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Intelligence in current AI research is measured according to designer-assigned tasks

that lack any relevance for an agent itself. As such, tasks and their evaluation reveal a

lot more about our intelligence than the possible intelligence of agents that we design

and evaluate. As a possible first step in remedying this, this article introduces the notion

of “self-concern,” a property of a complex system that describes its tendency to bring

about states that are compatible with its continued self-maintenance. Self-concern, as

argued, is the foundation of the kind of basic intelligence found across all biological

systems, because it reflects any such system’s existential task of continued viability.

This article aims to cautiously progress a few steps closer to a better understanding

of some necessary organisational conditions that are central to self-concern in biological

systems. By emulating these conditions in embodied AI, perhaps something like genuine

self-concern can be implemented in machines, bringing AI one step closer to its original

goal of emulating human-like intelligence.

Keywords: homeostasis, embodied cognition, anticipatory control, artificial intelligence, artificial symbioses,

basal cognition, common fate, goal directed behaviour

INTRODUCTION

Artificial intelligence (AI) was originally described as the project of making a machine behave in
ways that would be called intelligent if a human were so behaving (McCarthy et al., 1955). Central
to this notion of intelligence is the idea of task evaluation. True intelligent behaviour is read off
from an agent’s ability to successfully complete tasks requiring something akin to human cognitive
capacities to be successfully completed.1 AI has generally fallen into two categories that align with
two classes of tasks. The first category is specialised AI, which is designed with the aim of carrying
out and being evaluated with respect to very specific tasks (e.g., playing GO, driving cars, generating
language, etc.).General AI, on the other hand, is designed to carry out a broad domain of tasks that,
at the time of design, are largely unknown (Thórisson et al., 2016). Although there is no agreed
upon notion of intelligence in the AI literature, it is task evaluation, something that is often based
on human psychological metrics that are used to determine whether a performance qualifies as
intelligent or not. The Turing Test is a more general illustrative example of this manner of framing
the concept of intelligence around the completion of tasks that are evaluated using human-based
psychometrics (i.e., an artificial agent is intelligent if it can respond to a series of questions in a
manner that is indistinguishable from responses of a human agent) (Turing, 1950).

1Although “intelligence” is often used to refer to higher cognitive capacities in the literature, in what follows, the terms

“intelligence” and “cognition” will be used synonymously.
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Regardless of whether an AI agent has been designed to
complete specialised tasks or even in the case of general AI,
where tasks might not be fully known when designing the system,
the general domain of tasks must eventually be recognised by
designers to be evaluated. This suggests that tasks and their
evaluation reveal a lot more about our intelligence than the
possible intelligence of agents that we design and evaluate. Man
and Damasio (2019), thus, ask the following important question
regarding the legitimacy of using the completion of designer-
based tasks as a reliable indicator of human-like intelligence:

“Whose goals?” Does an agent that myopically follows orders to

the extent that it endangers itself and compromises its ability to

carry out future orders deserve to be called intelligent?” (p. 447;

author’s emphasis).

An agent, for instance, that is equipped with a deep convolutional
network and is able to correctly classify instances of threatening
dogs when they are present 99% of the time in various
environments but that fails in the capacity to behave in ways that
allow it to avoid being damaged by a threatening dog also seems
to lack something central to basic intelligence. Although such
an agent might continue to complete the “visual” classification
task that it has been given, the fact the completion of that task is
compatible with the agent blindly pursuing its own destruction
is at odds with the intuitive idea that basic intelligent behaviour
is something that in living systems is typically adaptive and
supports self-maintenance.

There is another approach to tasks and intelligence, however.
This alternative approach suggests evaluating intelligence
according to how a system completes tasks that bring about its
own goals. It is becoming increasingly recognised that plants
(Baluška and Mancuso, 2009; Shemesh et al., 2010; Trewavas,
2014; Gagliano et al., 2016; Novoplansky, 2016; Calvo et al.,
2020) and basal systems (Maturana and Varela, 1980; Nakagaki
et al., 2000; Hellingwerf, 2005; Ben Jacob et al., 2006; Lyon,
2006; Van Duijn et al., 2006; Shapiro, 2007; Saigusa et al., 2008;
Baluška and Levin, 2016; Pinto and Mascher, 2016; Reid and
Latty, 2016; Levin, 2019; Bechtel and Bich, 2021; Boussard et al.,
2021; Hanson, 2021; Lyon et al., 2021) display some degree of
intelligence that is expressed in various manners in which they
adapt to the complexity of their environments. Selective pressures
and environmental stresses that challenge both homeostasis and
development are fundamental existential tasks that all biological
systems encounter and must adaptively respond to. Importantly,
remaining in a limited and select range of viability supporting
physiological states is something that every biological system
has a concern for (Jonas, 1966/2001). As such, any biological
system is motivated from its genesis to deal with existential tasks
that are intrinsic to it (Barrett, 2019). A system’s own tasks
are an expression of what Kant called “purposiveness without
purpose” (1790/2007).2 All other tasks are organised around the
task of continued self-maintenance, a task that endows both the

2This is the idea that the worth of a purposive system resides in its own being rather

than a result, the value of which is determined external to that system (Cassirer,

1981).

environment and an organism’s environmental interactions with
meaning from its perspective.

The tendency of a system to bring about states that are
compatible with its continued self-maintenance when perturbed
is what I shall refer to as self-concern. Because self-concern
is underwritten by a system’s ability to measure and track the
evolution of its own physical states and compare these with
encoded optimal states, such concern may be said to reflect a
form of self-reference. That said, self-concern should not be
understood as involving the occasioning of personal-level states
(e.g., beliefs and/or desires of folk-psychology) about the self
or self-awareness. As it is being envisioned here, self-concern
is strictly a subpersonal-level phenomenon, which can diverge
from concern at the personal level (e.g., various systems that
one’s body is composed may slowly fail to track and return
to states that are compatible with one’s continued viability due
to senescence; however, one during this period of development
may be concerned for one’s own survival). Importantly, if it is
assumed that this kind of concern forms the basis of biological
intelligence (something that will later be argued is, in fact, a
reasonable assumption) and that biological intelligence offers a
powerful and revealing lens with which to view intelligence across
the board, then the following question becomes an emphatic
one: how do we go about designing self-concerned AI agents
in a way that sets the stage for basic intelligence to emerge in
such agents?

The aim of this article is to investigate and bring to light
some features of the relationship between intelligence and self-
concern in biological systems in a manner that can be used to
informAI research. Self-concern in biological intelligent systems,
it shall be argued, presupposes some form of embodiment.
It is largely in part due to an environment’s long-term
effects (beneficial or adverse) on a system’s body encountered
through the interface of that body that its environment
comes to have a meaning for that system, a meaning that
is reflected in viability-sustaining behaviour driven by self-
concern. Furthermore, various intelligent adaptive strategies that
contribute to continued metabolic functioning and boundary
regulation, it shall be argued, are tantamount to a series of
solutions to a system’s own intrinsic task (i.e., goal) of continued
self-maintenance. It will be argued that until agents are able
to exhibit something like self-concern on multiple scales of
their embodiment, the kind of specialised and general tasks
used to evaluate AI will continue to be overly theory-laden
reflections of our own intelligence. Otherwise stated, until AI
agents are concerned about their continued self-maintenance,
their behaviour will continue to be exclusively guided by the
processing of syntactical information that has meaning to
us rather than semantic information that is grounded in an
AI agent’s own viability conditions (Kolchinsky and Wolpert,
2018). My aim is to cautiously progress a few steps closer
to a better understanding of some organisational conditions
that are central to self-concern in biological systems. By
emulating these conditions (and most likely some others) in
embodied AI, perhaps something like genuine self-concern
in machines can emerge, bringing AI one step closer to its
original goal.
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The rest of the article is organised as follows: Section
A Biologically Inspired Functional Approach to Intelligence
provides a description of the biologically inspired functional
approach to intelligence and then turns to the central notion
of concern, showing how intelligence and concern are related;
Section Three Necessary Features for Self-Concern in Biological
Systems focuses on three necessary features of concern found
in living systems: “system-environment energetic traffic,” the
system-initiated process of energy accrual and exchange that
allows an agent to defend its systemic boundaries and
maintain its functional organisation via self-production; “dual
information-carrying nature of interfacing bodily elements,”
the property of an embodied system to harvest information
simultaneously about the states of its external environment
and its internal states; “hierarchically structured systems that
share a degree of common fate,” the spatially and temporally
nested organisation of systemic parts, the interaction of which
is mutually supportive on different timescales; Section When
Anticipatory Dynamics Answer to Self-Concern then looks at
how anticipatory behaviour is related to concern and what this
means for designing embodied AI systems in a manner that
will get them closer to being self-concerned adaptive systems.
I conclude with some brief remarks about some various design
challenges and ethical issues that arise when considering self-
concern in AI.

A BIOLOGICALLY INSPIRED FUNCTIONAL

APPROACH TO INTELLIGENCE

Onemanner of restricting the scope of tasks (and task evaluation)
in a way that respects the fact that intelligent behaviour is, at
its core, an adaptive strategy is to deploy a biological functional
approach to the notion of intelligence when designing AI. Such
a biologically inspired approach describes what intelligence does
for an agent as opposed to defining intelligence relative to the
purposes and interests of the designer. For example, Sejnowski
(2018), in describing intelligence, states that it is a general
capacity that “evolved in many species to solve the problems
they faced to survive in their environmental niches” (p. 263).
Intelligence, from this perspective, is seen, first and foremost,
as a solution to a (moving) set of environmental challenges
that a system must adaptively respond to in order to remain
alive3. To be sure, this functional approach does not claim that
intelligence is limited to solving survival-related environmental
problems; rather, it makes a more modest claim that intelligence
is, fundamentally, a strategy for coping with environmental
complexity (Godfrey-Smith, 1996; cf. Lyon, 2006).

Importantly, characterising intelligence in terms of its
evolutionary functionmeans recognising that it is something that
can only be defined in relation to the kind of environment that

3Locating the notion of human intelligence in various abilities to cope with

survival-relevant human environmental tasks, the aim of AI, as it was introduced

by McCarthy et al. (1955), might be reframed as the project of getting machines to

cope with human niches in ways that would be recognized as being analogous to

how humans adapt to the complexity of our niches.

an embodied agent must deal with in order to survive4. Being
embodied and embedded in an environment is a precondition
for cognition and anything that might be accurately deemed
intelligent behaviour (Bateson, 1972; Clark, 1997; Pfeifer and
Bongard, 2006; Pfeifer et al., 2007; Pezzulo et al., 2011; Lara
et al., 2018). As such, differences in agent morphology and niche
will be reflected in different forms of intelligent behaviour. For
example, human intelligence, given the specifics of the human
niche, will be different in form than, say, the intelligence that
allows bees to successfully navigate their bee niches, pursuing
opportunities for action, what Gibson (1966) called “affordances,”
and avoiding potential harm-inducing situations that are specific
to bee-like animals. In characterising biological intelligence
relative to an agent’s continued survival in its environmental
niche, the notion of intelligence is rendered a relational property
as opposed to a capacity that can be understood (or investigated)
in the abstraction of what intelligence is a response to. In
approaching intelligence by way of its biological function, we
glean some insight (with a fair amount of speculation of course)
into conditions under which various forms of intelligence have
been evolutionarily selected for and, hence, why such forms of
intelligence (human or non-human) are present today.

Crucially, by deploying a biologically inspired functional
approach to intelligence, AI is not restricted to using human
intelligent behaviour as a gold standard; although the aim of AI
may be to design agents whose intelligent behaviour is human-
like, a functional approach to intelligence suggests a different
(yet not exclusively so) starting point to the investigation of
intelligence. In taking a “biogenic approach” (Lyon, 2006) and,
thus, recognising cognition’s fundamental role as an evolved
adaptive strategy, one first carries out a detailed investigation of
the simplest instances of intelligent behaviour in basal biological
systems and then works up to the more complex cases of
intelligence in humans. Intelligence is, thus, viewed as something
that reflects an evolutionary continuity among different forms of
life along common phylogenetic branches and across different
branches; this is a recognition that various forms of cognition
may be evolutionarily convergent strategies that have arisen
many times in different phyla much like vision or breathing has
arisen multiple times, taking different forms. Human intelligence
is, thus, not different in kind from that of simple organisms
but different in form (cf. Darwin, 1871). Such a functional
approach to intelligence provides a much-needed conceptual and
methodological basis for throwing light on the fact that there is a
“spectrum of intelligent behaviour found in nature that artificial
systems can learn from” (cf. Webb and Scutt, 2000; Dupeyroux
et al., 2017; Sejnowski, 2018, p. 267).

One apparent snag in deploying a functional approach to
inform the development of AI is this: AI agents, even when
taking the form of embodied agents, are typically fully abiotic

4The famous cyberneticist Bateson (1972), in many ways, auguring the arrival

of embodied and situated cognition, recognized the importance of considering

bodies and environments as parts of cognitive explanation. According to him, the

cognitive system is a unit of explanation, the bounds of which are determined

by information-carrying pathways (i.e., circuits) that cannot be severed without

rendering the explanandum mysterious.
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agents. They are neither subject to heritable mutation nor
does the notion of selective fitness apply to them; they are
neither subject to senescence nor do suffer death. Of course,
evolutionary algorithms might simulate such processes, but the
chosen parameters that define the simulation and the chosen
desiderata used to score fitness in such simulations are just
that, chosen by designers (but see Bongard and Levin, 2021;
Lehman and Stanley, 2011). One of the reasons that is embedded
in an environment might be thought of as a precondition for
intelligent behaviour is the fact that the presence of uncertainty
that is inherent in natural environments has real existential
consequences for systems situated in these environments. Fitness,
which may be construed as an inverse cost function, “is a
concept that only has meaning in the context of a concrete set
of constraints, either from the environment or from the system
being optimised” (Sejnowski, 2018, p. 267). Conceding to all of
this is, however, consistent with holding the claim that basing
the notion of intelligence on adaptation does not place any
actual biological requirements on AI. It is not necessary that an
agent undergoes or partakes in exact processes that are central
to adaptation in living systems; rather, in order for machines to
exhibit intelligence in any manner comparable to the simplest
expressions of biological intelligence (e.g., archaea, bacteria, slime
mould, yeasts, living cells, etc.), it may be the case that they will
have to engage in some processes that are functionally similar to
those that are characteristic of living systems. The presence of
such biologically inspired processes, I shall argue, is the bedrock
on which self-concern in machines might arise.5

Self-Concern in Intelligent Systems
Returning to Man and Damasio’s point above a central aspect
of intelligent behaviour is that the goals of a behaving system
can be said to be that system’s own. Goals may be construed as
monitorable physical states that a system’s continued functioning
depends on and to which a self-organising system tends to
return after perturbation. In living systems, such goals may
be construed as “homeostatic imperatives” (Man and Damasio,
2019), which a system’s self-concern is defined with respect
to; it is a system’s goal of self-maintenance, which endows its
actions and the environment with meaning from its perspective.
Deploying concepts from cybernetic control theory (Wiener,
1948; Ashby, 1952; Conant and Ashby, 1970; Bateson, 1972), self-
concern can be associated with a regulating system’s tendency
to return to an optimal set point range that is consistent with
its continued functioning.6 It is the concern that an agent has
for stabilisation of its physiological states within its viable set
point range that motivates not only the simplest expressions of

5This is particularly telling: if something like adaptivity is assumed to be a

fundamental feature of all intelligent behaviours, then the progress of AI will not

proceed the progress of artificial life (AL) or vice versa; the progress of both the AL

and AI programmes will depend on their marching in lockstep.
6The notion of stable set points borrowed from the cybernetic control theory is a

useful abstraction in the sense that homeostatic equilibria are not stable but shift

across the lifetime of a biological system. Hence, homeostatic set points are more

accurately seen as dynamic or moving equilibria.

intelligent behaviour but also acts as the foundation on which the
most complex forms of intelligent behaviour are grounded.7

Behavioural avenues of self-concern mirror the open-ended
definition of evolution. There are myriad ways that such concern
might be behaviourally expressed, and the update of options
available to mitigate self-concern at any given time is the result of
a system’s continuous dynamic exchange with its environment.
To put it differently, self-concern is the driver of flexible
and evolving behavioural solutions to homeostatic challenges
posed by hostile environments. As such, it reflects the inherent
creativity that some have acknowledged to be central to cognition
and life (Kant, 1790/2007; Goodwin, 1978, 1994).

Although various architectures implementing theories such as
optimal control theory (Berridge and Robinson, 2003; Sterling,
2012), drive reduction theory (Hull, 1943; Konidaris and Barto,
2006), and homeostatic reinforcement learning (Sutton and
Barto, 1998; Oudeyer and Kaplan, 2007; Keramati and Gutkin,
2014) have placed homeostatic maintenance state front and
centre as a driver of intelligent behaviour in agents, self-concern
fails to be directly addressed in current AI research.8 Part of this
may be due to the fact that the relationship between self-concern
and intelligent behaviour in biological systems is, itself, poorly
understood. One of the aims of this article is to correct this;
integral to the development of basic intelligence in AI, the kind
that is ubiquitous in the living world, is understanding the details
of self-concern in biological systems and designing agents that
can engage in anticipatory homeostatic error correction fuelled
by functionally similar machine self-concern. The next section
offers a possible starting point for such a biologically inspired
approach to embodied AI.

THREE NECESSARY FEATURES FOR

SELF-CONCERN IN BIOLOGICAL

SYSTEMS

In what follows, I shall present three related features that I will
argue are necessary (but not sufficient) for the emergence of
self-concern in biological systems. These features are:

• Controlled system-environment energy traffic.
• Dual information-carrying nature of interfacing

bodily elements.
• The common fate of hierarchically structured systems.

It is my hope that by making these features explicit, they may
be instructive for the designing and improvement of already
existing designs of biologically inspired agents, advancing the
field of embodied AI one step closer towards the emergence of
self-concern in artificial agents.

7The fact that homeostasis is emphasized in this article as a basis for self-concern,

however, does not imply that the process of heterostasis (i.e., exploring and seeking

high information gain via self-perturbation) is not a significant driver of behaviour

in self-concerned living systems.
8Oudeyer and Kaplan (2007) focus on the development of models of “intrinsic

motivation” within the framework of reinforcement learning, and there may be

some general overlap with what I am calling self-concern.

Frontiers in Neurorobotics | www.frontiersin.org 4 April 2022 | Volume 16 | Article 857614

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Sims Self-Concern Across the Scales

Controlled System-Environment Energy

Traffic
The first feature that I will argue is central to self-concern
in biological systems, controlled system-environment energy
traffic. The specific form that this traffic takes in biological
systems occurs in the service of metabolism, which is “the
set of life-sustaining chemical reactions within living cells”
(Lane, 2016, p. 295). The two types of reaction characteristic
of metabolism across all life forms are “anabolic reactions”
(i.e., storing energy in the form of synthesised adenosine
triphosphate, ATP) and “catabolic reactions” (i.e., breaking
down of ATP into ADP + Pto release energy for work). It
is through the acquisition of resources (e.g., nutrients) that
living systems, via the combination of these reactions, are able
to maintain the physiological processes which underwrite their
ability to remain far from thermodynamic equilibrium with
their environments, temporarily flouting the second law of
thermodynamics. For biotic self-organising systems, remaining
far from thermodynamic equilibrium means remaining alive
(Nicolis and Prigogine, 1977; Friston, 2012, 2019; Demirel, 2014).
A system, by harvesting resources from its local environment,
can fuel the metabolic processes that allow it to (a) generate
itself materially (e.g., protein synthesis) and (b) maintain its
organisation in the face of environmental perturbation and
despite continuous material turnover; these are the respective
processes of “self-production” and “self-maintenance,” which
form the basis of Maturana and Varela’s (1987) notion of
“autopoiesis” (see also Gánti, 2003, Chemoton model).

It is the sense in which a system both actively pursues
resources and actively directs how these resources are used (i.e.,
how self-production and self-maintenance play out) that system-
environment energy traffic is controlled (cf. Bechtel and Bich,
2021). Why might the process of controlled energic traffic be
required for self-concern? Phenomenologist Hans Jonas provides
a hint when he writes:

“In order to change matter, the living form must have matter at

its disposal, and it finds it outside of itself, in the foreign ‘world.’

Thereby life is turned outward and towards the world in a peculiar

relatedness of dependence and possibility. It wants to go out to

where its means of satisfaction lie: its self-concern, active in the

acquisition of new matter, is essential openness for the encounter

of outer being.” (Jonas, 1966/2001, p. 84).

The core idea that Jonas so eloquently expresses is that one
of the directions of energy traffic that metabolism presupposes
(taking in raw materials as a source of energy) places any
living system in a relationship of need with its milieu; this
need fundamentally arises from the fact that living systems
are subject to constant material turnover that can only occur
when that system acquires new resources. As such, this need
implies a concern on the part of the behaving system for
fulfilling its metabolic demands. Taking this into consideration,
we may say that controlled system-environment energy traffic
presupposes certain dependence on the environment on the
part of the traffic controlling system. This dependence suggests
that these systems that seek out sources of energy that they,

in turn (via metabolism), use for work have a basic concern
for their continued existence. Such is the primitive goal that
every living system is concerned to satisfy, a goal that intelligent
behaviour answers to and that provides the metabolising
energy trafficking system with a basic perspective on the world
(Lyon, 2006; Lyon et al., 2021). If this claim is in the right
ballpark, then how may it be used to inform the development
of AI?

From what has been said, we may glean this: if an agent
altogether lacks the need for system-environment energy traffic
that allows it to both maintain and produce itself to some
degree, then that agent also lacks the capacity to exhibit basic
concern. Such an agent fails to be autonomous (cf. Kauffman,
2000). Any behaviour that may be usefully ascribed to it, no
matter how intelligent such an agent may be judged to be,
fails to be its behaviour, because it does not stem from or,
importantly, answer to its own concern. To be sure, both
biological systems and machines require energy to do useful
work in any capacity. However, and this difference is telling,
biological systems both constantly monitor their energy levels
across different spatial and temporal scales and actively behave in
ways to fulfil their energetic needs. Such behaviour is not merely
foraging for sources of usable energy but also generating the
very materials and processes that allow for such energy foraging
to continue to occur. Moreover, although to different degrees,
each nested constituent part of a biological system, when all
is going well, both contributes to and benefits from controlled
energy traffic. This multi-scale concern reflects a basic “self-
similarity” that is unique (at least for now) to the hierarchical
organisation of biological systems (Bongard and Levin, 2021)
(more will be said about this below). It is for this reason that an
individual’s biological parts (i.e., cell, organs, etc.), each of which
takes part in its own energetic processing (i.e., monitoring and
regulation), allow for distributed (decentralised) control at a very
fundamental level9.

This brings us to the following question: could a machine
ever truly engage in controlled system-environment energy traffic
with its environment? Sure, but probably not in the samemanner
that an organism can. Metabolism occurs on the nanoscale where
“there is spontaneous motion, but there is enough structure and
the relations between forces are such that a lot can happen,
by biassing tendencies in random walks” (Godfrey-Smith, 2016,
p. 5). The rapid development of nanobots (Berger, 2016;
Service, 2016; Linke et al., 2020) and engineered nanomaterials
(Galetti et al., 2019) suggests that operation on the nanoscale
itself, however, fails to present an uncrossable boundary to

9One dimension in which system-environment energy traffic might vary in degree

is with respect to how much each constituent part of a system both contributes

to and relies on the energy traffic of the system (s) in which it is nested or

coupled to. For example, if system-environment energy traffic is limited to only one

nested element of a larger nesting system, then that larger system might satisfy the

requirement of system-environment energy traffic but only to a minimal degree,

whereas if each constituent and nested element of a larger system contributes

to and relies on the energy traffic of all other elements (to varying degrees), the

supraordinate system has a high degree of system-environment energy traffic.

Quantifying this dimension of system-environment energy traffic falls out of the

scope of this paper.
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imitating energy traffic in machines (but see Nicholson, 2020).10

Furthermore, ongoing advancements in self-replicating robots
(for a detailed review, see Moses and Chirikjian, 2020) may
be a promising starting point for the development of a basic
form of artificial self-production.11 It is a starting point because
there is a notable difference between what might roughly be self-
replication in machines and self-producing machines; whereas
the former involves the use of supplied raw building materials to
produce other machines that are copies of themselves, the latter
involves the continuous generation (synthesis) of a system’s own
parts. To date, self-replicating robots are still limited to using
supplied resources and cannot self-produce these materials from
the ground up (Schranz et al., 2020); in other words, they lack
the kind of “operational closure” that is unique to autonomous
autopoietic systems (Maturana and Varela, 1980).12

One thing, however, that is key to keep in mind is that a
system that is not subject to material degeneration (at least on
short timescales) is a system that does not require (artificial) self-
production. In other words, when an agent can both undergo
substantial wear and tear due to its behaviour and environmental
perturbations and monitor its own material degeneration,
then harvesting energy from environmental resources takes
on a particular value for the system; it is a manner of
contributing to its own persistence across material turnover.
Such turnover is something that is ultimately linked to the
materiality of an embodied agent. For this reason, a soft
robotic implementation may be invaluable in providing some
implementational conditions for material turnover to occur
and, hence, provide a need for artificial self-production. The
production and development of microbial fuel cells (MFCs) in
robots (Ieropoulos et al., 2005; Philamore et al., 2016) seem
to be a promising manner of getting energetically autonomous
embodied AI off the ground via biological metabolism (more on
this below). MFCs provide systems that use themwith conditions
for material turnover and a need for self-production (at the level
of microbes in the fuel cell).

Does it matter that “artificial metabolism” in machines will
most likely be quite different from biological metabolism when
it comes to being the fundamental of an agent’s concern? I would
like to suggest that such a question should not be addressed prior
to the advent of artificial metabolism in agents. If it is telling of
anything, to decide beforehand reveals nothing more than a deep
commitment to the use of a priori intuitions, intuitions that may
or may not be hostage to a deeply ingrained “biocentrism” when
it comes to metabolism and/or self-concern (cf. Meincke, 2018).

Let us now turn to the second necessary feature of self-concern
in biological systems, which, I will argue, is also a prerequisite for
basic intelligence in embodied AI.

10Nanobots, however, are programmed to do specific tasks and, as such, they differ,

at least currently, from, say, autonomous protein motors in biological systems

(Linke et al., 2020).
11The theoretical beginnings of the current research programme of self-replicating

machines may be traced back to Von Neumann’s (1966) logical models of self-

reproducing automata.
12Xenobots (Kriegman et al., 2020), algorithmically designed collections of frog

skin and heart cells that have the capacity to heal themselves, may be a possible

exception to this.

Dual Information-Carrying Nature of

Interfacing Bodily Elements
Even at the most basal level, biological self-concern relies on
a system having multiple sources of feedback from its internal
and external environments. It is only through the evaluation
of such feedback that a system’s behaviour may be directed in
one way or another to return it to states that are compatible
with its continued existence (i.e., its set-point values). Self-
concern, although a feature of an entire system, is something
that each component part of a biological system contributes to
via the registration of information regarding its current state
or condition and the state of the environment that it interacts
with. Of particular importance are the states of components that
causally interface the system with its external milieu.

From bacteria to humans, the presence of some form of
the membrane that separates a living system from its external
environment is ubiquitous. For example, Escherichia coli has a cell
membrane that acts as a boundary between its cytoplasm and the
external (terrestrial or fluid) medium, the dynamics of which the
bacterium must behaviourally adapt to. The cell membrane and
the flagellar motor machinery that it houses not only transmit
external mechanical forces (tension, compression, and shear)
to the internal components of the cell (Dufrêne and Persat,
2020), but multiple kinds of transmembrane receptor proteins
and dedicated sensors also allow environmental feedback in
the form of chemical gradients (Macnab and Koshland, 1972),
light (Fraikina et al., 2015), and mechanical force (Dufrêne and
Persat, 2020). Importantly, it is via the effects of environmental
stimuli on the cell membrane and other environment interfacing
components (e.g., flagella) that various internal biochemical
cascades arise that contribute to the bacteria’s ability to cope with
their environmental dynamics. Were this interface to become
non-responsive, the E. coli’s responses to its environment would
in effect become random and ineffective, and thus the bacterium
would soon cease to be. Like the simple E. coli, all living systems’
membranes act as a conduit for proximal information about their
environment. This proximal information is relevant to the notion
of concern because its arising presupposes that some external
force or stimulus has made a sensory contact with the organism
already by way of inducing a change in the state of themembrane.

Of particular importance is the presence of mechano-
stimulation, because it requires direct contact with themembrane
or other bodily components that interface with the environment
(e.g., hair, feathers, antennae, flagella, cilia, etc.). Proximal
stimulus detection is not only informative about the states
of the world but also the states of the system itself. If an
abnormally high amount of mechanical stress is exerted upon
the plasma membrane of a eukaryotic cell, it would result
in membrane breach and that cell’s likely death (Cooper and
McNeil, 2015). Less dramatically, too much concentrated friction
against a restricted area of the human epidermis (e.g., the
skin on the tip of the finger) would result in damage to the
epidermal membrane itself. Thus, there is a dual information-
carrying nature that the interfacing bodily elements of biological
systems have: they carry information about the conditions of the
environment and the condition of the very system to which these
interfacing elements belong. This dual information-carrying
nature of interfacing bodily elements, I would like to argue, is
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a second necessary feature for self-concern in biological systems;
self-concern requires a structure through which multiple sources
of environmental feedback are integrated and causally related to
the condition of the system.

This feature places some important constraints on the
materiality of embodied agents, a constraint that can be read-
off of direct observation on how such interfacing bodily elements
are implemented in biological systems. One observation is that
the kinds of membranes that separate a biological system from
its environment are deformable; their structure is responsive to
changes in applied external and internal forces (tension, friction,
and stress). Deformation of a material substrate not only implies
a change in environmental conditions (forces applied) but also
change in the structural condition of the deformed membrane
and the system that possesses such membrane.

Another observation is that the kinds of membranes and
interface components found in livings systems often exhibit
material elasticity (i.e., having low elastic modulus). This
condition is tightly (yet contingently) related to the property
of deformability; after structural deformation due to change in
environmental conditions (e.g., brief exertion of compressive
force), materials that things like cell membranes or epidermal
membranes are made of allowing for a system to return to
its original structure. In other words, the materials allow for
recovery from deformation. This is relevant for any system that
uses information about the environment to guide its behaviour
because if such a system not only detects deformation but also
how long it takes to elastically recover from deformation, that
system can use the time difference between deformation and
recovery to direct its behaviour and measure the states of its
own responsiveness, something that may be informative about
damage; whereas a short (or regular) recovery time suggests
that the condition of the material itself is suited for optimal
performance, a long (or irregular) recovery time suggests that
the material has perhaps a defect or structurally damaged and
unsuitable for optimal performance.

A third and last observation regarding the kinds of
membranes and interface components that separate a biological
system from its environment is that they exhibit local
transmission of causal effects. This is just to say that affecting one
concentrated area in a membrane or other interface component
is likely to also affect adjacent areas. This property is, of course,
related to that of being deformable and elastic. For instance,
dropping a weight on a taught sheet of rubber stretched across
a frame does not only deform the area of the sheet where the
weight meets the rubber but also increases the tension on the
areas surrounding weight. Similarly, exerting mechanical force
on a biological membrane does not only deform the point of
contact but also affects the adjacent areas. This property of
local transmission is important for biological systems, because
it allows for information about the environment and the self to
be distributed locally, and, hence, contributes to the biological
system’s ability to use different sources of information to monitor
itself (its own current bodily conditions). To be sure, the property
of local transmission that accompanies both elasticity and
deformability suggests that any neat separation of exteroceptive
and interoceptive (and proprioceptive) information may be an

artificial one (see Gibson, 1966 for a similar remark about
exteroception and proprioception).13

These three material properties characteristic of dual
information-carrying interfacing bodily elements imply
something crucial about the structure of an embodied AI if its
structure is to support the emergence of self-concern, namely, it
is (partly) due to the fact that biological systems are composed of
biotic structures made of materials that are largely deformable,
elastic, and transmit local causal effects that such systems are
subject to damage that occurs on the timescale of living systems.
This timescale of damage can be contrasted to the timescale of
damage that would be sustained by a structure composed of
non-deformable, rigid materials. Many of our longest-standing
architectural constructions (e.g., pyramids and the Colosseum of
Rome) have been constructed of rigid materials such as limestone
and cement, and our more recent architectural constructions
add the strength of steel. The durability of these materials is
related to their rigidity (e.g., their high tensile strength and
compressive strength). The kind of damage that they sustain
takes the form of long-timescale processes of metal corrosion,
aggregate expansion, and calcium and lime leaching, to name a
few. Because of the deformable, elastic, and local transmission
properties of materials that largely make up living bodies,
the damage that things like cell membranes sustain might
take the form of post elastic limit micro-tears or enzymatic
decomposition (e.g., being digested by an amoeba). Since such
damage is detectable and occurs at fast timescales (i.e., it is not
due to being exposed to constant environmental conditions) it
allows living systems to behave in ways that minimise future
damage, fleeing the situation if motile, or nutating towards better
conditions if sessile.14

Material properties that underwrite the ability of interfacing
bodily elements to carry information about the world and the
system itself are largely captured with new technologies of the
rapidly developing field of soft robotics (Hawkes et al., 2017;
Booth et al., 2018; Shih et al., 2019, 2020; Thuruthel et al., 2021;
Hardman et al., 2022). Whereas traditional robotics, focusing
upon task precision and strength in controlled environments,

13Although I have focused on membranes and their properties that are typical

to living systems that exhibit dual information carrying, having a membrane

is not a necessary requirement for dual information carrying to be physically

instantiated. As long as there are distributed sensing/actuation devices that can

harness and leverage spatially relative information, dual information carrying can

be instantiated by a network of elements that are not, as a whole, enveloped by

a single membrane. In such cases, the boundary that is instantiated is one of

dynamically coupled causal influence. For example, a swarm of robots need not

itself have a membrane to exhibit dual information carrying. All that is required

is that the behaviour of each component element of the swarm is a function of

the sensing/actuation parameters of the others. In such a case, the coupled swarm

will exhibit dual information carrying across its network of distributed swarm

members, each with their own sensing/actuation devices that contribute to an

emerging dynamically bounded system.
14This is not to suggest that living systems are not subject to slow and gradual

decomposing via oxidation reactions; they are if they are aerobic respiring systems

or they live in oxygen-rich environments. Such damage, however, being the result

of a constant environmental condition, fails to be something that an organism can

escape from; it is merely a condition on aerobic life. As such, although complex

organisms like us are aware of the slow damage that oxidation causes, it is not

something that we are concerned with given it is a condition on our aerobic life.
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have used (and still use!) rigid metal links (i.e., joints) and
electric non-distributed actuators, soft robotics focuses on
the adaptability of robots to the real world and complex
environments, and, as such, uses synthetic compliant materials
that can undergo deformation along with distributed actuators.
In addition to this, conductive piezoresistive strain sensor
fibres have recently been incorporated into the self-healing
deformable material, allowing for the control system to sense
damage (Georgopoulou et al., 2021) and proprioceptive feedback
(Truby et al., 2020).15 This feature seems to accurately map
onto the material properties (deformability, elasticity, and local
transmission of causal effects), which, as I have argued, are
required for implementing interfacing bodily elements that carry
information about both the environment and the agent. This
being said, were such soft robots able to measure their own
energetic conditions and actively (or proactively) engage in
energy-sourcing and material exchange—the kind which we
have already seen is suggested by controlled system-environment
energy traffic, such robots would indeed be one step closer to
the realisation of agents with self-concern (cf. Man and Damasio,
2019).

Let us nowmove on to the notion of a hierarchically structured
organisation; the third and last feature that I will argue is
necessary for concern in biological systems.

Common Fate of Hierarchically Structured

Systems
Living systems are self-organising complex adaptive systems.
This means that they can maintain themselves in states that are
far from thermodynamic equilibrium, temporarily avoiding the
dissipation that inevitably results from the tendency for entropy
to increase (Nicolis and Prigogine, 1977; Friston, 2012, 2019;
Demirel, 2014). One central property of complex systems is
that they are hierarchically organised (Simon, 1962). We may
understand the notion of a hierarchical system in terms of
“containment” where a larger system contains smaller subsystems
nested within it (McShea, 2012). This is to say that such systems
contain “interrelated subsystems, each of the latter being, in
turn, hierarchic in structure until we reach some lowest level
of elementary system” (Simon, 1962, p. 468).16 Multicellular
organisms, for example, contain living organs and tissues that, in
turn, contain living cells. Although the hierarchical organisation
of complex systems more generally may be construed in terms
of intensity of interactions (i.e., who interacts with whom and
how often), the form that the intensity of interaction takes in the
hierarchical organisation of both biological and physical systems
is that of “relative spatial propinquity” (Simon, 1962, p. 469).

Hierarchical organisation implies differences in both
relative timescales and behavioural constraints; faster timescale

15The “Octobot” (Wehner et al., 2016) is a striking example of an entirely soft robot

that contains no electronics. Much like signal processing in slime mould, the signal

processing in the Octobot occurs via oscillations and fluid transport (microfluidic

logic). Locomotion, signal processing, and decomposition of onboard fuel supply

are closely connected!
16Of course, the identification of a lowest level is something that is, itself, an open

question of scientific investigation and a matter of contention. However, for the

purposes of this article, we can set the question of what such a level might be aside.

behaviour of nested subsystems is constrained by slower
timescale behaviour of systems in which they are nested.
Roughly, system Y is constrained by another system, X, just in
case the latter’s features act as order parameters for the former,
reducing the degrees of freedom of Y.17 As such, we may say that
the faster timescale dynamics of some nested system is “enslaved”
to the slower global dynamics of the nesting system, making the
former subordinate to the latter (Haken, 1985). For instance,
the homeostatic condition of a liver (roughly, a collection of
differentiated cells and biochemical cell interactions) may largely
constrain the homeostatic state of any individual cell contained
in the collection, and, simultaneously, the individual cells
contribute to the maintenance of the liver that constrains them.
Crucially, the kind of constraint relations that are governed by
a biological system’s homeostatic imperatives, unlike those in
systems that do not answer to system-wide self-maintenance,
means that “certain differences in the part have an informational
effect upon the larger unit, and vice versa” (Bateson, 1972, p.
324). This is just to say that for both nested and nesting biological
systems, a cause for homeostatic compensation at either of their
respective levels is semantic information (Kolchinsky and
Wolpert, 2018).

How is hierarchical organisation related to self-concern?
To answer this question, let us first consider the fact that
in multicellular biological systems every nested subordinate
(bounded) system within a larger superordinate system is, itself,
adaptive and “participates in its own self-maintenance, sensing
and signalling the state of its life process” (Man and Damasio,
2019, p. 447). This suggests that self-concern is not merely a
property of a superordinate system, but that it is something
that arises at each nested level of biological organisation to
varying degrees. Just as organisms adaptively respond to external
environmental challenges (e.g., stresses) they face to avoid
dyshomeostasis, organs and tissues modify their dynamics in
ways that are adaptive to the challenging conditions of their body
environment; similarly, bodily cells via variable gene expression
biochemically respond to the challenges of their organ or tissue
environments (Pezzulo and Levin, 2016; Levin, 2019).18

What about prokaryotic organisms that do not have organelles
and yet still exhibit self-concern? Although elements within
prokaryotes (e.g., microtubules and actin filaments of the
cytoskeleton, etc.) may not exhibit self-concern themselves,
something that follows from the fact that such parts fail to satisfy
two necessary conditions for the self-concern proposed above,
it is the dynamics occurring across different scales constrained
by the temporal-spatial organisation of such elements that
contribute to self-concern at the level of the organism.
Importantly, these element dynamics may be characterised as

17In synergetics (Haken, 1985), an “order parameter” refers to ameasure of a global

system’s slowmacroscale dynamics that determines the fast dynamics ofmicroscale

component systems by reduction of the degrees of freedom of the latter.
18Parisi and Petrosino (2010) were early to stress how robotics could be

instrumental for understanding how organisms adapt to both “external worlds”

and “internal worlds.” Conversely but in a similar spirit, I am suggesting

that understanding how hierarchically nested/nesting biological systems adapt

simultaneously to both internal and external worlds is crucial for the development

of concern in biologically inspired robots.
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serving a common fate; it is by contributing to the continued
homeostatic maintenance of the whole organism that each
element brings about the continued production of itself via the
material turnaround that is insured by the continued functioning
of the organism.

With these considerations in mind, I would like to suggest
that self-concern is a system-level property that rests on there
being a common fate of both the hierarchically nested parts and
the nesting (i.e., constraining) system.19 Without some degree
of common fate being respected at relatively lower levels of
hierarchical organisation, self-concern at higher levels is not
possible. Imagine the rather brutal example that tomorrow every
cell in your body would begin competing for resources with one
another; this would be tantamount to each cell behaving as a
unicellular organism (ignoring the presence of biofilms for the
sake of argument!). Although each of these cells might exhibit
self-concern in much the same manner that prokaryotes do,
self-concern would fail to arise at the level of either the organ
or the organism. Each cell would fail to contribute to the self-
maintenance of your organs (or you at the organismic level)
because of the absence of common cell fate; the viability of
one cell in such a brutal case may indeed be largely dependent
on bringing about conditions that would adversely affect the
homeostasis of all others. Thus, self-concern in biological systems
at the level of nesting (constraining) system requires that nested
systems share some degree of common fate with nesting systems.

If the common fate of hierarchically organised systems is
a requirement on biological self-concern, and such concern is
a requirement on biological intelligent behaviour, then using
the biological case as a model for agents, it seems that some
degree of hierarchically organised systems exhibiting common
fate will be a necessary feature for embodied AI if something even
slightly akin to basic biological intelligence can be exhibited by
AI. How can the notion of the common fate of hierarchically
organised systems inform embodied AI more specifically?20

One very general suggestion is to explore the endosymbiotic
relationship and design artificial endosymbiotic systems. The
idea is to somehow elicit self-concern at the level of global
nesting-system from both (a) the interactivity of the global
system and a simple nested system, which have both been
programmed to emulate a form of mutualism (i.e., to use and
contribute to one another’s continued self-maintenance) and
(b) the agent-environment energy (metabolic) traffic that the
global system is forced to engage in to keep the endosymbiont
and itself functioning. Treating the endosymbiont agent as the
lower, faster scale subordinate system and the host agent as the
slower scale superordinate system, the hierarchical organisation
of these systems sharing a degree of common fate, amongst some
of the other features that we have already touched upon, may

19The notion of common fate was originally introduced by Wilson and Sober

(1989) in the context of providing a characterisation of biological individuals.
20It should be emphasised that the kind of nested hierarchical organisation of

elements with common fate that I am arguing about is fundamental to (self)

concerned systems involved in concrete physical implementation rather than

merely a hierarchically organised network (architecture) that plays the role of a

control system. Many thanks to Christian Oettmeier for pushing me to clarify this

point.

support a self-organising autonomous system, a system that by
bootstrapping21 can cast away its scaffolding, replacing the self-
maintenance tasks extrinsically put in place by designers with
tasks that arise (i.e., are discovered) from interactions between
the parts, tasks that reflect an intrinsic concern on the part of the
whole system for its own self-maintenance.

Recent developments in swarm robotics may prove to be a
promising avenue for testing this hypothesis (see Christensen
et al., 2008; Liu and Winfield, 2009 for symbiotic-inspired robot
swarms). Here, interaction among robots has taken the form
of continuous (Bezzo et al., 2014) or pulse-coupled oscillatory
signals (Barcis et al., 2019), whose alignment of oscillatory
frequency and/or phase alignment allow members of a swarm
to behave synchronously (Schranz et al., 2020). If swarm
robots were to implement the kind of hierarchical common
fate dynamics, which, as I have argued, is required for self-
concern, then the interaction among themmust not only take the
form of information-sharing but must also involve behavioural
interaction by exerting reciprocal mechanical forces that have
consequences on the continued functioning of both the nested
and nesting parts.

Another research area that may lend itself to the development
of agents with common fate at various hierarchical levels of
an organisation is that of hybrid associations composed of
both machines and microorganisms (Ieropoulos et al., 2005;
Philamore et al., 2016; Tsompanas et al., 2021). For example,
anaerobic anodophile bacteria, when used in a microbial fuel cell
(MFC), will transfer electrons to the MFC’s electron-accepting
anode electrode, which in turn supplies an MFC housing
robot with electrical energy (Habermann and Pommer, 1991;
Ieropolous et al., 2004).22 If such an MFC housing robot behaves
so as to remain in (or return to) environments that are rich in
kinds of substances that MFC-inhabiting bacteria can metabolise
(e.g., sulphate, acetate, glucose), then its doing so mutually
supports the survival of the bacteria and its own continued
energetic functioning. Further development of this kind of
(biotic/abiotic) artificial symbiosis between nested bacteria and
a nesting machine, if what has been argued here is correct,
may be one crucial method of bringing about self-concern in
AI, namely, bacteria’s self-concern may be the source of the
emergence of self-concern in the larger hierarchically organised
bacteria-machine system.

One important takeaway from this section is this: the fact that
self-concern has not yet been implemented machines (Man and
Damasio, 2019, p. 447) does not suggest that such self-concern
cannot find expression in machines or organism-machine
associations. If self-concern is a requirement for basic intelligence
across the board, then we should expect a concentrated effort on
the part of future research to develop hierarchically organised
systems that implement self-concern across scales.

21The term “bootstrapping” is used in a general manner here to denote a “process

that automatically increases in complexity” (Moses and Chirikjian, 2020, p. 9)

rather than the specific notion of bootstrapping deployed in statistics.
22MFCs are transducers that are given a biochemical energy source and convert it

to electrical energy; they can, thus, power robots in which they are located.
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WHEN ANTICIPATORY DYNAMICS

ANSWER TO SELF-CONCERN

With three necessary features of biological self-concern on hand,
I now want to consider the relationship between self-concern
and intelligence by way of a particular capacity that is central
to cognition: anticipatory behaviour. My argument in this final
section will take the following form: anticipatory behaviour
is often recognised as indicative of intelligence; an important
aspect of intelligent anticipatory behaviour (in contrast to mere
anticipatory behaviour) is that it is possible for such behaviour
to answer to a system’s long-term homeostasis; a system’s
behaviour that answers to its long-term homeostatic stability is
behaviour that answers to that system’s self-concern; therefore,
an important aspect of intelligent anticipatory behaviour is that
it is possible for such behaviour to answer to self-concern. If
one effective way of bringing embodied AI closer to emulating
the intelligence found in even the most basal of living systems
is to use aspects of biological intelligence to inform AI design,
then designing agents, the anticipatory behaviour of which could
answer to self-concern, may be one manner of bringing AI
closer to emulating the kind of intelligence observed in the
biological world.

It has been widely acknowledged that one way of expressing
intelligence in biological systems is by an exhibition of
anticipatory behaviour (Bartlett, 1932; Craik, 1943; Piaget, 1970;
Neisser, 1976; Drescher, 1991; Arbib, 1992; Riegler, 2001; Grush,
2004; Castelfranchi, 2005; Lyon, 2006; Bar, 2007; Pezzulo,
2008; Bickhard, 2016; Nasuto and Hayashi, 2016; Levin, 2019;
Kiverstein and Sims, 2021; Sims, 2021). Anticipatory behaviour
may be generally characterised as a behaviour that allows for a
system to respond to yet-to-be encountered changes in external
or internal environmental states as a function of prior states that
the system has encountered. This characterisation throws light
on one reason why anticipatory behaviour is considered as an
expression of intelligence: it involves deploying some form of
memory and learning (or model acquisition more generally) to
bias behaviour towards a system-preferred outcome; hence, it
involves some form of information processing. Such behaviour
is orchestrated in a manner that is dependent on internal states
that have a certain degree of independence or detachment from
current streams of sensory information (Pezzulo, 2008). Internal
states may be generally construed as constituting a system’s
“internal model” that captures environmental dynamics and the
effects of its actions on its environment (Neisser, 1976; Rosen,
1985/2012; Pezzulo, 2008; Friston, 2012; Pezzulo and Levin, 2016;
Schulkin and Sterling, 2019).

Anticipatory behaviour, when all goes well, delivers

preferred behavioural outcomes. Such outcomes are relative

to physiological states that a system should visit given both its

phenotype and the form of metabolic redox machinery that its
phenotype serves (i.e., kinds of donors and acceptors a system

implements to fuel proton chain reactions to drive catabolism

of ATP). A preferred behavioural outcome for E. coli, which

metabolises glucose, is encountering high concentrations of

glucose in its environment. On the other hand, a preferred
behavioural outcome for a sun-loving plant such as Portulaca
oleracea, which requires photosynthetic light to effectively

convert H2O and CO2 into sugars, is encountering the presence
of photosynthetic light. It is because preferences exhibit a
high degree of stability and can act as reference points for
long-term homeostatic supporting behaviour in the face of
environmental flux (i.e., set-point values) that preferences
themselves can be understood as (partly) constitutive of a
system’s internal model. Recall that long-term homeostasis is
an intrinsic existential goal in all biological systems; as such, a
system’s behaviour that answers to its long-term homeostasis is
a behaviour that answers to that system’s self-concern (Jonas,
1966/2001). It is, thus, the ability for anticipatory behaviour
to be driven by a system’s concern for its own continued
stability that qualifies such behaviour as intelligent at its most
fundamental level. For example, a hypothetical system that
only behaves anticipatorily, bringing about outcomes that
are irrelevant to its continued survival, would certainly fail
to survive very long; this would be because of the fact that
no behaviour comes without some metabolic cost, and that
regularly engaging in anticipatory behaviour that brings about
expected sensory or behavioural outcomes is consistent with
regularly bringing about maladaptive conditions. The regular
and repeated proactive jumping of a mouse to the exact next
location where a snake predator will strike falls short on
any account of being an example of intelligent behaviour.
Such a mouse, despite the accuracy of its predictions, is a
dead mouse.

There is an objection waiting in the wings, which may
be posed as follows: certainly, an elaborately planned suicide
can be an exhibition of intelligence, and such a plan neither
answers to long-term homeostasis nor self-concern on the part
of the organism! This counterexample can only go through,
however, if the claim was being made that all intelligent
anticipatory behaviour must answer to a system’s self-concern.
The claim that I am making, however, is only that in order
for some anticipatory behaviour in a biological system to
qualify as intelligent, it must be possible for such behaviour
to answer to self-concern grounded in the continued long-
term homeostasis of that system.23 In other words, if a system’s
anticipatory behaviour could not, in principle, be influenced
by its homeostatic norms, then such behaviour, although it
is anticipatory, fails to exhibit the form of intelligence that
is typical of biological anticipatory behaviour. Hence, even
though an elaborately planned suicide results in loss of life
and dyshomeostasis, it is the type of behaviour that could,
in fact, answer to the maintenance of long-term homeostatic
stability. On such an occasion, however, it simply fails to
do so.

There have been a number of recent cognitive theories and
computational models that have taken into account the role of
anticipation for intelligent behaviour and that have been used to
inform cognitive robotic technologies (see Nasuto and Hayashi,
2016 for an overview).24One increasingly popular process

23I am concerned here with nomological possibility and not logical possibility.
24The implementation of anticipatory dynamics, of course, is not new. In optimal

control theory, forward models (i.e., internal models that generate predictions

of the sensory consequences of motor commands) have been used at least since

Jordan and Rumelhart (1992).
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theory that has been used to formulate specific anticipation-
driven cognitive architectures is active inference (Friston et al.,
2009; Pezzulo et al., 2015; Morville et al., 2018; Baltieri and
Buckley, 2019; Corcoran et al., 2020; Millidge, 2020). This
theory, which was originally applied to brain dynamics, casts
perception, action, and learning in terms of a Bayesian inference
problem-and-error correction. In active inference, agents are
endowed with prior beliefs that they will frequent some sensory
states more than others, and these priors reflect an agent’s
homeostatic range. Unlike rewards in classical reinforcement
learning, which are received from the environment, priors in
active inference agents are internal states of the agent that can
remain stable across environments and, hence, in this sense
may be construed as intrinsic to the agent (Friston et al.,
2015). Similarly, Keramati and Gutkin’s (2014) homeostatic
reinforcement learning model aims to make sense of how
rewarding behavioural outcome values are computed as a
function of internal states and estimate dyshomeostasis reduction
in an outcome.

Intelligent anticipatory behaviour in AI requires that it is
possible for behaviour to answer to an agent’s own intrinsic
homeostatic goals; such behaviour is grounded in self-concern.
Whether or not anticipatory architectures such as active
inference (or homeostatic reinforcement learning for that
matter) will bring embodied AI closer to intrinsically emerging
normativity is dependent on the ability of such architectures
to provide agents with means to go beyond the values that
designers initially endow them with. In the case of active
inference, this will likely include providing agents with a means
for discovering conjugate priors (i.e., hyperpriors) (see Sajid
et al., 2021) within real world environments that pose concrete
threats to the continued self-maintenance of the agent. This
kind of adaptive plastic reshaping of priors (i.e., value) may
be roughly conceptualised as a form of accelerated evolution
where a single agent is seen as an evolving lineage subject
to open-ended learning (Standish, 2003; Stanley et al., 2017).
By equipping an agent with the necessary means to learn the
normative parameters that define its continued self-maintenance
in real-world environments, the anticipatory behaviour of such
an embodied agent is poised to answer to its own self-
concern. What more is required? If what I have presented
above is accurate, then focusing on the further development
of (1) controlled system-environment energy traffic, (2) dual
information-carrying nature of interfacing bodily elements, and
(3) highly integrated, hierarchically structured systems sharing
a common fate will be necessary to bring the current AI,
the various architectures of which are already capable of
generating accurate estimations of yet-to-be encountered states,
much closer to emulating the kind of intelligent behaviour
exhibited by biological systems, a behaviour that is grounded
in self-concern.

CONCLUSION

In this article, I have argued for the centrality of concern
in biological systems even for the most basal expressions of

intelligent behaviour. I argued that if this is the case, then
there is good reason to think that if the intelligence of
an agent is to ever be comparable to the intelligence of a
biological system (human or otherwise), then it will require
the presence of some form of self-concern. I have described
three necessary features underpinning the concern in biological
systems that can be used to inform the development of
functionally similar features in embodied AI. Lastly, I have
argued that although anticipation may be seen as central to
intelligent behaviour, it is only anticipatory behaviour that
could answer to the intrinsic norms of the system and, thus,
be subject to self-concern which is a clear exhibition of
intelligence.

To close, let us look at a few questions that highlight some
of the complex issues that arise when considering the possible
implementation of self-concern in embodied AI. Although
addressing these questions falls beyond the scope of this article, I
would like to stress the importance of considering them.

Let us assume that we have managed to implement self-
concern in an embodied AI. This agent will be very unlike
any of those that we currently interact with in at least one
central manner; a self-concerned embodied AI agent will do
what it can to remain in states that are consistent with its
continued functioning/existence. This hypothetical case provides
us with the opportunity, in closing, to raise a few important
questions on potential challenges and ethical issues regarding
self-concerned AI.

One challenge is to design self-concerned embodied AI agents
in a way that avoids deceiving us (a form of explanatory
opacity via transmission of misinformation). This will be crucial
for such AI agents given the fact that if they exhibit the
kind of basic biological intelligence that I have argued arises
with self-concern, such agents may, in fact, disguise their
immediate goals (deception) in order to satisfy their long-term
goal of continued self-maintenance, not unlike many living
organisms do (e.g., mimicry, feigning death, etc.). A further
challenge is this: one can easily imagine a case in which such
a self-concerned AI agent’s continued functioning might be
incompatible (or evolves over time to be incompatible) with
the continued well-being of a human (or multiple humans)
(e.g., competition for common resources, etc.). How can this
scenario be avoided via precautionary design efforts without
jeopardising the very aim of self-concern in embodied AI?
A related ethical question arises when considering that an
embodied AI agent that implements self-concern need not
be one that is self-aware or conscious. Should the fact
that we are aware that such an AI agent has an intrinsic
concern about its own continued functioning be enough for
us to be obligated to avoid impeding its intrinsic goals?
If so, what are the situations in which we can renege on
such obligations?

One important question that we are left with is whether
self-concern in embodied AI is something that could even be
recognisable by us? Although it might take the form of machines
that flexibly and adaptively behave in ways that allow them to
avoid their own “machine death,” the kind of behaviour that will
be driven by machine self-concern is likely to be very different
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from that which we can readily identify in living systems. Perhaps
most interesting here is the prospect of learning more about the
aspects of self-concern that are particular to humans from our
attempts at making sense of self-concern in machines. Whatever
the case, although the emergence of concern in AI may very
well depend on us, once up and running, the intelligence that
such systems exhibit will be directed at completing tasks that are
(largely) their own.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

This research has been supported by the Alexander Von
Humboldt Foundation.

ACKNOWLEDGMENTS

I would like to thank the following people for the invaluable input
and support: Tobias Schlicht and his research group, Michael
Levin, Pamela Lyon, Giovanni Pezzulo, Christina Oettmeier,
Nick Brancazio, Carrie Figdor, Kate Nave, Ian Mason, and Ben
Little. I would also like to express my gratitude to the two
reviewers for their generous feedback and helpful comments.

REFERENCES

Arbib, M. A. (1992). “Schema theory,” in Encyclopedia of Artificial Intelligence, 2nd

Edn, eds S. Shapiro (Chichester: Wiley), 1427–1443.

Ashby, W. R. (1952). Design for a Brain, 1st Edn. London: Chapman and Hall.

Baltieri, M., and Buckley, C. L. (2019). “Nonmodular Architectures of Cognitive

Systems based on Active Inference,” in 2019International Joint Conference on

Neural Networks (IJCNN), 1–8.

Baluška, F., and Levin, M. (2016). On having no head: cognition throughout

biological systems. Front. Psychol. 7, 902. doi: 10.3389/fpsyg.2016.00902

Baluška, F., and Mancuso, S. (2009). Deep evolutionary origins of neurobiology:

Turning the essence of “neural” upside-down.Commun. Integrat. Biol. 2, 60–65.

doi: 10.4161/cib.2.1.7620

Bar, M. (2007). The proactive brain: using analogies and associations to generate

predictions. Trends Cogn. Sci. 11, 280–289. doi: 10.1016/j.tics.2007.05.005

Barcis, A., Barcis, M., and Bettstetter, C. (2019). “Robots that sync and swarm: a

proof of concept in ROS 2,” in Proceedings of the International Symposium on

Multi-Robot and Multi-Agent Systems (New Brunswick, NJ: IEEE), 98–104.

Barrett, N. (2019). On the nature and origins of cognition as a form of motivated

activity. Adapt Behav. 28, 89–103. doi: 10.1177/1059712318824325

Bartlett, F. C. (1932). Remembering: A Study in Experimental and Social Psychology.

Cambridge University Press: Cambridge.

Bateson, G. (1972). Steps to an Ecology of Mind. New York, NY: Chandler

Publishing Co., Balantine Books, Random House.

Bechtel, W., and Bich, L. (2021). Grounding cognition: heterarchical

control mechanisms in biology. Philos. Trans. R. Soc. B 376, 20190751.

doi: 10.1098/rstb.2019.0751

Ben Jacob, E., Shapira, Y., and Tauber, A. (2006). Seeking the

Foundation of Cognition in Bacteria: From Schödinger’s negative

entropy to latent information. Phys. Stat. Mech. Appl. 369, 495–524.

doi: 10.1016/j.physa.2005.05.096

Berger, M. (2016). Nanotechnology: The Future Is Tiny. Cambridge: Royal Society

of Chemistry.

Berridge, K. C., and Robinson, T. E. (2003). Parsing reward. Trends Neurosci. 26,

507–513. doi: 10.1016/S0166-2236(03)00233-9

Bezzo, N., Cruz, P. J., Sorrentino, F., and Fierro, R. (2014). Decentralized

identification and control of networks of coupled mobile platforms through

adaptive synchronization of chaos. Phys D Nonlin Phenom. 267, 94–103.

doi: 10.1016/j.physd.2013.08.012

Bickhard, M. H. (2016). “The anticipatory brain: two approaches,” in Fundamental

Issues of Artificial Intelligence, Vol 326, ed V. C. Müller (Berlin: Springer

Synthese Library), 259–281.

Bongard, J., and Levin,M. (2021). Living Things AreNot (20th Century)Machines:

Updating Mechanism Metaphors inLight of the Modern Science of Machine

Behavior. Front. Ecol. Evol. 9, 650726. doi: 10.3389/fevo.2021.650726

Booth, J. W., Shah, D., Case, J. C., White, E. L., Yuen, M. C., Cyr-

Choiniere, O., Kramer-Bottiglio, R. (2018).Omniskins: Robotic skins that

turn inanimate objects into multi- functional robots. Sci. Robot. 3, eaat1853.

doi: 10.1126/scirobotics.aat1853

Boussard, A., Fessel, A. Oettmeier, C., Briard, L., Döereiner, H. G., and

Dussutour, A. (2021). Adaptive behaviour and learning in slime moulds: the

role of oscillationsPhil. Trans. R. Soc. B 376, 20190757. doi: 10.1098/rstb.

2019.0757

Calvo, P., Gagliano, M., Souza, G. M., and Trewavas, A. (2020). Plants are

intelligent, here’s how. Ann. Bot. 125, 11–28. doi: 10.1093/aob/mcz155

Cassirer, E. (1981). Kant’s Life and Thought. New Haven: Yale University Press.

Castelfranchi, C. (2005). “Mind as an anticipatory device: for a theory of

expectations,” in BVAI 2005. LNCS, Vol. 3704, eds M. De Gregorio, V. Di Maio,

M. Frucci, and C. Musio (Heidelberg: Springer), 258–276.

Christensen, A., O’Grady, R., and Dorigo, M. (2008). Swarmorphscript: a language

for arbitrary morphology generation in self-assembling robots. Swarm Intell. 2,

143–165. doi: 10.1007/s11721-008-0012-6

Clark, A. (1997). Being There: Putting Brain, Body, and World Together.

Cambridge, MA: MIT Press.

Conant, R., and Ashby, W. (1970). Every good regulator of a system must be a

model of that system. Int. J. Syst. Sci. 1, 89–97.

Cooper, S. T., and McNeil, P. L. (2015). Membrane repair: mechanisms and

pathophysiology. Physiol. Rev. 95, 1205–1240. doi: 10.1152/physrev.00037.2014

Corcoran, A. W., Pezzulo, G., and Hohwy, J. (2020). From allostatic agents to

counterfactual cognisers: active inference, biological regulation, and the origins

of cognition. Biol. Philos. 35, 32. doi: 10.1007/s10539-020-09746-2

Craik, K. J. W. (1943). The Nature of Explanation. Cambridge: Cambridge

University Press.

Darwin, C. (1871). The Descent of Man, and Selection in Relation to Sex. 1st Edn, 2

vols. London: John Murray.

Demirel, Y. (2014). Nonequilibrium Thermodynamics: Transport and Rate

Processes in Physical, Chemical and Biological Systems. Third Edition.

Amsterdam: Elsevier.

Drescher, G. L. (1991). Made-Up Minds: A Constructivist Approach to Artificial

Intelligence. Cambridge, MA: MIT Press.

Dufrêne, Y. F., and Persat, A. (2020). Mechanomicrobiology: how

bacteria sense and respond to forces. Nat. Rev. Microbiol. 18, 227–240.

doi: 10.1038/s41579-019-0314-2

Dupeyroux, J., Diperi, J., Boyron, M., Viollet, S., and Serres, J. (2017). “A bio-

inspired celestial compass applied to an ant-inspired robot for autonomous

navigation,” in 2017 European Conference onMobile Robots (ECMR). IEEE, 1–6.

Fraikina, G. Y., Strakhovskayaa, M. G., Belenikinaa, N. S., and Rubina, A. B.

(2015). Bacterial photosensory proteins: Regulatory functions and optogenetic

applications.Mikrobiologiya 84, 391–403. doi: 10.1134/S0026261715040086

Friston, K. (2019). A free energy principle for a particular physics. Neurons

Cogn. arXiv1906.10184.

Friston, K., Rigoli, F., Ognibene, D., Mathys, C., Fitzgerald, T., and Pezzulo,

G. (2015). Active inference and epistemic value. Cogn. Neurosci. 6, 187–214.

doi: 10.1080/17588928.2015.1020053

Friston, K. J. (2012). A free energy principle for biological systems. Entropy 14,

2100–2121. doi: 10.3390/e14112100

Friston, K. J., Daunizeau, J., and Kiebel, S. J. (2009). Reinforcement learning or

active inference? PLoS ONE 4:e6421. doi: 10.1371/journal.pone.0006421

Frontiers in Neurorobotics | www.frontiersin.org 12 April 2022 | Volume 16 | Article 857614

https://doi.org/10.3389/fpsyg.2016.00902
https://doi.org/10.4161/cib.2.1.7620
https://doi.org/10.1016/j.tics.2007.05.005
https://doi.org/10.1177/1059712318824325
https://doi.org/10.1098/rstb.2019.0751
https://doi.org/10.1016/j.physa.2005.05.096
https://doi.org/10.1016/S0166-2236(03)00233-9
https://doi.org/10.1016/j.physd.2013.08.012
https://doi.org/10.3389/fevo.2021.650726
https://doi.org/10.1126/scirobotics.aat1853
https://doi.org/10.1098/rstb.2019.0757
https://doi.org/10.1093/aob/mcz155
https://doi.org/10.1007/s11721-008-0012-6
https://doi.org/10.1152/physrev.00037.2014
https://doi.org/10.1007/s10539-020-09746-2
https://doi.org/10.1038/s41579-019-0314-2
https://doi.org/10.1134/S0026261715040086
https://doi.org/10.1080/17588928.2015.1020053
https://doi.org/10.3390/e14112100
https://doi.org/10.1371/journal.pone.0006421
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Sims Self-Concern Across the Scales

Gagliano, M., Vyazovskiy, V. V., Borbély, A. A., Grimonprez, M., and

Depczynski, M. (2016). Learning by association in plants. Sci. Rep. 6, 38427.

doi: 10.1038/srep38427

Galetti, G., Rossi, S., Caffarra, C., Gerboles, A., and Miragoli, M. (2019).

“Innovation in nanomedicine and engineered nanomaterials for therapeutic

purposes,” in Micro and Nano Technologies, Exposure to Engineered

Nanomaterials in the Environment, eds N. Marmiroli, J. C. White, J. Song

(Amsterdam: Elsevier).

Gánti, T. (2003). The Principles of Life. Oxford: Oxford University Press.

Georgopoulou, A., Bosman, A. W., Brancart, J., Vanderborght, B., and Clemens,

F. (2021). Supramolecular self-healing sensor fiber composites for damage

detection in piezoresistive electronic skin for soft robots. Polymers 13, 2983.

doi: 10.3390/polym13172983

Gibson, J. J. (1966). The Senses Considered as Perceptual Systems.

Boston: Houghton-Mifflin.

Godfrey-Smith, P. (1996). Complexity and the Function of Mind in Nature.

Cambridge, UK: Cambridge University Press.

Godfrey-Smith, P. (2016). Individuality, subjectivity, and minimal cognition. Biol.

Philos. 31, 775–796. doi: 10.1007/s10539-016-9543-1

Goodwin, B. C. (1978). A cognitive view of biological processes. F. Social Biol.

Struct. 1, 111–125. doi: 10.1016/S0140-1750(78)80001-3

Goodwin, B. C. (1994). How the Leopard Changed its Spots: The Evolution of

Complexity. Princeton: NJ. Princeton University Press.

Grush, R. (2004). The emulation theory of representation: motor

control, imagery, and perception. Behav. Brain Sci. 27, 377–442.

doi: 10.1017/S0140525X04000093

Habermann, W., and Pommer, E-H. (1991). Biological fuel cells with

sulphide storage capacity. J. Appl. Microbiol. Biotechnol. 35, 128-133.

doi: 10.1007/BF00180650

Haken, H. (1985). Synergetics: an interdisciplinary approach to self-organization.

Geoform 16, 205–211. doi: 10.1016/0016-7185(85)90029-6

Hanson, A. (2021). Spontaneous electrical low-frequency oscillations: a possible

role in Hydra and all living systems. Philos. Trans. R. Soc. B 376:

2019076320190763. doi: 10.1098/rstb.2019.0763

Hardman, D., Thuruthel, T. G., and Iida, F. (2022). Self-healing ionic

gelatin/glycerol hydrogels for strain sensing applications. NPG Asia Mater. 14,

1–13. doi: 10.1038/s41427-022-00357-9

Hawkes, E. W., Blumenschein, L. H., Greer, J. D., Okamura, A. M. (2017). A soft

robot that navigates its environment through growth. Sci. Robot. 2, eaan3028.

doi: 10.1126/scirobotics.aan3028

Hellingwerf, K. J. (2005). Bacterial observations: a rudimentary form of

intelligence? Trends Microbiol. 13, 152–158. doi: 10.1016/j.tim.2005.02.001

Hull, C. L. (1943). Principles of Behavior: An Introduction to Behavior Theory. New

York, NY: Appleton-Century-Croft.

Ieropolous, I., Melhuish, C., and Greenman, J. (2004). “Energetically autonomous

robots,” in Proceedings of the Eighth Intelligent Autonomous Systems Conference

(IAS-8), Amsterdam, 128–135.

Ieropoulos, I., Greenman, J., Melhuish, C., and Hart, J. (2005). Comparative study

of three types of microbial fuel cell. Enzyme Microbial. Technol. 37, 238–245.

doi: 10.1016/j.enzmictec.2005.03.006

Jonas, H. (1966/2001). The Phenomenon of Life:Toward a Philosophical Biology.

Evanston, IL: Northwestern University Press.

Jordan,M., and Rumelhart, D. E. (1992). Forwardmodels: supervised learning with

a distal teacher. Cogn. Sci. 16, 307–354. doi: 10.1207/s15516709cog1603_1

Kant, I. (1790/2007). Critique of Judgement. Transl. J. C. Meredith. Oxford: Oxford

University Press.

Kauffman, S. (2000). Investigations. New York, NY: Oxford University Press.

Keramati, M., and Gutkin, B. (2014). Homeostatic reinforcement learning for

integrating reward learning collection and physiological stability. eLife 3, 1–26.

doi: 10.7554/eLife.04811.032

Kiverstein, J., and Sims, M. (2021). Is free-energy minimisation the mark of the

cognitive? Biol. Philos. 36, 25. doi: 10.1007/s10539-021-09788-0

Kolchinsky, A., and Wolpert, D. H. (2018). Semantic information, autonomous

agency and non-equilibrium statistical physics. Interface Focus 8, 20180041.

doi: 10.1098/rsfs.2018.0041

Konidaris, G., and Barto, A. (2006). “An adaptive robot motivational system,” in

From Animals to Animats 9: Proceedings of the 9th International Conference on

Simulation of Adaptive Behavior (Roma, Italy, SAB-06).

Kriegman, S., Blackiston, D., Levin, M., and Bongard. J. (2020). A scalable

pipeline for designing reconfigurable organisms. PNAS 117, 1853–9.

doi: 10.1073/pnas.1910837117

Lane, N. (2016). The Vital Question: Why is Life the Way It Is? London: Profile

Books LTD.

Lara, B., Astorga, D., Mendoza-Bock, E., Pardo, M., Escobar, E., and Ciria, A.

(2018). Embodied cognitive robotics and the learning of sensorimotor schemes.

Adap. Behav. 26, 225–238. doi: 10.1177/1059712318780679

Lehman, J., and Stanley, K. O. (2011). “Novelty search and the problem with

objectives,” in Genetic Programming Theory and Practice, eds R. Riola, E.

Vladislavleva, and J. H. Moore (Berlin: Springer), 37-56.

Levin, M. (2019). The computational boundary of a “self ”: developmental

bioelectricity drives multicellularity and scale-free cognition. Front. Psychol. 10,

2688. doi: 10.3389/fpsyg.2019.02688

Linke, H., Höcker, B., Furuta, K., Forde, N., and Curmi, P. M. G. (2020). Synthetic

biology approaches to dissecting linear motor protein function: towards the

design and synthesis of artificial autonomous protein walkers. Biophys. Rev. 12,

1041–1054. doi: 10.1007/s12551-020-00717-1

Liu, W., and Winfield, A. (2009). “Implementation of an IR approach for

autonomous docking in a self-configurable robotics system,” in Proceedings of

Towards Autonomous Robotic Systems.

Lyon, P. (2006). The biogenic approach to cognition. Cogn. Process. 7, 11–29.

doi: 10.1007/s10339-005-0016-8

Lyon, P., Keijzer, F., Arendt, D., and Levin, M. (2021). Reframing cognition:

getting down to biological basics. Philos. Trans. R. Soc. B 376, 20190750.

doi: 10.1098/rstb.2019.0750

Macnab, R. M., and Koshland, D. E. (1972). The gradient-sensing mechanism in

bacterialchemotaxis. PNAS 69, 2509–2512. doi: 10.1073/pnas.69.9.2509

Man, K., and Damasio, A. (2019). Homeostasis and soft robots in

the design of feelings machines. Nat. Mach. Intell. 1, 446–452.

doi: 10.1038/s42256-019-0103-7

Maturana, H. R., and Varela, F. J. (1980).Autopoiesis and Cognition: the Realization

of the Living. Dordrecht: D. Reidel Publishing Company.

Maturana, H. R., and Varela, F. J. (1987). The Tree of Knowledge. Boston: New

Science Library/Shambhala Publications.

McCarthy, J., Minsky, M. L., Rochester, N., and Shannon, C. E. (1955). A proposal

for the Dartmouth summer research project on artificial intelligence. AI

Magazine 27, 12–14.

McShea, D. W. (2012). Upper-directed systems: a new approach to

teleology in biology. Biol. Philos. 27, 663-684. doi: 10.1007/s10539-012-

9326-2

Meincke, A. S. (2018). Bio-Agency and the Possibility of Artificial Agents in:

Philosophy of Science—Between the Natural Sciences, the Social Sciences, and

the Humanities. ed. by G. Schurz (Dordrecht: Springer, European Philosophy

of Science Association Series).

Millidge, B. (2020). Deep active inference as variational policy

gradients. J. Math. Psychol. 96, 102348. doi: 10.1016/j.jmp.2020.

102348

Morville, T., Frison, T., Burdakov, D., Siebner, H., and Hulme, O. (2018). The

homeostatic logic of reward. bioRxiv Preprints doi: 10.1101/242974

Moses, M., and Chirikjian, G. S. (2020). Robotic Self-

Replication. Annu. Rev. Control Robot. Autonom. Syst. 3, 1–24.

doi: 10.1146/annurev-control-071819-010010

Nakagaki, T., Yamada, H., and Tóth, A. (2000). Maze-solving by an amoeboid

organism. Nature 407, 470. doi: 10.1038/35035159

Nasuto, S. J., and Hayashi, Y. (2016). Anticipation: beyond

synthetic biology and cognitive robotics. Biosystems. 148, 22–31.

doi: 10.1016/j.biosystems.2016.07.011

Neisser, U. (1976). Cognition and Reality: Principles and Implications of Cognitive

Psychology. New York: Freeman.

Nicholson, D. J. (2020). “On being the right size, revisited: the problem with

engineering metaphors in molecular biology,” in Philosophical Perspectives on

the Engineering Approach in Biology: Living Machines? eds S. Holm and M.

Serbaneds (London: Routledge).

Nicolis, G., and Prigogine, I. (1977). Self-Organization in Nonequilibrium Systems.

New York, NY: John Wiley.

Novoplansky, A. (2016). “Future perception in plants,” in Anticipation Across

Disciplines, ed M. Nadin (Berlin: Springer), 57–70.

Frontiers in Neurorobotics | www.frontiersin.org 13 April 2022 | Volume 16 | Article 857614

https://doi.org/10.1038/srep38427
https://doi.org/10.3390/polym13172983
https://doi.org/10.1007/s10539-016-9543-1
https://doi.org/10.1016/S0140-1750(78)80001-3
https://doi.org/10.1017/S0140525X04000093
https://doi.org/10.1007/BF00180650
https://doi.org/10.1016/0016-7185(85)90029-6
https://doi.org/10.1098/rstb.2019.0763
https://doi.org/10.1038/s41427-022-00357-9
https://doi.org/10.1126/scirobotics.aan3028
https://doi.org/10.1016/j.tim.2005.02.001
https://doi.org/10.1016/j.enzmictec.2005.03.006
https://doi.org/10.1207/s15516709cog1603_1
https://doi.org/10.7554/eLife.04811.032
https://doi.org/10.1007/s10539-021-09788-0
https://doi.org/10.1098/rsfs.2018.0041
https://doi.org/10.1073/pnas.1910837117
https://doi.org/10.1177/1059712318780679
https://doi.org/10.3389/fpsyg.2019.02688
https://doi.org/10.1007/s12551-020-00717-1
https://doi.org/10.1007/s10339-005-0016-8
https://doi.org/10.1098/rstb.2019.0750
https://doi.org/10.1073/pnas.69.9.2509
https://doi.org/10.1038/s42256-019-0103-7
https://doi.org/10.1007/s10539-012-9326-2
https://doi.org/10.1016/j.jmp.2020.102348
https://doi.org/10.1101/242974
https://doi.org/10.1146/annurev-control-071819-010010
https://doi.org/10.1038/35035159
https://doi.org/10.1016/j.biosystems.2016.07.011
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Sims Self-Concern Across the Scales

Oudeyer, P., and Kaplan, F. (2007). What is intrinsic motivation? A

typology of computational approaches. Front. Neurorobot. 1, 1–14.

doi: 10.3389/neuro.12.006.2007

Parisi, D., and Petrosino, G. (2010). Robots that have emotions. Adap. Behav. 18,

453–469. doi: 10.1177/1059712310388528

Pezzulo, G. (2008). Coordinating with the future: the anticipatory nature of

representation.Minds Mach. 18, 179–220. doi: 10.1007/s11023-008-9095-5

Pezzulo, G., Barsalou, L. W., Cangelosi, A., Fischer, M. H., McRae, K., and

Spivey, M. J. (2011). The mechanics of embodiment: a dialog on embodiment

and computational modelling. Front. Psychol. 2, 5. doi: 10.3389/fpsyg.2011.

00005

Pezzulo, G., and Levin, M (2016). Top-down models in biology: explanation and

control of complex living systems above the molecular level. J. R. Soc. Interface

13, 20160555. doi: 10.1098/rsif.2016.0555

Pezzulo, G., Rigoli, F., and Friston, K. (2015). Active Inference, homeostatic

regulation and adaptive behavioural control. Prog. Neurobiol. 134, 17–35.

doi: 10.1016/j.pneurobio.2015.09.001

Pfeifer, R., and Bongard, J. (2006).How the Body Shapes the WayWe Think: A New

View of Intelligence. Cambridge, MA: The MIT Press.

Pfeifer, R., Lungarella, M., and Iida, F. (2007). Self-organization,

embodiment, and biologically inspired robotics. Science 318, 1088–1093.

doi: 10.1126/science.1145803

Philamore, H., Ieropoulos, I., Stinchcombe, A., and Rossiter, J. (2016). Toward

energetically autonomous foraging soft robots. Soft Robot. 3, 186–197.

doi: 10.1089/soro.2016.0020

Piaget, J. (1970). Genetic Epistemology. New York: Columbia University Press.

Pinto, D., and Mascher, T. (2016). (Actino) Bacterial “intelligence”: using

comparative genomics to unravel the information processing capacities of

microbes. Curr. Genet. 62, 487–498. doi: 10.1007/s00294-016-0569-3

Reid, C. R., and Latty, T. (2016). Collective behaviour and swarm intelligence in

slime moulds. FEMS Microbiol. Rev. 40, 798–806. doi: 10.1093/femsre/fuw033

Riegler, A. (2001). “The role of anticipation in cognition,” in Computing

Anticipatory Systems, eds D. M. Dubois (Melville: AIP Proceedings), 534–541.

Rosen, R. (1985/2012). Anticipatory Systems: Philosophical, Mathematical, and

Methodological Foundations. Pergamon, Oxford.

Saigusa, T., Tero, A., Nakagaki, T. and Kuramoto, Y. (2008).

Amoebae anticipate periodic events. Phys. Rev. Lett. 100, 18101.

doi: 10.1103/PhysRevLett.100.018101

Sajid, N., Tigas, P., Zakharov, A., Fountas, Z., and Friston, K. (2021).

Exploration and preference satisfaction trade-off in reward-free learning. arXiv

preprint. arXiv:2106.04316.

Schranz, M., Umlauft, M., Sende, M., and Elmenreich, W. (2020). Swarm

robotic behaviors and current applications. Front. Robot. AI 7, 36.

doi: 10.3389/frobt.2020.00036

Schulkin, J., and Sterling, P. (2019). Allostasis: a brain-centered, predictive

mode of physiological regulation. Trends Neurosci. 42, 740–752.

doi: 10.1016/j.tins.2019.07.010

Sejnowski, T. (2018). The Deep Learning Revolution. Cambridge, MA: MIT Press.

Service, R. F. (2016). Chemistry Nobel heralds age of molecular machines. Science.

354, 158–159. doi: 10.1126/science.354.6309.158

Shapiro, J. A. (2007). Bacteria are small but not stupid: cognition, natural genetic

engineering and sociobacteriology. Stud. Hist. Philos. Biol. Biomed. Sci. 38,

807–819. doi: 10.1016/j.shpsc.2007.09.010

Shemesh, H., Arbiv, A., Gersani, M., Ovadia, O., and Novoplansky, A. (2010).

The effects of nutrient dynamics on root patch choice. PLoS ONE 5, e10824.

doi: 10.1371/journal.pone.0010824

Shih, B., Christianson, C., Gillespie, K., Lee, S., Mayeda, J., Huo, Z., Tolley, M.

T. (2019). Design considerations for 3D printed, soft, multimaterial resistive

sensors for soft robotics. Front. Robot. AI 6, 30. doi: 10.3389/frobt.2019.00030

Shih, B., Shah, D., Li, J., Thuruthel, T. G., Park, Y., Iida, F., et al. (2020). Electronic

skins and machine learning for intelligent soft robots. Sci. Robot. 5, eaaz9239.

doi: 10.1126/scirobotics.aaz9239

Simon, H. A. (1962). The architecture of complexity. Proc. Am. Philos. Soc.

106, 467–482.

Sims, M. (2021). A continuum of intentionality: linking the biogenic

and anthropogenic approaches to cognition. Biol. Philos. 36:51.

doi: 10.1007/s10539-021-09827-w

Standish, R. K. (2003). Open-ended artificial evolution. Int. J. Comput. Intell. Appl.

3, 167–175. doi: 10.1142/S1469026803000914

Stanley, K. O., Lehman, J., and Soros, L. (2017). Open-Endedness: The Last Grand

Challenge You’ve Never Heard of While Open-Endedness Could be a Force for

Discovering Intelligence, it Could Also be a Component of AI itself. Sebastopol,

CA: O’Reilly Media, Inc.

Sterling, P. (2012). Allostasis: a model of predictive regulation. Physiol. Behav. 106,

5–15. doi: 10.1016/j.physbeh.2011.06.004

Sutton, R., and Barto, A. (1998). Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press.

Thórisson, K. R., Bieger, J., Thorarensen, T., Sigurð*ardóttir, J. S., and Steunebrink,

B. R. (2016). “Why artificial intelligence needs a task theory,” in Artificial

General Intelligence. AGI 2016. Lecture Notes in Computer Science, vol 9782,

eds B. Steunebrink, P. Wang, B. Goertzel (Cham: Springer).

Thuruthel, T. G., Falotico, E., Beccai, L., and Iida, F. (2021). Machine

learning techniques for soft robots. Front. Robot. AI 8, 205.

doi: 10.3389/frobt.2021.726774

Trewavas, A. (2014). Plant Behaviour and Intelligence. Oxford, UK: Oxford

University Press.

Truby, R. L., Santina, C., and Rus, D. (2020). Distributed Proprioception of

3D Configuration in Soft Sensorized Robots via Deep Learning. IEEE Robot.

Autom. Lett. 5, 3299–3306. doi: 10.1109/LRA.2020.2976320

Tsompanas, M.-A., You J., Philamore, H., Rossiter, J., and Ieropoulos, I. (2021).

Neural networks predicting microbial fuel cells output for soft robotics

applications. Front. Robot. AI 8, 633414. doi: 10.3389/frobt.2021.633414

Turing, A. M. (1950). Computing machinery and intelligence. Mind 59, 433–460.

doi: 10.1093/mind/LIX.236.433

Van Duijn, M., Keijzer, F. A., and Franken, D. (2006). Principles of minimal

cognition: casting cognition as sensorimotor coordination. Adapt. Behav. 14,

157–170. doi: 10.1177/105971230601400207

Von Neumann, J. (1966). Theory of Self-Reproducing Automata. Champaign: Univ.

Ill. Press.

Webb, B., and Scutt, T. (2000). A simple latency-dependent spiking-neuron

model of cricket phonotaxis. Biol. Cybern. 82, 247–269. doi: 10.1007/s0042200

50024

Wehner, M., Truby, R. L., Fitzgerald, D. J., Mosadegh, B., Whitesides, G.

M., Lewis, et al. (2016). An integrated design and fabrication strategy for

entirely soft, autonomous robots. Nature 536, 451–455. doi: 10.1038/nature

19100

Wiener, N. (1948). Cybernetics: Or Control and Communication in the Animal and

the Machine. Cambridge, MA: MIT Press.

Wilson, D. S., and Sober, E. (1989). Reviving the superorganism. J. Theor. Biol. 136,

337–356. doi: 10.1016/S0022-5193(89)80169-9

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Sims. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 14 April 2022 | Volume 16 | Article 857614

https://doi.org/10.3389/neuro.12.006.2007
https://doi.org/10.1177/1059712310388528
https://doi.org/10.1007/s11023-008-9095-5
https://doi.org/10.3389/fpsyg.2011.00005
https://doi.org/10.1098/rsif.2016.0555
https://doi.org/10.1016/j.pneurobio.2015.09.001
https://doi.org/10.1126/science.1145803
https://doi.org/10.1089/soro.2016.0020
https://doi.org/10.1007/s00294-016-0569-3
https://doi.org/10.1093/femsre/fuw033
https://doi.org/10.1103/PhysRevLett.100.018101
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.1016/j.tins.2019.07.010
https://doi.org/10.1126/science.354.6309.158
https://doi.org/10.1016/j.shpsc.2007.09.010
https://doi.org/10.1371/journal.pone.0010824
https://doi.org/10.3389/frobt.2019.00030
https://doi.org/10.1126/scirobotics.aaz9239
https://doi.org/10.1007/s10539-021-09827-w
https://doi.org/10.1142/S1469026803000914
https://doi.org/10.1016/j.physbeh.2011.06.004
https://doi.org/10.3389/frobt.2021.726774
https://doi.org/10.1109/LRA.2020.2976320
https://doi.org/10.3389/frobt.2021.633414
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1177/105971230601400207
https://doi.org/10.1007/s004220050024
https://doi.org/10.1038/nature19100
https://doi.org/10.1016/S0022-5193(89)80169-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Self-Concern Across Scales: A Biologically Inspired Direction for Embodied Artificial Intelligence
	Introduction
	A Biologically Inspired Functional Approach to Intelligence
	Self-Concern in Intelligent Systems

	Three Necessary Features for Self-Concern in Biological Systems
	Controlled System-Environment Energy Traffic
	Dual Information-Carrying Nature of Interfacing Bodily Elements
	Common Fate of Hierarchically Structured Systems

	When Anticipatory Dynamics Answer to Self-Concern
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References


