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Abstract

The terms “model” and “model-building” have been used to charac-
terize the field of formal philosophy, to evaluate philosophy’s and philo-
sophical logic’s progress and to define philosophical logic itself. A model
is an idealization, in the sense of being a deliberate simplification of some-
thing relatively complex in which several important aspects are left aside,
but also in the sense of being a view too perfect or excellent, not found
in reality, of this thing. Paraconsistent logic is a branch of philosophi-
cal logic. It is however not clear how paraconsistent logic can be seen
as model-building. What exactly is modeled? In this paper I adopt the
perspective of looking at a particular instance of paraconsistent logic—
paranormal modal logic—which might be seen as a model of a specific
kind of agent: inductive agents. After introducing what I call the high-
level and low-level models of inductive agents, I analyze the extent to
which the above-mentioned idealizing features of model-building appear
in paranormal modal logic and how they affect its philosophical signifi-
cance.

Keywords: model-building, paraconsistent logic, paranormal modal logic, in-
ductive agent, plausibility.

1 Introduction

There is a recent trend in philosophy of science to use the terms “model” and
“model-building” to identify a specific type of theoretical activity that some
scientists engage in [7] [22] [24]. They have also been used to characterize the
field of formal philosophy [8] [21] [4], to evaluate philosophy’s and philosophical
logic’s progress [24] and to define philosophical logic itself:

What is philosophical logic? [. . .] We say that philosophical logic
covers all significant uses of mathematical modelling in philosophy.
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[. . .] in philosophical logic, we take a particular philosophical sub-
ject of interest, such as a part of natural language whose logical
structure we wish understand better, or the metaphysical relation
of part to whole, or the norms governing beliefs and actions; then
we describe a mathematical structure that we take to represent im-
portant features of this subject; and we investigate the subject by
investigating that mathematical structure” (pg. 1, in [10])

Timothy Williamson [24] defines a model of something as a hypothetical
example of it, in the sense of a mathematical description of such a thing which
might not, in all respects, correspond to any of its actual examples. The
advantages of model-building in philosophy are put by him as follows:

Philosophy can never be reduced to mathematics. But we can
often produce mathematical models of fragments of philosophy and,
when we can, we should. No doubt the models usually involve wild
idealizations. It is still progress if we can agree what consequences
an idea has in one very simple case. Many ideas in philosophy
do not withstand even that very elementary scrutiny, because the
attempt to construct a non trivial model reveals a hidden structural
incoherence in the idea itself. By the same token, an idea that does
not collapse in a toy model has at least something going for it. (pg.
291, in [23])

In addition to referring to the use of mathematical models in philosophy,
Willamson mentions the eminently idealistic character of a model. According
to Sven Hansson [8], there are at least two possible ways that a model can
be seen as an idealization: it may be an idealization in the sense of being
a deliberate simplification of something relatively complex in which several
important aspects are left aside, or it may be an idealization in the sense of
being a view too perfect or excellent, not found in reality, of this thing.

Many instances of philosophical logic can be seen as idealizations in these
two senses. The various versions of epistemic logic, for example, can be seen as
models of different types of epistemic agents. While such models are idealizing-
simplifying—they leave out several crucial aspects of the epistemic agents we
find in the world—they are also idealizing-perfecting—they represent certain
characteristics as satisfying standards of rationality much higher than what real
agents can satisfy (such as the so-called omniscience principle: if β logically
follows from α and Ka(α), then Ka(β), where Ka(α) means that agent a knows
that α).

Williamson elaborates on the advantages of this idealizing-perfecting fea-
ture of epistemic logic as follows:
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Standard epistemic logic treats agents as logically omniscient:
the structure of its models presupposes that if one knows some
propositions, one also knows any other proposition they entail. [. . .]
Such models ignore the computational limits of actual agents. Even
if two mathematical formulas are logically equivalent, we may ac-
cept one but not the other because we are unaware of their equiva-
lence; mathematics is difficult. However, idealizing away such com-
putational limits is not just a convenient oversimplification. One
may be interested in the epistemological effects of our perceptual
limits: our eyesight is imperfect; our powers of discrimination by
sight are limited. Since ignorance may result from either percep-
tual or computational limits, we must separate the two effects. A
good way to do that is by studying models where the agent resem-
bles a short-sighted ideal logician, with perceptual limits but no
computational limits, whose ignorance therefore derives only from
the former. For that purpose, the structure of standard models
of epistemic logic is just right [. . .] More generally, model-building
allows us to isolate one factor from others that in practice always
accompany it. (pg. 168, in [24])

Concerning the idealizing-simplifying feature, as Williamson points out in
the earlier quotation, it can be useful insofar as it serves to test the internal
coherence of the basic approach embodied in the model. However, things are
a little more dramatic; the idealizing-simplifying feature of model building is
something from which formal philosophy and philosophical logic cannot escape:

Philosophical or scientific model-making is always a trade-off
between simplicity and faithfulness to the original. In philosophy,
the subject-matter is typically so complex that an attempt to cover
all aspects will entangle the model and make it useless. A rea-
sonably simple model will have to leave out some philosophically
relevant features. (pg. 146, in [8])

Paraconsistent logics are usually seen as a branch of philosophical logic.
They are traditionally defined as logics in which the ex falso quodlibet principle
(also called the principle of explosion: from a contradiction of the form α∧¬α
one can conclude anything) is not satisfied or, alternatively, logics able to
formalize inconsistent but non-trivial theories [3]. Put in this way, however, it
is not clear how paraconsistent logic can be characterized as model building.
What exactly is modeled? One might say: inconsistent but non-trivial theories.
Although an acceptable answer, it might be replied that this is a too general
object of modeling. It is also too abstract. In general, we build models to
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understand concrete things, in a very broad sense of the term, which we find
in the world.

Perhaps a more insightful perspective of paraconsistent logic as model
building can be obtained by looking at particular instances of paraconsistent
logic. For example, some paraconsistent logics have been developed inside an
epistemic context in which paraconsistency is seen as an aspect or feature of
a specific kind of epistemic agent. Such is the the case of paranormal modal
logic [17] [19] [20], which has been introduced as an attempt to formalize or
conceptually explain the notion pragmatic probability [2] or inductive plau-
sibility. Further philosophical motivations rely on the problem of inductive
inconsistencies [9] [16] [6] [1] and the connection it might be shown to have
with two different but complementary approaches to induction [1] [18].

Concerning the philosophical analysis of the notion of inductive plausibility,
a key result of paranormal modal logic is the following axiom:

K2: (¬α)?↔ ¬(α?)

, where α? means that α is (credulously) plausible. Despite the counterin-
tuitiveness of the left-to-right side of K2 (that ¬α is plausible implies the
implausibility of α), it is a distinguishing feature of the notion of inductive
plausibility, in fact one of the features that distinguishes it from the notion of
possibility.

Paranormal modal logic can be seen an attempt to model inductive-plausible
agents. Insofar as the notions of plausibility and induction are connected with
the notion of rationality—every rational agent is also an inductive-plausible
agent—paranormal modal logic can be seen as an attempt to partially model
rational agents. Since paraconsistency (as well as its complementary notion
of paracompleteness [13]) has emerged as a necessary feature of the resulting
model, it might be argued that paraconsistency is an intrinsic feature of ratio-
nal agents. Such is the philosophical significance of seeing paranormal modal
logic from the perspective of model building.

My purpose in this paper is to introduce and analyze paranormal modal
logic from the perspective of model building. In the next section I will intro-
duce paranormal modal logic from the standpoint of what I call a high-level
model of inductive agents. In Section 3, I introduce the logic proper, which
corresponds to the low-level modelling of inductive agents. In section 4, I show
how from this model building perspective we can philosophically justify the
left-to-right side of axiom K2 and the right-to-left side of a twin axiom related
to the other plausibility notion which emerges from the model. Finally, in the
last section, I will analyze the extent to which the above-mentioned idealizing
features of model building appear in paranormal modal logic and how they
affect its philosophical significance.
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2 The High-Level Model

Rational agents are able to perform many tasks. They make plans, they act
in the world, they have beliefs and desires, they make moral judgments . . .
and they make inductive inferences, in the carnapian sense of rational non-
deductive inferences [2]. Beside being planning agents, epistemic agents, moral
agents, etc., they are therefore also inductive agents. Paranormal modal logic
is an attempt to model inductive agents; it is also an attempt to partially
model rational agents.

I shall be following Williamson’s definition of model:

[. . .] a model of something is a hypothetical example of it. Thus
a model of predator-prey interaction is a hypothetical example of
predator-prey interaction. The point of the qualification “hypo-
thetical” is that the example is presented by an explicit description
in general terms, rather than by pointing to an actual case. For
instance, one writes down differential equations for the changing
population sizes of the two species, rather than saying “the chang-
ing numbers of foxes and rabbits in Victorian Sussex.” The de-
scription picks out a type of case, rather than one particular case:
for instance, the type of any predator-prey interaction that obeys
the given differential equations. (pg. 160, in [24])

A model of inductive agent is then a hypothetical example of it, in the sense
of a (preferably) mathematical description of one such an agent which might
not, in all respects, correspond to any of its actual examples; it is thus an
idealization of real inductive agents. This has the advantage (along with the
clarity which comes from the mathematical side of the description) of making
“direct study of the model easier than direct study of the phenomenon itself.”
(pg. 160, in [24])

While a low-level model of something is a fully mathematical description
of a hypothetical example of it, a high-level model is an informal, or only
partially mathematized description which in some sense complements the low-
level model. In this section I will provide a model for inductive agents from
this high-level perspective; it contains the basic concepts and philosophical
motivations for the development of paranormal modal logic. The low-level
model will be described in the next section.

Independently of the internal structure of inductive inferences, they have
some general features. A very interesting one is this: due to their being non-
truth-preserving and ampliative, it is possible that from the same consistent
set of statements ∆ one infers both α and ¬α. In other words, contradictions
are a very likely outcome of the use of inductive inferences [9] [16] [6] [1]. An
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inductive agent is therefore potentially a contradictory agent. The question
then arises: how to deal with these contradictions?

Let ∆ be the set of beliefs of inductive agent a and Σ a mechanism of in-
ductive inferences to be applied to the members of ∆ (it might be simply a set
of inductive inferential rules); I name the deductive closure of each consistent
set of conclusions obtained from ∆ an inductive extension. The cases where
contradictions are obtained from the application of Σ to ∆ lead to more than
one inductive extension. In these cases, we have at least two options at our
disposal: to ignore contradictions and recognize as sound only those inductive
conclusions belonging to the intersection of all extensions, or to take contra-
dictions seriously and accept as authentic inductive conclusions all statements
belonging to the union of all extensions. While the first option is a strict or
skeptical approach which requires a great deal to accept an inductive conclu-
sion as sound, the second is a tolerant or credulous approach which requires
just the minimum to accept a statement as an authentic inductive conclusion.
Agent a has therefore two different ways or approaches to look at contradictory
conclusions; I call them the skeptical and credulous approaches to induction.1

Now, supposing that a can effectively infer new conclusions from ∆ with
the help of Σ, it seems natural for a to qualify such conclusions so to distinguish
them from the members of ∆ as well as from conclusions deductively obtained
from it. The common attitude in philosophy has been to use some probabil-
ity notion to do the job. In order to distinguish such concept of probability
from other probability notions, in special from his notion of logical probability,
Carnap [2] used the term “pragmatical probability”. I shall use the less con-
troversial term “plausibility” or “inductive plausibility”. What I have called
so far inductive conclusions are thus the same as plausible conclusions, or still
pragmatically probable conclusions. Besides being an inductive agent, a is thus
also a plausible agent or, as I shall call it, a plausible-inductive agent.

Notice that according the general idea being presented here, we cannot
speak of inductive or plausible conclusions per se. Instead, we must speak of
inductive or plausible conclusions according to this or that approach: when

1The distinction between a skeptical approach and a credulous one is of course not new; it
has been extensively used in the nonmonotonic literature, for instance [15] [14]. What is new
however is its being used to name two general approaches to inductive reasoning, which are in
fact the end-product of a conceptual analysis to the notion of induction which takes seriously
the phenomenon of inductive inconsistencies [18]. As far as the philosophical literature is
concerned, even though the existence of these two approaches to induction has not been
explicitly acknowledged, it is possible to identify isolated uses of them in several discussions
related to the problem of inductive inconsistencies. It can be shown for instance how some
of the main solutions given to the lottery paradox [12] can be seen as instances either of a
skeptical approach or of a credulous one, and that when we recognize these approaches as
complementary instead of competing, the whole controversy regarding the proper solution to
the lottery paradox is dissolved [18].
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α is true in all inductive extensions we say that α is plausible according to
a skeptical approach, and when α is true in at least one extension we say
that α is plausible according to a credulous approach. Trivially then, the
skeptical and credulous approaches work as evaluation functions which assess
in different ways the truthfulness of plausible statements, giving rise in fact
to two plausibility notions: what I call skeptical plausibility and credulous
plausibility.

From a general point of view, we can say that the credulous and skepti-
cal approaches represent, respectively, minimizing and maximizing strategies
of truth assessing. If a adopts a credulous position, for example, she will not
require too much to accept statement α as plausible. If we use 1 to represent
truth and 0 to represent falsehood, this can be restated by saying that she
will somehow try to maximize or bring close to 1 the truth-value of plausible
statements. On the other hand, if a adopts a skeptical position she will be
more demanding in the matter of accepting α as plausible, which means that
she will try to minimize or bring close to 0 the truth-value of plausible state-
ments. Therefore, while adopting a skeptical position means to be strict in the
matter of accepting something as true, in our case the plausibility of sentences,
adopting a credulous position means to be tolerant, not so demanding in the
matter of taking something as truth.

What has been said so far can be quite fairly represented with the aid of a
Kripkean semantic framework. First of all, each inductive extension might be
naturally associated with a possible world of a special kind, named plausible
world; every plausible world is a possible world, but not vice versa. Second,
representing the notions of skeptical and credulous plausibility with the help
of the modal operators ! and ? used in a post-fixed notation—α! means “α
is plausible according to a skeptical approach” or “α is skeptically plausible”
and α? “α is plausible according to a credulous approach” or “α is credulously
plausible”—we have that while ! is interpreted alike to traditional modal op-
erator 2, ? is interpreted alike to 3. In other words, α! is true iff α is true in
all plausible worlds, and α? is true iff α is true in at least one plausible world
2.

Since the key semantic notion here is the notion of plausible world, there
will be important conceptual differences between a logic of plausibility so con-
ceived and the logic of possibility and necessity as formalized, say, by S5. But
there will be important relations too. For instance, since every plausible world
is a possible world, the following relations between the notions of necessity,
possibility, skeptical plausibility and credulous plausibility hold [1]:

2I am for the time being neglecting the accessibility relation component; it shall be taken
into account by the low-level model.
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2α→ α!

α!→ α?

α?→ 3α

In other words, necessity implies skeptical plausibility, skeptical plausibility
implies credulous plausibility and credulous plausibility implies possibility. The
notions of inductive plausibility are therefore in between the notions of necessity
and possibility. As one might expect, plausible or rational beliefs are weaker
than necessary truths (be them logical or metaphysical), but stronger than
mere possible truths.

More important however is that this logic of plausibility seems to have the
same formal structure as traditional modal logic, so that the task of building a
logic of plausibility would be reduced, one might think, to the task of deciding
which one of the normal modal systems, say, is more adequate to our needs. 3

This in fact would be so if it were not for the following fact: having a skeptical
and a credulous approach to evaluate the truth value of plausible formulas
causes the negation operator to behave in a way that traditional modal logic
simply cannot handle. This is materialized in the following pair of axioms:

K2. (¬α)?↔ ¬(α?)

K3. (¬α)!↔ ¬(α!)

, which are completely at odds with the standard interpretation of 3 and 2.
While the right-to-left side of K2 and left-to-right side of K3

¬(α?)→ (¬α)?

(¬α)!→ ¬(α!)

are in accordance with traditional interpretation of 3 and 2

¬3α→ 3¬α
2¬α→ ¬2α

, their respective left-to-right side and right-to-left side

K2l: (¬α)?→ ¬(α?)

K3r: ¬(α!)→ (¬α)!

3A normal modal logic is modal logic which has K (2(α → β) → (2α → 2β)) valid
principle and modus ponens, generalization (from α conclude 2α) and the rule of uniform
substitution as valid inference rules [11].
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are not. The following formulas are clearly false (in any modal system):

3¬α→ ¬3α
¬2α→ 2¬α

This is the main formal difference between the notions of necessity and
skeptical plausibility on one side, and possibility and credulous plausibility on
the other. My purpose in Section 4 is to show how the high-level model that I
have just described can be used to philosophically justify K2 and K3 and their
odd sides K2l and K3r. Before that, however, I will introduce, in Section 3,
what I am calling the low-level model, that is to say, paranormal modal logic
proper; I will also mention something about the relations that exist between
paranormal modal logic and traditional normal modal logic.

3 The Low-Level Model

The low-level model I will present here corresponds basically to the proof-
theoretical and semantic presentations of paranormal modal logic [19] [20].
They are are revealing as to the essential features of our two plausibility no-
tions. While the skeptical plausibility is a paracomplete notion, the credulous
plausibility is a paraconsistent one. More specifically, while in connection with
credulous plausibility ? the negation symbol ¬ behaves paraconsistently—we
might have both α? and ¬(α?)—, in connection with ! it behaves paracom-
pletely—it might be that neither α! nor ¬(α!) are true. This is at the root
of axioms K2 and K3. Because its paraconsistency and paracompleteness de-
pend on the modality attached to the formula, I call ¬ a modality-dependent
paranormal negation.

They are also revealing as to the relations that exist between the plausi-
bility and traditional modality. From the semantic point of view, paranormal
modal logic uses a model-theoretical structure as closest as possible to Krip-
kean structures used in traditional modal logic. In special, the semantic model
uses the same three elements of traditional (propositional) modal logic: a set
of worlds, in this case called plausible words, an accessibility relation and a
truth valuation function.4 This has a couple of advantages.

First of all, paranormal modal logic could now be seen not as an individual
logic, but as a family of logics, akin to the family of normal modal logics. In
the same way that normal modal system K can be extended into D, T, B,
S4, S5, etc., the most basic paranormal modal logic K? can be extended into

4In [19] and [20] this paranormal modal logic was presented inside a general framework
in which a wide range of logics, including classical logic and traditional normal modal logic,
can be defined.
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corresponding paranormal modal systems: add α!→ α? (axiom D?) to K? and
you have system D?; add α! → α (axiom T?) to K? and you have system T?;
add α→ α?! (axiom B?) to T? and you have system B?; add α!→ α!! (axiom
4?) to T? and you have system S4?; add axiom B? to S4? and you have S5?.

Second, as one would expect, from the semantic point of view the differ-
ences between these paranormal systems are the same as between their normal
counterparts: while the accessibility relation of K? has no restrictions at all,
D?’s models are serial, T?’s are reflexive, B?’s are reflexive and symmetric, S4?’s
are reflexive and transitive and S5?’s are reflexive, transitive and symmetric.
But more important than this, and this is the third and last point, it is possible
to show that these paranormal modal systems are equivalent to their normal
counterpart: K? is equivalent to K, D? to D, and so on and so forth.

3.1 Language and Calculus

Here I present the simplest paranormal modal system corresponding in tradi-
tional modal logic to system K. I call it K?.

Definition 3.1 Let P be a set propositional symbols. The paranormal modal
language =? is defined as follows:

(i) If p is a propositional symbol of P, then p∈ =?;
(ii) If α, β ∈ =?, then ¬α, α→ β, α ∧ β, α ∨ β ∈ =?;
(iii) If α ∈ =?, then α!, α? ∈ =?;
(iv) Nothing else belongs to =?.

Symbols →, ∧ and ∨ are interpreted according to their usual meaning. As
I have said, ¬ represents what I have named paranormal modality-dependent
negation: regarding the elements of P, ¬ behaves classically, but in connection
with !-marked and ?-marked formulae it behaves paracompletly and paracon-
sistently, respectively.

Definition 3.2 Let α, β ∈ =? be any formulae of =?. We define the derived
symbols ↔,⊥ and ∼ as follows:

(i) α↔ β =def (α→ β) ∧ (β → α);
(ii) ⊥ =def p ∧¬p, where p∈P is an arbitrary propositional symbol;
(iii) ∼ α =def α→ ⊥.

Symbols ↔ and ⊥ are taken in accordance with their usual meaning. ∼ is
a derived symbol meant to represent classical negation.

Definition 3.3 Let α ∈ =? be a formula. We say that α is ?-free iff ? does
not occur in α and that α is !-free iff ! does not occur in α. If α is both ?-free
and !-free we call it a ?!-free formula.
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Definition 3.4 The axiomatic of paranormal modal logic K? is as follows:
Positive Classical Axioms
P1: α→ (β → α)
P2: (α→ (β → ϕ))→ ((α→ β)→ (α→ ϕ))
P3: α ∧ β → α
P4: α ∧ β → β
P5: α→ (β → α ∧ β)
P6: α→ α ∨ β
P7: β → α ∨ β
P8: (α→ β)→ ((ϕ→ β)→ (α ∨ ϕ→ β))
P9: ((α→ β)→ α)→ α
Paranormal Classical Axioms
A1: (α→ β)→ ((α→ ¬β)→ ¬α) wherein β is ?-free and α is !-free
A2: ¬α→ (α→ β) wherein α is ?-free
A3: α ∨ ¬α wherein α is !-free
Non-Positive Additional Classical Axioms
N1: ¬(α→ β)↔ (α ∧ ¬β)
N2: ¬(α ∧ β)↔ (¬α ∨ ¬β)
N3: ¬(α ∨ β)↔ (¬α ∧ ¬β)
N4: ¬¬α↔ α
Paranormal Modal Axioms
K1: α?↔∼ ((∼ α)!)
K2: (¬α)!↔ ¬(α!)
K3: (¬α)?↔ ¬(α?)
Modal Axioms
K?: (α→ β)!→ (α!→ β!)
Rules of Inference
MP: α, α→ β/β
N?: α/α!

The calculus of paranormal modal logic is a modal extension of positive
classical logic (axioms P1-P9). Schemas of formula A1-A3 correspond to the
negative axioms of classical logic, restricted in such a way as to take into
account the paraconsistent and paracomplete behavior of ? and !, respectively.
Trivially enough, since these restrictions apply only to non-modal formulas,
the non modal fragment of paranormal modal logic behaves exactly like in
classical logic. Axiom schemas N1-N4 are meant to restore the deductive power
of paranormal modal logic weakened by the restrictions of A1-A3.

The paranormal modal axioms K1-K3 set the basic properties of the modal
operators ! and ?. K1 states that in connection with classical negation ∼, ?
and ! are the dual operators of each other. K2 and K3 state that the skeptical
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plausibility of ¬α is equivalent to the skeptical implausibility of α, and that
the credulous plausibility of ¬α is equivalent to the credulous implausibility of
α, respectively. K? is the paranormal equivalent to normal modal logic’s axiom
K and, finally, MP is the rule of modus ponens and N? is the paranormal rule
of necessitation.

Due to K1, one might think that ? or ! could be introduced as definitions
and that either K2 or K3 could be obtained as theorems. Unfortunately this is
not so, the reason being the non-standard behavior of →, which shall become
clear when we present the semantics in the next subsection.

Letting A,B⊆ =? be two sets of formulas, A representing the set of global
premises and B the set of local premises, α ∈ =? a formula and L? a paranormal
modal logic, we define α’s being L?-deducted from A and B (in symbols: A+
B `L? α) in the standard way.5 If B = ∅ we write A `L? α and if A = B = ∅,
we write `L? α, in which case we say that α is a L?-theorem. In the case
of K? for example, we say that α is K?-deducted from A and B (in symbols:
A+B `K? α) or α is a K?-theorem (in symbols: A+K `k? α).

3.2 Semantics

Here I present the semantics of paranormal modal logic. The two definitions
that follow define a semantic structure identical to the one we use to evaluate
formulas in normal modal logic. The difference is the function that makes use
of this structure to recursively attribute true or false to all sorts of formulas,
to be defined in Definition 3.7

Definition 3.5 A frame F is a duple 〈W,R〉 where W is a non-empty set
of entities called (plausible) words and R is a binary relation on W called
accessibility relation.

Definition 3.6 A model M is a triple 〈W,R, v〉 where F = 〈W,R〉 is a frame
and v is function mapping pairs composed by elements of P and elements of W
to truth-values 0 and 1. We say that model M is based on F and that w ∈ W
is a world of M.

Definition 3.7 The max-min modal valuations are functions Ω and f which,
given a model M = 〈W,R, v〉 and a world w ∈ W , map formulas of =? to
truth-values 0 and 1. Ω and f are defined as follows:

5From an axiomatic point of view, the difference between global and local premises is that
the rule of necessitation can be applied only to those formulas derived exclusively from the
set of global premises. For a textbook-style presentation of modal logic that uses global and
local premises in the definition of the relations of deductibility and logical consequence see
[5].
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(i) ΩM,w(p) = fM,w(p) = 1 iff vw(p) = 1;
(ii) ΩM,w(¬α) = 1 iff fM,w(α) = 0;
(iii) fM,w(¬α) = 1 iff ΩM,w(α) = 0;
(iv) ΩM,w(α→ β) = 1 iff ΩM,w(α) = 0 or ΩM,w(β) = 1;
(v) fM,w(α→ β) = 1 iff ΩM,w(α) = 0 or fM,w(β) = 1;
(vi) ΩM,w(α ∧ β) = 1 iff ΩM,w(α) = 1 and ΩM,w(β) = 1;
(vii) fM,w(α ∧ β) = 1 iff fM,w(α) = 1 and fM,w(β) = 1;
(viii) ΩM,w(α ∨ β) = 1 iff ΩM,w(α) = 1 or ΩM,w(β) = 1;
(ix) fM,w(α ∨ β) = 1 iff fM,w(α) = 1 or fM,w(β) = 1;
(x) ΩM,w(α?) = 1 iff, for some w′ ∈W such that wRw′, ΩM,w′(α) = 1;
(xi) fM,w(α?) = 1 iff, for all w′ ∈W such that wRw′, fM,w′(α) = 1;
(xii) ΩM,w(α!) = 1 iff, for all w′ ∈W such that wRw′, ΩM,w′(α) = 1;
(xiii) fM,w(α!) = 1 iff, for some w′ ∈W such that wRw′, fM,w′(α) = 1;.

Ω and f are functions that, depending on the modal operator attached to
the formula, evaluate it either skeptically or credulously (if the formula is a
non-modal one, the evaluation is, we can say, neutral.) They represent there-
fore, depending on the formula being evaluated, our skeptical and credulous
approaches to induction. In what follows I shall try to elucidate some key
aspects of Ω and f.6

While Ω, which is the function I use in the definition of the notion of logical
consequence, gives the intended meaning of ! and ?, f does the opposite and
evaluates !-formulas credulously and ?-formulas skeptically. The need for this
“anomalous” interpretation has to do with the way Ω and f deal with negation,
which is materialized in items (ii) and (iii). The rationale behind these rules
can be seen through a simple interpretation of the meaning of functions Ω and
f.

Consider ¬(α?). Since Ω evaluates it credulously, f evaluates α? skeptically.
We can therefore read ΩM,w(¬(α?)) = 1 as “according to a credulous position
that tries to maximize the truthfulness of formulas, ‘not [α is plausible]’ is true.”
This can be said to be equivalent to “the task of maximizing the truthfulness
of ‘not [α is plausible]’ was successful,” which in its turn is the same as “the
task of maximizing the falsehood of ‘α is plausible’ was successful.”

Now consider fM,w(α?) = 0. It can be read as “according to a position that
tries to minimize the truthfulness of formulas, ‘α is plausible’ is not true,” which
in its turn is equivalent to “the task of minimizing the truth of ‘α is plausible’
failed,” which is pretty the same as “the task of maximizing the falsehood of
‘α is plausible’ was successful.” That is why ΩM,w(¬α) = 1 iff fM,w(α) = 0.

6It should be said that a full explanation of the intricacies of this unusual way to evaluate
modal formulas would need much more space. For a full account of this and other aspects of
paranormal modal logic, including a first-order formulation, see [19] and [20].
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The same can be done to show that fM,w(¬α) = 1 iff ΩM,w(α) = 0. Thus we
see why in order to evaluate ¬(α?) credulously and ¬(α!) skeptically we need
to evaluate α? skeptically and α! credulously.

Alike to the axiomatic presented in the last section, there is a strong parallel
between paranormal modal logic’s semantics and traditional normal modal
logic’s one. As I said, the notion of semantic model is exactly the same; what
changes is the way we use the model to evaluate the truth-value of formulas.
Roughly speaking, we just have, in addition to the usual way to evaluate modal
formulas (which is, except for the asymmetry of (iv), captured by Ω), another
function intended to reverse the position taken by Ω. This additional function
is essential for the proper treatment of negation in (ii) and (iii), which is the
key of the non-standard behavior of ! and ?. Aside that, other paranormal
modal systems are obtained in the standard way by restricting the accessibility
relation.

Definition 3.8 Let M = 〈W,R, v〉 be a model, w ∈ W a world of M and
α ∈ =? a formula: α is satisfied by M at w (in symbols: M,w  α) iff
ΩM,w(α) = 1; α is satisfied by M (in symbols: M  α) iff, for all w′ ∈ W ,
M,w′  α.

From the two notions above I define, in the customary way, the notion of
logical consequence. Let A,B ⊆ =? be two sets of formulae, A representing the
global premises and B the local ones, and α ∈ =? a formula. If α is a logical
consequence of A and B (all classes of models being considered) we say that
α is a K?-logical consequence of A (in symbols: A + B |=k? α). In the case
A = B = ∅, we say that α is K?-valid (in symbols: |=k? α).

Theorem 3.9 K? is sound and complete (in symbols: Let A,B ⊆ =? be two
sets of formulas and α ∈ =? a formula. A+B `K? α iff A+B |=K? α).7

3.3 Normal and Paranormal Modal Logic: K and K?

In this subsection I show how, from a formal point of view, paranormal modal
logic relates with normal modal logic. Let =3 be the language of propositional
normal modal logic, 3 being taken either as a primitive or as a derived symbol,
and `K and |=K the relations of deduction and logical consequence of modal
logic K.

Definition 3.10 I define function Φ: =3 → =? as follows:
(i) Φ(p) = p, where p ∈ P ;
(ii) Φ(¬α) =∼ Φ(α);

7The proof of this and all other theorems mentioned here can be found in [19] and [20].
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(iii) Φ(α⊕ β) = Φ(α)⊕ Φ(β), where ⊕ ∈ {∧,∨,→};
(iv) Φ(3α) = Φ(α)?;
(v) Φ(2α) = Φ(α)!.

Theorem 3.11 Let α ∈ =?. If `K α, then `K? Φ(α).

The meaning of theorem 3.11 is that, when taken in conjunction with ∼,
paranormal modalities ! and ? are indistinguishable from normal modalities
2 and 3. This of course implies that the full expressive power of traditional
normal modal logic is contained in paranormal modal logic. Theorems 3.15-
3.18 below show a stronger result.

Definition 3.12 I define functions Π and q of the form: =? → =3 as follows:
(i) Π(p) = q(p) = p;
(ii) Π(α?) = 3Π(α);
(iii) q(α?) = 2q (α);
(iv) Π(α!) = 2Π(α);
(v) q(α!) = 3q (α);
(vi) Π(¬α) = ¬ q (α);
(vii) q(¬α) = ¬Π(α);
(viii) Π(α⊕ β) = Π(α)⊕Π(β), where ⊕ ∈ {∧,∨,→};
(ix) q(α⊕ β) = q(α)⊕q(β), where ⊕ ∈ {∧,∨};
(x) q(α→ β) = Π(α)→ q(β).

Definition 3.13 I define functions ∆ and ∇ of the form: =3 → =? as follows:
(i) ∆(p) = ∇(p) = p;
(ii) ∆(3α) = ∆(α)?;
(iii) ∇(3α) = ∇(α)!;
(iv) ∆(2α) = ∆(α)!;
(v) ∇(2α) = ∇(α)?;
(vi) ∆(¬α) = ¬∇(α);
(vii) ∇(¬α) = ¬∆(α);
(viii) ∆(α⊕ β) = ∆(α)⊕∆(β), where ⊕ ∈ {∧,∨,→};
(ix) ∇(α⊕ β) = ∇(α)⊕∇(β), where ⊕ ∈ {∧,∨};
(x) ∇(α→ β) = ∆(α)→ ∇(β).

Definition 3.14 Let A ⊆ =? and B ⊆ =3.
(i) Π(A) = {Π(α)|α ∈ A};
(ii) q(A) = {q(α)|α ∈ A};
(iii) ∆(B) = {∆(α)|α ∈ B};
(iv) ∇(B) = {∇(α)|α ∈ B}.
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For the two theorems below, let A,B ⊆ =3 and α ∈ =3.

Theorem 3.15 A+B `K α iff ∆(A) + ∆(B) `K? ∆(α).

Theorem 3.16 A+B |=K α iff ∆(A) + ∆(B) |=K? ∆(α).

For the two theorems below, let A,B ⊆ =? and α ∈ =?.

Theorem 3.17 A+B `K? α iff Π(A) + Π(B) `K Π(α).

Theorem 3.18 A+B |=K? α iff Π(A) + Π(B) |=K Π(α).

Definitions 3.12 and 3.13 formalize a translation that comes naturally when
we look at the semantics of normal and paranormal modal logics. Using them,
theorems 3.15-3.18 state that, according to this translation, both normal and
paranormal logics can be fully embedded inside each other. The implications
of this are obvious. For example, since formulas resulting from the application
of ∆ can be seen as abbreviations inside =3, it might be said that there is
a formal paraconsistent and paracomplete inferential relation (in addition to
a conceptual one) based on a truly paranormal modality-dependent negation
inside normal modal logic.

4 The High-Level Model and the Philosophy of Plau-
sibility

In this section I will use the high-level model to explain why having a skeptical
and a credulous approach to evaluate the truth value of plausible formulas
causes the negation operator to behave in a way that traditional modal logic
cannot handle. As a consequence of this, I will also philosophically justify
axioms K2 and K3:

K2. (¬α)?↔ ¬(α?)

K3. (¬α)!↔ ¬(α!)

To start with, let me examine how the notion of implausibility would be
represented inside this high-level model. First of all, for all intends and pur-
poses, the notion of implausibility might be simply seen as the negation of
plausibility, so that “α is implausible” can be taken as an abbreviation to “it is
not the case that α is plausible”. But since here the concept of plausibility is
taken obligatorily according either to a credulous view or to a skeptical view,
the same should be done to all notions derived from it, in special the notion of
implausibility. Therefore we shall have something like (I) and (II) below:
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(I) it is not the case that α is plausible (α is implausible) according to a
skeptical position.

(II) it is not the case that α is plausible (α is implausible) according to
a credulous position.

According to our notation, (I) and (II) are trivially represented as ¬(α!) and
¬(α?), respectively.

Note however that there is an ambiguity in the reading of these two sen-
tences. Are we negating the plausibility of α according to such and such ap-
proach? Or are we negating, according to that approach, the plausibility of
α? This can be better seen with the help of brackets, where (i) and (ii) below
correspond to each one of the two possible ways we can read (I) and (II):

(i) it is not the case that [α is plausible according to a skeptical (credu-
lous) position].

(ii) [it is not the case that α is plausible] according to a skeptical (cred-
ulous) position.

In the skeptical case, for example, while (i) means that we were not able
to take “α is plausible” as truth according to a rigid, strict posture, (ii) means
that we did succeed in the task of attributing “true” to sentence “α is not
plausible” according to that posture. Similarly for the credulous case: while
(i) means that adopting a tolerant posture concerning truth-assignment we
were not able to classify “α is plausible” as true, (ii) says is that “α is not
plausible” is true according to that posture.

Now, (i) clearly involves a negation pretty much alike the negation of tradi-
tional modal logic: (i) is true iff α is false in at least one world, in the case of the
skeptical approach; and iff α is false in all worlds, in the case of the credulous
one. Regarding (ii), however, the situation seems to be quite different: instead
of denying that α is plausible according to a specific position, (ii) is in fact
classifying the whole sentence “it is not the case that α is plausible” as true
according to a specific position. We can therefore see the negation involved in
(ii) as meaning something like this: it is not the case according to the position
from which a given statement is uttered. As I shall try to show below, this
reading allows us to philosophically justify axioms K2 and K3.

According to what I have already explained, to evaluate “α is not plausi-
ble” according to a skeptical position means to be very strict, requiring the
maximum we can to classify “α is not plausible” as true; and to evaluate “α
is not plausible” according to a credulous position means to be tolerant, re-
quiring the minimum we can to classify “α is not plausible” as true. Given
the semantic framework sketched in Section 2, clearly to require the maximum
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we can to classify “α is not plausible” as true means to require α to be false
in all plausible worlds, and to require the minimum we can to classify “α is
not plausible” as true is tantamount to requiring α to be false in at least one
world. This means that the skeptical version of (ii), or in symbols ¬(α!), is
true iff α is false in all plausible worlds; and the credulous version of (ii), or in
symbols ¬(α?), is true iff α is false in at least one plausible world.

As already mentioned, a trivial presupposition present in analyses such as
the one I am doing here is that the notion of implausibility is to be analyzed,
represented or described in terms of the concepts of negation and plausibility.
As consequence of that, it can be claimed that a fundamental step in the task
of formally disambiguating statements (I) and (II) involves having two different
negations, one for each reading of (I) and (II). Letting ∼ refer to the negation
involved in (i) and ¬ to the negation involved in (ii), the first reading of (I) and
(II) might be formally represented as ∼ (α!) and ∼ (α?), respectively, and the
second reading of (I) and (II) as ¬(α!) and ¬(α?), respectively. While ∼ (α!)
and ∼ (α?) are interpreted in exactly the same way as ∼ 2α and ∼ 3α of
traditional modal logic, respectively, ¬ has a different, non-classical behavior,
according to which ¬(α!) is true iff α is false in all plausible worlds, and ¬(α?)
is true iff α is false in at least one plausible world. From a general perspective,
¬α means “it is not the case that α according to the position from which it is
being uttered.”

About the relations between these two negations, it is easy to see that
neither ¬α →∼ α nor ∼ α → ¬α are generally valid: even though ¬(α!) →∼
(α!) holds, ¬(α?) →∼ (α?) is not valid; and even though ∼ (α?) → ¬(α?)
holds, ∼ (α!)→ ¬(α!) is not valid.

One might ask now how (¬α)! and (¬α)? are to be analyzed. Well, accord-
ing to the way I am reading ¬, (¬α)! shall mean something like “it is skeptically
plausible that [it is not the case that α according to the position from which it
is being uttered]”. But α is being uttered according to no position at all (the
skeptical reading is being applied to the whole of ¬α). Therefore ¬ must in
this case behave in the usual way: ¬α is true iff α is false. We have thus as
follows: (¬α)! is true iff α is false in all plausible worlds and (¬α)? is true iff
α is false in at least one plausible world. This however is the same evaluation
which, we have agreed above, should be given to ¬(α!) and ¬(α?) in order to
account for the second reading of (I) and (II). Therefore ¬(α!) is semantically
equivalent to (¬α)! and (¬α)? is semantically equivalent to ¬(α?), or in sym-
bols: ¬(α!) ↔ (¬α)! and (¬α)? ↔ ¬(α?). Needless to say, these are exactly
axioms K2 and K3.
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5 Concluding Remarks: Paranormal Modal Logic as
Model Building

Following Williamson [24], I have taken model-building as the enterprise of
building hypothetical examples of something, or as providing a (preferably)
mathematical description of one such a thing which might not, in all respects,
correspond to any actual example of it. A model might therefore be both
perfecting-idealizing and simplifying-idealizing; we clearly see these two ideal-
izing aspects present in the high-level and low-level models I introduced.

Let me start by the high-level model. Clearly enough, an inductive agent is
much more than the ridiculously simple description I have made in Section 2.
The characterization I made in terms of a set of beliefs ∆ and a mechanism of
inference Σ leave an absurd number of things out of the analysis. Which kind
of beliefs ∆ has? What exactly are the inferences contained in Σ? How they
interact with other elements which we know are present in a rational agent,
such as emotions, prejudices, moral assessments, etc.? What are their roles in
the interaction that we know a has with other agents?

These questions of course are not answered. And they are deliberately not
answered. It was a conscious choice to describe an example of an inductive
agent which neglects many important aspects of such an agent. It is an ideal-
ization which enormously simplifies the very concept of inductive agent; in fact,
it simplifies it so much that the resulting product is hypothetical in the sense
of being effectively very distant from the real instances of inductive agents we
find in the world.

As I have mentioned in the introductory section, this simplifying-idealizing
aspect of models is really not an option: to cover all aspects of inductive agents
would make the model unfeasible; we have no choice but to leave out relevant
features of the subject-matter.

Besides this, however, there are advantages in offering such a absurdly sim-
ple description of inductive agents. By focusing on just two aspects of such an
agent—a set of beliefs ∆ and a mechanism of inference Σ—we were able through
a quite straightforward reasoning to reach important conclusions. First, that
the conclusions obtained from the application of Σ to ∆ have to be seen ac-
cording to two different approaches. As a consequence of that, the plausibility
label which inductive agent a attaches to such conclusions are really two labels,
one representing a skeptical notion of plausibility and other a credulous notion
of plausibility. Finally, these two plausibility notions have two distinguishing
features: while the first is paracomplete, the second is paraconsistent.

Paranormal logic as a low-level model centers around these three conclu-
sions. It is therefore a model which explores a very tiny, albeit important
aspect of inductive agents. And this is where it lays its merit as a model. By
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isolating a very limited aspect of inductive agents, it is capable of revealing
some of their distinguishing features and pointing out relations that they even-
tually have with other aspects of rational agents. For example, it revealed that
inductive agents internally have two negations, one of them being classical and
other paranormal-modality-dependent, that there is an equivalence in terms of
classical negation between the two plausibility notions (axiom K1), that the
plausibility of ¬α is equivalent to the implausibility of α (K2 and K3), etc.

This has directly to do with Williamson’s claim that direct study of the
model is easier that direct study of the phenomenon itself. However, he at-
tributes that to the “mathematical clarity of the description” (pg. 160, in
[24]).8 But here the fact that it is easier to study the model (reaching, as a
consequence of this, relevant conclusions about the nature of inductive agents)
than to study actual inductive agents comes not only from the mathematical
aspect of the model, but also from this very essential feature of models, that
they are idealizations which enormously simplify the subject-matter.

It might also reveal the relations that exist between inductive agents and
other “avatars” of rational agents, such as epistemic agents and moral agents.
In philosophical logic these agents are modeled, respectively, by epistemic and
deontic logics, which in general are formally structured in accordance with
traditional normal modal logic. The theorems of Subsection 3.3 show that
there is an intimate connection between paranormal modal logic and traditional
normal modal logic. Consequently, there is also an intimate connection in
terms of models between inductive agents and epistemic and moral agents, for
example.

As far as the perfecting-idealization side is concerned, the fragmentation
between different inductive extensions is completely artificial and unreal. That
our inductive agent is aware of such a partition is completely artificial, involving
a kind of cognitive capability that we do not find in real inductive agents. Since
the classification of statements in skeptically and credulously plausible depends
of this fragmentation, this division is also a perfecting-idealization. And see
that my use of the word “aware” is appropriate, for to say that α is skeptically
plausible, for instance, means that for the agent implicit in our language, α
is in the intersection of all extensions. This is of course made explicit in the
semantics of paranormal modal logic.

From the more syntactic and proof-theoretical point of view, our low-level
model also exhibits important aspects of this perfecting-idealizing side of mod-
els. First, it also contains a version of the principle of logical omniscience: if
α! and β logically follows from α, then β!; and if α? and β logically follows
from α, then β?. Second, the very idea that inductive agents are able to dis-

8Here is the full quote: “The mathematical clarity of the description helps make direct
study of the model easier than direct study of the phenomenon itself.” (pg. 160, in [24])
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tinguish between two concepts of plausibility is unreal; perhaps some people
do make such a distinction when reaching inductive conclusions, but certainly
most people do not. I accept that the argumentation given with the help of my
high-level model is convincing enough to show that inductive agents do have
two plausibility notions, but this is an idealizing version of inductive agents.
Third, that inductive agents do see the credulous plausibility of ¬α as imply-
ing the credulous implausibility of α and the skeptical implausibility of α as
implying the skeptical plausibility of ¬α

K2l: (¬α)?→ ¬(α?)

K3r: ¬(α!)→ (¬α)!

is also unreal. Only perfecting-idealized agents have this ability.
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