proof attempts is used to guide backtracking or
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plan modifications, meta-reasoning about the content of the constraint store if it fails to com-
pute instantiations for meta-variables, and meta-reasoning about goal dependencies due to
shared meta-variables. Furthermore, the multi-strategy proof-planner MULTI was used to
combine deliberative proof-planning and with the agent-based techniques for interactive the-
orem proving. The agent-based Ω-ANTS-mechanism was used as a special strategy of MULTI

to reactively compute applicable methods. This allowed for a combination of reactive strate-
gies to determine applciable methods with deliberative strategies such as method selection
and backtracking.

Complementary to the multi-strategy proof-planner we developed the LEARNΩMATIC-tool to
learn new methods and respective control knowledge. It creates new methods by generalizing
sample proof plans to capture the contained proof patterns and also supports incremental
learning of control knowledge. The LEARNΩMATIC-tool was evaluated by performing case
studies in the domains of group theory, set theory and residue classes. As a result not only were
the proof plans found using learnt methods shorter than those found without learnt methods,
but even for some problems in group theory finding a proof plan was only possible using learnt
of methods.

Mathematical Knowledge Management. The proposers developed the MAYA-tool (Hutter,
2000; Mossakowski, Autexier, & Hutter, 2001; Autexier, Hutter, Mossakowski, & Schairer,
2002; Autexier & Mossakowski, 2002) which was originally developed to support formal
software development. The tool is based on the notion of development graphs, which al-
lows for the structured representation of formal theories. Furthermore, MAYA incorporates
incorporates a uniform mechanism for verification in-the-large to exploit the structure of the
formalised theories, and maintains the proof work already done when changing the parts of
the formalisation.

The notion of development graphs is also included in the definition of the OMDOC-standard to
represent both informal and formal mathematical knowledge (Kohlhase, 2000). The OMDOC-
language is an extension to the OPENMATH-standard by providing, between others, structur-
ing of formal theories based on development graphs. The development of OMDOC started in
our group, and still is developed in close cooperation with the members of the group.

Together with the conception of the OMDOC-language our group was and still is actively in-
volved in the development of the MBASE-database (Franke & Kohlhase, 2000; Franke, 2003).
The objective of MBASE is store mathematical knowledge, such as documents, formalized
mathematical domains as well as exercises. Furthermore, MBASE provides basic facilities
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to query and extract the contained knowledge in OMDOC-format. Finally, it has been con-
ceived to support the exchange of mathematical knowledge contained in different MBASEs
distributed over different physical locations.

Integration of Mathematical Knowledge. The group has developed several techniques for
integrating mathematical knowledge into theorem proving and proof-planning. First, mem-
bers of the group initiated the the MATHWEB-software bus, whose development has grown
into a separate research topic. The MATHWEB-SB provides mathematical services such as
theorem provers, constraint solvers and computer algebra systems organized in a network of
brokers. The brokers are situated at different physical locations and assist the clients to dis-
tribute mathematical problems to the integrated systems. Depending on the type of the called
system and the submited problem, the computed solutions are proofs in some calculus, val-
ues for constraint variables, or computations. For each type of solution, several systems have
been developed in the group to integrate them into the actual proof respectively proof plan.
For proofs, we developed the TRAMP system that translates proofs in some calculus into an
ΩMEGA-proof plan object. For computations, the SAPPER-system constructs a proof-plan
from the trace of a computer algebra computation.

Inside the proof-planner or the interactive theorem prover, access to these systems is granted
via specific tactics or proof-planning methods. In order to develop automatize proof devel-
opment, the proof-planner uses the respective methods, and can even exploit the external
systems inside control rules and strategies, which define the proof-plan search strategy. Simi-
larly, agents have been developed for the external systems, which thereby reactively propose
to the user solutions computed in parallel by external systems.

Aside from the integration of external reasoning systems, research was devoted to the inte-
gration of further knowledge from the mathematical database MBASE. Again the agent-based
infrastructure has been successfully applied to develop a prototype of a mediator between
MBASE and the actual theorem proving process. Agents have been designed to query the
database for additional knowledge, such as axioms, lemmas, and theorems. More specifically
it queries for formulas, that may close actual open subgoals, and reactively suggest these to
either the user or the proof-planner.
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3.5 Work Program (Goals, Methods, Timeline)

The long-term goal of the project is the development of a mathematical assistance environment
and its integration into the emerging Mathematical Semantic Net2. Interactive proof systems
are today routinely employed in industrial applications for safety and security verification and
more recently they find applications in e-learning systems for mathematics. The vision of
a powerful mathematical assistance environment which provides computer-based support for
most tasks of a mathematician has stimulated new projects and international research networks
across the disciplinary and systems boundaries (for an overview see Section 3.3). Furthermore
there are now numerous national projects in the US and Europe, which cover partial aspects
of this vision, such as knowledge representation, deductive system support, user interfaces,
mathematical publishing tools, etc. There exist different frameworks for putting mathematics
on the computer, each with a particular aim: proving, checking, calculation, analysis, storage,
visualization, etc. However, none of these frameworks is expressive enough to allow the
integration of many aims in one system. This also reflects the situation in the unfortunately
fragmented deduction systems area and which is similar to that of the AI field as a whole. This
was criticised by Nils Nilsson (Kumagai Professor at Stanford, USA) in his speech at IJCAI
2003 where he received the IJCAI Research Excellence Award. Today many of the deduction
system subareas even have separate conferences. As a consequence the ambitious goal of
an integrated mathematical assistance environments (MASs) was very weakly represented at
these conferences and in the deduction systems community until the end of the 90s. It is only
very recently that this trend is reversed, with the CALCULEMUS and MKM communities as
driving forces of this movement. There exist different strong tools that each address specific
tasks arising in mathematical activities. The ΩMEGA system and especially its abstract proof
representation used for proof planning and agent-based interactive theorem proving proved to
be an ideal environment to integrate and thus combine different tools. In this last phase of the
project we aim at further enhancing and extending the ΩMEGA-system to offer support for
typical mathematical activities, such as preparation of mathematical publications or tutoring
for mathematics students. More specifically, this consists of (i) enhancing the quality of proof
development by supporting reasoning directly on the assertion level, (ii) extend the theorem
proving environment with a sophisticated maintenance of mathematical knowledge, and (iii)
make the structured mathematical knowledge amenable to the theorem proving process by
agent-based, reactive suggestion and integration of mathematical knowledge.

2www.win.tue.nl/dw/monet/
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3.5.1 Methods and Work Packages

WP1: Assertion-Level Proof Development

The proofs developed by mathematicians as part of mathematical publications and the proofs
developed by students in a mathematical tutoring system are typically developed on an argu-
mentative level. These can be categorized as proofs on the assertion level with different types
of underspecifications; a discussion and illustrating examples can be found in (Siekmann
et al., 2003) and (Autexier, Benzmüller, Fiedler, Horacek, & Vo, 2003) (the latter examples
have been provided by the DIALOG project).

Hence, integrating the mathematical assistant system into the working process of mathemati-
cians requires at least to support the development of proofs directly on the assertion level.
The CORE system, which has been recently developed by Autexier (Autexier, 2003) (see
Section 3.4) supports proof development directly on the assertion level. The goal of this work
package is to completely exchange the natural deduction calculus layer currently underlying
the deliberative and reactive proof planning mechanisms in ΩMEGA for the CORE-calculus.
This will provide a suitable basis for supporting deliberative and reactive proof planning di-

rectly on the assertion level. Also underspecification phenomena can be addressed with the
help of CORE directly on the proof planning level. This will smoothen the way for employing
the mathematical assistant for writing mathematical publications and for tutoring students. In
addition it will free the proof planning level completely from the rigidity imposed by the un-
derlying natural deduction calculus, as reported in Section 3.4 (see also (Benzmüller, Meier,
Melis, Pollet, & Sorge, 2001) and the report for the project OMEGA (MI4)).

The proposed exchange of the logic layer in ΩMEGA requires the adaptation of all reasoning
procedures that are tailored it, including proof planning and the integrations of external sys-
tems. WP1 is thus structured as follows: (a) development of an assertion-level interface that
is uniform for both the deliberative and reactive planners, (b) adaptation of the integration
of external reasoners to return assertion level proofs or proof plans, and (c) development of
assertion-level reactive and deliberative proof planning methods and strategies.

WP1.1 Uniform interface for deliberative and reactive planner: In the current stable im-
plementation of ΩMEGA the datastructures for methods used in the deliberative proof plan-
ner MULTI and the ΩMEGA-tactics used in the reactive proof planner Ω-ANTS are different.
Hence, designed methods could not be used in reactive planning and vice-versa. In the course
of exchanging the natural deduction calculus for the CORE-calculus we plan to unify and
thus share as much as possible the datastructures between the deliberative and the reactive
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planners.

Initial work has already been conducted in that direction in the context of interactive theorem
proving on top of CORE. Thereby the Ω-ANTS mechanism has been adapted (Hübner, 2003)
to the CORE-calculus in order to reactively suggest and apply possible usable assertions in
some proof situation. For the adaptation a so-called task layer (Hübner, Benzmüller, Autexier,
& Meier, 2003) was defined on top of CORE, which provides a uniform interface representing
the focus of attention together with the usable assertion. Although this task layer was designed
for interactive theorem proving on top of CORE, we plan to extend it to a uniform interface for
the deliberative and reactive planners. Furthermore, the datastructures underlying deliberative
proof-planning methods and the ΩMEGA-tactics underlying the reactive Ω-ANTS-proof plan-
ner will be integrated into a single representation of abstract inference steps. Doing so, the
proof planning methods of traditional deliberative proof planning on the one hand side and the
argument agents of the reactive proof planner will become just two alternative styles of speci-
fying application directions of the same abstract inference steps. These will finally enable the
combination and even the interleaving of the reactive and deliberative proof-planners.

WP1.2: Integration of external systems: The current system supported the use of exter-
nal systems contained in the MATHWEB-software bus such as automatic theorem provers,
computer algebra system and constraint solvers during the planning process. Calls to these
systems could occur at any level, e.g. inside individual methods, inside proof planning strate-
gies, or inside reactive planning agents. Depending on their type these systems returned a
proof for some subproblem, a result of some computation, or a value for some constrained
variable. Transformation of such results of external systems into ΩMEGA proof objects is
possible with tools like SAPPER (Kerber, Kohlhase, & Sorge, 1996) or TRAMP (Meier, 2000)
that have been developed in our project. These transformations, of course, strongly depend on
the logic layer of the OMEGA system.

In the next phase we plan to redesign the integration of external systems in two aspects: First,
we want to move away from the procedural style of calling individual systems via MATHWEB

to a declarative style, where only the type of the problem is handled over to the MATHWEB-
broker. This mainly results from the redesign of the current MATHWEB-system to integrate
limited reasoning capabilities into the brokers of the MATHWEB-system. Second, the exter-
nal proofs or computations need to be translated in the CORE-calculus instead of the current
natural deduction calculus. For the development of such translations we will follow two lines
of research: First, similar to the current integration, a proof plan can be created representing
the external proof, where individual external proof rules are modelled as abstract inference
steps. This proof plan must subsequently be expanded to a calculus level proof. Aside from
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a lot of implementation due to the change of the proof planning datastructure this especially
requires a technical and qualitative redesign of the tactics expanding the abstract inference
step down to the CORE calculus. The second line of research is with respect to resolution
and paramodulation based proofs obtained from the external systems. In that case we will
investigate whether it is possible to directly translate these type of proofs into CORE deriva-
tions. This should be possible in principle, since assertion application in CORE is technically
a non-normalform resolution respectively paramodulation inference step. The advantage of
having such a translation is that it would overcome the problem of expansion of proof plan
steps.

WP1.3: Assertion-level Proof Planning Strategies: The expected benefit of exchanging
the natural deduction calculus for the CORE-calculus is that many ΩMEGA-tactics and proof
planning methods will be superflous. Especially the tactics/methods that dealt with equation
application or unwrapping of hypotheses by goal directed formula decomposition in order
to make them applicable will mostly be subsumed by the facilities offered by the underlying
CORE calculus. Hence, one part of this work package will consist of purifying the method and
tactic collections and end up with these that really are encodings of qualitative mathematical
knowledge.

Additionnally, we plan to investigate how the CORE support for directly reasoning on the
assertion level can help defining methods and tactics in a more concise manner. More specif-
ically we want to investigate a more abstract representation language inspired by uniform
notation for method and tactic premises and conclusions. It should on the one hand allow for
a more concise description of the abstract inference patterns and on the other hand make their
application less dependent on syntactic equality.

WP2: Maintenance of Mathematical Knowledge

A mathematical proof assistant uses different kinds of knowledge: First, the formalized math-
ematical domains and problems are organized in structured theories and problems. Second,
mathematical proof knowledge encoded in ΩMEGA-tactics, Ω-ANTS-agents, proof planning
methods, control knowledge and strategies are exploited; they can be general, theory spe-
cific or even problem specific. Maintaining this knowledge explicitly enables the encoding of
new mathematical problem solving techniques, such as for instance reasoning about when to
integrate which further tactic or axiom. This new line of research is considered in WP3.

When integrating the mathematical proof assistant into typical working activities of mathe-
maticians other types of knowledge will become relevant. For instance if the mathematical
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assistant is part of a tutor system for students, different sample proofs and proof plans for a
same problem need to be maintained in order to use them to advise the students. For support-
ing the direct preparation of mathematical publications, documents containing both formalised
and non-formalised parts need to be related to specific theories, lemmas, theorems, and proofs
and changes in these documents need to be supported and maintained. More specifically, for
proofs it needs to be checked whether they are still valid after changing parts of a theory,
which in turn affects the validity of the mathematical documents. Furthermore, the structur-
ing mechanisms of mathematical theories typically include renaming of mathematical objects,
which rises the challenge how specific knowledge such as tactics and methods on the one hand
side, but also proofs, proof plans and mathematical documents on the other hand are affected
by renamings.

The goal of this workpackage is to develop a tool to maintain the various types of mathemati-
cal knowledge. It is based on the experiences with the MAYA-tool (see Section 3.4) that main-
tains formalized structured theories and especially incorporates a sophisticated management
of change to preserve the validity of proofs. The formal structured theories are represented as
development graphs, and we plan in a first phase to enrich that representation to include do-
main specific tactics, methods, control rules, and strategies. The challenging part thereby is to
investigate how renamings or general morphisms that occur inside the structured theories can
be applied to these objects. Another challenging aspect is to define and represent dependen-
cies between these objects and to extend the truth-maintenance to these objects. For instance,
invalidating proofs of theorems that were build using a tactic which is no longer present or
which has been changed.

All tasks proposed in this workpackage are oriented towards adapting software engineering
techniques for knowledge management to the specific area of mathematical knoweldge. Hence
we expect that any progress in that workpackage directly contributes to the mathematical
knowledge management research challenge, which is an emerging world-wide topic not only
in mathematics (e.g. mathematical journals) but especially in domains relying on mathemati-
cal descriptions as for example physics.

WP3: Integration of Mathematical Knowledge

When starting the proof of some mathematical problem in a particular mathematical domain,
for resource reasons typically not all relevant knowledge represented in the mathematical as-
sistant and the mathematical knowledge repository is handed over to the proof planner but
only parts of it. Thus, an initial selection of the available knowledge is passed to the plan-
ner, which currently consists for each problem of a set of axioms, tactics and proof-planning
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methods. As this selection may be incomplete, there is a need to incrementally incorporate ad-
ditional knowledge if it is required, i.e. if the available knowledge ressources are insufficient
for a successful generation of a proof plan.

Mathematical knowledge occurs in the mathematical assistant at different places and there is
a need to access that knowledge. Respective knowledge occurs, for instance, in the partial
proof object of some actual problem (e.g. hypotheses), or within ΩMEGA-tactics and proof
planning methods. This knowledge must be accessible and, furthermore, it must checked
whether it is applicable and what the resulting proof situation, i.e. proof object, would be.
On a qualitative level, it must be analysed whether the application of this knowledge is useful
for the proof progress. These three types of knowledge can be queried already, namely the
CORE-system that provides directly information about applicable hypotheses, the Ω-ANTS-
system for ressource-adaptive computation of applicable ΩMEGA-tactics and the proof plan-
ner MULTI for deliberative selection and application of proof-planning methods. This includes
the use of external systems like computer algebra or automatic theorem provers, which can be
onvoked from inside the agents, inside ΩMEGA-tactics or proof-planning methods.

The other place where knowledge occurs is in the structured mathematical knowledge base
(see workpackage WP2). This perspective enables the development of new kinds of mathe-
matical problem solving techniques: First, exploiting the explicit structure of the proof knowl-
edge not only allows to statically determine the visible axioms and lemmas for a given prob-
lem, but also the domain specific tactics, agents, methods and control rules can be provided
to the reactive or deliberative planners. This opens a yet not considered line of research,
namely reasoning about which type of knowledge should be integrated when into the rea-
soning process. Second, the structure of the theories can be exploited to investigate lemma
speculation techniques, where the structure of the theories is exploited to speculate lemmas
inside the right theories. All these aspects will allow to move from a so far passive database
with static knowledge towards an active reasoning system that exploits the structured math-
ematical knowledge to assist the reactive and deliberative planners. To this end we plan to
investigate how the reactive Ω-ANTS-system can be exploited to design special purpose reac-
tive agents that work on the structure of the mathematical knowledge base that pro-actively
generate useful mathematical knowledge for the actual planners.

The research proposed in this workpackage is strongly connected to the research objectives
of the Calculemus community, which seeks the development of methods for a coordinated in-
tegration and cooperation of different knowledge sources, namely computer algebra systems,
theorem proving systems, but also mathematical knowledge bases.
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WP4: Evaluation

This workpackage is concerned with the evaluation of the techniques developed in the pre-
vious workpackages, especially with respect to the objective to integrate the mathematical
assistant into typical mathematical activities. More specifically we will eveluate the devel-
oped solutions by (1) using the proof assistant to develop proofs in a form as they are written
in mathematical publications and (2) use the proof assistant as part of a mathematics tutoring
system.

WP4.1: Development of Textbook Style Proofs. For the evaluation we plan to develop
proofs in the mathematical assistant as close as possible to the format as they are presented
in a standard mathematical textbook (Dieudonné, 1969). This requires on the one hand side
the formalisation of the mathematical objects and theories in the mathematical knowledge
base. For the proofs of the lemmas and theorems appropriate abstract inference steps must
be modelled that enable the representation of the textbook proofs as heterogenous proof plans
build from abstract inference steps and assertion applications. The automatic validation of
that proof plan by expansion to the CORE-calculus level then requires the definition of the
respective strategies, methods and agents.

WP4.2: Mathematics Tutoring. This evaluation will take place in close cooperation with
the SFB project DIALOG. Thereby we plan to use the proof assistant as a part of the tutoring
system, that deals with the formal analysis of the partial proofs obtained after linguistic anal-
ysis and disambiguation. The resulting proofs are represented again as (partial) proof plans.
These can either be compared to given proof plans and provide the appropriate feedback to
the proof manager (see description of Project MI3 DIALOG). Alternatively, for instance if no
matching proof could be found, the proof planning systems can be used to try to complete
the partial proof plan. If this succeeds, the proof manager can be informed that the student is
doing a proof that was not known beforehand. If the proof planner fails to complete the proof
plan, it can inform the proof manager accordingly.

The evaluations described in this section are also directly relevant to the mathematical knowl-
edge management community (MKM). It is planned to compare the proofs performed in the
proof assistant with the same proofs performed in the THEOREMA-tool of Prof. B. Buch-
berger, with whom we agreed to use the mathematical textbook of Dieudonné (Dieudonné,
1969).
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3.5.2 Timeline

01.2005 01.2006 01.200707.2005 07.2006 07.2007 12.2007

WP1.2

WP1.1

WP4

WP2

WP3

WP1.3

Figure 1. Timeline of the workpackages
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3.8 External Funding for the Project MI 4

PC: Personnel requirements and costs (see 3.8.1 for explanation)
AC: Administrative costs (see 3.8.2 for explanation)
I: Investments (equipment exceeding 10K EUR; see 3.8.3 for explanation)

Grant 2004 2005 2006 2007
PC Salary No. Amount Salary No. Amount Salary No. Amount Salary No. Amount

Group EUR Group EUR Group EUR Group EUR

Bat IIa 2 112.800 Bat IIa 2 112.800 Bat IIa 2 112.800 Bat IIa 2 112.800

SHK 3 54.000 SHK 3 54.000 SHK 3 54.000 SHK 3 54.000

Total: 5 166.800 Total: 5 166.800 Total: 5 166.800 Total: 5 166.800

AC Expense Amount Expense Amount Expense Amount
category EUR category EUR category EUR

or number or number or number

547 5.000 547 5.000 547 5.000

Total: 5.000 Total: 5.000 Total: 5.000

I Total Total Total
investments investments investments

0 0 0
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3.8.1 Explanation of Personnel Requirements

Name, degree, Specific field of Institute of the university Contribution to In this Proposed
position the employee or other organization the project in position in the BAT level

hours/week CRC since
(consulting: C)

University funding
3.8.1.1 1. Jörg Siekmann, Prof. Dr., full professor Computer Science Uni., FR Informatik 5 1.1.1996 −
Scientific 2. Serge Autexier, Dr., researcher Computer science DFKI GmbH 10 −
personnel 3. Christoph Benzmüller, Dr., assistant professor Computer science Uni., FR Informatik 10 1.1.2001 −
(including assistants)

3.8.1.2 4. Irmtraud Stein, Verwaltungsangestellte − Uni., FR Informatik 5 1.1.1996 −
Nonscientific
personnel
External funding
3.8.1.3 5. Martin Pollet Mathematics Uni., FR Informatik 38,5 ??? BAT IIa
Scientific 6. Quoc Bao Vo Computer Science Uni., FR Informatik 38,5 ??? BAT IIa
personnel 9. Marc Wagner Computer Science Uni., FR Informatik 19 ??? SHK
(including assistants) 10. NN Computer Science Uni., FR Informatik 19 SHK

3.8.1.4
Nonscientific
personnel

(Positions for which funding is being applied for for the first time are marked with X.)

Mitarbeiter durchnummerieren und Aufgabenbeschreibung nachfolgend erläutern.

Bitte Verfahrensgrundsätze der Deutschen Forschungsgemeinschaft zur Bezahlung wissenschaftlicher

Mitarbeiter beachten.
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Job Descriptions of University Personnel

1. Jörg Siekmann: project leader

2. Serge Autexier: project leader

3. Christoph Benzmüller: project leader

4. Irmtraud Stein: Secretary

Job Descriptions of Externally Funded Personnel

5. Martin Pollet: (WP1) (WP3) (WP4)

6. Quoc Bao Vo: (WP2) (WP3) (WP4)

7. Jessi Berkelhammer : WP4

8. Syed Hussein : WP1, WP3

9. Marc Wagner : WP4, WP2

10. NN :

3.8.2 Specification and Explanation of Administrative Costs (by Fiscal Year)

2005 2006 2007

For administrative expenses, the following
amounts are expected to be available 1000 1000 1000
from the university’s own funds:

For administrative expenses, the following
amounts are requested as external funding
(corresponding with the total amounts
under “administrative expenses” in the 4000 4000 4000
overview 3.8):

(All amounts in EUR.)

Explanation of the Requested External Funding for Administrative Expenses

(547) Other Expenses
The annual university funds for the chair of Prof. Siekmann are 2856e. The DFG cur-
rently funds the SFB-projects OMEGA and DIALOG as well as the individual project
FABEON. For each of these projects the DFG assumes 500−1000e
. . . macht 54 Euro fehlbetrag!!
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3.8.3 Investments (Equipment With Gross Cost Above 10.000 EUR and Vehicles)

Requested for the fiscal year

2005 2006 2007

Amount:

(All prices in EUR including VAT, transportation costs, etc.)

Explanation of the Requested External Funding for Investments

Bitte im folgenden – nach Haushaltsjahren getrennt – die beantragten Geräte einzeln begründen.
Geben Sie hierbei für jedes Gerät die Bezeichnung des Gerätes, (ggf. Typenbezeichnung), die
Antragssume in Euro und die Begründung.


