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Abstract—This work demonstrates the implementation and use of 
an encoder-decoder model to perform a many-to-many mapping of 
video data to text captions. The many-to-many mapping occurs via 
an input temporal sequence of video frames to an output sequence 
of words to form a caption sentence. Data preprocessing, model 
construction, and model training are discussed. Caption correctness 
is evaluated using 2-gram BLEU scores across the different splits of 
the dataset. Specific examples of output captions were shown to 
demonstrate model generality over the video temporal dimension. 
Predicted captions were shown to generalize over video action, even 
in instances where the video scene changed dramatically. Model 
architecture changes are discussed to improve sentence grammar 
and correctness. 

Index Terms—BLEU, captioning, decoder, encoder, many-tomany 
mapping, sequence. 

I. INTRODUCTION 

Video captioning is an important extension of image 
captioning. As data generation and storage capacity 
increases, multimodal data, such as video, increases in 
abundance. A necessary tool for accessibility, archival, and 
display is the ability to generate human-readable captions 
from these new data sources. Specifically, generating 
captions for video data that include description of action 
would be highly useful for automatic video labeling. 
Captioning video data is a more difficult task than image 
captioning, as video data is the concatenation of image 
frames across a temporal dimension. In the temporal domain, 
there can be many changes across the image frames, such as 
changes in brightness, camera angle, camera position, field-
of-view, subject actions, and even the scene itself. 

Video action recognition is the subfield of deep learning 
and computer vision that broadly describes the recognition of 
actions in video data. A subset of this problem is constraining 
video action to human actions, although the superset of all 
video actions certainly includes any action capable of being 
recorded on video. There are many different approaches to 
video action recognition, including 3D convolutional neural 
networks (CNNs) with and without attention layers, as well as 
multiple stream networks utilizing different video temporal 
segments, temporal resolutions, and even optical flow [1]. 
The most difficult part of video action recognition, or as 
described in this work as video captioning, is the temporal 
change in the image frames. 

A basic approach to handling the temporal dimension of 
the image data is to treat the video stream as simply a list of 
temporal image frames. A one-to-many model for text 
generation can be highly effective at captioning individual 
frames. In this work, we extend image captioning to video 
captioning using a many-to-many architecture based on an 
encoder-decoder model [2]. An encoder (long short-term 
memory layer) LSTM is added to handle the temporal domain 
of the input video, while the decoder LSTM handles the text 
sequence output. Feature vectors are generated using a 
pretrained 2D CNN model to convert each frame to a feature 
vector. In the video domain, this feature vector is now a 
matrix with a temporal dimension. The goal of this project is 
to produce a single caption for each video that is more 
general than a caption for any single frame of the video. With 
input video data that undergoes significant scene or subject 
changes across the temporal dimension, the caption can be a 
summary or amalgamation of all frames. 

II. RELATED WORKS 

Video captioning: This uses the concept of giving a video 
and a language query to track the moment in the video. The 
goal is to localize objects that are mentioned in the sentence 
in the video. Many works have been done in the attempt to 
localize a moment in the video. Video localizing aims to track 
a moment from an untrimmed video for a given text query. 
Some of the challenges in this area are the need for dense-
fine regional annotations in the videos and a possible solution 
can be achieved by exploring weakly supervised video 
captioning, zero-shot video captioning, and fully supervised 
video captioning. How to characterize the relationships 
between videos and sentences is another notable challenge. 
Some of the previous solutions are matching spatial regions in 
specific frames with nouns/pronouns in the sentence but the 
limitation in this approach is that the spatio-temporal 
dynamics of the videos are not exploited. The 
nouns/pronouns are less expressive than a natural sentence 
[3]–[6]. 

Fully Supervised Video captioning: In fully supervised visual 
localization, there is need for annotation of the action in the 
video. No focus on precision in video moment localization and 
sliding window approach has fixed window and anchor based 



compromises on precision of moments. The boundary aware 
temporary language captioning and self-attention mechanism 
on interaction between video and language for capturing 
contextual information for better semantic understanding are 
proposed [7], [8]. Increasing temporal receptive fields, and 
using regression for action boundary prediction and distance 
of the given frame from the start and end frame [9], [10]. The 
fully supervised visual localization is very extensive and time-
consuming to annotate the videos. In an attempt to reduce 
the cost of annotation, weakly supervised, unsupervised, and 
zero shot approaches are explored. The common evaluation 
metric depends on the mean value which is not robust to 
anomalies, extreme values, and outliers. 

Weakly Supervised Video captioning: Weakly supervised 
method uses some unlabeled and labeled data to train a 
model. Fully supervised requires heavy annotations, but 
temporal localization (frame-wise attention), spatial 
interaction, hierarchical multi-instance levels for optimization 
are achieved through weakly supervised [11]. Co-attention 
was not previously used in video moment retrieval tasks until 
multi-level co-attention mechanics helped to improve 
alignment between video and text including positional 
encoding on frame features [12]. Decomposing the spatial 
and temporal representations to collect all-sided cues for 
precise captioning, there are interaction level counterfactual 
transformations of feature, temporal video captioning using 
video corpus for moment retrieval, and cross modal retrieval 
with the aid of contrastive learning [13]– [15]. Weakly 
supervised was able to take care of annotation due to video 
captioning, but the additional cost of natural language was 
not reduced in this approach. Using densely big networks 
during pretraining and fine-tuning, the size of the features is 
inversely proportional to the benefit of the unlabeled data 
derived from the dense networks. Accuracy was used in 
evaluating the performance and the metric is not appropriate 
for sparse data [16]. 

Unsupervised Video captioning: Unsupervised visual 
localization uses the unsupervised model to establish a 
location of a visual object with respect to the corresponding 
text based data. A method was proposed to map languages 
through the visual domain using only unpaired instructional 
videos in paper [5]. Prototypical contrastive learning is an 
unsupervised method that connects clustering and 
contrastive method to encrypt semantic structures. This is 
obtained by clustering into the grounded space after learning 
low-level labels for the aim of object contrasting [6]. Some of 
the problems like clustering similar activities and manually-
captioned videos lacking some activities that are not 
captioned are addressed by the prototypical contrastive 
learning model which maps languages with the unpaired 
videos as input. The problem of connecting words in different 
languages by visual object is tackled with unsupervised 
method. 

The strengths of unsupervised visual localization include 
fewer data captioning for training the model, reduction in 
annotation cost, and time efficiency in the training. Self 
supervised learning is a method that uses unlabeled data to 
build a model [3], [4] and it can be a sub-division of 
unsupervised method. Most of the models used accuracy as 
evaluation metrics which does not perform well in a situation 
of imbalanced data. 

III. METHODS 

The data used for this project was the Microsoft Research 
Video Description Corpus (MSVD) [17]. The MSVD dataset 
contains 1970 video files from YouTube with their text 
descriptions. Each video file had multiple text descriptions, 
typically 20 to 40 labeled sentences describing each video. 
The dataset was split into 3 sets: training, validation, and test. 
The training set was taken to be 90% of the dataset, with 5% 
held out for validation and 5% held out for test. Thus, the 
training dataset contained 1773 videos, while the validation 
and test datasets contained 99 and 98 videos, respectively. 

The labeled text descriptions were stored in a text file 
containing the video file name and the nested list of its 
descriptions. Thus, this file was parsed, and a description 
dictionary was created to map keys (video filenames) to their 
descriptions (nested list of sentence captions). During parsing, 
each sentence description was prepended and appended with 
unique tokens to denote the beginning and end of the 
description sentence. Also during parsing, sentence 
descriptions with length less than six words or greater than 
ten words were not added to the description dictionary. 
Figure 1 shows the histogram of word lengths in the final 
description dictionary. As descriptions outside of the desired 
word length range were not considered, only descriptions 
between six and ten words exist in the dictionary. Most 
descriptions in the dictionary had eight words. 

 

Fig. 1: Description length histogram. 

After associating each video in the entire dataset with its 
filtered-length descriptions, the list of video keys (filenames) 
were randomly shuffled and split into the training, validation, 
and test lists. To create the vocabulary of the corpus, a Keras 



tokenizer was created to parse the descriptions in the training 
set only. Limiting the vocabulary generation to only the 
training set descriptions ensures the model only knows words 
associated with the training videos. The tokenizer was used to 
generate a vocabulary of 1500 words, so only the most 
frequently occurring 1500 words in the training set were kept. 
Figure 2 shows the thirty most commonly occurring words 
(tokens) in the training set from the tokenizer. The most 
commonly occurring token is ”a”, while the next two most 
commonly occurring words are “bos” and “eos”, the 
beginning and end of string tokens. 

The tokenizer also creates dictionaries to map the words in 
the vocabulary to numerical indices (“a” goes to 1, “bos” goes 
to 2, etc.) and also indices back to words (1 back to “a”). 
Figure 3 shows the tokenizer output on a training sentence, 
where the sentence (top line) is mapped to a list of token 
indices (bottom line). 

 

Fig. 2: Vocabulary histogram. 

 

Fig. 3: Sentence tokenization 

For data generation for the encoder-decoder training 
model, the sentence descriptions were padded to the same 
maximum length of ten words, and the sequence indices 
were converted to one-hot encoded (categorical) vectors. 
Thus, each sentence description was a matrix of size 10x1500. 
These descriptions form the output of the decoder training 
model. The encoder training model takes the video spatial 
and temporal information. The VGG16 pre-trained model was 
used from Keras to extract feature vectors from each video 
frame. For each video, all of its temporal frames were 
extracted using OpenCV, resized spatially, and stored in a 
temporal list. As each video had a different number of 
frames, a linearly spaced vector of 80 frame indices were 
generated and mapped to the length of each video. For 
example, a video of length 123 frames would have 80 frames 
extracted, where the zeroth frame was the zeroth frame and 
the 80th frame was the 123th frame. This temporal 

decimation ensures that each video had the same dimension 
in the time domain. Each frame was then passed to the 
VGG16 CNN model to extract a 4096 long feature vector for 
each frame. Thus, each video was associated with a feature 
matrix of size 80x4096, and this data was stored in a 
dictionary associated with the video keys (filenames). Figure 4 
shows an example feature matrix for a video in the training 
set. The matrix rows are the image spatial feature vectors 
extracted from the VGG16 model, while the image columns 
represent the temporal dimension of the video. An abrupt 
change from row to row in the feature matrix corresponds to 
a scene change in the video. 

With the data preprocessed, the model was then 
constructed. The encoder-decoder model for video captioning 
using two LSTMs to perform sequence-to-sequence (or many-
to-many) mapping between the input and output data. The 
encoder model encodes video temporal information using the 
video feature matrices, while the decoder part of the model 
takes the one-hot-encoded text data to generate output 
words. Figure 5 

 

Fig. 4: Example video feature matrix. 

shows the constructed model, where the encoder and 
decoder LSTMs each have a latent dimension of 512 and their 
output shape is the temporal dimension of each dataset. In 
other words, the 80 temporal steps of the encoder (80 video 
frames) and the 10 temporal steps of the decoder (10 word 
sentences) form the output shape along with the latent 
dimensions. Only the last temporal LSTM cell is taken from 
the encoder model, as its hidden and cell states contain 
information of all 80 temporal inputs. The decoder LSTM is 
then connected to a dense layer with softmax activation 
function to output the one hot-encoded target vector for the 
next predicted word in the caption. 



 

Fig. 5: Training model. 

The model was trained using a data generator function 
which, for each training epoch, loops through all video keys in 
the training data set, extracts the feature matrix from the 
feature dictionary, and extracts the padded and one-hot 
encoded description matrices from the description dictionary. 
For each token in the description matrix (text decoder input), 
the input and target for the decoder are extracted by taking 
the last token as the output target and all previous tokens as 
the decoder inputs. These iterations are counted, and when 
the iterations equal the batch size, yielded to the model for 
fitting. A batch size of 50 was used to train the model for 80 
epochs using the Adam optimizer with a learning rate of 

0.0001 And categorical cross-entropy loss. Loss and accuracy 
metrics were recorded for the training and validation datasets 
during training. Figure 6 shows the categorical cross-entropy 
loss of the model during training, while Figure 7 shows the 
categorical accuracy. 

 

Fig. 6: Model training loss. 

 

Fig. 7: Model training accuracy. 

With the encoder-decoder model architecture, the training 
and inference models are different. The encoder model is the 
same for training and inference, as only the state of the last 
cell of the encoder LSTM is used in both cases. During 
training, the encoder and decoder models see both inputs 
(temporal video and text data) simultaneously to update the 
model weights with respect to both inputs. However, during 
inference, the text decoder model only uses as input the final 
temporal state of the video encoder model. Thus, during 
inference, the encoder and decoder models are used 
separately. The encoder model takes the 80x4096 video 
feature matrix for each frame and outputs only the hidden 
and cell state of the last LSTM layer. These states are fed to 
the text decoder model simultaneously with the text token. 
To predict captions, the first text token is the “bos” token to 
denote the start of the string. The index of the maximum of 
the one-hot-encoded output vector (greedy search) is taken 
and converted to a text word using the tokenizer. The 
inference model is applied in a loop to generate successive 
tokens from the “bos”, appended each output token to the 
input sentence, and using the previous output as the next 
iteration’s input. The loop stops when the “eos” token is 
predicted, denoting the end of the sentence, or the maximum 
length of the description (set as ten words) is reached. 

IV. EXPERIMENTAL RESULTS 

The inference model was applied to all videos in each 
dataset (training, validation, and test). Predicted captions 
were stored in a dictionary accessible via the video keys. A 2-
gram BLEU score was generated to compare the predicted 
caption to all the labeled descriptions for each video. A 
scatter plot of the BLEU scores for each video in each split of 
the dataset is shown, as well as a histogram. 

A. Training set 

For the training set, the categorical accuracy of the model 
at the end of training was close to 80%, so the expectation is 
that the BLEU scores between predicted and labeled captions 
in the training set is quite good. Figure 8 shows the BLEU 
scores across all videos in the training set. Figure 9 shows the 



frequency distribution (histogram) of BLEU scores in the 
training set. The average BLEU score for predicted captions on 
the training set is 91.8%, which is quite high than the state of-
art [18] which is 57.8% for BLEU-4. 

 

Fig. 8: Training BLEU scores. 

 

Fig. 9: Training BLEU histogram. 

B. Validation Set 

For the validation set, the categorical accuracy of the 
model at the end of training was saturated at around 55%, so 
the expectation is that the BLEU scores between predicted 
and labeled captions in the validation set is worse than the 
training set. Figure 10 shows the BLEU scores across all videos 
in the validation set. Figure 11 shows the frequency 
distribution (histogram) of BLEU scores in the validation set. 
The average BLEU score for predicted captions on the training 
set is 45.8%. 

 

Fig. 10: Validation BLEU scores. 

 

Fig. 11: Validation BLEU histogram. 

C. Test set 

The test set is an identically random set to the validation 
set, so the expectation is the scores are the same in the test 
and validation set. Figure 12 shows the BLEU scores across all 
videos in the test set. Figure 13 shows the frequency 
distribution (histogram) of BLEU scores in the test set. The 
average BLEU score for predicted captions on the test set is 
43.3%. The validation and test set are the same in that each 
dataset was not provided to the model for training. However, 
the validation set was used during training to assess loss and 
accuracy at each epoch, and was thus used for optimization. 
Therefore, holding out a separate test set used only during 
inference to assess model performance was necessary. 



 

Fig. 12: Test BLEU scores. 

 

Fig. 13: Test BLEU histogram. 

D. Caption prediction 

To show the model’s ability to generalize captions across 
video temporal frames compared to a single frame image 
caption, figures are presented here (as well as more in the 
appendix). In the following figures, the video feature matrix is 
displayed. Scene changes in the video appear in the feature 
matrix as changes throughout the vertical dimension 
(columns) of the matrix. One of the labeled descriptions 
(ground truth) for the video is displayed above the feature 
matrix. To show video scene changes across the video in this 
document, three frames are extracted at instances where the 
video scene is different. These frames were selected from 
rows in the feature matrix that show abrupt changes. The 
frames are labeled by number, which corresponds to the row 
in the feature matrix indicated by the red dashed horizontal 
line. Compelling videos are chosen from the dataset splits to 
report here. 

Figure 14 shows a person wearing hockey equipment in the 
first 60 frames of the video, then the last 20 frames of the 
video switches to another scene with a baby sitting at a table. 
The labeled caption is “a baby is on football dress” while the 
predicted caption is “the baby dressed in equipment fell 
down over”. The person wearing equipment in the beginning 
of the video indeed falls over, so this part of the caption is 
correctly predicted by the model. The model however uses 
the last few frames in which a baby is present to change the 
subject of the Figure 17 shows a video where a tortoise walks 
across sand, then changes scene to an otter swimming in 
water. The labeled caption is “a large tortoise is walking 
downhill” while the model predicted caption is “a small 
animal is running 

The number of tokens in the vocabulary determines one 
dimension of the decoder model. Thus, increasing the words 
used for training will also increase the dimension of the one- 

Figure 18 shows a video of a man cutting a water bottle 
with a sword. The labeled caption is “someone slices a bottle 
with a sword”. However, the model predicted caption is “a 
man is cutting something with a tree”. The model correctly 
captioned the first part of the video where the man cuts the 
bottle, and it also used the scene change in the last few 
frames of the video where a tree is in frame. Again it is clear 
the model is generalizing a caption across video frames. 

V. DISCUSSIONS 

The BLEU scores were computed using 2-gram similarity. 
Thus, the score was above zero even if only two-word 
sequences were similar between the predicted and 
groundtruth captions. For a stricter performance evaluation, 
a 5gram BLEU score could be used, as this is the midpoint of 
the sentence length of ten words. BLEU scores were above 
90% for the training set, which demonstrates good model 
convergence for all videos and captions in the training set. 
Certainly, the model is complex enough for the given training 
data. The poorer performance of BLEU scores on the 

validation and test data can be explained by model 
overtraining in the test set. The videos in the MSVD dataset 
have wildly varying subjects, including videos of sports, 
cooking, and other random actions. Thus, even though the 
videos were shuffled to generated the 3 splits in the dataset, 
one cannot expect the model to perfectly generalize to new 
video subjects. hot-encoded word vectors. With a latent 
dimension of 512 for each the model LSTMs, the number of 
trainable parameters of the model was already quite high at 
over 14 million. During training, the GPU memory of my 
training desktop used around 5.3gB out of the 6gB of the GTX 
1660 Ti GPU. Thus, We were already dealing with memory 
issues loading the current model. We also had to keep the 
batch size at 50 video and sequence target pairs to ensure no 
memory issues. If a word is in the validation or test 
description sets, and it is not also in the training set, the BLEU 
score will be worse, as their will not be an n-gram match even 
if the sentence sentiment is the same. An analysis of words in 
the validation and test sets and their prevalence in the 
training vocabulary was not performed in this project, but 



certainly increasing the words from the training descriptions 
kept in the vocabulary will increase the likelihood that the 
training vocabulary is a superset of all words in the validation 
and test sets. 

The sentence length was kept to ten words for the same 
memory performance as described in the previous . The 
prediction sentence length determines the second dimension 
of the text decoder input, so increasing this dimension will 
further increase the memory usage during model training. As 
the model is trained on videos with significant scene changes, 
there are often multiple subjects in a single video. Thus, there 
were videos for which the predicted caption was 
grammatically correct for the first ten words but incomplete. 
For example, Figure 15 shows a predicted caption “a girl is 
showing how to do a ” which ends in the article “a”. Thus, this 
sentence is grammatically correct and correctly describes the 
video subject but is incomplete due to the maximum 
predicted sentence length. As the video captioning model 
attempts to produce a general caption for all scenes in the 
video, videos with multiple subjects will require longer 
sentence to describe the multiple subjects. This performance 
could be improved by increasing the description length. 

The most significant observation of the sequence-
tosequence architecture for video captioning is that the 
predicted models are indeed able to generalize their captions 
across the video scene changes. Predicted captions were 
often more general and less specific in their description of the 
scenes. For videos where the scene dramatically changed to a 
different subject, the nouns present in both scenes were 
included in the output caption. For example, Figure 14 shows 
a video in the training set which switches dramatically to a 
different subject in later frames. The caption is “the baby 
dressed in equipment fell down over” correctly describes the 
action in the first scene, where a person wearing hockey 
equipment falls over. However, the last few frames show a 
baby sitting at a table and playing. The model correctly 
identifies the subject of the these frames, the baby, and 
inserts it into the action of the first scene of the video. Thus, 
it is clear that the model is able to utilize all of the temporal 
information in the frames of the video to produce a general 
caption, but this effect is at the sake of grammatical 
correctness of the predicted caption. Increasing the word 
length of the model (text decoder temporal dimension) would 
maintain the model generality but improve sentence 
grammar by allowing for compound sentences. A correct 
caption for this example could be “the person dressed in 
equipment fell over and a baby is sitting”. These correct 
compound sentences certainly require a higher temporal 
dimension of the decoder LSTM. We believe this work can 
help most generative models like GPT, LLM, image generative 
model, and video generative model to interpret any visual 
data to get captions/texts. 
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