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1 Comparative sorites
Positive-form predications (‘x is tall’, ‘x is bald’) reign supreme in discussions of
linguistic vagueness. It is often assumed in linguistic circles that explicit compar-
atives—comparatives ‘x is ADJ-er (/more ADJ) than y’ using a comparative mor-
pheme—are not vague (see also Cooper 1995: 246; Kennedy 2007b: 6, 2011: 74,
82–83, 93, 2013: 271; McNally 2011: 164n.10; van Rooij 2011a: 65–69):

[T]he comparative form… is not vague… [A] core semantic difference
between the positive [(i.e. unmodified)] and comparative forms… is that
the latter lacks whatever semantic (or pragmatic) features give rise to the
vagueness of the former, and simply expresses an asymmetric ordering
relation. (Kennedy 2013: 269–270)

[A]djectives in the comparative are uniformly non-vague.
(Bochnak 2013: 42)

Such remarks are generally made in passing in view of “prototypical relative adjec-
tives” (McNally 2011: 163) such as ‘tall’. Here again is Kennedy:

The comparative predicate taller than David…denotes a property that is
true of an object just in case its height exceeds David’s height. This is
a precise property…, since whether it holds of an object or not is fully
determined by facts about that object’s height. (Kennedy 2013: 270)

Vagueness derives from fuzziness in standards of application—how many millime-
ters of height one must have to count as tall, how many cents one must have to
count as rich, and so on. Hence, “Unsurprisingly, comparatives…do not give rise
to the Sorites paradox, and do not have borderline cases” (McNally 2011: 164n.10).

But they do.

*Certain ideas in the paper draw on material from Silk 2016: chs. 6–7 and 2021.



Suppose you must decide between saving your dear friend and saving some
number of strangers. Plausibly we have some special obligations to those close to
us, so that it is morally better—or at least not morally worse— for you to save
your dear friend than to save two strangers. But there doesn’t seem to be a precise
number of strangers that would tip the balance. Consider (1):

(1) (P1) Your saving 2 strangers is not morally better than your saving your dear
friend.

(P2) For all n > 2, if your saving n strangers is not morally better than your
saving your dear friend, then your saving n+ 1 strangers is not morally
better than your saving your dear friend.

(C) ∴ For all n > 2, your saving n strangers is not morally better than your
saving your dear friend.

No one’s friends are that important.
Or suppose you like sugar in your coffee. Yet it’s not as if you care exactly how

sweet it is. As far as your preferences go, one day’s sweetness is as good as any other
(at least up to a point, say K; there is, perhaps, such a thing as too sweet). Consider
(2)—where xs is an ordinary sweetened cup of coffee, and x1 . . . xi . . . is a series of
otherwise identical cups differing only in quantity of sugar, with xi a (pre-K) cup
with i micrograms of sugar (cf. Luce 1956).

(2) (P1) x1 is not tastier than xs.
(P2) For all n, if xn is not tastier than xs, then xn+1 is not tastier than xs.
(C) ∴ For all n, xn is not tastier than xs.

But not just any cuppa can be the best.
That is: The premises seem true— in (1), given the nature of morality; in (2),

given one’s preferences.1 The arguments seem valid. Yet the conclusions are false.
There may be something wrong with sugar in one’s coffee, but not that thinking
otherwise leads to paradox.

Sorites-susceptibility is one hallmark of vagueness. The comparatives in (1)–
(2) exhibit “tolerance”: given your preferences, one microgram of sugar is “insuf-
ficient to affect the justice with which [the comparative predicate ‘is (not) tastier

1What if the moral facts or your preferences are such that one stranger or one microgram of sugar
really does tip the balance? Then consider Pat, who thinks otherwise and who doesn’t care about
differences between adjacent cups, and read ‘morally better’ as ‘morally better according to Pat’ and
‘tastier’ as ‘tastier to Pat’. Any compositional semantics will need to be able to characterize such
evaluative views and states of mind so as to make sense of such explicit relativizations.
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than xs’] applies” (Wright 1975: 349). Comparatives may also have “fuzzy” or
“blurred boundaries of application”: “There is, for example, no sharp division be-
tween [cups] that are clearly [tastier than xs] and [cups] that aren’t” (Raffman
1994: 41). The comparative may have borderline cases— for instance, cups in the
“penumbra” (Russell 1923: 87) that are neither clearly tastier than xs nor clearly not.

Examples such as (1)–(2) can be multiplied. Suppose you are comparing edited
versions of a dimly lit photo. x250, the version with a 15% brightness increase, is
prettier than the original, x100. But it’s not as if every 0.1% change in brightness
affects the prettiness of the photo. If you judge xi to be prettier than x100, your
judgment about xi−1 should be no different. Yet x100 is not prettier than itself.

(3) (P1) x250 is prettier than x100.
(P2) For all n, if xn is prettier than x100, then xn−1 is prettier than x100.
(C) ∴ For all n, xn is prettier than x100.

More generally: Take a broadly evaluative gradable expression ‘G’ that is tolerant
in the context with respect to some property F (e.g., ‘tasty’ and sweetness, ‘pretty’
and brightness). Consider two items xi, xj in the domain of ‘G’ that are significantly
different in F-ness, such that ‘xi is (not) G-er than xj’ is clearly true. Use xj as a
pivot, applying ‘is (not) G-er than xj’ of items incrementally different in F-ness from
xi. Find yourself at an item xk such that ‘xk is (not) G-er than xj’ is clearly false.

The idea that comparatives can be vague isn’t unheard of. Some have suggested
that borderline cases of comparatives can arise due to multidimensionality or un-
certainty (indeterminacy, indecision, imprecision) about measurement procedures
(Williamson 1994: 156, Endicott 2000: 43–45, Keefe 2000: 13–14; cf. Sassoon
2011: 102, 106–111, 2013: 172–178, 209). For instance, if individuals differ in
“incommensurate dimensions” (Endicott 2000: 43) of niceness, there may be “no
fact of the matter about who is nicer” (Keefe 2000: 13). Yet it has been assumed
that “if we consider only one dimension of comparison, and suppose perfect accuracy
in measurement, vagueness does affect the extension of the positive form of the
adjective, but not that of the comparative” (Égré & Klinedinst 2011a: 10). Not so.

Unlike in previous cases of vague comparatives, the vagueness phenomena in
(1)–(3) cannot be reduced to matters of what dimensions are relevant or measure-
ment procedures. Many a monistic indirect consequentialist have countenanced
special obligations. The force of (2)–(3) turns precisely on fixing on a particular
dimension of taste (sweetness) and beauty (brightness). Moreover, the concern
with denying the inductive premises isn’t that doing so would be unwarranted due
to limited powers of discrimination. As Wright (1987: 239–243) shows, indiscrim-
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inability between adjacent items in a sorites series isn’t necessary to generate the
paradox.2 Discriminable though adjacent cups in (2) might be, in quantity of sugar
or quality of sweetness, one cup is as good as the next given one’s preferences.

Upshot: Linguistic vagueness can be associated not only with how ADJ some-
thing needs to be to count as ADJ, but with how ADJ things are.

2 Semantics for gradation
Comparative sorites arguments such as (1)–(3) raise a challenge for traditional
formal semantics for gradation. Let’s start by examining how the arguments would
be formalized in prominent degree-based and non-degree-based frameworks. §3 de-
velops an improved semantics that captures the felt fuzziness of comparatives such
as those from §1 and what distinguishes them from comparatives with “prototypical”
gradable adjectives such as ‘tall’.

2.1 Degree-based semantics
A prominent approach is to treat gradable adjectives—adjectives that can take
degree morphemes (e.g., ‘-er’/‘more’) and modifiers (e.g., ‘very’)—as associating
items with degrees on a scale (Bartsch & Vennemann 1973, von Stechow 1984,
Kennedy 1999, 2007b, Heim 2001, Morzycki 2015). For instance, on a Kennedy-
stylemeasure-function implementation, ‘tall’ denotes a function tall from individuals
to degrees of height, i.e. the individual’s maximal height; ‘hot’ denotes a function
hot from individuals to degrees of temperature, i.e. the individual’s maximal tem-
perature. Though many theories assume that degrees are isomorphic to rational
numbers, a minimal constraint is that the relation ≥ on the set of degrees D have
the structure of a partial order, i.e. that ≥ be a reflexive, transitive, antisymmetric
relation on D (Kennedy 1999, 2007b, Barker 2002, Lassiter 2015). Compositional
details aside, the comparative (4) says that the maximal degree to which Alice is tall
is greater than the maximal degree to which Bert is tall, per (5).

(4) Alice is taller than Bert.

(5) (4) is true iff tall(Alice) > tall(Bert)

Comparative inductive premises such as (P2) in (2) are entailed by (P2′) and
(P3) in (6). (P3) is an instance of what is sometimes called PI-transitivity, which is a
weakening of transitivity— i.e., if a relation ≳ satisfies transitivity, PI-transitivity in

2Certain of the comparative sorites examples which I used in earlier work were problematic in failing
to appreciate this point (Silk 2016: 198–199, 206). Thanks to Gunnar Björnsson for discussion.
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(7) is also satisfied, where > and ∼ are the strict (asymmetric) and non-strict (sym-
metric) subsets, respectively, of ≳. The above semantics renders the interpretation of
(P3) as in (8),3 whereT= JtastyK is a function from items to their degree of tastiness,
a representation of how tasty they are.4 So (P3) follows from the transitivity of the
relation ≥ on the domain of degrees D.

(6) (P1) xs is tastier than x1.
(P2′) For all n, xn is as tasty as xn+1.
(P3) For all a, b, c, if a is tastier than b, and b is as tasty as c, then a is tastier

than c. (PI-transitivity)
(C) ∴ For all n, xs is tastier than xn.

(7) PI-transitivity
(X > Y ∧ Y ∼ Z)→ X > Z

(8) ∀x∀y∀z∶ (T(x) > T(y) ∧ T(y) = T(z))→ T(x) > T(z)

Upshot: (P1) is true. (P2′) in (6) describes your non-obsessiveness about coffee
sweetness; one cup is as good as the next given your preferences. (P3) is entailed by
the general structure of scales and holds with any adjective denotation. (P2) in (2)
encodes these dual properties. Yet the conclusion (C) is false. Hence the paradox.

2.2 Delineation semantics
Let’s turn to the other main approach to gradation in formal semantics: delineation
semantics (“partial predicate,” “inherent vagueness” semantics). Delineation the-
ories treat gradable adjectives, like non-gradable adjectives (‘digital’), as ordinary
predicates. What distinguishes gradable adjectives is that they are sensitive to a
contextual comparison class (Klein 1980, von Stechow 1984, Burnett 2012). In one
context using (9) might express that Alice is tall for a basketball player; in another
context it might express that she is tall for an American woman. Gradable adjectives

3I assume an “equally good” reading of the equative (cf. Bhatt & Pancheva 2007, Rett 2008).
4I use ‘measure function’ not only for adjectives associated with measurement procedures or
numerical units of measurement (e.g., height in inches) but for any mapping which would determine
an order on objects. What is important about degrees is that they represent how tasty, tall, etc.
things are, and that they can be associated with qualitative orderings on items in adjectives’ domains.
Nothing of metaphysical significance is implied by things having “degrees” of tastiness, value, etc.
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denote partial functions partitioning a comparison classCC into a positive extension,
a negative extension, and an extension gap (the “borderline cases”), per (10).5

(9) Alice is tall.

(10) JtallKCC = λx ∶ ¬gapCC(tall)(x) . x is tall in CC

The positive-form predication in (9) is true given a comparison class CC iff Alice
counts as tall in CC. Following Klein 1980, a comparative such as (4) is true iff
there is some CC′ such that Alice is tall in CC′ and Bert is not tall in CC′.

To avoid problematic entailments, delineation theories impose qualitative re-
strictions on comparisons among individuals across comparison classes (Fine 1975,
Klein 1980, Fara 2000). For instance, if x counts as tall in some CC and x has a
greater height than y, then there is no CC′ in which y counts as tall and x doesn’t.
Delineation theorists prove that the qualitative restrictions derive a preorder (reflex-
ive, transitive relation) ≽A “at least as ADJ as” on the set of individuals in the domain
of ‘ADJ’, for any adjective ‘ADJ’ (van Benthem 1982, Klein 1991, van Rooij 2011a).
Degrees and scales may be derived from these qualitative orderings (Cresswell 1977,
Bale 2008): The set of degrees D is the set of equivalence classes under ≽A; and
the relation ≥A on D is defined accordingly such that [x]A ≥A [y]A ∶= x ≽A y (where
[a]A is an equivalence class {b ∶ b ≽A a ∧ a ≽A b}). Upshot: The interpretation of
any adjective relies on a preorder ≽A on the set of individuals. The transitivity of ≽A
again validates (P3), and the paradox is off and running.

2.3 Taking stock
It is common to locate the problem in sorites arguments with positive-form predi-
cates such as (11)–(12) in the inductive premise. (Let xn be someone 4′ + n nanome-
ters tall.)

(11) (P1) Someone who is 4′ isn’t tall (for a pro basketball player).
(P2) If someone who isn’t tall (for a pro basketball player) grows one

nanometer, they still won’t be tall (for a pro basketball player).
(C) ∴ No one is tall (for a pro basketball player).

(12) (P1) x0 is not tall.
(P2) For all n, if xn is not tall, then xn+1 is not tall.

5Some theories also invoke a parameter δ for relevant standards (Lewis 1970, Barker 2002),
e.g. where the positive extension of ‘tall’ is the set of individuals in CC whose height is at least
the standard of tallness δtall.
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(C) ∴ For all n, xn is not tall.

For instance, even if we can’t point to any instance of (P2) in (12) that isn’t true,
perhaps we can know that it isn’t true in any context (Soames 1999, Fara 2000), or
no matter what formally precise language we might be speaking (Lewis 1970), or
no matter how the conversation might evolve (Shapiro 2006), or on any competent
way of applying ‘tall’ (Kamp 1981, Raffman 2014). Can one not say the same about
the generalizations in (1)–(3)?

There is a key difference between the positive-form and comparative-form in-
ductive premises. Consider the degree semantics from §2.1. The positive form is
treated as relating a degree to a relevant threshold, or degree standard. To a first
approximation, (9) is true iff the degree to which Alice is tall, tall(Alice), is at least
the degree standard of tallness, stall, i.e. how tall one must be to count as tall.6

The challenge for theories of vagueness rejecting (P2) from (12) is to explain why
speakers find it compelling even if the predicted truth condition (=(13)) is false
at any point of evaluation. For instance, perhaps the falsifying instance is never
where one is looking (Fara 2000), or there is uncertainty about what standard
is determined by the conversational situation (Barker 2002), or the speakers are
undecided about what standard to accept for purposes of conversation (Silk 2016).

(13) ∀n∶ tall(xn) ≱ stall → tall(xn+1) ≱ stall

However, the traditional frameworks for gradation in §§2.1–2.2 treat the gener-
alization (P3) from (6) as trivially true—in virtue of the basic structure of scales
⟨D,≥⟩, per degree-based semantics, or the qualitative ordering ≽A on the set of
individuals, per delineation semantics. That leaves (P2′). Yet (P2′) also seems true
in the context, given one’s preferences. Indeed even a supertaster could accept it;
one simply doesn’t care exactly how sweet the coffee is.

(P2′) For all n, xn is as tasty as xn+1.

It would be surprising if one could rebut fans of special obligations or sugar-taking
coffee drinkers with facts about semantic scale structure.

We need a semantics for gradation that avoids validating generalizations such
as (P3) in (6) as a matter of conventional meaning. The semantics developed in
what follows provides a basis for denying the inductive premises (P2) in (1)–(3)
while maintaining tolerance claims such as (P2′) in (6).

6Many degree theories derive the positive form by combining the adjective with a null morpheme
pos to yield a predicate of individuals (von Stechow 1984, Kennedy 1999).
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3 Semiorders in a degree semantics
We need a semantic structure that permits a certain intransitivity with gradable
expressions. A natural way to allow for this is to move from thinking of the relation
on the set of degrees or individuals as at least a partial order (§2.1) to thinking
of the relation as a semiorder, instead. Semiorders have been used fruitfully in
measurement theory, choice theory, and mathematical psychology for represent-
ing intransitive indifferences.7 (Indeed, example (2) is adapted from an example
from Luce 1956.) The broader research on semiorders provides an independently
motivated resource to incorporate into the semantics of gradation.

3.1 Semiorders
Formally, a semiorder ≿ on a set S is an interval order—a reflexive, Ferrers binary
relation— that satisfies semitransitivity ((14)); equivalently, ≿ is a semiorder iff
there is a real-valued function f and fixed positive number ϵ such that x ≿ y iff
f(x) ≥ f(y) − ϵ, for all x, y ∈ S (n. 7).8

(14) Reflexive: ∀x∶ x ≿ x
Ferrers: ∀x, y, z,w∶ (x ≿ y ∧ z ≿ w)→ (x ≿ w ∨ z ≿ y)
Semitransitive: ∀x, y, z,w∶ (x ≿ y ∧ y ≿ z)→ (x ≿ w ∨w ≿ z)

Intuitively speaking, semiorders generalize weak orders by comparing items under
a “range of fuzziness,” representable by uniform-length intervals. The Ferrers prop-
erty ensures the interval representation, whereby x ⪰ y iff x and y can be associated
with intervals X,Y, respectively, such that Y doesn’t wholly follow X (i.e., xi ≥ yi,
for some xi ∈ X, yi ∈ Y). Semitransitivity implies that this can be done with all the
intervals having the same length; the “fuzziness,” represented by ϵ, is the same for
each item (cf. Fishburn 1970: 212, 1973: 93). Strict ≻ and non-strict ∼ subsets of ⪰
can be defined in the usual way: x ≻ y iff x ⪰ y∧y ⪰̸ x iff f(x) − f(y) > ϵ; and x ∼ y iff
x ⪰ y∧ y ⪰ x iff ∣ f(x) − f(y)∣ ≤ ϵ (again for all x, y ∈ S and some real-valued function
f and positive number ϵ).

Here is an example. Consider the semiorder ⪰ in (15). Alternative graph and
interval representations are below, where an arrow from u to v in the graph rep-
resents that u ≻ v, and a dashed line between them represents that u ∼ v (reflexive
∼-loops and transitive ≻-arcs omitted). An item u is ≻-better than v in the graph just

7For classic discussion see Luce 1956, Scott & Suppes 1958, Fishburn 1985; see also Suppes et al.
1989: ch. 16, Pirlot & Vincke 1997, Aleskerov et al. 2007.
8For present purposes we can assume that the sets are finite. For results generalizing to arbitrary
sets, see Bouyssou & Pirlot 2021a,b.
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in case the fuzziness around u, represented by [f(u), f(u) + ϵ] in the interval rep-
resentation, strictly follows the fuzziness around v, represented by [f(v), f(v) + ϵ].

(15) S = {x, y, z,w}
⪰ = {⟨x, x⟩, ⟨x, y⟩, ⟨x, z⟩, ⟨x,w⟩,

⟨y, x⟩, ⟨y, y⟩, ⟨y, z⟩, ⟨y,w⟩,
⟨z, y⟩, ⟨z, z⟩, ⟨z,w⟩,

⟨w,w⟩}
Graph representation:

x
y

z

w

Interval representation:

f(w)

w
f(w) + ϵ

z
y

x
f

Intuitively, the semiorder ⪰ in (15) weakens an order in which x > y > z > w by
comparing items under a “fuzziness” (represented by ϵ) that fails to distinguish x
and y and fails to distinguish y and z. Crucially, the non-strict part ∼ is no longer
an equivalence relation. In (15) we have x ∼ y ∼ z; x ∼ y and y ∼ z but x ≁ z, indeed
x ≻ z. This intransitivity of ∼ will be important in what follows.

3.2 Degree semantics
Let’s turn to the semantics. To fix ideas I assume a Kennedy-style degree-based
framework. The denotations of adjectives ‘ADJ’ may still be understood as associat-
ing items with degrees, conceived as points on a scale; yet a scale is now ⟨D,≿A⟩,
with ≿A a semiorder on the set of degrees D.9 Truth conditions for the comparative
and equative are in (16)–(17) (n. 3), where adj is the measure function denoted by
‘ADJ’, and fA and ϵA are a real-valued function and positive number, respectively,
such that x ≿A y iff fA(x) ≥ fA(y) − ϵA, for all x, y ∈ D.

(16) ‘a is ADJ-er than b’ is true
iff adj(a) ≻A adj(b)
iff fA(adj(a)) − fA(adj(b)) > ϵA

9We can assume that the semiorders ≿A are also antisymmetric, i.e. (x ⪰A y ∧ y ⪰A x) → x = y, for
all x, y ∈ D. Multiple items may be mapped to the same degree.
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(17) ‘a is as ADJ as b’ is true
iff adj(a) ∼A adj(b)
iff ∣ fA(adj(a)) − fA(adj(b))∣ ≤ ϵA

One way of interpreting the formalism is to understand the function fA as mapping
degrees of ADJ-ness to measures of a property on which ADJ-ness supervenes—
e.g., mapping degrees of tastiness to measures of sweetness (cf. §1). The value ϵA
can be interpreted as a threshold of distinguishability, or how much more of the
subvening property a must have than b in order to count as ADJ-er. Take ‘tasty’.
If quantity of sugar alone determined tastiness, fT(T(a)) would be a’s measure of
sugar, and ϵT would represent a level of sugar sufficing to distinguish items in how
tasty they are. In such a scenario, T(a) ≻T T(b) iff the difference in sugar between
a and b is greater than ϵT, and a is tastier than b; and T(a) ∼T T(b) iff the difference
is less than ϵT, and a and b fail to be distinguished in tastiness.

One shouldn’t be misled by the numerical values in the formalism. A relation
⪰ is a semiorder only if there is a function f and positive number ϵ such that x ⪰ y
iff f(x) ≥ f(y) − ϵ. As noted in §2.1, degrees needn’t be isomorphic to numbers,
and properties of ADJ-ness needn’t be quantifiable. Talk of the numerical relation
between fA(adj(a)) and fA(adj(b)) is compatible with a and b being as ADJ as one
another, imperceptibly different in ADJ-ness, or even incomparable.

The relation ≻A represents pairs of items that count as relevantly distinguish-
able in the context. The notion of distinguishability here is specific to matters of
ADJ-ness. Being discriminable in some respect doesn’t imply being “distinguish-
able,” in the sense of being related by ≻A. Conversely, the fact that adj(a) ∼A adj(b)
doesn’t imply that a and b are indiscriminable, either in general or in properties
relevant to determining how ADJ they are. A supertaster might be able to discrim-
inate between adjacent coffee cups in their quantity of sugar or quality of sweet-
ness (§2.3). To say that the cups’ degrees of tastiness are related by ∼T is to say
that any such difference doesn’t distinguish them in tastiness. The act of saving 2
strangers at the expense of your dear friend might be discriminable in utility from
the act of saving 3 strangers at the expense of your dear friend. Such a difference
may or may not determine a relevant distinction in moral value.

3.3 Comparative sorites revisited
Let’s apply the semantics to the comparative sorites arguments from §§1–2. To fix
ideas I focus on the alternative versions of the example with ‘tasty’ in (2) and (6).
Start with (6), reproduced below, again where xs is an ordinary sweetened cup of
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coffee and xn is a cup with nmicrograms of sugar. Truth conditions for the tolerance
premise (P2′) and PI-transitivity premise (P3) are in (18)–(19).

(6) (P1) xs is tastier than x1.
(P2′) For all n, xn is as tasty as xn+1.
(P3) For all a, b, c, if a is tastier than b, and b is as tasty as c, then a is tastier

than c.
(C) ∴ For all n, xs is tastier than xn.

(18) (P2′) is true iff ∀n∶T(xn) ∼T T(xn+1)
(19) (P3) is true iff ∀a∀b∀c∶ (T(a) ≻T T(b) ∧ T(b) ∼T T(c))→

T(a) ≻T T(c)

The tolerance premise (P2′) is true according to (18) in the given scenario. The
difference in tastiness between any pair of adjacent cups falls below the threshold ϵT
of distinguishability. Discriminable though they might be, one cup is as good as the
next given your preferences. However, (P3) is no longer semantically validated.
Semiorders don’t in general satisfy PI-transitivity. The subset x ∼ y ∼ z from (15) is

a simple countermodel: x ≻ z and z ∼ y but x ⊁ y, indeed x ∼ y; hence (≻ ⋅ ∼) ⊈ ≻.
The falsity of the conclusion (C) is compatible with the truth of (P1)–(P2′).

Consider a toy example. Let a, b, c,d and s (=xs) be five coffee cups, where s
has 1 teaspoon of sugar in it, a has 0.6 teaspoons, b has 0.8 teaspoons, c has 1.2
teaspoons, and d has 1.4 teaspoons. Suppose fT maps each cup’s degree of tastiness
to the number of teaspoons of sugar in it, e.g. fT(T(s)) = 1, with ϵT = 0.3. Visually:

(20) Graph
representation:

T(d)

T(c)

T(s)

T(b)

T(a)

Interval
representation:

T(b) T(c)
f(T(c)) f(T(c))+ ϵ

T(a) T(s) T(d)

f

Numerical
representation:

f

T(a) 0.6
T(b) 0.8
T(s) 1.0
T(c) 1.2
T(d) 1.4

ϵ = 0.3

(P1) is true: T(s) ≻T T(a); s is tastier than a. And (P2′) is true: T(a) ∼T T(b) ∧
T(b) ∼T T(s) ∧ T(s) ∼T T(c) ∧ T(c) ∼T T(d); adjacent cups aren’t distinguished in

11



tastiness. Yet the intransitivity of ∼T invalidates (P3), as discussed above, and the
conclusion (C) is false: s isn’t tastier than itself, b, c, or d, e.g. T(s) ⊁T T(s).

The semantics also avoids validating the inductive premises (P2) in (1)–(3) in
the given contexts. Truth conditions for (P2) in (2), reproduced below, are in (21).

(2) (P1) x1 is not tastier than xs.
(P2) For all n, if xn is not tastier than xs, then xn+1 is not tastier than xs.
(C) ∴ For all n, xn is not tastier than xs.

(21) (P2) is true iff ∀n∶T(xn) ⊁T T(xs)→ T(xn+1) ⊁T T(xs)

The counterinstance to (P2) occurs at the cup xi, i = min{k∶T(xk) ≻T T(xs)} − 1. In
our toy example in (20), cup c is not tastier than s (=xs); the difference in sweetness
is insufficient to make one tastier than the other, i.e. T(c) ∼T T(s). Not so with d.
The extra sweetness from the additional 0.4 teaspoons of sugar is significant, as far
as your preferences are concerned. d is tastier than s, i.e. T(d) ≻T T(s), (P2) is false,
and (C) doesn’t follow.

As Fara (2000) emphasizes, an overall account of the sorites must do more than
simply predict that the inductive premise is not true. For instance, if the inductive
premise is not true, why do we find it plausible? What should we say about the
seemingly predicted “sharp boundary” between (e.g.) cups that are not tastier than
xs and cups that are? Several directions for approaching such questions in the
present framework are as follows.

First, crucially, the semantics captures the truth of tolerance claims such as (P2′)
without verifying inductive premises such as (P2).

(22) Tolerance (P2′): 3

∀n∶T(xn) ∼T T(xn+1)
(23) Inductive premise (P2): 7

∀n∶T(xn) ⊁T T(xs)→ T(xn+1) ⊁T T(xs)

Unlike the traditional semantics in §2, the present semiorder-based semantics avoids
treating the tolerance claim as implying the inductive premise. The key ingredient is
the possible intransitivity of the non-distinguishability relation ∼. Scenarios in which
x ∼ y ∼ z invalidate PI-transitivity and falsify (P2). Adjacent items in the series are

not relevantly distinguishable in ADJ-ness in the context. In (2)/(6), any cup xn is
as tasty as the next, i.e. T(xn) ∼T T(xn+1). Paradoxical conclusions needn’t follow.

Second, the formal semantics is compatible with alternative philosophical the-
ories of vagueness (e.g., epistemicism, contextualism, supervaluationism). Ideas
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from such theories can be imported in the treatment of the distinguishability thresh-
old. Let δA = min{k∶ak ≻A an} − n be the “size” of the distinguishability threshold,
for every degree of ADJ-ness an. (Assume a constant threshold, for simplicity.) On
an epistemicist theory (Sorensen 1988, Williamson 1994), facts about competent
use across contexts would determine a specific value of δA. There would be a
context-invariant counterinstance to inductive premises such as (P2) in (1)–(3). The
apparent fuzziness in the boundary between (e.g.) coffee cups that are tastier than
xs and those that are not can be diagnosed as uncertainty about the metasemantic
facts determining what precise language is being spoken. Alternatively, on a broadly
contextualist line, the distinguishability threshold may be treated as a contextual
parameter, with different contexts determining different levels of distinguishabil-
ity. For the maximally discriminating and opinionated among us, context deter-
mines a semiorder ⪰A,c such that δA,c = 1. Every difference in properties determining
ADJ-ness affects how ADJ things are. Otherwise, context determines δA,c > 1 and a
comparative sorites is off and running. Even if the compositional semantics assumes
a particular representation of context c, there may be a range of scales and values δA,c
compatible with speakers’ interests (cf. Fara 2000), psychological states or verbal
dispositions (cf. Raffman 1994, 1996), or discourse moves (cf. Kamp 1981, Soames
1999, Shapiro 2006, Silk 2016, 2021). We may not be able to point to any instance
of (P2) we reject, or any instance of the sharp boundaries claim we accept.

We began in §1 by noting the common assumption that comparatives are not
vague. We have seen that this assumption is false. Yet, if comparatives can be
vague, whence the traditional wisdom that comparatives with “prototypical relative
adjectives” (McNally 2011: 163), such as ‘tall’ in (4), are not?

(4) Alice is taller than Bert.

Vagueness of positive-form predications ‘x is ADJ’ turns on a fuzziness in how ADJ
x must be to count as ADJ. The vagueness of comparatives such as those in §1 turns
on a fuzziness in how much of some underlying property makes for a difference in
ADJ-ness—how much sweetness makes for a difference in how tasty the coffee is,
how much brightness makes for a difference in how pretty the photo is, and so on.
It is hard to imagine a situation in which not every difference in height affects how
tall something is. Uses of adjectives ‘ADJ’ in contexts of maximal distinguishability
are a limiting case in which the image of the measure function adj, D′ ⊆ D, is totally
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ordered by ⪰A and the semiorder ⟨D′,⪰A⟩ is a linear order.10 The tolerance claim
that adj(xn) ∼A adj(xn+1), for all n, is false. The comparative sorites doesn’t arise.

The semantics developed in this section uses a traditionally defined semiorder,
a relation that is “crisp” and complete. There is a precise boundary between cups
xj such that T(xj) ∼T T(xs) and cups xk such that T(xk) ≻T T(xs); and all elements
are comparable.11 Both features are inessential to the general framework. Cases
with incomparabilities (“incommensurability”) between items, such as from incom-
parable dimensions of application, may call for partial semiorders. The semantics
could also be developed with a variant type of threshold structure. For instance, one
could use a “pseudo-order,” which introduces an intermediate (“hesitation”) zone
in the transition between non-distinguishability ∼ and distinguishability ≻ (compare
higher-order vagueness). Or, for fans of a many-valued approach to vagueness,
a “fuzzy” (“valued”) semiorder could be substituted. Formal properties of such
alternative threshold structures have been extensively studied (see Moretti et al.
2016: §§5–6 and references therein).

3.4 Comparisons
Several authors have appealed to semiorders in accounts of vagueness phenomena
with predicative uses and the positive form (Luce 1956, Halpern 2008, van Rooij
2011a,b, Cobreros et al. 2012). The only precedent that I am aware of for invoking
semiorders in an account of comparatives is van Rooij’s (2011a) delineation seman-
tics for “implicit” comparatives (Kennedy 2007a, 2011)—sentences like ‘x is ADJ
compared to y’ in which a comparison is made using the positive form. The truth of
implicit comparatives requires that the difference between the items be significant,
as reflected in (24) (cf. van Rooij 2011a: 65–66).

(24)

Alice Bert

a. Alice is taller than Bert. (true)
b. Alice is tall compared to Bert. (false)

van Rooij (2011a) uses semiorders to capture this “significantly ADJ-er than” rela-
tion in the interpretation of comparative uses of the positive form such as (24b).

10A linear order is a complete, transitive, antisymmetric binary relation; see n. 9. Hereafter I will
ignore the possible context-dependence of ⪰A described above.
11Reflexivity and the Ferrers property (§3.1) entail completeness, i.e. x ⪰ y ∨ y ⪰ x, for all x, y ∈ S.
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“[S]tandard explicit comparatives like” (24a) with ‘taller’ are analyzed, as is com-
mon, via weak orders (2011a: 65; cf. §2.2). The semantics in this section, in con-
trast, invokes semiorders in the scale structure and allows for vagueness phenomena
with both positive and comparative forms. There may still be semantic differences
between implicit and explicit comparatives. The difference in height that renders
(24a) true needn’t be “significant” so as to verify (24b).

4 Recap
Despite the vast literature on linguistic vagueness, vagueness phenomena with com-
paratives have received little attention. Narrow focus on adjectives such as ‘tall’ has
led many theorists to assume that the comparative form cannot be vague. Sorites
examples such as (1)–(3), (6) illustrate that this assumption is false. Vagueness
phenomena with comparatives ‘x is ADJ-er than y’ can arise in situations of fuzziness
regarding how much of some ADJ-determining property makes for a difference in
ADJ-ness. Vagueness can be associated not only with how ADJ something must be
to count as ADJ, but with how ADJ things are. The latter sort of vagueness cannot be
assimilated to indiscriminability or fuzziness in relevant dimensions ormeasurement
procedures.

Traditional semantics for gradation validate transitivities that yield paradoxi-
cal conclusions in comparative sorites arguments (§2). §3 developed a revised
semantics with semiorders, a type of well studied threshold structure, that avoids
this problem. The semantics captures the truth of tolerance claims expressing that
adjacent items in a sorites series are not relevantly distinguishable in ADJ-ness. And
the semantics avoids treating the tolerance claim as implying the inductive premise
in a three-step sorites argument. How exactly one responds to the paradox and
other vagueness phenomena will depend on one’s preferred theory of vagueness.
The formal semantics can be adapted accordingly.
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