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INBIOSA

The best of science doesn’t consist of mathematical models and experiments, as textbooks make
it seem. Those come later. It springs fresh from a more primitive mode of thought when the
hunter’s mind weaves ideas from old facts and fresh metaphors and the scrambled crazy images
of things recently seen. To move forward is to concoct new patterns of thought, which in turn
dictate the design of models and experiments.

Edward O. Wilson, The Diversity of Life, 1992, Harvard University Press, ISBN 0-674-21298-3.
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We still know little about how the
world works, and these limits are
acknowledged in our emergent
biological systems and in the
frontiers of astrophysics. A new
mathematical foundation could
punch through those barriers and
produce completely unexpected
benefits.

The reason that biology has failed to
develop a viable set of mathematical
methods appropriate to solving its
problems is that we have relied too
long on mathematics developed to
model physical problems that are
intrinsically different.

The goal of the INBIOSA project is to
devise a long term research program
for naturalistic biocomputation
based on a general theory of
entangled coherent complex
systems, both living and non-living
ones, from quantum computers to
the human brain.

We focus on an integral/wholist,
approach to dynamic, ordered,
layered systems and on the
development of their emergent
properties and structure. At its core
is a set of principles, “axioms of life”
upon which we build a testable
formal theory.

We use both, a top down and
bottom-up approach, modeling
natural behaviours from the simplest
proteins to complex systems (bodies
and societies).

Executive Summary

The INBIOSA project brings together a group of experts across many
disciplines who believe that science requires a revolutionary
transformative step in order to address many of the vexing challenges
presented by the world. It is INBIOSA’s purpose to enable the focused
collaboration of an interdisciplinary community of original thinkers.

This paper sets out the case for support for this effort. The focus of
the transformative research program proposal is biology-centric. We
admit that biology to date has been more fact-oriented and less
theoretical than physics. However, the key leverageable idea is that
careful extension of the science of living systems can be more
effectively applied to some of our most vexing modern problems than
the prevailing scheme, derived from abstractions in physics. While
these have some universal application and demonstrate
computational advantages, they are not theoretically mandated for
the living. A new set of mathematical abstractions derived from
biology can now be similarly extended. This is made possible by
leveraging new formal tools to understand abstraction and enable
computability. [The latter has a much expanded meaning in our
context from the one known and used in computer science and
biology today, that is "by rote algorithmic means", since it is not
known if a living system is computable in this sense (Mossio et al.,
2009).] Two major challenges constitute the effort.

The first challenge is to design an original general system of
abstractions within the biological domain. The initial issue is
descriptive leading to the explanatory. There has not yet been a
serious formal examination of the abstractions of the biological
domain. What is used today is an amalgam; much is inherited from
physics (via the bridging abstractions of chemistry) and there are
many new abstractions from advances in mathematics (incentivized by
the need for more capable computational analyses). Interspersed are
abstractions, concepts and underlying assumptions “native” to biology
and distinct from the mechanical language of physics and computation
as we know them. A pressing agenda should be to single out the most
concrete and at the same time the most fundamental process-units in
biology and to recruit them into the descriptive domain. Therefore,
the first challenge is to build a coherent formal system of abstractions
and operations that is truly native to living systems.




The paradigm shift in biology
comparable to those invoked by the
theory of relativity and the quantum
theory in physics has not yet been
achieved.

Organisms are not machines. Life is
not a specialization, but rather an
expansive generalization of
mechanism.

Living systems should not always be
modeled as physical systems are,
since the frontiers of living systems
are hard to define and are changing
at any time.

A living system is impredicative and
self-referencing: its definition
invokes the system itself, or perhaps
another set which contains it. This is
what makes it more than a machine.

Classical computing is based on
precise algorithmic procedures which
are immensely suited to model
mechanisms. This quality, however,
is exactly what makes it unsuitable
to model impredicativity, life, since a
consequence of impredicativity is the
entailment of ambiguity.

Nothing will be thrown away, but many common methods will be
philosophically recast, just as in physics relativity subsumed and
reinterpreted Newtonian mechanics. This step is required because we
need a comprehensible, formal system to apply in many domains.
Emphasis should be placed on the distinction between multi-
perspective analysis and synthesis and on what could be the basic
terms or tools needed.

The second challenge is relatively simple: the actual application of this
set of biology-centric ways and means to cross-disciplinary problems.
In its early stages, this will seem to be a “new science”.

This White Paper sets out the case of continuing support of
Information and Communication Technology (ICT) for transformative
research in biology and information processing centered on paradigm
changes in the epistemological, ontological, mathematical and
computational bases of the science of living systems. Today, curiously,
living systems cannot be said to be anything more than dissipative
structures organized internally by genetic information. There is not
anything substantially different from abiotic systems other than the
empirical nature of their robustness. We believe that there are other
new and unique properties and patterns comprehensible at this bio-
logical level. The report lays out a fundamental set of approaches to
articulate these properties and patterns, and is composed as follows.
Sections 1 through 4 (preamble, introduction, motivation and major
biomathematical problems) are incipient. Section 5 describes the
issues affecting Integral Biomathics and Section 6 -- the aspects of the
Grand Challenge we face with this project. Section 7 contemplates the
effort to formalize a General Theory of Living Systems (GTLS) from
what we have today. The goal is to have a formal system, equivalent
to that which exists in the physics community. Here we define how to
perceive the role of time in biology. Section 8 describes the initial
efforts to apply this general theory of living systems in many domains,
with special emphasis on cross-disciplinary problems and multiple
domains spanning both “hard” and “soft” sciences. The expected
result is a coherent collection of integrated mathematical techniques.
Section 9 discusses the first two test cases, project proposals, of our
approach. They are designed to demonstrate the ability of our
approach to address “wicked problems” which span across physics,
chemistry, biology, societies and societal dynamics. The solutions
require integrated measurable results at multiple levels known as
“grand challenges” to existing methods. Finally, Section 10 adheres to
an appeal for action, advocating the necessity for further long-term
support of the INBIOSA program.




This proposal addresses the
fundamental problem in biology:
how to characterize the distinction
between the living and the non-
living.

We aim at creating a discourse
environment for exploring radical
approaches to mathematics and
computation within biological
context with the potential for a
breakthrough and paradigm shift.

The understanding of living
processes has not been amenable to
orthodox mathematical modeling
and logic despite enormous
advances in computational and
experimental tools.

There could be a possible paradigm
change to DEVELOPMENT, not
evolution as the basic orientation of
biology. The living / non-living gap
can never be closed without it.

A basic perspective opposite to the
‘growth ideology’ of our culture
could be truly a radical departure.

The report is concluded with preliminary non-exclusive list of
challenging research themes to address, as well as required
administrative actions.

The efforts described in the ten sections of this White Paper will
proceed concurrently. Collectively, they describe a program that can
be managed and measured as it progresses.

1. Preamble

Fundamental assumption: all natural objects and phenomena have
representations in the language of mathematics. Biology is a subject
concerned with the organization of relations. Life is not primarily
characterized by its underlying physicochemical structures, but by its
entailment relations — by what the physiochemical structures do, and
to what end.

Organisms are not man-made machines. Life is not a specialization of
engineering; it is an expansive generalization of engineering, subject to
regulations of internal origin. To answer biological questions, it is
therefore insufficient to follow the reductionist strategy derived
entirely from the Cartesian metaphor and Newtonian mechanics. Such
a ‘watchmaker’ approach is often limited to breaking down a complex
entity into simpler pieces, to examine the pieces themselves, and then
to attempt to understand the organism from a parts-only perspective.

It is necessary to revive efforts to advance science beyond such
reductionism; its failure is due to the inability of a small surrogate
representation to exhaust the real world’s complexity. The limits of
physicochemical and mechanistic dogma are specific examples of the
restrictiveness of self-imposed methodologies. The resulting artificial
‘limitations’ on science and knowledge are due to the non-generic
nature of the methods and their associated bounded microcosms. The
obstruction of the advance of science beyond such limitations is not
merely a problem within science; it has left societies floundering in the
face of what are now called ‘wicked problems’, problems that cannot
be dealt with by the old forms of science.

10
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Classical computing, framed today in third person descriptions, is often based on unambiguous known
algorithmic or rote procedures; it is this lack of ambiguity that makes it precisely suited to modeling
mechanisms. A living system is impredicative and self-referential: this is what makes it more than a
machine. We might call it a new variety of machine, perhaps a relational machine, as yet, not fully
entailed. The introduction of the self, the subject in addition to the object, makes the participation of
first person descriptions inevitable. The precision of conventional classical computing makes it
unsuitable for modeling impredicativity and its natural entailment of ambiguity. Ambiguity is by no
means an infamy: it is a great asset to biology in its redundancy, its ubiquitous degeneracy properties
and survivability. INBIOSA will shed light not only on third person descriptions of biology, but also on
first person descriptions for both organisms and machines. For computation to be a successful tool in
biology, it must go far beyond any strict limitation of currently known algorithms. However several
properties of living systems, including impredicativity can be computed, for instance by using typed
(polymorphic) programming languages (Mossio et al., 2009). While we often speak of “mathematics”
and "computation" in this INBIOSA White Paper, these terms are not intended in a narrow, classical
1
sense".

2. Introduction

The goal of the INBIOSA support action is to devise a long-term research program for naturalistic
biocomputation. There are two problematic areas in this enterprise: mathematical techniques, and their
ability to enable reflection on biological processes. Currently available mathematical techniques appear
to be insufficient to deal with the complexities of biology, and biological processes do not easily lend
themselves to traditional mathematical analysis. The central target of INBIOSA is to devise ways in which
these two initially independent domains may be resolved and integrated into a common framework.
There are a number of different regimes within which this integration may be attempted. A major
theme of INBIOSA is to critically consider each of these regimes to see where common ground may be
found. It is not initially obvious how biocomputational integration must, or can take place, but the
evidence of the natural world is that such integration is itself natural. While an easy starting place would
be to try to extend the reductionist position to include biology, this is likely to be unsuccessful or at least
incomplete, and we will almost certainly need to step beyond the Newtonian paradigm (Ulanowicz,
2009; Simeonov, 2010a/b) in search of success. One alternative approach, for example, could be based
on a general theory of entangled coherent complex systems, both non-living and living, from quantum
computers (e.g. Monz et. al., 2011) to the human brain (e.g. Ehresmann & Vanbremeersch, 2007). Karl
Pribram (Pribram, 2001) has proposed that one kind of quasi-quantal neural processing takes place
within the ‘axonite mesh’ between neurons. The associated presumption would be that if entangled
guanta can ‘calculate’ by methods more powerful than Boolean algebras, then entangled nerves can
also ‘calculate’ at a higher level than individual ones. Multicellular systems (animals, hearts, kidneys,
brains, etc.) work as unified entities, and exhibit emergent effects, which are not immediately obvious
from the properties of their constituent cells.

"in particular, computation belongs to the modern philosophical view of reality in which information assumes place of
substance, and computation of the dynamics of its transformation (Collier, 2004).

11



F (\\\
g \’%\\

7.2

INBIOSA

Biological systems are integrated through their complementary functions and structures, so that they
can only be treated properly as causally integrated systems. Our mistake until now in biology has been
to treat them as if their causal integration matters less than their syntactic integration (as in computer
programs).

To understand and explain how biological systems work is the task of Integral Biomathics (Simeonov,
2010a/b) and of the INBIOSA project. In the distinction between living and non-living systems, and the
consequent generation of meaning (Rosen, 1991; Cottam et al, 2005; Gare, 2008; Louie, 2009), the basic
guestions we ask about computation from a revised conceptual framework are:

i) What is computation within the biological context?

ii) How useful is computation for living systems, where usefulness is considered from the viewpoint
of the entity performing the computation?

iii) To what extent can a computation be carried out in an organism or an ecosystem with the
available resources?

Returning to the quantum mechanical domain, the underlying central question, which may indeed
deliver breakthrough answers, is:

What can serve as a cohesive factor for making biological beings as they are? Can we take
quantum entanglement and superposition models from physics and apply them to biology and,
vice versa, can we use models of integrated biological systems to model quantum entanglement
and superposition? How can we relate the occurrence of a cohesive factor unique to biology to
nonlocal simultaneous correlations available in physics in general and in quantum mechanics in
particular?

One associated area of investigation, which has up to now received little or no attention is the possibility
that biology makes use of quantum logic without the implication of physical quantum systems
(Schroeder, 2009; 2011). We will come back to this issue in sections 5.8 and 7.4.

It is not entirely beyond the bounds of reason that biological processing may rely on large-scale quasi-
entanglement. In this case we could postulate that individual cells in an organism are entangled to work
in a coherent way. The key question would be to understand the meaning of this biological computation
and entanglement of the whole organism. But this and other similarly specific questions should be
tackled in the context of the two initial difficulties we cited — those of mathematical viability for biology,
and of biological process suitability for mathematics. We will address these two aspects in the following
sections of this document. We must also come to understand how lower level quantum processes affect
other biological processes unfolding on differing scales in the body, flowing up to the level of
consciousness and behavior in the lived environment over time. This will be discussed in section 5.2
Scale and Hyperscale and in section 5.8 Quantum Effects in Biology.

12
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3. Motivation

In the history of science it is noted that Laplace had a checkered career. He seemed to work on physics
or astronomy for several years and then drop this and switch to studies of pure mathematics for a few
years; then suddenly, he would switch back to physics or astronomy, and so forth for decades (Gillispie,
2000). Laplace was such a productive scientist and mathematician because the two fields were
completely integrated in his mind. He derived his mathematical problems from his astronomical and
physical researches and his astronomical and physical problems from the regions in which existing
mathematical methods failed. So in practice, what Laplace did was to study a physical process, develop a
model for the behaviour of the system that would, in turn, yield a set of equations describing the model.
More often than not, because Laplace focused on processes that had no adequate physical explanation,
he would find that it was impossible to solve the equations needed to model the system. Being a first-
rate mathematician, he would therefore refocus his efforts on deriving from first principles the new
methods necessary to solve the sets of equations he had invented. This effort often took him several
years. Once he had satisfactorily set that new area of mathematics to rights, he would go back to his
astronomical or physical studies, apply his new mathematical insights to his models, and see what kinds
of new problems these revealed. This story is important in devising a new field of biomathematics: those
undertaking the work should understand that, historically, both science and mathematics have provided
each other with fruitful problems and methods. Laplace was not a mathematical physicist or a physical
mathematician, but both, simultaneously. This integrated (or back-and-forth) view of the relation
between science and mathematics is quite at odds with the dominant (and long-outmoded) Comteian
positivistic philosophy of science that still predominates among scientists and mathematicians today.

Positivism explicitly posits the notion that science is founded in logic, and mathematics drives progress
in the rest of science, so that it is possible to rank-order the scientific reliability of a field by the degree
to which it has become mathematized. The increase in “positive knowledge” is always from
mathematics through physics to the “softer” sciences.

There are two errors in this positivistic philosophy. One is that even pseudoscience2 can be expressed in
terms of equations, (making the pseudoscience no more ‘true’ than it was when expressed only in
words). The other error is to mistake the purpose of mathematization as being primarily a means of
validating scientific research. To the contrary, mathematics can provide novel tools for exploring
scientific problems. But that said, existing mathematics does not contain all the possible tools that
scientists may need. Like Laplace, present-day mathematicians are likely to find fascinating and valuable
mathematical problems by learning enough biology to understand where existing mathematical tools
fail. From this perspective, mathematics is useful to any given science only to the extent to which it is
appropriate to addressing the problems posed by that science.

% pseudosciences are often promoted by sects as true sciences with the support of mathematical modeling, thus misleading
even serious researchers, including biologists.

13
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Simply mathematizing biology using existing methods does not add anything to our understanding of
biology unless the mathematics illuminates points that non-mathematical statements of the same
models or theories cannot address. Unfortunately, many scientists make their models conform to
existing mathematical methods rather than doing what Laplace did, which is to devise an appropriate
model and then invent the mathematics to describe it. Thus, historically, “mathematical biology” has not
yielded many deep insights.

The history of science suggests a second reason that mathematics has not been as useful in the
biological sciences as in the physical sciences. Scientists tend to ascribe the power of physical sciences to
their mathematization, but the real power has come from the ability of astronomers and physicists to
define their problems accurately and precisely enough for mathematical methods to be valuable. The
emphasis here is on problem finding and defining. Historically, chemists, biochemists, biologists, and
social scientists have rarely been able to define their problems with the precision and accuracy of the
physicist or astronomer, making the mathematical investigation of their relatively “fuzzy” problems
difficult. Thus, one reason for the lack of mathematics in biology is that the lack of well-defined
problems has made the field less amenable to mathematization than, say, physics. Recognizing that
categories in non-physical systems are often ‘fuzzy’ is, in fact, what led Zadeh to invent his theory of
‘fuzzy sets’, a major advance for both mathematics and modeling in biological and social sciences
(zadeh, 1965). The degree to which we can define our biological problems accurately and precisely
enough to intrigue mathematicians will determine whether we make progress in developing
biomathematics, e.g. in working toward defining new forms of dynamic relational sets.

The third reason that biology has so far failed to benefit from mathematization to the degree that
physics and astronomy have, is that the mathematics that is used to describe physics and astronomy
developed hand-in-hand with those sciences but has not developed hand in hand with biological
problems. Laplace is hardly unique in having had hands in both mathematics and physics simultaneously
— think Descartes, Leibnitz, Lagrange, Fourier, Poincare, etc. Unfortunately, the mathematical methods
developed to model physical processes do not (in general) illuminate biological problems. Biology is not
chemistry, which is not physics. Simple hierarchical reasoning states that we can recognize a new level
of organization when the principles, properties and models that worked for the previous level of
organization can be reinterpreted and harnessed by the higher level (Weiss, 1971).

Chemistry becomes chemistry (and not physics) at the point where we can ignore the physical
properties of the components carrying out the chemistry. We don’t need an understanding of nuclear
physics to describe the kinetics of a chemical reaction; we don’t need to know the movements of every
molecule in a gas to measure its temperature or volume; we don’t need an understanding of electron
shells to explain how DNA encodes genetic information. Similarly, biology becomes biology and not
chemistry when we can ignore the chemical properties of the components carrying out the biology. For
example, Mendelian genetics was invented without any concept of the structure of a gene, let alone
what macromolecular structure encoded genetic information. Darwinian evolution by survival of the
fittest does not rely upon any chemistry at all! This is not to say that biological systems are not
comprised of chemicals or to deny that they obey the laws of physics, but rather to make the point that
biological systems are recognizably biological because they have organizational properties that allow
them to carry out processes that cannot be accounted for purely on the basis of the physics and

14
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chemistry of their individual components. So, what we need is new mathematical notions and a new
concept of computing, but also a number of new mathematical tools, that permit us to model the
emergence of new properties resulting in the carrying out of novel processes as a result of innovative
forms of organization within complex systems. Or, put more simply, a mathematics which will be
appropriate to biology must be motivated by problems that are biological in their origins and nature,
just as mathematics appropriate to physics was physical in its origin and nature.

Thus, to develop a new field of biomathematics, we would propose that we behave as a community as
Laplace and his colleagues did, by going back and forth between the science and the mathematics,
letting each inform the other. Biology has much to contribute to mathematics, especially to the
development of new forms of mathematics appropriate to solving the kinds of problems that make
biology different from physics or astronomy. And biology-inspired mathematics can be expected to
return to biology the same kinds of gifts that physics-inspired mathematics returned to physics. Indeed,
not until we abandon the Comteian idea that mathematics should drive science, will biology benefit, as
it should from mathematics. Reversing the equation, and permitting biology to drive the mathematics
(at least half of the time!) may yield us new insights as important as those generated by Laplace and the
other physicist-mathematicians who founded their fields. Moreover, it may revolutionize mathematics
itself, just as the focus on physical problems motivated many of the great mathematicians of the past.

But Integral Biomathics is not going to be a purely theoretical discipline. Because “simulation” is not only
running a discretized differential equation on a computer, and visualization is not only graphical imaging
and animation, it will also explore the creation of new simulation and visualization paradigms and
techniques for biological phenomena. The reason behind this multi-perspective, quantitative-emergent
approach is that there are certain emergent features of fundamental processes that cannot be easily
described/captured by closed form, differential or any currently known mathematical object or
expression. A good example can be found in molecular dynamics (MD). For instance, if we want to
computationally assess a macroscopic constitutive parameter such the permeability of a cell membrane
with respect to a given molecule, then much insight can be gained by simulating the dynamics of a large
number of molecules of the different species involved, whereas trying to find some elegant
mathematical equation that will answer the question may currently fail. The same holds for instance in
astrophysics where simulation techniques such as smooth particle hydrodynamics are used to study the
formation of complex astronomical objects such as a galaxy. In both these examples the emergent
complexity is assessed via simulation in which the mutual interactions between the objects themselves
are described by simple laws (e.g. Newton’s law of gravitation and those of classical electrodynamics).
Cellular automata, e.g. (von Neumann, 1966; Wolfram, 1994; Wolfram, 2002; Miller & Fredkin, 2005) are
another example of how a simulation tool can produce emergent behaviour by simulating the dynamics
of agents that follow simple rules.

Therefore, we consider the development of new kinds of biologically inspired simulation and
visualization methods as part of the INBIOSA research program from which emergent features can be
rigorously analyzed. They constitute part of the intermediate steps towards the discovery of new
abstract mathematical tools enabling virtual experimentation, and enable with systems to study
complexity and emergence.
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4. Major Biomathematical Problems

What kinds of well-defined biological problems exist that seem not to be amenable to current
mathematical approaches, or have simply been overlooked by mathematicians who already have the
kinds of novel approaches that would open up these biological areas to formal analysis? INBIOSA's
collaborators and colleagues have been struggling with six such areas, all of which are general enough to
have broad implications both in and beyond biology and are therefore potentially worth the effort of a
mathematician to explore. All of them, in one way or another, share the common feature that the
systems that need to be described combine some type of continuous function with some type of
discontinuous function and some add the fillips of vector/tensor, relational and geometrical aspects as
well. The mathematical challenge is how to analyze biological problems that currently exist in two or
more of these domains thought to be unrelated in orthodox mathematics.

The first problem concerns the modeling of a cell as a dynamic process. The cell itself is a discrete
object yet the flow of materials in, out, and through a cell is continuous’. Moreover, if one asks at any
given time what defines the cell, the details of this description will differ fro those at any other time. For
example, when a cell replicates, it breaks down its Golgi apparatus, its actin fibers, and various other cell
organelles, into the molecular constituents from which they are assembled. These molecular
constituents are randomly distributed into the two daughter cells. Both of the resulting cells are still
cells of the same species as the parent cell, yet neither has exactly the same number or even exactly the
same proportion of cellular constituents as the parent cell or as each other. So clearly there is “variance”
in the absolute numbers and in the proportions of the constituents of a cell within which the cell can still
function as a cell. Moreover, the rates at which these constituents turn over, are replenished and
excreted also vary from cell to cell and from instant to instant. Now, this variance” is clearly open to
experimental manipulation. One can dehydrate cells and find out how little or how much water they
require or can sustain and continue to live. One can destroy particular cellular constituents, or block
particular receptors or transporters, and see how these modifications affect the proportions of other
cellular constituents in relation to whether, and how, the cell continues to function.

So we can obtain plenty of quantitative data. But what do these data mean in terms of what the
interactive variances in constituents can be within a living system? The problem becomes even more
complicated when we start playing with cellular structures and macromolecules. While there are so
many molecules of water or glucose or ATP in a cell that it might be acceptable to model cellular
dehydration as a continuous function, one cannot vary the numbers of actin fibrils, Golgi apparatus,
mitochondria, chloroplast, ribosomes, nucleoli, centrosomes, chromosomes, etc. as continuous
functions. These are discrete variables, with variances that are measured in discrete units.

3 The flow of material is actually a flow of discrete particles, but the time flow may be considered continuous. In fact, the
discrete/continuous duality does not reflect a fundamental modeling necessity, but the consequence of observer’s perspective,
(s. section 5.4) and modeling choice.

Under steady-state conditions the cell’s total mass must remain constant otherwise it would increase or decrease in size

(which is the case when a cell is dividing or differentiating). Barring statistical fluctuations changes over time of some cell
products like hormones depend on the context (e.g. signaling from other cell types) that explains (at least partly) the variances.
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The mathematical problem therefore becomes one of finding means to utilize all of this information,
both continuous and discrete, in an integrated model that lets us understand what the limits of variance,

and the limits of life, are for a functioning cell®.

Secondly, posing the question of what constitutes a cell in this way has provoked interest in set theory
as a possible basis of a new biological mathematics. But the current state of set theory seems
inadequate in two fundamental ways. First, cells are autopoietic — they form themselves. Indeed,
evolutionary theory asserts that cells evolved from primordial aggregates of self-organizing compounds
built from even simpler interactive modules, back to the primordial soup. Sets, at least as they exist in
mathematical forms, are not autopoietic. Existing set theories use axioms which limit the way sets are
defined, for instance by limiting the expressions describing their elements to avoid self-reference, which
in turn is a critical property of living systems. Development of a set theory suitable for such systems
could be attempted, for example allowing sets to be defined by dynamic rules, including self-referential
ones, so as not to produce paradoxes, but to permit autopoiesis6 (Maturana & Varela, 1980). This is, in a
sense, what complexity theory is about (e.g., Kauffmann, 1993), but complexity theory does not
incorporate most of the useful features of set theory. Could a mathematics that described autopoietic
sets through complexity-like theory exist? Might it shed light on the evolution of the “sets” we call
“cellular life” by permitting us to describe continuous functions that produce rules that then limit the
entry and exit of possible components of the set, and that can undergo transformations (metabolism)
within the set? After all, this is what cells do. So why not develop a mathematics that describes what
nature can already do? Another way in which modern set theory cannot be trivially applied to tackle
biological problems is because biological sets have the variance property described above. Any given cell
must have chromosomes, but their number can vary (as they do in cancers and parthenogenotes) and
still be viable; they can have many or few ribosomes and mitochondria and still live; they can
accumulate certain amounts of toxins or lose a certain amount of key ions and still function; etc. So in
addition to inventing autopoietic sets, is it possible to invent sets that are not defined by specific
numbers of constituents, but by variances within which all of these constituents must exist. A bacterial
cell that becomes dehydrated may die, or it may sporulate. How can some form of set theory be devised
that models the process of switching between stable states when certain variances are exceeded? What,
in general, does such a state-sensitive, mathematical set look like? How does it behave? What
properties does it have that sets, as currently defined in mathematics, do not? How might these new set
properties inform living systems and perhaps even our understanding of social processes, supply chains,
and other useful functions? Since the origin of the first protocells/autocells is imaginable, this approach
appears reasonable. But since we have no idea about the origin of the genetic apparatus where does
that get us?

>In this First Problem there are actually three sub-problems, where the first one is somewhat unrelated to the other two: i)
combining discrete with continuous quantities, ii) explaining their variances and their interrelatedness, iii) discovering the cells’
functioning (and non-functioning) parameter ranges. Regarding the third sub-problem, dynamic systems theory, sensitivity
analysis and bifurcation theory seem to provide some tools to tackle it.

® The mathematics necessary to cover/explain autopoiesis may not necessarily require “autopoietic” sets but self-referenced
objects. An alternative approach could be to define an object by the transitions rules (predicates) that hold over pairs of
objects. This allows under certain circumstances a (static) mathematical description of an object that would self-replicate in
simulation space. However, we wish to go beyond these limits.
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So one thing that is needed in our new biomathematics is a way to model self-emergent sets (origins of
first cells; self-assembly of viruses, etc.) But these self-emergent sets would seem to need the ability to
carry out functions (selecting/rejecting among possible components; minimizing what a physicist thinks
of as free energy; etc.). One possible focus of a new biomathematics would be to invent an appropriate
theory of self-emergent sets that can carry out functions within variances.

Such a theory would preferably incorporate the work that has been done on understanding hierarchical
systems’ emergent properties, complexity theory and so forth. Such a mathematics would therefore be
extraordinarily integrative, a point to which we will return.

Thirdly, a biological problem related to set-like properties is that organization strictly limits variance
through the formation of modules in a manner that requires diligent ways of using probability theory.
Imagine a clueless, blind “watchmaker” of the sort that Richard Dawkins likes to put in charge of
evolutionary processes. But let this watchmaker carry out a process first investigated by Herb Simon in
one of his little known and under-appreciated essays on evolutionary processes (Simon, 1981).
Combining Dawkins’s and Simon’s watchmakers produces the following scenario that exemplifies one of
the critical problems that needs to be addressed in the origins and evolution of life. Imagine two
watchmakers, the first of whom must randomly assemble 25 parts in order to put together a “watch”.
This completely ignorant watchmaker must explore every possible combination of the 25 parts he has in
front of him, which is to say 25!, or about 1.55 x 10%° possibilities! If it took a single minute for each of
these possibilities to be explored, our watchmaker would not succeed in making even a single watch
within the lifetime of the universe! Moreover, because he’s just a random assembler and cannot learn
from experience, he has to explore all these possibilities each and every time he tries to build a watch!
Clearly, such an entity working by such a process would, for all intents and purposes, never succeed,
making de novo evolution of life virtually impossible.

But what Simon first recognized, and Root-Bernstein has developed (Root-Bernstein and Dillon 1997;
Hunding et al., 2006), is that an equally clueless, blind and random watchmaker who uses stable
modules built on the principle of molecular complementarity would succeed, and astoundingly quickly!
Simon’s model assumed that the watchmakers knew how to make a watch (a clearly un-biological
assumption), from which he derived the following equation: the time required for the evolution of a
complex form from simple elements depends critically on the number and distribution of potential
intermediate stable forms. In particular, if there exists a hierarchy of potentially stable ‘sub-assemblies’,
with about the same span, s, (i.e., the number of parts or components required to form each stable
subunit) at each level of the hierarchy, then the probability that a subassembly process will be
completed within any given time, T, can be expected to be about 1/(1 — p)°, where p is the probability
that the assembly process will be interrupted during time T. Clearly the less stable each step is in the
assembly (i.e., the greater p is) and the larger the number of components that must be assembled to
achieve a complete assembly (s), the less probable any particular assemblage is to evolve. Conversely,
the more stable each step in assembly is (i.e., the smaller p gets) and the smaller the number of
components required to produce a completed assembly (s), the greater the probability an assemblage is
to evolve, (Simon, 1981, p. 203).
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The implication of Simon’s model is that we should therefore expect evolution to be characterized by
the selection of semi-stable modules arranged in a hierarchical fashion that minimizes wasted time,
effort and resources. This is precisely what we do see. But Simon’s model is not an accurate portrayal of
the biological problem. The problem with Simon’s model is that evolutionary watchmakers do not know
how to make a watch and must search randomly for stable modules. Fortunately, molecular
complementarity between compounds naturally forms such stable modules, so these come into
existence in just the kind of random fashion that needs to be assumed. So once again assume our
modular watchmaker needs to make a watch from 25 pieces, but also assume that she makes her
watches in five stable sets of five ordered parts. Stable five-element modules could be built by exploring
only 5! possibilities or just 120 combinations. Then our modular watchmaker would need to explore
randomly the 5! possible combinations of these five modules, or another 120 possibilities. Altogether,
the modular watchmaker explores only 720 = 6! possible combinations, which, if they could be explored
at one possibility per minute, would yield a watch every two hours. Quite a difference from 1.55 x 10%
minutes to explore the original 25! combinations! The impossible becomes highly Iiker7 (Root-
Bernstein, 2012)!

Now, obviously the advantage of modularity is not as great as just stated for a real, molecularly
complementary system. Firstly, stable modules might not result from any given set of five components
so that our modular watchmaker may have to explore more sets than we have assumed. Secondly, the
specificity of module building is not perfect and some non-functional modules will also likely be stable,
confusing final assembly. We can also assume that the proper modules will out-compete the improper
ones in producing complete watches, but this may not be the case if improper modules, inefficient at
assembly as they may be, so out-number the proper ones as to swamp them. Finally, there is no
biological reason to assume that stable modules have five components — the number could vary from
two or three to two or three dozen per module. And this is exactly the point at which current probability
theory is improperly applied. How do we model the kind of system we have just proposed in which
modular sets are formed in a reversible manner, may contain variable numbers of components, and
compete with each other in a probabilistic scenario?

Again, such a kind of mathematics must exist, since Nature already performs these functions, but what
does that mathematics look like? Perhaps it is not a matter of the non-existence of certain types of
mathematics, but rather that the appropriate type of mathematics has not been applied to these
guestions. We do not know. What matters is that these questions are still looking for mathematical
answers.

"However, it is necessary to pay attention to the principle of minimum of three levels of modules in hierarchy
theory (Salthe, 1985): more is fine, but fewer — logically unworkable.
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The importance of being able to address this modularity-probability problem is illustrated by the fact
that the formation of complementary module building within complex systems can prune out huge
numbers of possibilities at each step of hierarchical assembly. In general, the greater the number of
pieces, and the more modular steps involved in the process, the more efficient the process becomes.
Given the mathematics of these probabilities, there must be some optimal number of pieces per
module, and an optimal number of modules per functional unit and an optimal stability that must be
attained. All of these variables must be optimized so as to maximize the rate at which functional
modules are generated while minimizing the number of possibilities that must be explored. Our
assumption is that nature has already solved this problem. Analyzing naturally occurring modular
hierarchies for rules of optimization might therefore have vast implications not only for understanding
the evolution of life, but also, as Simon (1981) notes in his original essay, for the most efficient design of
chemical, technological, and even human systems of organization.

We have already alluded above to various biological problems that require working at the interface
between continuous and discontinuous functions. One might posit that most of biology consists of sets
of problems that exist at this continuous-discontinuous interface. For example, chemical
neurotransmitters (working continuously) release a single electrical discharge (occurring
discontinuously); individual organisms can potentially interact more or less strongly with other
individuals by means of chemical messages (continuously variable) that determine whether they
develop as many individuals or transform themselves into a single super-organism (a biofilm). How can
we mathematically handle interactions that may vary continuously but act on a small set of definable
individuals? These are not amenable to modeling solely using mathematics that assumes continuous
functions. We are particularly interested in these continuous-grainy problems from the perspective of
complementarity. Any given species of molecule may interact more or less with any other type of
molecule, so that in a very diverse mixture of molecules, a large number of weak interactions may
overwhelm a small number of strong ones.

The same can be true among sets of cells or in species or social interactions that involve what Csermely
has called ‘weak links’ (Csermely, 2006) and Root-Bernstein calls ‘complementarity’ (Root-Bernstein and
Dillon, 1997; Root-Bernstein, 2011). There appears to be no orthodox way to model such systems
mathematically, yet such systems occur at every level of biological complexity. Again, since biological
systems are able to integrate units with continuous functions, surely there is a mathematics that is
appropriate for modeling how biological systems do so.

A fourth set of problems relates to the key properties differentiating a living system from a non-living
one. Living systems involve directional processess. Their physical environment, however, is characterized
by non-directional properties. In other words, we have two different models at the same level one for
living and one for non-living matter. One doesn't need vectors to describe chemical reactions in a test

¥ For clarity, in what follows in this paragraph and in the next ones, we will often name by "vector" the directional
properties and by "scalar" the non-directional ones, discarding that we are outside the required mathematical
context in which these terms are usually defined. Thus, the use of these terms and several other ones should be
understood from our context rather than from the algebraic one. Furthermore, it should be obvious when the
terms refer indeed to the mathematical context.
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tube, but one does need vectors to describe biochemical networks. Hence, a characteristic feature of
biological systems is that some of their properties involve transformations from scalar to vector
guantities. Some very interesting and important problems lie at the interfaces between the physical
world and the biological one; they require mathematical means to describe how vector processes
interface with scalar ones. For instance, how does random diffusion get converted into directional ion
transport? We need a single integrated model, but not different ones for each domain.

We know from elementary algebra that multiplying a scalar by a scalar gives a scalar; and multiplying a
scalar by a vector gives a vector; and multiplying a vector by a vector gives a scalar (V.V) or vector (VxV);
but how does one get from purely scalar quantities to a vector one? Is this another kind of tensor
transformation? How do racemic mixtures of chemicals give rise to chiral handedness in living systems?
How does a chemical neurotransmitter signal (scalar diffusion) become a directional electrical signal?
How does one evolve from random diffusion (scalar) to facilitated transport systems (vector)? How does
one evolve from all possible reactions occurring (primordial soup, laboratory bench) to reaction
pathways (vector/tensor)? In all these cases (and many more) scalar processes result in vector ones, yet
mathematics generally treats either scalar quantities or vector and tensor quantities, but not the
transformation of scalar to vector and vice versa. In differential geometry, scalars, vectors, tensors and
matrices are considered as examples of multilinear maps, and so are graphs in the usual definition with
only one arrow between 2 vertices, which is easily translated into a tensor or a matrix. Could a new
operator be adapted for living systems? Or we need a new mathematical formalism for this purpose? Or
should we still approach problems in differentiated way? Perhaps we may well need to apply different
types of mathematics than are currently applied. Recall that the tensor concept emerged out of the
necessity to have vector transformations. The issue with matrices and determinants used to solve
systems of (polynomial and differential) equations is similar: they all emerged out of the necessity to
solve particular problems. Mathematicians like Newton, Leibniz, Gauss and others were clever enough
to discover the repeating pattern and simplify the solution. Now, we have another set of biological
problems, e.g. in the domain of genetic regulatory networks, where one can trace a complex map of
enactions and transitions between certain protein chains (objects) — well modeled by directed
(hyper)graphs — but then at a certain point in time these objects suddenly turn into processes or entire
networks of them (autopoiesis!?) revealing some hidden variable operational semantics (Bohm) that
completely inverts the picture, so one has a “jump” or gap in the overall description. How to explain
that? The object becomes a process, and then again the reverse situation at some point later. What we
may need is a mathematics in which one assumes that every scalar quantity is actually a pair of opposite
vectors (or tensors) that normally sum to the null vector (or tensor). For example, in all vector/tensor
systems in biology of which we are aware, an inflow of one kind of molecule is always balanced by an
outflow of another; selection for right-handed sugars occurs only where there is concomitant selection
for left-handed amino acids. So is it possible that in fact the overall balance of vectors/tensors in a
biological system is always conserved and that the local manifestation of one half of a vector/tensor pair
(e.g., inflow) is always balanced by the expression of the opposite vector/tensor pair (outflow) in the
opposing process? Is there a mathematics that can help us investigate the rules that might govern such
processes by integrating vector/tensor reasoning into the kinds of set thinking postulated above so we
can understand how molecules move directionally through cells as a result of metabolic processes, etc.?
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The fifth type of problem involves the linkage of form and function. Biologists who deal with almost
any level of biological organization have recognized that natural selection attempts to optimize forms to
carry out particular functions, but since novel functions evolve from existing forms, these attempts may
be seriously limited. The mathematical challenges involved in attempting to model these form-function
interactions are far from trivial. Knot Theory (Manturov, 2004) allows study of the form of proteins, in
particular protein folding (Kauffman and Magarshak, 1993; Taylor, 2000; Martz, 2000), but we do not
have good geometrical tools that can easily model complex processes in embryological development.
Fractals and other forms of mathematics that generate lovely images that look like the final products of
some of these processes (e.g., the branching structure of the bronchioles in the lungs) but share nothing
of the actual biological processes that give rise to these structures. But the very fact that the final
outcomes of these images look similar suggests that they do share something in the functional and
structural organization, even if we do not understand what it is. Our mathematical geometries generally
do not illuminate the processes that give rise to biological geometries, but only their outward forms.
More importantly, the interesting thing about biological forms is not their geometries per se, but the
ways in which these forms are reifications of the biochemical processes they carry out or make possible.
For example, it has become evident that the folding of chromosomes is a prerequisite to bringing
together genes that would otherwise be spatially separated; and that spatial proximity permits the rapid
diffusion, and control of interactive gene products that would otherwise be unable to interact in a
reasonable biological time frame across an unfolded genome (Junier et al., 2011).

But what kind of mathematics would make it possible to model simultaneously the effects of geometry
(spatial structure) on continuous functions such as diffusion, that in turn regulate on-off gene regulatory
switches that act discontinuously or digitally? Similarly, in developmental biology, we now have
excellent data concerning the sets of genes that must be turned on and when they must be activated or
inactivated in order to produce proper embryological development (e.g., Carroll, 2005), yet the discrete
information generated from combinations of individual genes is expressed as a continuous flow of
proteins and hormones that produce gradients which must be reified as organized groupings of cells
that have a specific form. So once again, embryology is stymied by the lack of mathematical approaches
that can link discrete, continuous and geometrical information.

Conventional approaches to these sorts of problems rely on modeling one aspect of the problem with
one form of mathematics, switching to another sort of mathematics to address the next aspect, and to a
third one to describe yet another. All this switching is an indication of how difficult it is to apply our
mathematical tools for addressing these problems. Biological systems function at all of these levels
simultaneously, so why cannot our mathematics?

We maintain that it is not the biology that is too messy to be modeled in these cases, but the application
of orthodox mathematics that is inadequate, because it is inappropriate for addressing these sorts of
biological problems. This is why we need a new biomathematics! Indeed, we speculate that
complementarity might be the solution to both the biological and the mathematical problems here.
What we seem to need are the means to describe all of the biological problems listed above as
manifestations of a single problem that can be examined using a single, (new) type of mathematics.
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To summarize, our contention is that the reason that biologists have failed to develop a viable set of
mathematics methods appropriate to solving biology’s problems is that we have relied too long on
mathematics developed to model physical problems that are intrinsically different. The assumption has
been that biology can be reduced to chemistry and eventually to physics, and therefore that a physics-
derived mathematics should be sufficient. But hierarchy theory suggests that reductionism can never
explain how novel properties and processes emerge. Biological entities have properties that are
different from chemical and physical ones and that require novel mathematics for their description.

Thus, what we need is not more detailed physical models of biological systems that can handle greater
and greater amounts of detailed data from increasingly fine-grained studies of the components of
systems, but ways of identifying the biological properties that are as unique to such complex
conglomerations as temperature is to a set of molecules. What we have lacked, in short, is a uniquely
evolutionary mathematics that deals with the emergence of organization from non-random selection
among replicating variations within complex populations.

The challenge to a novel biological mathematics, or biomathematics, is to invent new mathematical
tools (or to make effective use of existing ones), which are able to handle such emergent properties and
organizations. This will allow the development of a biologically relevant theoretical framework
integrating concepts of continuous mathematics with discrete mathematics, algebraic formalisms,
abstract calculi, logics and topological/geometrical principles in a novel biologically relevant framework
we call Integral Biomathics.

The sixth and final type of problem deals with multi-scale integration of mathematical models and the
study of emergence. It is concerned with the development of a set of theories that cut across multiple
spatio-temporal scales of organization. In fact, such a kind of mathematics, which is capable of unifying
the different domains of mathematics, already exists: Category Theory (cf. Section 7.6.1). It allows an
approach to the five types of problems mentioned above. We believe, as Charles Ehresmann noted in
1966, that mathematics "is the key for the understanding of the whole Universe, unifying all human
thinking" and that "the theory of categories seems to be the most unifying trend to-day" (Ehresmann,
1966). In the past 50 years new branches of Category Theory (CT) have been further developed:
monoidal categories which generalize tensor calculus and are used for instance in Categorical QM
Semantics (Abramsky, 1996; Abramsky and Coecke, 2007) and Quantum Picturalism (Coecke, 2009);
higher categories and sketches which Charles and Andree Ehresmann introduced and were later
modified and developed by others (incl. their research students) leading to completely new sub-domains
of category theory with applications in computer science and in the foundations of physics. Some of the
above problems are raised in the Memory Evolutive Systems (MES; cf. Section 7.6), (Ehresmann &
Vanbremeersch, 2007), which are based on a dynamic theory of categories incorporating time. Indeed a
MES is "not" a category, but an "Evolutive System", i.e. a family of categories indexed by time, with
transition partial functors between them modelling the changes over time, each category representing
only a snapshot of the configuration of the system at a given time. The transition functors allow
consideration of the dynamic aspects. Thus, Evolutive Systems can be called "changing category” with
time.
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What makes MES adapted for modelling living entities is not just that they are ES (it could also be the
case for "mechanisms"), but their multi-agent multi-temporal self-organization, with the interplay
among their agents (called Co-Regulators, CR) and its capacity of learning based on the formation of a
flexible though robust and plastic memoryg. However for MES to become a good formal methodology it
needs to evolve like a living system itself, otherwise it would be a dead end. Further, it is already a living
system itself, thus able to be enhanced and adapted to reflect the nature of the most recent findings in
biology in order to prepare for the discovery of new ones. This will be also the case in future, for we are
challenged to build Integral Biomathics on solid foundations. So, even in the best cases, MES will not
remain the same in the future. We may also experience some surprises on the way. Thus, the sixth and
last type of problem outlines some ideas, which give the INBIOSA incentive a push toward a real (and
probably completely different) theory of living systems, cf. section 7.

We are aware that the above arguments are perhaps not sufficient to firmly underpin our position prior
to discussing the above six major problems within this short 12 months project. Usually, scientific
discussions of that kind take years or even decades. We will need time to systematically analyze all
proven theories, postulates, facts and assumptions underlying this rough outline of a research program
in order to "clearly state" (as even some of our discussants requested) the INBIOSA “roadmap”. Or the
roadmap may need radically redrawn, because of new insights encountered along the way. The reader
may also criticize the many overlapping issues in this section, since usually major problems of ambitious
programs are defined as disjoint (although related, as e.g. in (Hilbert, 1902)) entities. But this is really
entered “terra incognita” and only recently started. Thus, elaborating the details of the above six
problems will be continued in a future follow-up project.

In conclusion, we feel compelled to think that Integral Biomathics may revolutionize mathematics itself
by proposing mathematical models based on a recently developed domain of mathematics (Category
Theory) that integrates (through fundamentally simple insights) disparate areas of both mathematics
and the sciences. Since we have to think about biological systems in all of these ways in order to model
them, and since biological processes are intrinsically carried out in these integrated ways by Nature
itself, it seems logical that real and useful connections must exist within the mathematical formulations
of these natural processes as well. Indeed, as we have indicated, we believe that biology is just one of
many such sets of emergent properties resulting from spontaneous organization within complex

9 The above mentioned transformation from scalar to vector could correspond to the 'jump' from process to object, and vice
versa, done in MES to construct the landscape of a CR, and later realize the selected procedure. Indeed, the landscape of a CR
at a given time t is a category which has for objects the links f of the system which transmit information to the CR around t: thus
the passage from the system to the landscape of a CR transforms information processes f into objects. And conversely, the
procedure that the CR selects is an object Pr (in the memory), which is realized through its commands to effectors, thus
transformation of an object Pr into processes. Let us note that categories consider both objects and processes (as links between
the objects), and, through the colimit operation, transforms patterns (= sub-networks) into higher objects. The situation is still
more complex in 2-categories, where the same element can be seen either as an object or a process. A 2-category K is a
category in which the sets Hom(A, B) of links from A to B are equipped with a composition law transforming them into
categories (with some coherence axioms). Thus an object g in the category Hom(A, B) is at the same time a link from A to B in K,
hence can be seen as a process between them. Thus, depending on how it is looked at, g 'jumps' from being considered as an
object to a process and vice versa. However, there might be other explanations for such phenomena, e.g. the WLI's
shuttle/netbot duality principle (Simeonov, 2002), which is closely related and complementary to MES.
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systems. As a consequence, the principles that are derived from our studies of biomathematics should
apply to an understanding of how novel properties can emerge in complex systems of any kind, whether
ecological, social, behavioural, technological or economic. Thus, just as the Scientific Revolution
provided us with physics-based mathematics that made possible the investigation of whole new realms
of science, so can we expect the development of a biology-based mathematics, Integral Biomathics
(Simeonov, 2010a/b; Simeonov et al., 2011), to have equally far-reaching and revolutionary effects.

5. Issues Affecting Integral Biomathics

There are a large number of specific issues or difficulties, which impact directly or indirectly on the
development of Integral Biomathics. The following list is not exhaustive, but provides an important
starting point in constructing the boundary conditions within which a mathematical description can be
formulated.

5.1 Complementarity

Possibly the primary defining character of biological systems is complementarity. This, in itself, is
sufficient to emphasize that biology must be treated differently from physics or chemistry, where
although complementarity can and does exist, it is less critical. Mathematically, complementarity will
provide the biggest challenge in the conception of Integral Biomathics.

One sort of complementarity is methodological, enabling relational data to emerge through dialogical
processes that juxtapose different mathematical approaches (both static and dynamic), as embodied
within new simulation and visualization methodologies. The complexity of biological functionality
necessitates the employment of a multi-perspective set of mathematical approaches. Such approaches
can be realized by articulating a set of relations and interactions between the differing branches of
mathematics that come into play, as well as by developing new forms of mathematics driven by the
biology at hand.

Another kind of complementarity is that of investigated objects and processes. It is comparatively rare in
biological settings to find a process or phenomenon, which is independent from all others and the forms
in which complementarity appears are many and varied. When we observe the ways that molecules and
systems interact to create complexes, whose emergent properties are unpredictable from their
individual components, then complementarity resembles Escher tilings, in which each line defines two
forms, and the overall design is different from the sum of the parts. Another way complementarity can
appear is more like the way physicists use the term, where something can be described both as a wave
and a particle. It is important to remember that Niels Bohr’s position was that ideas of complementarity
should not be restricted to particle-wave duality. Complementarity reminds us that we must cohesively
integrate actor-centered first person descriptions and impartial third person descriptions in any
overview of biology.
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Any successful formulation of Integral Biomathics must take account of apparent dichotomies like that
at the intersection of reductionism and holism. Ideally, such a formulation would be capable of re-
casting this, and other dichotomies, as complementarities, thus avoiding inherent or unintended
paradoxes. An important aspect of this relates to individuals, groups and evolution. Is there a way to
look at natural selection from both individual and group selection perspectives that yields a new
complementary model more powerful than either of them alone™ (Fodor and Piattelli-Palmarini, 2010)?
And could this lead, as it did in quantum theory, to fascinating new conundrums — such as a
‘Heisenberg's uncertainty principle for biology’ —in which, for example, it would only be possible to
explain microevolution based on individual selection and macroevolution based on group selection, and
that a population consisting of both individuals and groups would be amenable to both types of analysis,
but could not be completely described by either?

5.2 Scale and Hyperscale

Confusion abounds as to the character of system scale. Most usually this concept is uniquely associated
with its counterpart of size, but this often results in a complete misunderstanding of the role of scale
and of its implications for system operation and function. Unfortunately, in the information sciences, the
idea of scalability refers to a capacity to change the size of a system or network without running into
unforeseen or undesirable situations — without any scalar effects appearing.

Unfortunately, once more, the isolated Boolean nature of purely digital systems explicitly eliminates any
local-to-global effects: in their instantiation as information processors, digital systems never exhibit real
scale, no matter how big they may become. Much is made of the possibility that a global intelligence
could develop, or be developed, within the Internet. This is, unfortunately yet again, formally excluded
for the same reasons, although it could be — and possibly currently js — a reality for the extended global
system of {Internet + users}. Intelligence is a vitally important feature of any biological system. It
constitutes at the very least a capacity to operationally relate the lowest organizational level of an
organism to a higher organizational level, and/or levels, in support of the organism’s survival. Leaving
aside for the moment how a higher scalar level of an organism may emerge, this transition is always
associated with a reduction in the available degrees of freedom, and it naturally takes place through a
region of state space (or, rather, scale space) of great complexityll.

0 For instance, the Multiplicity Principle, MP (Ehresmann & Vanbremeersch, 2007) represents such a kind of complementarity:
the same function can be realized by non-isomorphic complexes with the possibility of 'switches' between them. It is at the
basis of the emergence of complex interactions between complexes A and B not reducible to interactions between the
components of A and B. And the existence of complex links is the characteristics for the emergence of non-reducible objects of
complexity order >1, i.e. complexes that have emergent properties unpredictable from their individual components but
dependent on the global structure of lower levels.

1 By ‘complexity’ here we refer to Rosennian complexity of real systems, and not the Kolmogorov complexity, which appears in
digital information processing. However the Kolmogoroff complexity can be generalized to hierarchical systems such as
biological systems to measure the 'real' constructive complexity of a component; and it has been shown that the Multiplicity
Principle (formalizing the degeneracy properties of living systems) is necessary for the existence of such higher complexity
(Ehresmann & Vanbremeersch 2007), which contradicts a "pure" reductionism.
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Consequently, it is virtually impossible to model mathematically a single (‘local’) scale-change in an
organism without also taking account of its global properties. Although the operations characterizing an
organism at a single scalar level, e.g. that of biological cells, may at first sight appear intractable, the real
challenge is to somehow model the relations between even adjacent scales. The inter-scalar ‘regions’ of
an organism are archetypically complex, and multiply fractal. Accordingly, any approach to their
understanding requires close attention to complexity theory. If we assume that individual scalar levels
can be at least approximated by Newtonian representations, then the inter-scalar regions are more
closely related to quantum-mechanical superposition-and-collapse: first a superposition of all the
‘possible emergences’ (Yardley, 2010), followed by a collapse to the most suitable one. In an
information-processing context this birational character may be ubiquitous. Pribram has suggested a
related model for the interaction of neuron groups (Pribram, 2001), where the neural dendrites and
nucleus may be represented by some kind of (classical) summation of information, and where the
axonite distribution of the result is transmitted to following neurons by a ‘(real) simulation’ of quasi-
wave transmission and ‘collapse’. Another interesting theory of fractal space-time and scale relativity for
biology was presented by Nottale and Auffray, (Nottale, 1993; Auffray & Nottale, 2008; Nottale, &
Auffray, 2008).

Living systems develop into multiscalar assemblies whose organizational structure has much in common
with conventional ideas of both hierarchy and heterarchy. However, where the usual concept of
hierarchy imposes one of two forms — scale hierarchy or specification hierarchy — living systems appear
to develop into a form which can most usefully described as a model hierarchy that has been described
as “a specification hierarchy constructed in terms of scale”*? (Cottam et al., 2003, 2004). Here, each
level of the (quasi-)hierarchy represents the entire organism at a different scale. Whereas scale and
specification hierarchies are usually referred to as abstract human constructions, a model hierarchy
appears to successfully represent what a living system itself constructs. Each level of such an assembly is
partially enclosed and partially in communication with its neighboring scales, and the entire assembly
forms a ‘self-correlating” whole of partially autonomous scaled ‘sub-systems’. This type of structure not
only subsumes the idea of hierarchy, it also subsumes heterarchy through the variable nature of its
partial inter-scale communication and consequent variable scale autonomy. The ‘traditionally’
problematic aspect of hierarchy is how to represent the emergence of a structure’s new higher scale
level by ‘upscaling’ from a lower one. This ‘transitional’ upscaling in living systems appears to be a
generic form of quantum error correctionlg, where local system information is added to a description of
the initial level to focus targeting on the higher one. Close examination of the properties and features of
living systems over the last two decades has indicated that this type of Newtonian-plus-quantal ‘two-
stage process’ characterizes all ‘transitional’ upscaling processes, whether in biotic or abiotic
’systems’“. This must, then, constitute a central issue in any approach to creating a mathematical
scheme for biology per se.

12 3 citation of Stanley Salthe who also added here when reviewing this paper: “Some have proposed that diachronic processes,
like evolution or development can be represented using the specification hierarchy, while any stage picked out for examination
would have scale hierarchy form.

Ba suggestion originally made by Walter Schempp

14 Technically, all ‘systems’ ‘include’ life, and we must be careful how we refer to abiotic ‘systems’ within their abiotic/biotic
environment.
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However, as it stands this is insufficient, for it offers no advice at all about how changes in one level may
impact on its lower neighbor. If we take Rosen’s sole reference to scale systems as a lead, it is unclear
exactly how a suitable mathematical scheme may be formulated, because to do so requires us to
address how to mathematically differentiate or integrate a complementary pair! Nevertheless, more
elaborate categorical tools (such as sketch theory and its application to the complexification process)
can provide some answer to this question (Ehresmann & Vanbremeersch, 2007).

At the very least, any representation of a living entity, for example of a biological cell, must take account
of these aspects of scale. Although many informational properties of a cell may be derived from
experiments with cellular cultures, this in no way addresses the cell’s internal workings, and a great deal
of expertise and imagination will be required if we are to ‘construct’ a link between these two, even if
only conceptually rather than mathematically. As seen from outside, an organism will always appear to
be a set of properties which operate at a number of different scales, and although we can attempt to
model these in a ‘global’ representation, our ‘access’ to internal scales will always be partial in nature
and dependent on the extent to which our informing experiments disrupt the organism’s ‘closure’
(Cottam et al., 2000).

In our daily lives we view entities in our surroundings in a similar manner — as a loose conglomeration of
both ‘visible’ and ‘imagined’ multi-scale properties and processes. Here again, two decades of research
have indicated that this hyper-scale ‘picture’ (Cottam et al., 2006) is not only characteristic of the way
we view an entity, but that it is intimately associated with the way an entity itself builds up its very
nature. Not only are the different scales of an organism only indirectly accessible from an outside
platform in a ‘vague’ manner, their internal inter-correlation is itself vague — the result of ‘integrating’ its
different scales across a number of internal levels. Thus, scale, and this difficulty of inter-scale transit,
must occupy a prime position in any attempt to model biosystems. The viability of any mathematical
approach must be judged by its ability to address scale issues as they unfold in time. It is far from clear
that this will be possible from either a purely physics-based approach or a purely biology-based
approach. Life itself appears ‘automatically’ within Nature, and consequently it should appear
‘automatically’ from any realistic model of Nature. Rather than beginning from a purely biological
ground, it seems that the best route would be to first create a modeling framework, which is
independent of any ‘biotic or abiotic’ distinction — to create a framework, which is not restricted by the
constraints of either physics or biology. Such an enterprise, therefore, must encompass two quasi-
independent features in relation to a specific target: first, a foundational framework within which
Newtonian and quantal viewpoints, and their more local derivatives, can successfully coexist; second, a
mathematical formulation which addresses features of current interest. It is most unlikely that a single
general mathematical formulation will be sufficient for all purposesls. Instead, panoply of different
techniques will need to be interlinked in Integral Biomathics through the foundational framework, to
provide access to a useful range of system properties. In particular, defining operative sets of relational
properties, drawn from the juxtaposition and future unification of differing mathematical approaches,
applied across multiple scales, will become a focus of articulating methodological complementarity.

'S Rosen has pointed out that ‘real’ complexity could only be accurately addressed through an infinite assembly of formal
techniques.
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5.3 Class Identity vs. Individual Identity

Biology is grounded on the maintenance of molecular organization (class identity), at the cost of
constant variation in the constituent molecular subunits. Low level biological processes do not follow a
rule of ‘one molecule, one effect’, but ‘one continuation of molecular presence, one effect’, where
individual molecular presence is often very short-term. For instance, consider a biological organism such
as a human egg cell, containing about 30,000 genes, which encode protein molecules. Roughly 3,000
genes encode specific proteins called transcription factors that regulate RNA transcriptions. These
transcription factors uniquely determine when genes will be turned on, for their expression, and turned
off, while at the same time orchestrating an exquisite network of transcription-sequence regulation.
How is it possible for one transcription-factor molecule for every ten genes (on average) to adequately
regulate the expression of each one of those ten genes in the succeeding developmental process?

A clue to the answer to this question can be found in the observation that typical genomes in cells
contain extensive non-coding, regulatory regions, and that these regions can act as enhancers, silencers,
insulators, and promoters of the genes. If the expression of each gene is regulated by a combination of
many different transcription factors, the accompanying combinatorial control may be competent
enough to form a consensus among the participating transcription factors as to whether or not the gene
in the target will be expressed, and when.

The flow of time involved in the developmental process can be made explicit by referring to the input-
output relationship between transcription factor concentrations and the rate of protein production from
downstream genes. Although noise latent in the transcription factor molecules in the input is random
and rapidly varying, due to the stochastic nature of each biochemical reaction involved, this does not
imply that similar randomness and rapidity would also apply to the rate of protein production of the
output downstream. A relevant experimental model indicates that fluctuations in the output level of the
protein molecules are much slower than those of the input level of transcription factor molecules
(Rosenfeld et al., 2005; Pedraza and van Oudenaarden, 2005). This suggests that there must be some
robust scheme for generating such slower fluctuations, in which the underlying organization can serve
as a standard to which the passage of time in the form of fluctuations can be referred.

The binding interaction between the transcription factors and the DNA molecule to be transcribed is
rather weak (of the order of 4kJ/mol or less) due to the underlying van der Waals forces. Consequently,
a transcription factor molecule can easily be detached from the DNA by thermal fluctuations at ambient
temperature. If there are sufficient transcription factor molecules in the neighborhood, however, the
binding site can easily be ‘replenished’ by another similar molecule. The functional unity of the binding
site is thus effectively maintained in an uninterrupted manner, even though the individual transcription
factor molecules are constantly exchanged (‘touch-and-go’). This functional unity may help to suppress
the rapid fluctuations associated with the frequent exchange of input transcription factor molecules.
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This kind of the ‘touch-and-go acrobatics’ is ubiquitous in biology, making class identity far more
relevant than the individual identity, which characterizes typical physics or chemistry investigation
(though class identity plays a role in statistical physics and in thermodynamics). Class identity,
corresponding to the ideas put forward by Elsasser (Elsasser, 1981) and Bateson (Bateson, 1972, 2002),
must become a cornerstone of Integral Biomathics.

5.4 First Person Perspective

Classical science is based entirely on a third-person perspective of Nature. This is the basis of its
objectivity, as a way of developing representations of reality, which are both independent of human
observer and reproducible. This is arguably the central strength of science and of its child technology,
and it depends on the central assumption that the entities or processes which it studies are incapable of
initiating action, that they are unconscious and to that extent inert.

The picture obviously changes when we move to the examination of human affairs, where we assume
that ‘free will’ based on first person perspective is extant (or at least there is something which from
outside resembles ‘free will’). This is a major problem, which faces practitioners of the social sciences,
that although reliable data may be obtained for populations, this is not the case for individuals. Here
again, class identity is of overriding importance.

The question which now faces us is whether, in developing an Integral Biomathics, we should permit the
inclusion of first person perspectives or not? Historically, the study of biology has taken the same line as
physics and chemistry, in insisting that third person perspective alone should be taken into account.
Philosophically, this has corresponded with the view that mankind is unique in its ‘free will’, and that
consequently the non-human first person perspective could be ignored. We can permit ourselves no
similar luxury. Clearly we should include first person perspective at the level of complete organisms: but
at the level of biochemicals? Integral Biomathics will need a well thought out internal framework to take
account of differences in the importance of first person perspective right across the multiple scales of
biology. The example of clock-control by cyanobactrium Synechococcus cited below suggests that care
must be exercised even at low levels of organization.

Why do we need a First Person perspective?

Probability theory is a branch of mathematics concerned with assigning a numerical value (a probability)
to a possible event. There are two main approaches to this problem, on the one hand, the frequentist
view in which studies probabilities as frequencies i.e. the ratio of the times the event occurs over a test
series, and on the other hand, the Bayesian view, in which probability is a measure of the degree of
belief that an event will occur (Jaynes, 2003). While the first approach is externalist, it measures a “hard
fact”, frequency, which is “out there in the world”, the Bayesian approach to probability is inherently
internalist (mental) because the probability of an event is always conditioned by the prior knowledge we
have in the moment we make the prediction. Thus, the Bayesian or mental approach to probability is on
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the basis of both the information we have (degree of belief) and the information we lack (uncertainty),
rather than as the outcome of a repeated series of experiments. The frequentist view of probability can
work in those situations in which everyone has the same information, for example when we are told
that the probability of flipping a coin and have head is 50%, it is possible to perform that experiment a
number of times and arrive to the conclusion that 50% is the limit value, so the more times one flips the
coin, the closer will be the outcome to the 50%. But for statements like “the probability of rain
tomorrow is 50%"” the frequentist approach objectivist point of view is ill suited because it cannot be
tested. There is only one “tomorrow”, so we cannot make ensembles of tomorrows in order to find the
limit value of the outcome. This kind of probability relies on prior beliefs already present in the
forecaster’s mind. To put it simply, when the “game” cannot be repeated, the probability of an outcome
reflects the fraction of paths leading to this outcome. Our capacity to understand the dynamics and the
sensitivity to the initial conditions of what is encoded in the internalist approach to probability
(Sornette, 2000) is limited. To sum up, Bayesian (internalist, subjectivist or classical) probability is not
restricted, as the frequentist or objectivist view is, to situations in which the repetition of large numbers
of equiprobable events is viable. It must be said that while a purely Bayesian approach may pose
computational problems for large models it may always be used as an insightful guiding principle, that
can result in explicit ways to model internal knowledge in, for example, neural systems. In this line, the
paper of Fiorillo provides a new perspective to information processing in neural systems that relies on
first-person Bayesian approach, (Fiorillo, 2012). In addition, Gomez-Ramirez and Sanz formally define
“The Internal Model Principle” and postulate it as a guide for investigating how much knowledge a
biological system has of itself, (Gomez- Ramirez & Sanz, 2012).

5.5 Biological Time
The Flow of Time

There are two quite different versions of the flow of time. One is the flow of time exclusively in the
present tense, which Newton took as a serious matter as demonstrated in his propositions made in the
present tense in Principia. Another one is the flow of time crossing different tenses, say from past to
present to future, which has been the main concern of philosophers including Aristotle and McTaggart.

The idea of the uniformity of the flow of time can be applied to Newtonian time because of the ubiquity
of the presumed homogenous fluxionum in the present tense. Nonetheless, the uniformity has already
equipped itself with the arrow of time implicitly since the flow has originally been conceived of based on
the constant rotation of the Earth that is totally empirical.

Yet, at the quantum level micro-time reversals are also at play. Rdssler in his discussion of Endophysics
suggests that “there is a macro dynamics (the coarse-grained responses of the dissipative structure
called the ‘observer’), and there is an underlying, much faster microdynamics”. Even the most rapid
macro change in the observer lasts several orders of magnitude longer than a micro time slice does. The
micro time slices therefore are necessarily “integrated over” from the macro point of view, (Rossler,
1998).
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Physical laws remain invariant under the inversion of time. However, it would be next to impossible to
properly comprehend how the flow of time conceived in the present tense alone could be reversed
without referring to past and future. If both past and future are referred to when the direction of the
flow is addressed, it will not be the flow of time unique to the present tense. Hence, a challenging
guestion is how to conceive of the flow of time crossing different tenses. In other words, time itself is
already dynamic in its capacity of integrating different tenses. Physics has unwittingly dismissed the
presence of such question. Thus we also need to address mathematical approaches to hyper-scale
issues, where the lowest level has different properties to other scales. Alternately the nature of
biological change over a human lifetime needs to be enfolded. An additional time-related factor is the
Libet’s delay and how it impacts cognition and environmental response.

How should we study time in biology? The nature of biological time is of fundamental importance to the
formulation of Integral Biomathics. As usual, whether for time or any other parameter, to measure
differences we need an invariant reference. In the scheme of classical mechanics, Newton, following
Ptolemy, conceived of the invariant “clockwork” of celestial bodies as a reliable reference, and posited
the flow of time based on repeated cycles of the celestial clockwork motion. The flow of time derived in
this way has been treated as being specific to the physicist instead of to the clockwork itself. A serious
guestion now arises: is it only human beings that experience the flow of time in nature?

A Lesson from Cyanobacteria

One empirical response is the circadian oscillation observed in cyanobactrium Synechococcus elongatus
— the most primitive photosynthetic bacterium (Kageyama et al., 2006). Cyanobacteria can move and
read the circadian clocks they carry. The essence of the circadian oscillation is in a monomer shuffling of
the protein called KaiC hexamer. The experimental background of the monomer shuffling is of a
predecessor hexamer K-K-K-K-K-K being alternated by the successor K*-K-K-K-K-K, then by K*-K*-K-K-K-K

. and so on, where K is a monomeric KaiC unphosphorylated subunit and K* is the similar
phosphorylated subunit in the presence of ATP as the phosphate source. When the hexamer reaches K*-
K*-K*-K*-K*-K*, it starts dephosphorylation back to K-K-K-K-K-K. What is peculiar here is that although
the KaiC hexamer does not undergo the monomer shuffling during the phase of dephosphorylation
(from K*-K*-K*-K*-K*-K* to K-K-K-K-K-K), the phosphorylation phase (from K-K-K-K-K-K to K*-K*-K*-K*-
K*-K*) does require the monomer shuffling in the sense that the hexamer recruits the monomers to be
phosphorylated from the outside and lets the unphosphorylated ones disperse. This has been
experimentally confirmed (Kageyama et al., 2006). The KaiC hexamer remains as it is, even though the
monomeric KaiC subunits are constantly exchanged. This means that the KaiC hexamer sets itself to be
an invariant reference to specify time constantly passing away, in sharp contrast to Newtonian time.
Although Newton could not move celestial bodies, the KaiC hexamers in cynanobacteria can both read
and move its clock. The class identity of the hexamer outlives the individual identity of each monomeric
subunit within that hexamer, as an invariant reference.
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Alternatively, if we focus upon the individual identities of the monomeric KaiC subunits both entering
and leaving, these can be associated with the flow of time. The agent responsible for implementing the
flow here is cyanobacteria themselves, instead of the physicist as in the case of Newtonian time.

Integrating Mathematical Symbolism and Physical Internalism

Once the flow of time is naturalized, the material substrate supporting its carrier will become a sign,
that is, something having the causal capacity of relating itself to something else. Rudimentary types of
sign have already been available in physics, but have so far failed to receive due attention. A case in
point is found in thermodynamics.

Consider, for example, Boyle-Charles law of the ideal gas in the form of the equation PV=RT, in which P
is pressure, V is volume, T is temperature and R is the gas constant. The equation by itself is under-
complete, in that if any one of the three variables is fixed, there is ambiguity in specifying the values of
the remaining two variables. The situation is different, however, if all three variables in whatever natural
settings are fixed in the course of time. Although the physicist may say that the three variables are
determinable as a matter of principle once thermodynamics is grounded upon statistical mechanics, the
minimal specification of thermodynamics as a fundamental ingredient of empirical sciences remains
independent of statistical mechanics. But even at the minimal specification level, each variable is
‘competent enough to determine its own value’ in relation to the two others to fulfill the Boyle-Charles
law. Each thermodynamic variable has the capacity of detecting the others internally and specifying its
own value accordingly. This is equivalent to saying that a thermodynamic variable is a sign on its own —
always referring to the activity of something relating itself to something else.

The likelihood of the action of signs in the empirical world now opens up a novel vista within which
mathematical expertise could be extended to meet the challenge of how signs could be symbolized.

Summarizing, we conclude the following:

i) biological systems have internal clocks, and processes synchronize with them, and

ii) physical variables affect each other — particularly in a complex way within (or among)
living things — so we can refer to them as signs, for they have a deeper meaning for an
individual organism, and their understanding demands better interpretation schemes.

Underlying this perception is the appraisal of first person descriptions. The presence of an internal clock
in each biological system lends it a self-supporting temporal identity, and a self is unquestionably related
to first person descriptions, which we cannot then avoid. Physical variables which affect each other, like
the three thermodynamic variables of the Boyle-Charles law, are not mechanistically controlled from
outside, but from inside through the agential activity of detecting and fulfilling the law. Such an agential
capacity can be approached through relation to first-person experience.
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A crucial question here would be how to accommodate signs perceivable in first person descriptions
with third person descriptions, the latter of which are inevitable to any explanatory model. One
prerequisite when entering the symbolization of a sign is to specify the sign’s concrete material nature.

A relevant example here is the synthesis of meta-stable products in chemical evolution as attempted in
the laboratory. A meta-stable product (as the material partial carrier of the preceding reaction) is a
material embodiment of past memory, and at the same time it directs the succeeding reaction to a
limited extent. Such a meta-stable product is nothing but a sign, which relates the preceding reaction to
the succeeding one. The action of signs is already operative in the successive synthesis of meta-stable
products, unless it is methodologically eliminated by integrating each individual action in the statistical
ensemble of the similar individual actions, as is often attempted in statistical mechanics. In this sense,
meta-stable products may serve as a mediator between non-life and life. Meta-stable products
themselves are already the material embodiment of history and memory. The relevant question at this
point would be to evaluate how rich the individual action of a sign could be in its content.

5.6 Memory

The functioning and survival of living systems necessitates a kind of long term "memory", which can be
purely innate or may develop over time for better adaptation. For instance, bacteria engage in
metabolic activity, reproduce and repair damaged DNA. All these activities are autonomously controlled
by their genetic 'program’, which serves as a memory of the organism's ancestry. An animal with a
rudimentary nervous system, such as a fish or a lizard, receives information/stimuli about its
environment and its internal states (e.g., hunger or pain), and may remember them for later
recognition; it has some innate behaviours, but is also able to learn new skills and behaviours, and to
evaluate them. More highly developed animals (mammals, birds, octopi) are capable of developing a
semantics, which may modulate their actions according to their circumstances and allow for
communication.

An organism’s memory plays an essential role in the dynamics of the system, by allowing it to recognize
objects and events which were met previously, and to select procedures that were already used, while
taking into account previous results. Such a memory is not rigid like a computer memory, but it is robust
(meaning that it maintains its contents in spite of disturbances), and plastic enough to adapt to the
context. Its 'records' can be innate or they can be formed, for example, when triggered by an event to
remember features of the environment.

Other triggers may take the form of internal configurations, or situations the system does not recognize,
along with the procedures it develops to react to a situation in an adaptive manner. These ‘memory’
records can be more or less complex, and their internal organization may vary to facilitate adaptation to
more or less approximate situations.
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5.7 Vagueness

We create models of the world, which are as fully explicit as possible, but the real world that they
represent — or our perception of it — is always to some extent vague. Models can capture very well any
generic or coarse aspects of a phenomenon, but do not capture the details so well. Some of these
details, however, may be very important, and may even trigger emergent behaviour. Observed systems
will be vague when they can be affected by small-scale events which occur during experimental
observation, and which can be obscured by historical contingencies, where these are not embodied in
the models’ boundary conditions. This means that we must be very aware of the scale of our
observations with regard to that of an observed system and of how that may be impacted by events at
other scales. Our observational frame is imposed upon an observed system, and this makes the
interaction less than objective; our observations may deform the observed system, marking it. How
should this be taken into account, most specifically in the case of biological systems? In addition, the
observed system may be in the process of changing at a scale which is greater than that of our
observational time-frame, in which case we may well carefully and accurately measure aspects of the
observed system that are ultimately of little relevance, even though these measurements provide values
for variables in our model.

Biological phenomena in particular will be vague with respect to our models of them because they are
affected by history and because they will usually be changing at time-scales both smaller and larger than
our observational timeframe. Models are limited generally; they cannot be constructed so as to
maximize accuracy, precision and generality. In particular, “models proposed by those who enter biology
by way of physics often sacrifice realism to generality and precision”, (Levins, 1968). Thus, any aspect of
the system being modeled that is not in the focus will remain vague in the view of that model. This
especially applies to complex systems, which are subject to many different sorts of modeling.

5.8 Quantum Effects in Biology

The grounding of any embodiment of a biological system lies within Quantum Mechanics (QM) (Ball,
2011). At first sight we might expect that quantum effects and biology would occupy completely
different worlds. We cannot, however, blindly eliminate quantum effects from our investigations of
biology without good reason. Here again, the question is primarily one of scale. It would be fatuous to
investigate the biochemical basis of life without even considering the relevance of QM, but should this
also apply to descriptions of the ways in which organs or complete organisms operate? A first
consideration is clearly the size of the entity we are thinking about: it would be natural to assume that it
is only small things that are influenced by QM, even though some evidence of large scale entanglement
has been published (Ghosh et al., 2003). A second consideration is the nature of the processes we are
considering. If inorganic chemical reactions can be described without recourse to QM, why would
organic chemical reactions be any different? But, are interactions involving enzyme catalyzation as
simple as inorganic reactions? The principle of macromolecular self-assembly was first used by Michael
Conrad to construct a quantum molecular computing model (Conrad, 1992).
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Suspicions of the influences of QM in biology abound, but it is difficult to obtain conclusive hard data.
Many birds navigate by using the Earth’s magnetic field to direct their migrations. It is known that their
magnetic sensors are affected by the incidence of light on their retinas, and the suggestion has been
made that the result is an entangled pair of electrons (Ritz et al., 2004) with a coherent lifetime of tens
of microseconds (Gauger et al.,, 2011). More prosaically, QM effects in biomaterials are now of great
significance to the electronics industry, where nature-inspired organic semiconductors are of growing
importance (Smits et al., 2008; Glowacki et al., 2011). Prime examples of the links between quantum
coherence and entanglement with photosynthesis at the biophysical and biochemical level, providing a
base for ‘green’ quantum computing and ‘green’ photovoltaics, can be found in (Engel et al., 2007; Lee
et al., 2007; Sension, 2007; Scholes, 2009; Sarovar et al., 2010; Panitchayangkoon et al., 2010; Collini et
al., 2010).

However, a central question concerns the extent to which mathematical descriptions must themselves
be based on QM. The difficulties in finding mechanisms responsible for the phenomenal experience of
consciousness based on classical mechanics, in particular its unity, attracted many researchers to the
possibility of quantum mechanical explanation. Several authors proposed quantum mechanical
explanation of consciousness or cognitive functions of the brain in the 1970's (Pribram et al., 1974;
Hameroff, 1974; Frohlich, 1975). The attempts to apply quantum mechanics have been hampered by the
relatively large size of the functional units of the brain, so long as this role was given to the neurons.
Hameroff's idea was to identify as units much smaller microtubules, and this raised hope of applicability
of quantum descriptions. In cooperation with Penrose, whose writing for the general audience greatly
contributed to popularization of this approach (Penrose, 1994), Hameroff developed a model of
consciousness based on such description (Hameroff & Penrose, 1996; Hameroff, 1998). The main
obstacle to becoming acceptable for the majority of those interested in consciousness studies, was the
difficulty of justifying physically unrealistic assumption of maintaining quantum coherence for
sufficiently long period of time at realistic temperatures. More than a decade later, only sporadically has
the issue of coherence and the model returned to discussion.

However, more recently the relationship with QM has been examined from a different perspective.
Schroeder (2009) proposed considering a model of information integration16 in the brain based on the
assumption that the mechanism is exhibiting the formal characteristics of coherence expressed in the
mathematical structures used in QM, but without the assumption that the brain or its functional units
are quantum mechanical systems. This formal characteristic (direct product irreducibility) is a common
property of the structures describing geometric, as well as many other systems, which do not have any
relationship with QM. Moreover, in this perspective it is not the brain, which exhibits quantum-
mechanical properties, but quantum mechanical description which reflects the cognitive functions of the
brain.

16 |nformation integration has become the central theme of Tononi's concept of consciousness. However, all that he and his
collaborators contributed so far were either very general statements referring to phenomenal experience of unity of
consciousness (Edelman & Tononi, 2001), or to identifying the integration with statistical synchrony of neural firings in terms of
entropy, (Laureys & Tononi, 2008). There were some recent efforts in investigating the theoretical and empirical evidence of
information integration (Seth et al., 2011; Barett & Seth, 2011), but neither they, nor Tononi, or anyone else, incl. (Sloman &
Chirsley, 2004) provided any model of integration or any idea of how it can be implemented.
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There are also other possible ways of developing new perspectives on the relationship between QM and
biology. In particular, in a categorical model such as MES (Ehresmann & Vanbremeersch, 2007; cf.
Section 7.6) quantum entanglement can be modeled as a special form of categorical colimit. Such
colimits impose constraints on the lower logics (up to the molecular level), where they play an important
role. At the higher levels, entanglement can play a role only through lower order processes; indeed,
during the interplay of the logics, there is a risk of decoherence because of the variety of higher
constraints.

At these higher levels, what is important for living systems is the existence of multiform components,
which can operate through two non-connected decompositions (this "degeneracy" property is
formalized in the Multiplicity Principle). MP allows for the emergence of structures and processes of
increasing complexity order in MES and provides flexibility and robustness to the system (cf. Section
7.6). Now, MP is itself a consequence of QM (Ehresmann & Vanbremeersch, 2002). Indeed QM implies
that MP is satisfied at the lower particle-atom level, from which higher levels have evolved by iterated
complexification processes. As complexification preserves MP, it is also satisfied at higher levels, hence
in living systems. It explains how quantum properties (entanglement, non-localization) allow, through
the MP, for the emergence of higher and higher processes up to consciousness

To conclude, entanglement has its role at the lower levels, but the characteristics of life depend more on
the (somewhat 'opposite') degeneracy/multiplicity principle, which is itself deduced from QM properties
at the lower level. However if there is any evidence implying constraints on the higher levels that realize
entanglement through higher order processes, we should take it into account in our model. Our general
point of view must be an open one, permitting investigation of QM relevance at every level of
mathematical representation.

5.9 Biotic vs. Abiotic Systems

If we wish to move beyond the issues raised by Salthe, who noted that “Today, curiously, living systems
cannot be said to be anything more than dissipative structures informed internally by genetic
information. There is not really anything substantially different from abiotic systems in them other than
greater stability due to this internal information.”, we need to decide on a level at which to start. If we
think in terms of independent living entities (ignoring viruses, prions) then what these have in common
is that they are based on the cell. Thus we become interested in characterising the living cell. Cells stand
at a particular level: they are omnipresent in animals and plants (from the single celled amoeba to all
plants to all classes of animals): indeed they are just about all that is omnipresent, and they are
constituents of multicellular animals. So our first actual suggestion for a biomathics is that it should
reflect this. But what does that actually imply?

We can characterize a cell by its boundary, B. This provides a division of space: we have in(B) and out(B),
and we have B itself. We have mechanisms for crossing this boundary both from in(B) to out(B) and from
out(B) to in(B). We then need to consider the nature of B, in(B), out(B), crossings from in(B) to out(B)
and out(B) to in(B) might usefully be: as matters stand, it is difficult to imagine anything simpler (as it
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stands, it’s quite like Spencer-Brown’s Laws of Form (1972), which implies that it can be used a basis for
logic). The system needs much in addition (at least): events, time, mechanisms for examining what'’s
happening inside the cell (which might well be based on the same abstraction), mechanisms governing
movement and transfer across the cell membrane, and mechanisms for putting cells together. In this
area, the work of Cardelli (2005, 2008) provides one possible way forward, although it is more oriented
towards a purely computational approach. At a lower level, there are internals that can cope with (e.g.)
protein/protein interactions in the style of Hong (2005a/b), as well as abstractions that can stand in for
diffusible chemicals, concentration gradients, perhaps gravity, and other physical issues, and at higher
levels there are multi-cellular organisms. Inside the cell, we have protein interactions, as well as
influences from enegry chnages (etc.) from outside the cell. These are unlikely to be precisely defined or
replicatable: protein interactions rely on reactive surfaces being brought into close proximity with each
other, while they are moving in aqueous solution, and having their shapes influenced by local electric
fields caused by other proteins and external forces.

One can argue that cells perform information processing as well (deciding to move, or to engulf a
particle, or create a protein), however, it is not necessarily possible to separate out that the cell does in
order to survive and live, and what it does from an information processing view: we need to be careful
not to enforce our own narrow interpretations of their activity too strongly.

Thus, there is a whole level (or indeed several levels) inside the cell that we could conceivably put
together to determine the activity of a cell. Yet while the cell lives, its behaviour appears to possess a
unity that (in some sense) belongs to the cell, and not to its numerous constituents. At a higher level,
the same is true for multicellular organisms: they possess a unity thet belongs to the organism, and not
the its constituent cells, or their constituent elements. At death, this ceases to be true. Cells appear to
have a more purposeful behaviour than, say, a protein. Whatever the cell is doing, its behaviour is
always subordinate to its main goal: survival. This holds for all higher levels of cellular organization up to
communities, societies and nations. Clarifying/rendering a “crisper” notion of purposeful behaviour is
part of the early research agenda of INBIOSA.

6. The Grand Challenge

This section addresses three major questions or grand challenge issues in the sciences of complexity that
underlie biology and the related study of living entities. The first issue is the relevance of a more
complete understanding of biological complexity and the increasing complexity of artificial (engineered)
systems to the progress of science. The second question is why a paradigmatically radical shift in
methodology is critical to progress in biology. The third issue is the potential impact of a revolutionary
advance in biology on all sciences and technologies involving life-like or life-enabled complexity. A
discussion of these issues is followed by a recommendation for a new strategic collaboration framework
to support the advancement, articulation and development of new theoretical and computational
foundations for biology.
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6.1 The Relevance of Complexity to the Problems of Science

We begin by examining the historical trajectory of science and how that changed dramatically with the
invention of mathematical physics. Next we examine the current impasse in the progress of biology and
other sciences involving life-like complexity or life-enabled complexity. We then conclude with the role
of mathematics in the development of complexity sciences.

6.1.1 The Trajectory of Science: the Transformation of Methodological Paradigms from
Descriptive to Mathematical

The following scheme is a sequential model of science:

Observation of new phenomena = speculative concepts/ hypotheses/ theories >
new mathematical formalisms = predictive conjecture - empirical demonstration and
verification = theoretical foundation for practical applications

The schematic trajectory of science presented above is a simplification of much more complex system. A
more complete model of science, as a highly complex system of thought, a noetic system in itself, would
illustrate how the process is simultaneously cyclic, recursive and unpredictable in the sense of
generating novel emergent structures (predicting new phenomena) from its own mathematical
grammars. The power of mathematics (mathematical language and its grammars) to transform the
methodological paradigm of physics was first demonstrated by James Clerk Maxwell with his
revolutionary use of the differential equations that effectively described electromagnetic field
phenomena to predict the existence of electromagnetic waves and the electromagnetic nature of light,
both phenomena then unknown to experimental physics (Arianhod, 2006). The subsequent
experimental observation of radio waves enabled the modern world of telecommunications and the
concept of the radiation of light led to the science of quantum physics. The paradigm shift in physics
from concrete models to mathematical imagination created the methodology of modern mathematical
physics.

The science of biology awaits a similar transformation. Biology needs a new mathematics allowing for a
new form of computing that will permit us t