THE TREE PROPERTY AND THE FAILURE OF THE SINGULAR CARDINAL HYPOTHESIS AT $\aleph_{\omega^{2}}$

DIMA SINAPOVA

Abstract

We show that given ω many supercompact cardinals, there is a generic extension in which the tree property holds at $\aleph_{\omega^{2}+1}$ and the SCH fails at $\aleph_{\omega^{2}}$.

1. Introduction

The tree property at κ^{+}states that every tree with height κ^{+}and levels of size at most κ has an unbounded branch. Equivalently, there are no κ^{+}-Aronszajn trees. In the 1980's Woodin asked if the failure of the Singular Cardinal Hypothesis (SCH) at \aleph_{ω} implies the existence of an Aronszajn tree at $\aleph_{\omega+1}$. To motivate the question we note a few facts about Aronszajn trees. By Magidor and Shelah [9], the tree property holds at successors of singular limits of strongly compact cardinals. On the other hand, Solovay [12] showed that SCH holds above a strongly compact cardinal. Generalizing the original question, in 1989 Woodin and others asked if the failure of SCH at a singular cardinal κ of cofinality ω implies the existence of an Aronszajn tree at κ^{+}.

The first progress on Woodin's question was made by Gitik-Sharon [6], who showed the consistency of the failure of SCH at a singular cardinal κ together with the non-existence of special κ^{+}-Aronszajn trees. They also pushed down their result to $\kappa=\aleph_{\omega^{2}}$. Then in 2009, Neeman [10] obtained the failure of the singular cardinal hypothesis at some large singular cardinal κ, together with the full tree property at κ^{+}. It remained open whether this construction can be pushed down to smaller cardinals. In this paper we show that his result can indeed be obtained at smaller cardinals. In particular, we prove that it is consistent relative to large cardinals that $\aleph_{\omega^{2}}$ is a strong limit cardinal, $2^{\aleph} \omega^{2}>\aleph_{\omega^{2}+1}$, and the tree property holds at $\aleph_{\omega^{2}+1}$. It still remains open whether an analogous result holds for \aleph_{ω}.

Theorem 1. Suppose that in $V,\left\langle\kappa_{n} \mid n<\omega\right\rangle$ is an increasing sequence of supercompact cardinals and GCH holds. Then there is a generic extension in which:

The author thanks Itay Neeman for his invaluable comments and corrections.
(1) $\kappa_{0}=\aleph_{\omega^{2}}$,
(2) the tree property holds at $\aleph_{\omega^{2}+1}$,
(3) SCH fails at κ.

The rest of the paper presents the proof of Theorem 1. In section 2 we define the forcing notion and give some basic properties about the forcing. Section 3 deals with a preservation lemma, which will be used to show the tree property. Finally in section 4 we prove that the tree property holds at $\aleph_{\omega^{2}+1}$.

2. The forcing

Let $\left\langle\kappa_{n} \mid n<\omega\right\rangle$ be an increasing sequence of supercompact cardinals. We start by using Laver's forcing to make κ_{0} indestructably supercompact while maintaining GCH above κ_{0}. Let V be the resulting model. Denote $\kappa=\kappa_{0}, \nu=\sup _{n} \kappa_{n}$ and $\mu=\nu^{+}$. First we force with \mathbb{C}, where \mathbb{C} is the full support iterated collapse to make each κ_{n} be the n-th successor of κ. Let H be \mathbb{C}-generic over V. Then we force with $\operatorname{Add}\left(\kappa, \nu^{++}\right)$. Let E be $\operatorname{Add}\left(\kappa, \nu^{++}\right)$generic over $V[H]$. Work in $V[H][E]$.

Proposition 2. There is a normal measure on $\mathcal{P}_{\kappa}\left(\kappa^{+\omega+1}\right)$, U, such that for each $n<\omega$ if we let U_{n} be the projection of U to $\mathcal{P}_{\kappa}\left(\kappa^{+n}\right)$ and $j_{n}=j_{U_{n}}$, then there exists a $\left(\operatorname{Col}\left(\kappa^{+\omega+2},<j_{n}(\kappa)\right)\right)^{N_{n}}$ - generic filter, K_{n}, over $N_{n}=U l t\left(V[H][E], U_{n}\right)$.
Proof. See Gitik-Sharon [6].
Let U be a normal measure on $\mathcal{P}_{\kappa}\left(\kappa^{+\omega+1}\right)$ given by the above proposition. For each n, let U_{n} be the projection of U to $\mathcal{P}_{\kappa}\left(\kappa^{+n}\right)$ and $j_{n}=j_{U_{n}}$. Using standard reflection arguments, we choose sets $X_{n} \in U_{n}$ for $n<\omega$, such that for all $x \in X_{n}$:

- $\kappa \cap x=\kappa_{x}$ is κ_{x}^{+n}-supercompact.
- $(\forall k \leq n)$ o.t. $\left(x \cap \kappa^{+k}\right)=\kappa_{x}^{+k}$. In particular, o.t. $(x)=\kappa_{x}^{+n}$.

Fix generic filters $\left\langle K_{n} \mid n<\omega\right\rangle$ as in the above proposition. We are ready to define the main forcing. Basically, we take the forcing in Gitik-Sharon [6] with collapses using the filters $\left\langle K_{n} \mid n<\omega\right\rangle$.

We use the notation $x \prec y$ to denote that $x \subset y$ and $|x|<\kappa_{y}$.
Definition 3. Conditions in \mathbb{P} are of the form $p=\left\langle d,\left\langle p_{n} \mid n<\omega\right\rangle\right\rangle$, where for some integer $l=\operatorname{lh}(p)$ (the length of p), we have:
(1) For $n<l, p_{n}=\left\langle x_{n}, c_{n}\right\rangle$ such that:

- $x_{n} \in X_{n}$ and for $i<n, x_{i} \prec x_{n}$,
- if $n<l-1$, then $c_{n} \in \operatorname{Col}\left(\kappa_{x_{n}}^{+\omega+2},<\kappa_{x_{n+1}}\right)$, and $c_{l-1} \in$ $\operatorname{Col}\left(\kappa_{x_{l-1}}^{+\omega+2},<\kappa\right)$.
(2) For $n \geq l, p_{n}=\left\langle A_{n}, C_{n}\right\rangle$ such that:
- $A_{n} \in U_{n}, A_{n} \subset X_{n}$, and $x_{l-1} \prec y$ for all $y \in A_{n}$.
- C_{n} is a function with domain A_{n}, for $y \in A_{n}, C_{n}(y) \in$ $\operatorname{Col}\left(\kappa_{y}^{+\omega+2},<\kappa\right)$,
- $\left[C_{n}\right]_{U_{n}} \in K_{n}$.
(3) if $l>0$, then $d \in \operatorname{Col}\left(\omega, \kappa_{x_{0}}^{+\omega}\right)$, otherwise $d \in \operatorname{Col}(\omega, \kappa)$.

For a condition p, we will use the notation $p=\left\langle d^{p},\left\langle p_{n} \mid n<\omega\right\rangle\right\rangle$, $p_{n}=\left\langle x_{n}^{p}, c_{n}^{p}\right\rangle$ for $n<\operatorname{lh}(p)$, and $p_{n}=\left\langle A_{n}^{p}, C_{n}^{p}\right\rangle$ for $n \geq \operatorname{lh}(p)$. The stem of p is $h=\left\langle d^{p},\left\langle p_{n} \mid n<\operatorname{lh}(p)\right\rangle\right\rangle$. Sometimes we will also denote the stem of p by $\left\langle d^{p},\langle\vec{x}, \vec{c}\rangle\right\rangle$, where \vec{x} and \vec{c} are with length lh (p), and for $i<\operatorname{lh}(p), p_{i}=\left\langle x_{i}, c_{i}\right\rangle$.
$q=\left\langle d^{q},\left\langle q_{n} \mid n<\omega\right\rangle\right\rangle \leq p=\left\langle d^{p},\left\langle p_{n} \mid n<\omega\right\rangle\right\rangle$ if $\operatorname{lh}(q) \geq \operatorname{lh}(p)$ and:

- $d^{q} \supset d^{p}$,
- for all $n<\operatorname{lh}(p), x_{n}^{p}=x_{n}^{q}, c_{n}^{q} \supset c_{n}^{p}$,
- for $\operatorname{lh}(p) \leq n<\operatorname{lh}(q), x_{n}^{q} \in A_{n}^{p}$ and $c_{n}^{q} \supset C_{n}^{p}\left(x_{n}^{q}\right)$,
- for $n \geq \operatorname{lh}(q), A_{n}^{q} \subset A_{n}^{p}$ and for all $y \in A_{n}^{q}, C_{n}^{q}(y) \supset C_{n}^{p}(y)$

We say that q is a direct extension of p, denoted by $q \leq^{*} p$, if $q \leq p$ and $\operatorname{lh}(q)=\operatorname{lh}(p)$. For two stems h_{1} and h_{2}, we say that h_{1} is stronger or an extension of h_{2} if there are conditions $p_{1} \leq p_{2}$ with stems h_{1} and h_{2} respectively.

Note that any two conditions with the same stem are compatible. That is since the collapsing part is taken to be in the filters K_{n}. For two conditions p, q with the same stem we define $p \wedge q$ to be the weakest common extension.

Let G be \mathbb{P} generic over $V[H][E]$, and let $\left\langle x_{n} \mid n<\omega\right\rangle$, where each $x_{n} \in \mathcal{P}_{\kappa}\left(\kappa^{+n}\right)$, be the components derived from the generic set G. Set $\lambda_{n}=x_{n} \cap \kappa$. By Gitik-Sharon [6], we get:

Proposition 4.

(1) If $\left\langle A_{n} \mid n<\omega\right\rangle \in V[H][E]$ is a sequence of sets such that every $A_{n} \in U_{n}$, then for all large $n, x_{n} \in A_{n}$.
(2) $\bigcup_{n} x_{n}=\nu=\left(\kappa^{+\omega}\right)^{V[H][E]}$.
(3) For each $n \geq 0$, the cofinality of $\kappa_{n}=\left(\kappa^{+n}\right)^{V[H][E]}$ in $V[H][E][G]$ is ω.
(4) Since any two conditions with the same stem are compatible, \mathbb{P} has the $\mu=\left(\kappa^{+\omega+1}\right)^{V[H][E]}$ chain condition. So, cardinals greater than or equal to μ are preserved.
(5) In $V[H][E][G], 2^{\kappa}=\mu^{+}$and $G C H$ holds from μ upward.
(6) \mathbb{P} has the Prikry property. I.e. if p is a condition with length at least 1 and ϕ is a formula, then there is a direct extension $p^{\prime} \leq * p$ which decides ϕ.

Remark 5. The main point in the proof of the Prikry property is the diagonal lemma, which states that for $p \in \mathbb{P}$ with length at least 1 and $\operatorname{lh}(p)<n<\omega$ if H is a set of stems of length $l h(p)+n$ and $\left\langle q^{h} \mid h \in H\right\rangle$ are conditions stronger than p such that each q^{h} has a stem h, then there is $q \leq^{*} p$ such that if $r \leq q$ is a condition of length at least $l h(p)+n$, then $r \leq q^{h}$ for some $h \in H$.

Remark 6. Using the closure of the collapsing posets, we get the following corollary to the Prikry property: If p is a condition with length $n+1$ and ϕ is a formula, then there is a direct extension $q \leq^{*} p$, such that $q \upharpoonright n=p$ and if $r \leq p$ decides ϕ, then $r \upharpoonright n \subset q \upharpoonright(\omega \backslash n)$ decides ϕ.

The last property implies that all cardinals χ, such that $\lambda_{n} \leq \chi \leq$ $\lambda_{n}^{+\omega+2}$ for some $n>0$ are preserved. In particular, in $V[H][E][G]$ every λ_{n} for $n>0$ is a cardinal. And so, κ remains a cardinal, as well. Also, \mathbb{P} preserves $\left(\lambda_{0}^{+\omega+1}\right)^{V[H][E]},\left(\lambda_{0}^{+\omega+2}\right)^{V[H][E]}$, and collapses $\left(\lambda_{0}^{+\omega}\right)^{V[H][E]}$ to ω. So in $V[H][E][G], \kappa=\aleph_{\omega^{2}}, \mu=\kappa^{+},\left(\lambda_{0}^{+\omega+1}\right)^{V[H][E]}=\aleph_{1}$, and $2^{\aleph_{\omega^{2}}}=\aleph_{\omega^{2}+2}$. So, SCH fails at $\aleph_{\omega^{2}}$.

3. The preservation lemma

In this section we prove a preservation lemma, which will be used to show the tree property. The proof of this lemma is motivated by the Preservation Theorem in Magidor-Shelah [9]. The main difference is that instead of trees, here we are working with narrow systems, which are defined below. Throughout this section V will denote some arbitrary ground model. We say that a poset is χ-closed if it is closed under sequences of length χ. We start with defining the notion of a narrow system. This is the same as the definition given in MagidorShelah [9].

Definition 7. $S=\langle I \times \kappa, \mathcal{R}\rangle$ is a narrow system of height ν^{+}and levels of size $\kappa<\nu$ if:

- I is an unbounded subset of ν^{+}, and for each $\alpha \in I, S_{\alpha}=$ $\{\alpha\} \times \kappa$ is the α-level of S,
- \mathcal{R} is a set of transitive binary relations on $I \times \kappa$, such that for all $R \in \mathcal{R}$, if $\langle\alpha, \delta\rangle R\langle\beta, \xi\rangle$, then $\alpha<\beta$.
- $|\mathcal{R}|<\nu$.
- For every $\alpha<\beta$ in I, there are $u \in S_{\alpha}, v \in S_{\beta}$, and $R \in \mathcal{R}$ such that $\langle u, v\rangle \in R$.
- For all $R \in \mathcal{R}$, if u_{1}, u_{2} are distinct elements of $I \times \kappa$ such that $\left\langle u_{1}, v\right\rangle \in R$ and $\left\langle u_{2}, v\right\rangle \in R$, then $\left\langle u_{1}, u_{2}\right\rangle \in R$ or $\left\langle u_{2}, u_{1}\right\rangle \in R$.
For $a_{1}, a_{2} \in S$ and $R \in \mathcal{R}$ we write $a_{1} \perp_{R} a_{2}$ if $\left\langle a_{1}, a_{2}\right\rangle \notin R$ and $\left\langle a_{2}, a_{1}\right\rangle \notin R$, and in that case say that a_{1}, a_{2} are R-incomparable.
A branch of S is a set $b \subset \bigcup_{\alpha \in I} S_{\alpha}$ such that for some $R \in \mathcal{R}$, we have that for all $u, v \in b,\langle u, v\rangle \in R$ or $\langle v, u\rangle \in R$. In this case we say that b is a branch through R (or with respect to R). We say that $b \subset I \times \kappa$ is unbounded if for unboundedly many $\alpha \in I, b \cap S_{\alpha} \neq \emptyset$.

Theorem 8. Suppose that ν is a singular cardinal of cofinality ω, $\kappa, \tau<\nu$ are regular cardinals, and in V, \mathbb{Q} is κ^{+}c.c notion of forcing and \mathbb{R} is a $\max (\kappa, \tau)^{+}$closed notion of forcing. Let E be \mathbb{Q}-generic over V and let F be \mathbb{R}-generic over $V[E]$. Suppose that $S=\langle I, \mathcal{R}\rangle$ is a narrow system in $V[E]$ of height ν^{+}, levels of size κ, and with $\mathcal{R}=\left\langle R_{\sigma} \mid \sigma<\tau\right\rangle$. Suppose that in $V[E][F]$ there are (not necessarily all unbounded) branches $\left\langle b_{\sigma, \delta} \mid \sigma \in L, \delta<\kappa\right\rangle$, such that:
(1) every $b_{\sigma, \delta}$ is a branch through R_{σ}, and for some $\langle\sigma, \delta\rangle \in L \times \kappa$, $b_{\sigma, \delta}$ is unbounded.
(2) for all $\alpha \in I$, there is $\langle\sigma, \delta\rangle \in L \times \kappa$, such that $S_{\alpha} \cap b_{\sigma, \delta} \neq \emptyset$. Then S has an unbounded branch in $V[E]$.

Proof. Let $\sigma<\tau, \delta<\kappa$. For $\alpha<\nu^{+}, p \in \mathbb{Q}$, and $r_{1}, r_{2} \in \mathbb{R}$, we say that $p \Vdash_{\mathbb{Q}}$ " r_{1}, r_{2} force contradictory values about $\dot{b}_{\sigma, \delta} \cap S_{<\alpha}$ " if there are nodes $u_{1}=\left\langle\alpha_{1}, \xi_{1}\right\rangle, u_{2}=\left\langle\alpha_{2}, \xi_{2}\right\rangle$ with $\alpha_{1}<\alpha_{2}<\alpha$, such that:

- $p \Vdash_{\mathbb{Q}}$ " $\alpha_{1}, \alpha_{2} \in \dot{I}$ and $\left\langle u_{1}, u_{2}\right\rangle \notin \dot{R}_{\sigma} "$
- $p \Vdash_{\mathbb{Q}}$ " $r_{1} \Vdash_{\mathbb{R}} u_{1} \in \dot{b}_{\sigma, \delta}$ and $r_{2} \Vdash_{\mathbb{R}} u_{2} \in \dot{b}_{\sigma, \delta}$ ".

The following lemma uses an argument from a branch lemma by Spencer Unger [13]. Versions of this lemma were also proved by Baumgartner, Foreman and Spinas while they were working on [1].

Lemma 9. (Splitting Lemma) Let $\sigma<\tau, \delta<\kappa$. Suppose that for some $\beta<\nu^{+}, p \Vdash_{\mathbb{Q}}$ " $r \Vdash_{\mathbb{R}} \dot{b}_{\sigma, \delta}$ is an unbounded branch or $r \Vdash_{\mathbb{R}} \dot{b}_{\sigma, \delta} \subset S_{<\beta}$ ", and p forces that \dot{S} has no unbounded branches through \dot{R}_{σ} in $V^{\mathbb{Q}}$. Let $r_{1}, r_{2} \in \mathbb{R}$ be stronger than r. Then there are $r_{1}^{*} \leq r_{1}, r_{2}^{*} \leq r_{2}$, a maximal antichain $A \subset \mathbb{Q}$ of conditions below p and $\alpha<\nu^{+}$with $\alpha \geq \beta$, such that for all $p^{\prime} \in A, p^{\prime} \vdash_{\mathbb{Q}}$ " r_{1}^{*} and r_{2}^{*} force contradictory values about $S_{<\alpha} \cap \dot{b}_{\sigma, \delta}$ ", or $p^{\prime} \Vdash_{\mathbb{Q}}$ " $r \Vdash_{\mathbb{R}} \dot{b}_{\sigma, \delta} \subset S_{<\beta}$ ".
Proof. First we show the following claim.
Claim 10. For any $r_{1}^{\prime} \leq r_{1}$ and $r_{2}^{\prime} \leq r_{2}$ the set $D^{r_{1}^{\prime}, r_{2}^{\prime}}=\left\{p^{\prime} \leq p \mid p^{\prime \prime} \vdash_{\mathbb{Q}}\right.$ " $r \Vdash_{\mathbb{R}} \dot{b}_{\sigma, \delta} \subset S_{<\beta}$ " or $\left(\exists r_{1}^{\prime \prime} \leq r_{1}^{\prime}\right)\left(\exists r_{2}^{\prime \prime} \leq r_{2}^{\prime}\right)\left(\exists \alpha<\nu^{+}\right)\left(p^{\prime} \Vdash_{\mathbb{Q}} " r_{1}^{\prime \prime}, r_{2}^{\prime \prime}\right.$ force contradictory values for $\dot{b}_{\sigma, \delta} \cap S_{<\alpha}$ ")\} is dense below p.

Proof. Let $r_{1}^{\prime} \leq r_{1}, r_{2}^{\prime} \leq r_{2}, p^{\prime} \leq p$. Let $q \leq p^{\prime}$ be such that $q \Vdash_{\mathbb{Q}}$ " $r \Vdash_{\mathbb{R}}$ $\dot{b}_{\sigma, \delta}$ is unbounded", or $q \Vdash_{\mathbb{Q}}$ " $r \Vdash_{\mathbb{R}} \dot{b}_{\sigma, \delta} \subset S_{<\beta}$ ". If the latter holds, than $q \in D^{r_{1}^{\prime}, r_{2}^{\prime}}$, so we are done.

Now suppose that $q \Vdash_{\mathbb{Q}}$ " $r \Vdash_{\mathbb{R}} \dot{b}_{\sigma, \delta}$ is unbounded". Let E^{\prime} be \mathbb{Q} generic over V with $q \in E^{\prime}$. In $V\left[E^{\prime}\right]$ define $E_{1}=\left\{a \in I \times \kappa \mid\left(\exists r^{\prime \prime} \leq\right.\right.$ $\left.\left.r_{1}^{\prime}\right)\left(r^{\prime \prime} \Vdash a \in \dot{b}_{\sigma, \delta}\right)\right\}$ and $E_{2}=\left\{a \in I \times \kappa \mid\left(\exists r^{\prime \prime} \leq r_{2}^{\prime}\right)\left(r^{\prime \prime} \Vdash a \in \dot{b}_{\sigma, \delta}\right)\right\}$. Then since in $V\left[E^{\prime}\right], r$ forces that $\dot{b}_{\sigma, \delta}$ is unbounded, we have that both $\left\{\alpha \in I \mid E_{1} \cap S_{\alpha} \neq \emptyset\right\}$ and $\left\{\alpha \in I \mid E_{2} \cap S_{\alpha} \neq \emptyset\right\}$ are unbounded in I. Also since S has no unbounded branches through R_{σ} in $V\left[E^{\prime}\right]$, we have that for any $a \in E_{1}$, there are R_{σ} incomparable nodes c, d in E_{1} with $\langle a, c\rangle \in R_{\sigma}$ and $\langle a, d\rangle \in R_{\sigma}$. The same holds for E_{2}. So, we can find R_{σ} incomparable nodes $c_{1} \in E_{1}$ and $c_{2} \in E_{2}$ as follows. Let a_{1}, a_{2} be R_{σ}-incomparable nodes in E_{1} and let $c_{2} \in E_{2}$ be of level above the levels of a_{1}, a_{2}. Then c_{2} must be R_{σ}-incomparable with at least one of these nodes. Let c_{1} be a_{1} if $a_{1} \perp_{R_{\sigma}} c_{2}$, otherwise let $c_{1}=a_{2}$. Then there are $p^{\prime \prime} \leq q, r_{1}^{\prime \prime} \leq r_{1}^{\prime}, r_{2}^{\prime \prime} \leq r_{2}^{\prime}$, and $\alpha<\nu^{+}$, such that $p^{\prime \prime} \Vdash_{\mathbb{Q}}$ " $r_{1}^{\prime \prime}, r_{2}^{\prime \prime}$ force contradictory values for $\dot{b}_{\sigma, \delta} \cap S_{<\alpha}$ ", as witnessed by c_{1} and c_{2}.

The rest of the proof of the lemma uses Spencer Unger's diagonal construction argument to get the antichain and r_{1}^{*}, r_{2}^{*} as desired. The only difference is that here all antichains are below p, and $r_{1}^{0} \leq r_{1}$, $r_{2}^{0} \leq r_{2}$. We include it for completeness.

Inductively construct antichains $\left\langle A_{\xi} \mid \xi<\kappa^{+}\right\rangle$in \mathbb{Q}, conditions $\left\langle r_{1}^{\xi}, r_{2}^{\xi} \mid \xi<\kappa^{+}\right\rangle$in \mathbb{R} and $\left\langle\alpha_{\xi} \mid \xi<\kappa^{+}\right\rangle$as follows. Let $A_{0}=\emptyset, \alpha_{0}=\beta$, $r_{1}^{0}=r_{1}$, and $r_{2}^{0}=r_{2}$. For δ limit, set $A_{\delta}=\bigcup_{\xi<\delta} A_{\xi}$ and $r_{1}^{\delta}, r_{2}^{\delta}$ to be lower bounds of $\left\langle r_{1}^{\xi} \mid \xi<\delta\right\rangle$ and $\left\langle r_{2}^{\xi} \mid \xi<\delta\right\rangle$, respectively. Also set $\alpha_{\delta}=\sup _{\xi<\delta} \alpha_{\xi}$. At successor stages, suppose we have defined A_{ξ}. If A_{ξ} is a maximal antichain below p, then set $A_{\xi+1}=A_{\xi}, \alpha_{\xi+1}=\alpha_{\xi}$, $r_{1}^{\xi+1}=r_{1}^{\xi}$ and $r_{2}^{\xi+1}=r_{2}^{\xi}$. Otherwise, let $q \leq p$ be such that q is incompatible with every condition in A_{ξ}. Applying the claim, let $q^{\prime} \leq q$ be such that $q^{\prime} \in D^{r_{1}^{\xi}, r_{2}^{\xi}}$. If $q^{\prime} \Vdash_{\mathbb{Q}}$ " $r \Vdash_{\mathbb{R}} \dot{b}_{\sigma, \delta} \subset S_{<\beta}$ ", set $\alpha_{\xi+1}=\alpha_{\xi}$, $r_{1}^{\xi+1}=r_{1}^{\xi}$, and $r_{2}^{\xi+1}=r_{2}^{\xi}$. Otherwise let $\alpha_{\xi+1}>\alpha_{\xi}, r_{1}^{\xi+1} \leq r_{1}^{\xi}$, and $r_{2}^{\xi+1} \leq r_{2}^{\xi}$ be such that $q^{\prime} \Vdash_{\mathbb{Q}}$ " $r_{1}^{\xi+1}, r_{2}^{\xi+1}$ force contradictory values for $\dot{b}_{\sigma, \delta} \cap S_{<\alpha_{\xi+1}} "$. Set $A_{\xi+1}=A_{\xi} \cup\left\{q^{\prime}\right\}$.

Since \mathbb{Q} has the κ^{+}chain condition, for some $\delta<\kappa^{+}$, we have that A_{δ} is a maximal antichain below p. Set $\alpha=\alpha_{\delta}, r_{1}^{*}=r_{1}^{\delta}$ and $r_{2}^{*}=r_{2}^{\delta}$. Then $A_{\delta}, \alpha, r_{1}^{*}$, and r_{2}^{*} are as desired.

Let $\lambda=\max (\kappa, \tau)^{+}$. The Splitting lemma yields the following corollary.

Corollary 11. Let $\sigma<\tau, \delta<\kappa$. Suppose that for some $\beta<\nu^{+}$, $p \Vdash_{\mathbb{Q}}$ " $r \Vdash_{\mathbb{R}} \dot{b}_{\sigma, \delta}$ is an unbounded branch or $r \Vdash_{\mathbb{R}} \dot{b}_{\sigma, \delta} \subset S_{<\beta} "$, and p forces that \dot{S} has no unbounded branches through \dot{R}_{σ} in $V^{\mathbb{Q}}$. Let $\left\langle r_{i} \mid i<\lambda\right\rangle$ be conditions in \mathbb{R} that are stronger than r. Then there is a sequence $\left\langle r_{i}^{\prime} \mid i<\lambda\right\rangle$ and $\alpha<\nu^{+}$, such that each $r_{i}^{\prime} \leq r_{i}$ and for all $i<j<\lambda$, there is a maximal antichain $A_{i j} \subset \mathbb{Q}$ of conditions below p, such that for all $p^{\prime} \in A_{i j}, p^{\prime} \Vdash_{\mathbb{Q}}$ " r_{i}^{\prime} and r_{j}^{\prime} force contradictory values about $S_{<\alpha} \cap \dot{b}_{\sigma, \delta}$ ", or $p^{\prime} \Vdash_{\mathbb{Q}} " r \Vdash_{\mathbb{R}} \dot{b}_{\sigma, \delta} \subset S_{<\beta}$ ".
Proof. By induction on $\eta<\lambda$, we build sequences $\left\langle\left\langle r_{i}^{\eta} \mid i<\eta\right\rangle \mid \eta<\lambda\right\rangle$ of conditions in \mathbb{R}, such that:
(1) for all $i<\lambda,\left\langle r_{i}^{\eta} \mid \eta>i\right\rangle$ is decreasing,
(2) for all $i<j<\lambda$, there is a maximal antichain $A_{i j}$ in \mathbb{Q} of conditions below p and $\alpha_{i j}<\nu^{+}$, such that for all $p^{\prime} \in A_{i j}$, $p^{\prime} \vdash_{\mathbb{Q}}$ "ricich, r_{j}^{j+1} force contradictory values about $\dot{b}_{\sigma, \delta} \cap S_{<\alpha_{i j}} "$ or $p^{\prime} \Vdash_{\mathbb{Q}} " r \Vdash_{\mathbb{R}} \dot{b}_{\sigma, \delta} \subset S_{<\beta}$ ".
Set $r_{0}^{1}=r_{0}$. At limit stages, suppose $\rho<\lambda$ is limit and we have defined $\left\langle\left\langle r_{i}^{\eta} \mid i<\eta\right\rangle \mid \eta<\rho\right\rangle$. For $i<\rho$, set r_{i}^{ρ} to be stronger than each r_{i}^{η} for $i<\eta<\rho$.

For successor stages, suppose we have defined $\left\langle r_{i}^{\rho} \mid i<\rho\right\rangle$. Define $\left\langle r_{i}^{\rho+1} \mid i \leq \rho\right\rangle$ as follows. Inductively apply the splitting lemma for all $i<\rho$ to get a decreasing sequences of conditions $\left\langle q_{i} \mid i<\rho\right\rangle$ in \mathbb{R} below r_{ρ} and $r_{i}^{\rho+1} \leq r_{i}^{\rho}$, such that for every $i<\rho$, there is $\alpha_{i \rho}<\nu^{+}$and an antichain $A_{i \rho}$ of conditions below p, such that for all $p^{\prime} \in A_{i \rho}, p^{\prime} \Vdash_{\mathbb{Q}}$ " $r_{i}^{\rho+1}, q_{i}$ force contradictory values about $\dot{b}_{\sigma, \delta} \cap S_{<\alpha_{i \rho}}$ " or $p^{\prime} \Vdash_{\mathbb{Q}}$ " $r \Vdash_{\mathbb{R}} \dot{b}_{\sigma, \delta} \subset S_{<\beta}$ ". Then set $r_{\rho}^{\rho+1}$ to be stronger than each q_{i}. This completes the construction.

Finally let r_{i}^{\prime} be stronger than each r_{i}^{η} for $i<\eta<\lambda$, and $\alpha=$ $\sup _{i<j<\lambda} \alpha_{i j}$.

We return to the proof of the theorem. Suppose for contradiction that S has no unbounded branch in $V[E]$. Since \mathbb{R} is $\max (\kappa, \tau)^{+}$distributive in $V[E]$, we can find $r \in F$ and $\beta_{0}<\nu^{+}$, such that for all $\langle\sigma, \delta\rangle \in \tau \times \kappa$, either $r \Vdash$ " $\dot{b}_{\sigma, \delta}$ is unbounded", or $r \Vdash$ " $\dot{b}_{\sigma, \delta} \subset S_{<\beta_{0}}$ ". Also by (2) from the assumptions of the theorem, by further strengthening r, we can assume: $(\dagger) r \Vdash$ "for all $\alpha \in I$, there is $\langle\sigma, \delta\rangle$ such that
$S_{\alpha} \cap \dot{b}_{\sigma, \delta} \neq \emptyset "$.
Now let $p \in E$ be such that p forces that for all $\langle\sigma, \delta\rangle \in \tau \times \kappa$, either $r \Vdash$ " $\dot{b}_{\sigma, \delta}$ is unbounded", or $r \Vdash \ddot{b}_{\sigma, \delta} \subset S_{\beta_{0}}$ ". Suppose also
that p forces that \dot{S} has no unbounded branches in $V^{\mathbb{Q}}$. Working in V, we will define a sequence $\left\langle r_{i} \mid i<\lambda\right\rangle$ of conditions stronger than r as follows. For every $\langle\sigma, \delta\rangle \in \tau \times \kappa$ using the last corollary we build conditions $\left\langle r_{i}^{\sigma, \delta} \mid i<\lambda\right\rangle$ stronger than r and $\beta^{\sigma, \delta}<\nu^{+}$, such that:
(1) for every $i,\left\langle r_{i}^{\sigma, \delta} \mid\langle\sigma, \delta\rangle \in \tau \times \kappa\right\rangle$ is decreasing according to some enumeration of $\tau \times \kappa$,
(2) for every $\langle\sigma, \delta\rangle \in \tau \times \kappa$ and every $i<j<\lambda$, there is a maximal antichain $A_{i, j}^{\sigma, \delta}$ in \mathbb{Q} of conditions below p, such that, for every $p^{\prime} \in A_{i j}^{\sigma, \delta}, p^{\prime} \vdash_{\mathbb{Q}}$ " $r_{i}^{\sigma, \delta}$ and $r_{j}^{\sigma, \delta}$ force contradictory values about $\dot{b}_{\sigma, \delta} \cap S_{<\beta \sigma, \delta} "$ or $p^{\prime} \Vdash_{\mathbb{Q}} " r \Vdash_{\mathbb{R}} \dot{b}_{\sigma, \delta} \subset S_{<\beta_{0}} "$.
Then for every $i<\lambda$, set r_{i} to be stronger than all of $\left\langle r_{i}^{\sigma, \delta}\right|\langle\sigma, \delta\rangle \in$ $\tau \times \kappa\rangle$.

Work in $V[E]$. Let $\beta \in I$ be such that $\beta>\sup _{\sigma, \delta} \beta^{\sigma, \delta}$. For all $i<\lambda$, let $r_{i}^{\prime} \leq r_{i}$ be such that for some $\xi_{i}, \sigma_{i}, \delta_{i}$,

$$
r_{i}^{\prime} \Vdash\left\langle\beta, \xi_{i}\right\rangle \in \dot{b}_{\sigma_{i}, \delta_{i}} .
$$

We can find such r_{i}^{\prime} by (\dagger).
Since $\lambda>\max (\tau, \kappa)$, for some $\xi<\kappa$ and $\langle\sigma, \delta\rangle \in \tau \times \kappa$, there are distinct $i<j<\lambda$, such that $\xi_{i}=\xi_{j}=\xi, \sigma_{i}=\sigma_{j}=\sigma$ and $\delta_{i}=\delta_{j}=\delta$. Let $p^{\prime} \in E \cap A_{i j}^{\sigma, \delta}$. Then there is $p^{\prime \prime} \leq p^{\prime}$, such that:
(1) $p^{\prime \prime} \vdash_{\mathbb{Q}}$ " r_{i}, r_{j} force contradictory information about $\dot{b}_{\sigma, \delta} \cap S_{<\beta}$ " or $p^{\prime \prime} \Vdash_{\mathbb{Q}}$ " r forces that $\dot{b}_{\sigma, \delta} \subset S_{<\beta_{0}}$ ",
(2) $p^{\prime \prime} \vdash_{\mathbb{Q}} \beta \in \dot{I}, \dot{r}_{i}^{\prime} \leq r_{i}, \dot{r}_{j}^{\prime} \leq r_{j} "$,
(3) $p^{\prime \prime} \Vdash_{\mathbb{Q}}$ " \dot{r}_{i}^{\prime} forces that $\langle\beta, \xi\rangle \in \dot{b}_{\sigma, \delta}$ ",
(4) $p^{\prime \prime} \Vdash_{\mathbb{Q}}$ " \dot{r}_{j}^{\prime} forces that $\langle\beta, \xi\rangle \in \dot{b}_{\sigma, \delta}$ "

If $p^{\prime \prime} \Vdash_{\mathbb{Q}}$ " r forces that $\dot{b}_{\sigma, \delta} \subset S_{<\beta_{0}}$ ", then by (2), we get that $p^{\prime \prime} \Vdash_{\mathbb{Q}}$ " \dot{r}_{i}^{\prime} forces that $\dot{b}_{\sigma, \delta} \subset S_{<\beta_{0}}$ ", but this is a contradiction with (3).

On the other hand if $p^{\prime \prime} \vdash_{\mathbb{Q}}$ " r_{i}, r_{j} force contradictory information about $\dot{b}_{\sigma, \delta} \cap S_{<\beta}$ ", then by (2), it follows that $p^{\prime \prime} \Vdash_{\mathbb{Q}}$ " $\dot{r}_{i}^{\prime}, \dot{r}_{j}^{\prime}$ force contradictory information about $\dot{b}_{\sigma, \delta} \cap S_{<\beta}$ ". But since $\dot{b}_{\sigma, \delta}$ is forced to be a branch, then by (3) and (4) we have that $p^{\prime \prime}$ must force that \dot{r}_{i}^{\prime} and \dot{r}_{j}^{\prime} force the same values for $\dot{b}_{\sigma, \delta}$ at levels below β. Contradiction.

Remark 12. We can actually get something stronger. Starting from the assumptions of the Preservation Theorem, we can show that for some $\sigma<\tau$ and $\delta<\kappa, b_{\sigma, \delta}$ is unbounded, and there is an unbounded branch b in $V[E]$ through R_{σ} with $b_{\sigma, \delta} \subset b$. To do this, we just modify the assumptions of the Splitting Lemma to state that p forces that either
$r \Vdash \dot{b}_{\sigma, \delta} \subset S_{<\beta}$ or $r \Vdash$ " $\dot{b}_{\sigma, \delta}$ is unbounded and \dot{S} has no unbounded branch b in $V^{\mathbb{Q}}$ through \dot{R}_{σ}, such that $\dot{b}_{\sigma, \delta} \subset b^{\prime \prime}$. Then carry over the same assumption to the corollary to the splitting lemma. The rest of the argument is exactly the same. We will use this stronger version in Lemma 16 of next section.

4. The tree property

In this section we will show that in $V[H][E][G]$ the tree property holds at κ^{+}. Let \dot{T} in $V[H][E]$ be a \mathbb{P} - name for a ν^{+}tree with levels of size at most κ, such that this is forced by the empty condition. Denote the α-th level of T by T_{α}. We may assume that $T_{\alpha}=\{\alpha\} \times \kappa$ for $\alpha<\nu^{+}$. We will show that T has a cofinal branch in $V[H][E][G]$. The outline of our proof is motivated by Neeman [10]. The main difference is that we have to deal with the poset \mathbb{C} and rely on the Preservation Lemma from the last section.
Lemma 13. There is $n<\omega$ and an unbounded $I \subset \nu^{+}$in $V[H][E]$, such that for all $\alpha<\beta$ in I, there are $\xi, \delta<\kappa$ and a condition q with length n, such that $q \Vdash\langle\alpha, \xi\rangle<_{\dot{T}}\langle\beta, \delta\rangle$.
Proof. Recall that U was the normal measure on $\mathcal{P}_{\kappa}\left(\nu^{+}\right)$fixed in advance and each U_{n} is the projection of U to $\mathcal{P}_{\kappa}\left(\kappa_{n}\right)$. Let $j=j_{U}$: $V[H][E] \rightarrow M$. Let G^{*} be $j(\mathbb{P})$ - generic over M and $T^{*}=j(\dot{T})_{G^{*}}$ be such that the first element of the generic sequence added by G^{*} is κ. We can arrange that since $\kappa \in j\left(X_{0}\right)$. Then $\left(\nu^{+}\right)^{V}$ remains a regular cardinal in $M\left[G^{*}\right]$.

Fix a node $u \in T^{*}$ of level γ, where $\sup \left(j^{\prime \prime} \nu^{+}\right)<\gamma<j\left(\nu^{+}\right)$. Then for all $\alpha<\nu^{+}$let $\xi_{\alpha}<j(\kappa)$ be such that $\left\langle j(\alpha), \xi_{\alpha}\right\rangle<_{T^{*}} u$ and $p_{\alpha} \in G^{*}$ be such that $p_{\alpha} \Vdash\left\langle j(\alpha), \xi_{\alpha}\right\rangle<_{j(\dot{T})} u$. Then in $M\left[G^{*}\right]$ there is an unbounded $I^{*} \subset \nu^{+}$and a fixed n, such that for all $\alpha \in I^{*}, p_{\alpha}$ has length n.

Denoting $p_{\alpha}=\left\langle d_{\alpha},\left\langle p_{\alpha i} \mid i<\omega\right\rangle\right\rangle$, by further shrinking I^{*} we can assume that for some $d \in \operatorname{Col}\left(\omega, \kappa^{+\omega}\right)$, for each $\alpha \in I^{*}, d_{\alpha}=d$. Also, for each $\alpha \in I^{*}$ and $i<n$, denote $p_{\alpha_{i}}=\left\langle y_{i}, c_{i}^{\alpha}\right\rangle$. Note that by choice of G^{*}, we have that $y_{0}=\kappa$. Let $b=\langle d,\langle\vec{y}, \vec{c}\rangle\rangle$ be a stem in $j(\mathbb{P})$ with length n such that $\vec{y}=\left\langle y_{i} \mid i<n\right\rangle$ and $\vec{c}=\left\langle c_{i} \mid i<n\right\rangle$ where each $c_{i}=\bigcup_{\alpha} c_{i}^{\alpha}$. We can take this union since for $0<i<n, c_{i}$ belongs to a poset which is $<\left(j(\kappa) \cap y_{i}\right)^{+\omega+2}$ closed, and $c_{0} \in \operatorname{Col}\left(\kappa^{+\omega+2},<j(\kappa)_{y_{1}}\right)$. In particular, the closure is larger than $\nu^{+}=\kappa^{+\omega+1}$.

Define $I=\left\{\alpha<\nu^{+} \mid \exists p \in j(\mathbb{P})\right.$ stem $(p)=b$, and $\exists \xi<j(\kappa) p \Vdash$ $\left.\langle j(\alpha), \xi\rangle<_{j(\dot{T})} u\right\}$. Then $I \in V[H][E]$ and $I^{*} \subset I$, so I is unbounded. So, I is as desired.

Remark 14. Note that for any condition p, we can strengthen Lemma 13 to get an unbounded set I and $n<\omega$, such that for all $\alpha<\beta$ in I, there are $\xi, \delta<\kappa$ and a condition $q \leq p$ with length n, such that $q \Vdash\langle\alpha, \xi\rangle<_{\dot{T}}\langle\beta, \delta\rangle$. To do this, if $k=\operatorname{lh}(p)$, we choose G^{*}, so that the $k^{t h}$ element of the generic sequence added by G^{*} below $j(\kappa)$ is κ and below that we take the stem of p. More precisely, if $\left\langle x_{i}^{*} \mid i<\omega\right\rangle$ is the G^{*}-generic sequence, we arrange so that $j(\kappa) \cap x_{k}^{*}=\kappa$, and for $i<k$, $x_{i}^{*}=j\left(x_{i}^{p}\right)=j^{\prime \prime} x_{i}^{p}$.

Let \bar{n} and I be as in the conclusion of the above lemma. We will say that a stem $h \Vdash^{*} \phi$ if there is a condition p, such that the stem of p is h and $p \Vdash \phi$. Since any two conditions with the same stem are compatible, we have that if $h \Vdash^{*} \phi$, then $h \Vdash^{*} \neg \phi$

Lemma 15. There is, in $V[H][E]$, an unbounded set $J \subset \nu^{+}$, a stem h of length \bar{n}, and a sequence of nodes $\left\langle u_{\alpha} \mid \alpha \in J\right\rangle$ with every u_{α} of level α, such that for all $\alpha<\beta$ in J there is a condition p with stem h, such that $p \Vdash u_{\alpha}<_{\dot{T}} u_{\beta}$.

Proof. Let $j: V \rightarrow N$ be a ν^{+}- supercompact embedding with critical point $\kappa_{\bar{n}+2}$. Using standard arguments, extend j to $j^{\prime}: V[H] \rightarrow$ $N\left[H^{*}\right]$, where H^{*} is $j(\mathbb{C})$ generic over V. We can arrange so that $H^{*}=H * E * H^{\prime}$, where H^{\prime} is \mathbb{C}^{\prime} - generic over $V[H][E]$ (see [8]). We have that \mathbb{C}^{\prime} is $<\kappa_{\bar{n}+1}$ distributive in $V[H][E]$, and it is $<\kappa_{\bar{n}+1}$ closed in $V[H]$. Let F be $\operatorname{Add}\left(\kappa, j\left(\nu^{++}\right)\right)$generic over $V[H][E]$. Then F is also generic over $V[H][E]\left[H^{\prime}\right]$, since $\operatorname{Add}\left(\kappa, j\left(\nu^{++}\right)\right)$has the κ^{+}chain condition. Define $E^{*}=\left\{f: j\left(\nu^{++}\right) \times \kappa \rightarrow \kappa| | f \mid<\kappa, f \upharpoonright\left(j " \nu^{++}\right) \in\right.$ $\left.j^{\prime \prime \prime} E, f \upharpoonright\left(j\left(\nu^{++}\right) \backslash j " \nu^{++}\right) \in F\right\}$. Then E^{*} is $\operatorname{Add}\left(\kappa, j\left(\nu^{++}\right)\right)$generic over $V\left[H^{*}\right]=V[H][E]\left[H^{\prime}\right]$, such that $j^{\prime \prime \prime} E \subset E^{*}$. It follows that we can extend j to $j^{*}: V[H][E] \rightarrow N\left[H^{*}\right]\left[E^{*}\right]$ where $j^{*} \in V[H][E][F]\left[H^{\prime}\right]=$ $V[H][E]\left[H^{\prime}\right][F]$.

Let $\gamma \in j^{*}(I)$ be such that $\sup \left(j^{\prime \prime} \nu^{+}\right)<\gamma<j\left(\nu^{+}\right)$. By elementarity for all $\alpha \in I$ we can fix $\xi_{\alpha}, \delta_{\alpha}<\kappa$ and $p_{\alpha} \in j^{*}(\mathbb{P})$ with length \bar{n} such that $p_{\alpha} \Vdash_{j^{*}(\mathbb{P})}\left\langle j^{*}(\alpha), \xi_{\alpha}\right\rangle<_{j^{*}(\dot{T})}\left\langle\gamma, \delta_{\alpha}\right\rangle$. Let h_{α} be the stem of p_{α}. Note that the function $\alpha \mapsto\left\langle\xi_{\alpha}, \delta_{\alpha}, h_{\alpha}\right\rangle$ is in $V[H][E][F]\left[H^{\prime}\right]$.

First we will use the Preservation Lemma to show that J as in the statement of the lemma exists in $V[H][E][F]$. Then we will use the arguments in Neeman [10] to get $J \in V[H][E]$.

The number of possible stems in $j^{*}(\mathbb{P})$ of length \bar{n} is less than $\kappa_{\bar{n}}$. Then since ν^{+}is regular in $V[H][E][F]$ and \mathbb{C}^{\prime} does not add sequences of length less than $\kappa_{\bar{n}}$, we have that in $V[H][E][F]\left[H^{\prime}\right]$ there is a cofinal $J \subset I, \delta<\kappa$, and a stem h such that for all $\alpha \in J, \delta_{\alpha}=\delta$ and $h_{\alpha}=h$.

We consider the narrow system $S=\langle I, \mathcal{R}\rangle$ of height ν^{+}and levels of size κ, in $V[H][E]$ (and so in $V[H][E][F]$), where:

- $\mathcal{R}=\left\langle R_{h}\right| h$ is a stem of length $\left.\bar{n}\right\rangle ;|\mathcal{R}|<\kappa_{\bar{n}}$.
- For nodes a, b, we say that $\langle a, b\rangle \in R_{h}$ iff $h \Vdash^{*} a<_{\dot{T}} b$

Note that $\{h \mid h$ is a stem of length $\bar{n}\} \in V[H]$. Also each R_{h} is transitive since conditions with the same stem are compatible and \dot{T} is forced to be a tree by the empty condition. Apply the preservation lemma to S for $V_{1}=V[H], \mathbb{Q}=\operatorname{Add}\left(\kappa, j\left(\nu^{++}\right)\right)$, and $\mathbb{R}=\mathbb{C}^{\prime}$, and the branches:

$$
b_{h, \delta}=\operatorname{def}\left\{\langle\alpha, \xi\rangle \mid h \Vdash_{j^{*}(\mathbb{P})}^{*}\langle j(\alpha), \xi\rangle<_{j^{*}(\dot{T})}\langle\gamma, \delta\rangle\right\} .
$$

Note that the preservation lemma works for any $\mathcal{R}=\left\langle R_{\sigma} \mid \sigma \in L\right\rangle$ with the index set L in the ground model for the lemma, which in this case is V_{1}.

We get that S has an unbounded branch in $V[H][E][F]$. I.e. in $V[H][E][F]$, there are an unbounded $J \subset I, \alpha \mapsto \xi_{\alpha}$ and a stem h such that for all $\alpha, \beta \in J$ with $\alpha<\beta$, we have that $h \Vdash^{*}\left\langle\alpha, \xi_{\alpha}\right\rangle<_{\dot{T}}\left\langle\beta, \xi_{\beta}\right\rangle$.

Then by the argument in Lemma 3.2 from [10], we can get such $J, h, \alpha \mapsto \xi_{\alpha}$ in $V[H][E]$. Setting $u_{\alpha}=\left\langle\alpha, \xi_{\alpha}\right\rangle$ for $\alpha \in J$, we get that for all $\alpha<\beta$ in J there is a condition p with stem h which forces that $u_{\alpha}<_{\dot{T}} u_{\beta}$.

Fix \bar{n}, \bar{h}, J, and $\alpha \mapsto u_{\alpha}$ as in the conclusion of the above lemma. By shrinking J we may assume that for some $\xi<\kappa$, each $u_{\alpha}=\langle\alpha, \xi\rangle$.

Lemma 16. Suppose that h is a stem of length $k, L \subset \nu^{+}$is unbounded, and for all $\alpha<\beta$ with $\alpha, \beta \in L, h \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta}$. Then there are $\rho<\nu^{+}$ and sets $\left\langle A_{\alpha}, C_{\alpha}: \alpha \in L \backslash \rho\right\rangle$ in $V[H][E]$ such that:
(1) Each $A_{\alpha} \in U_{k}$, $\operatorname{dom}\left(C_{\alpha}\right)=A_{\alpha}, C_{\alpha}(x) \in \operatorname{Col}\left(\kappa_{x}^{+\omega+2},<\kappa\right)$ for $x \in A_{\alpha}$, and $\left[C_{\alpha}\right]_{U_{k}} \in K_{k}$.
(2) For all $\alpha<\beta$ in $L \backslash \rho$, for all $x \in A_{\alpha} \cap A_{\beta}$ such that $C_{\alpha}(x)$ and $C_{\beta}(x)$ are compatible,

$$
h^{\complement}\left\langle x, C_{\alpha}(x) \cup C_{\beta}(x)\right\rangle \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta} .
$$

Proof. Let $j: V \rightarrow N$ be a ν^{+}- supercompact embedding with critical point κ_{k+3}. As in the previous lemma, extend j to $j^{\prime}: V[H] \rightarrow N\left[H^{*}\right]$, where $H^{*}=H * E * H^{\prime}$ is $j(\mathbb{C})$ generic over V, and H^{\prime} is \mathbb{C}^{\prime} - generic over $V[H][E]$. We have that \mathbb{C}^{\prime} is $<\kappa_{k+2}$ distributive in $V[H][E]$ and $<\kappa_{k+2}$ closed in $V[H]$. Let F be $\operatorname{Add}\left(\kappa, j\left(\nu^{++}\right)\right)$generic over $V[H][E]$. Then F is also generic over $V[H][E]\left[H^{\prime}\right]$, and so $E^{*}=_{\text {def }}\left\{f: j\left(\nu^{++}\right) \times\right.$ $\kappa \rightarrow \kappa\left||f|<\kappa, f \upharpoonright\left(j " \nu^{++}\right) \in j^{\prime \prime} E, f \upharpoonright\left(j\left(\nu^{++}\right) \backslash j^{\prime \prime} \nu^{++}\right) \in F\right\}$ is $\operatorname{Add}\left(\kappa, j\left(\nu^{++}\right)\right)$generic over $V\left[H^{*}\right]=V[H][E]\left[H^{\prime}\right]$, such that $j^{\prime \prime \prime} E \subset$
E^{*}. It follows that we can extend j to $j^{*}: V[H][E] \rightarrow N\left[H^{*}\right]\left[E^{*}\right]$ where $j^{*} \in V[H][E][F]\left[H^{\prime}\right]=V[H][E]\left[H^{\prime}\right][F]$.

First we will adapt the arguments in Neeman [10] to include the collapses and use them to show that there are $\rho<\nu^{+}, \alpha \mapsto A_{\alpha}^{*}$ and $\alpha \mapsto C_{\alpha}^{*}$ as in the statement of the lemma in $V[H][E]\left[H^{\prime}\right]$. Then we will use the Preservation Lemma to show that we can find these objects in $V[H][E]$.

For all $\alpha<\beta$ in L, by the assumptions of the lemma, we can fix (in $V[H][E]$) $\left[C_{\alpha, \beta}\right]_{U_{k}} \in K_{k}$, such that for almost all $x \in \mathcal{P}_{\kappa}\left(\kappa_{k}\right)$, $h \smile\left\langle x, C_{\alpha \beta}(x)\right\rangle \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta}$. Since K_{k} is closed under sequences of length $\kappa^{+\omega+1}$, let $\left[C^{*}\right]_{U_{k}} \in K_{k}$ be stronger than $\left[C_{\alpha, \beta}\right]_{U_{k}}$ for all $\alpha<\beta$ in L. Then for all $\alpha<\beta$ in L, there is $r \in \mathbb{P}$ with stem h, such that $r \Vdash u_{\alpha}<_{\dot{T}} u_{\beta}$, and denoting $r_{k}=\left\langle A_{k}^{r}, C_{k}^{r}\right\rangle$, we have that $\left[C_{k}^{r}\right]_{U_{k}}=\left[C^{*}\right]_{U_{k}}$. Without loss of generality we can assume that $\operatorname{dom}\left(C^{*}\right)=\mathcal{P}_{\kappa}\left(\kappa_{k}\right)$.

Claim 17. In $V[H][E]\left[H^{\prime}\right]$, there are $\rho<\nu^{+}, \alpha \mapsto A_{\alpha}^{*}$ and $\alpha \mapsto C_{\alpha}^{*}$ that satisfy the conclusion of the lemma.

Proof. The argument follows closely Lemma 3.5 in [10], so we only outline the main points. The difference here is that we are also dealing with collapses. Let $\gamma \in j^{*}(L)$ be such that $j^{\text {" }} \nu^{+}<\gamma<j\left(\nu^{+}\right)$. We write u_{γ} for the $\gamma^{\text {th }}$ member of the sequence $j^{*}\left(\left\langle u_{\alpha}: \alpha \in L\right\rangle\right)$. By elementarity of j^{*}, we can find conditions $\left\langle r_{\alpha}: \alpha \in L\right\rangle$ in $N\left[H^{*}\right]\left[E^{*}\right]$, such that each $r_{\alpha} \in j^{*}(\mathbb{P})$, the stem of r_{α} is h and

$$
r_{\alpha} \Vdash_{j^{*}(\mathbb{P})} j\left(u_{\alpha}\right)<_{j^{*}(\dot{T})} u_{\gamma} .
$$

We may assume that for each $\alpha,\left[C_{k}^{r_{\alpha}}\right]_{j^{*}\left(U_{k}\right)}=j^{*}\left(\left[C^{*}\right]_{U_{k}}\right)=\left[C^{*}\right]_{j^{*}\left(U_{k}\right)}$. For $x \in \mathcal{P}_{\kappa}\left(\kappa_{k}\right)$, set $J_{x}=\left\{\alpha \in L \mid h \prec\left\langle x, C^{*}(x)\right\rangle \vdash^{*} j\left(u_{\alpha}\right)<_{j^{*}(\dot{T})} u_{\gamma}\right\}$. Also, let $K_{x}=\left\{C \subset L \mid C\right.$ is unbounded and $\left(\exists b \in \operatorname{Add}\left(\kappa, j\left(\nu^{++}\right)\right)\right)(b \Vdash$ $\left.\left.\dot{J}_{x}=C\right)\right\}$. Then each K_{x} and $x \mapsto K_{x}$ is in $V[H][E]\left[H^{\prime}\right]$. We have that (see [10]):

- If J_{x} is unbounded in ν^{+}, then $J_{x} \in V[H][E]\left[H^{\prime}\right]$.
- If $C_{1} \neq C_{2}$ are both in K_{x}, then they are disjoint on a tail end.
- For all $C \in K_{x}$, if $\alpha<\beta$ in C, then $h^{\complement}\left\langle x, C^{*}(x)\right\rangle \vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta}$.

Then let $\rho<\nu^{+}$be such that for all x and $C_{1}, C_{2} \in K_{x}, C_{1}$ and C_{2} are disjoint above ρ. For $\alpha \in L \backslash \rho$ and $x \in \mathcal{P}_{\kappa}\left(\kappa_{k}\right)$ define $f(x, \alpha)$ to be the unique $C \in K_{x}$ such that $\alpha \in C$ if such a C exists and undefined otherwise. Note that if J_{x} is unbounded in ν^{+}and $\alpha \in J_{x}$, then $f(x, \alpha)=J_{x}$. Let $\alpha_{0}=\min (L \backslash \rho)$ and for $\alpha \in L \backslash \rho$, set:

$$
A_{\alpha}^{*}=\left\{x \in \mathcal{P}_{\kappa}\left(\kappa_{k}\right) \mid f\left(x, \alpha_{0}\right)=f(x, \alpha)\right\} .
$$

By the arguments in [10] and since for each $\alpha,\left[C_{k}^{r_{\alpha}}\right]=\left[C^{*}\right]$, each $A_{\alpha}^{*} \in U_{k}$. We remark that here when adapting the argument from [10], we use that H^{\prime} adds no sequences of length κ_{k} and that ν^{+}is regular in $V[H][E]$. Set $C_{\alpha}^{*}=C^{*} \upharpoonright A_{\alpha}^{*}$. Then $\rho, \alpha \mapsto A_{\alpha}^{*}$ and $\alpha \mapsto C_{\alpha}^{*}$ are as desired.

Fix $\rho<\nu^{+}, \alpha \mapsto A_{\alpha}^{*}$ and $\alpha \mapsto C_{\alpha}^{*}$ as in the above claim. Note that for each $\alpha, C_{\alpha}^{*}=C^{*} \upharpoonright A_{\alpha}^{*}$. Let $L^{\prime}=L \backslash \rho$. For every $x \in \mathcal{P}_{\kappa}\left(\kappa_{k}\right)$, let $b_{x}=\left\{\alpha \in L \backslash \rho \mid x \in A_{\alpha}^{*}\right\}$. Note that each $b_{x} \in V[H][E]\left[H^{\prime}\right]$ and for all $\alpha<\beta$ in $b_{x}, h^{\smile}\left\langle x, C^{*}(x)\right\rangle \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta}$.

Claim 18. For every $A \in U_{k}$, there is $x \in A$, such that b_{x} is unbounded and there is an unbounded set $b \subset \nu^{+}$in $V[H][E]$, such that:

- $b_{x} \subset b$,
- for all $\alpha<\beta$ in $b, h \smile\left\langle x, C^{*}(x)\right\rangle \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta}$.

Proof. Let $\mathcal{R}=\left\{R_{x} \mid x \in \mathcal{P}_{\kappa}\left(\kappa_{k}\right)\right\} ;|\mathcal{R}|=\kappa_{k}$. We consider the narrow system $S=\left\langle L^{\prime}, \mathcal{R}\right\rangle$, where for $\alpha \in L^{\prime}, S_{\alpha}=\{\alpha\} \times \kappa$ and for nodes a, b, we say that $\langle a, b\rangle \in R_{x}$ iff:

$$
h^{\frown}\left\langle x, C^{*}(x)\right\rangle \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta}
$$

Each R_{x} is a transitive relation since \dot{T} is forced to be a tree by the empty condition and any two conditions with the same stem are compatible. For $x \in \mathcal{P}_{\kappa}\left(\kappa_{k}\right)$, set $b_{x}^{*}=\left\{u_{\alpha} \mid \alpha \in b_{x}\right\}$ if $x \in A$, and $b_{x}^{*}=\emptyset$ otherwise. We have that $\left\{b_{x}^{*} \mid x \in \mathcal{P}_{\kappa}\left(\kappa_{k}\right)\right\}$ are branches in $V[H][E]\left[H^{\prime}\right]$, such that:
(1) each b_{x}^{*} is a branch through R_{x}.
(2) for all $\alpha \in L^{\prime}$, there is x, such that $b_{x}^{*} \cap S_{\alpha} \neq \emptyset$ (just take any $x \in A_{\alpha}^{*} \cap A$),
(3) for some x, b_{x}^{*} is unbounded.
(3) holds because otherwise, for all x, let α_{x} be a bound for b_{x} (in $\left.V[H][E]\left[H^{\prime}\right]\right)$ and let $\alpha=\sup _{x \in \mathcal{P}_{\kappa}\left(\kappa_{k}\right)} \alpha_{x}$. Since H^{\prime} does not add sequences of length κ_{k+1} and ν^{+}is regular in $V[H][E]$, we have that $\alpha<\nu^{+}$; contradiction.

We apply the preservation lemma to S for $V_{1}=V[H], \mathbb{Q}=\operatorname{Add}\left(\kappa, \nu^{++}\right)$, $\mathbb{R}=\mathbb{C}^{\prime}$, and these branches to get an unbounded branch through S in $V[H][E]$. So, in $V[H][E]$ we have an unbounded $b \subset L$ and $x \in \mathcal{P}_{\kappa}\left(\kappa_{k}\right)$, such that $b_{x} \subset b$ and b_{x} is unbounded. Here we use the stronger version of the preservation lemma, see Remark 12. Since b_{x} is unbounded, we know that $x \in A$. So, since the preservation lemma produces a branch through R_{x}, we have that for all $\alpha<\beta$ in b, $h \smile\left\langle x, C^{*}(x)\right\rangle \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta}$.

For every $x \in \mathcal{P}_{\kappa}\left(\kappa_{k}\right)$, let \dagger_{x} be the statement: b_{x} is unbounded, and there is an unbounded set $b \subset \nu^{+}$in $V[H][E]$ with $b_{x} \subset b$, such that for all $\alpha<\beta$ in $b, h \smile\left\langle x, C^{*}(x)\right\rangle \vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta}$.

Corollary 19. $A==_{\text {def }}\left\{x \in \mathcal{P}_{\kappa}\left(\kappa_{k}\right) \mid \dagger_{x}\right.$ holds $\} \in V[H][E]$ and $A \in$ U_{k}.

Proof. A is in $V[H][E]$ since \mathbb{C}^{\prime} is distributive enough. Now suppose for contradiction that A is not measure one. Then $Y=\left\{x \mid \dagger_{x}\right.$ does not hold $\} \in U_{k}$. Apply the above claim to Y to get a contradiction.

For every $x \in A$, let $L_{x} \subset L$ witness \dagger_{x}. I.e. $L_{x} \in V[H][E]$, it is unbounded in $\nu^{+}, b_{x} \subset L_{x}, b_{x}$ is unbounded, and for all $\alpha<\beta$ in L_{x}, we have that $h^{\complement}\left\langle x, C^{*}(x)\right\rangle \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta}$. Note that by distributivity of \mathbb{C}^{\prime}, we have that $x \mapsto L_{x}$ is in $V[H][E]$. Finally, for $\alpha \in L^{\prime}$, define:

$$
A_{\alpha}=\left\{x \in A \mid \alpha \in L_{x}\right\} .
$$

Claim 20. For all $\alpha \in L^{\prime}, A_{\alpha} \in U_{k}$
Proof. Suppose otherwise. Then $Y=\mathcal{P}_{\kappa}\left(\kappa_{k}\right) \backslash A_{\alpha} \in U_{k}$. Let $x \in$ $Y \cap A_{\alpha}^{*} \cap A$. Then \dagger_{x} holds, and $\alpha \in b_{x} \subset L_{x}$. But we assumed that $x \notin A_{\alpha}$, contradiction

For $\alpha \in L^{\prime}$, define $C_{\alpha}=C^{*} \upharpoonright A_{\alpha}$. Now suppose $\alpha<\beta$ in L^{\prime}, $x \in A_{\alpha} \cap A_{\beta}$ and $c \leq C_{\alpha}(x) \cup C_{\beta}(x)=C^{*}(x)$. Then $\alpha, \beta \in L_{x}$, and so $h^{\complement}\left\langle x, C^{*}(x)\right\rangle \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta}$. So, $h^{\complement}\langle x, c\rangle \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta}$.

Lemma 21. There is some $\rho<\nu^{+}$and a sequence of conditions $\left\langle p_{\alpha}\right|$ $\alpha \in J \backslash \rho\rangle$ with stem \bar{h} such that for $\alpha<\beta$ in $J \backslash \rho, p_{\alpha} \wedge p_{\beta} \Vdash u_{\alpha}<_{\dot{T}} u_{\beta}$. (Recall that $p_{\alpha} \wedge p_{\beta}$ denotes the weakest common extension of p_{α} and p_{β}.)

Proof. The proof is an adaptation of the argument given in [10].
First we make some remarks on taking diagonal intersections. Let H be a set of stems of length n, and let $\left\langle A^{h} \mid h \in H\right\rangle$ be a sequence of $U_{n^{-}}$measure one sets. For a stem $h=\langle d,\langle\vec{y}, \vec{c}\rangle\rangle$ in H and $z \in \mathcal{P}_{\kappa}\left(\kappa_{n}\right)$, we write $h \prec z$ to denote that $y_{n-1} \prec z$, i.e. that $\left|y_{n-1}\right|<\kappa_{z}$ and $y_{n-1} \subset z$. Note that $h \prec z$ iff for some $c, h^{\complement}\langle z, c\rangle$ is a stem. Then $A=$ $\triangle_{h \in H} A^{h}=\left\{z \in \mathcal{P}_{\kappa}\left(\kappa_{n}\right) \mid z \in \bigcap_{h \prec z} A^{h}\right\}$ is the diagonal intersection of $\left\langle A^{h} \mid h \in H\right\rangle$ and $A \in U_{n}$.

We will define sequences $\left\langle\rho_{n} \mid \bar{n} \leq n<\omega\right\rangle,\left\langle A_{\alpha}^{n}\right| \alpha \in J \backslash \rho_{n}, \bar{n} \leq n<$ $\omega\rangle$, and $\left\langle C_{\alpha}^{n} \mid \alpha \in J \backslash \rho_{n}, \bar{n} \leq n<\omega\right\rangle$ by induction on n, such that for all n :
(1) For all $\alpha \in J \backslash \rho_{n}$, we have that $A_{\alpha}^{n} \in U_{n},\left[C_{\alpha}^{n}\right]_{U_{n}} \in K_{n}$, $\operatorname{dom}\left(C_{\alpha}^{n}\right)=A_{\alpha}$, and $C_{\alpha}^{n}(x) \in \operatorname{Col}\left(\kappa_{x}^{+\omega+2},<\kappa\right)$ for $x \in A_{\alpha}^{n}$.
(2) For all $\alpha<\beta$ in $J \backslash \rho_{n}$, for all stems $h=\langle d,\langle\vec{x}, \vec{c}\rangle\rangle$ of length $n+1$ extending \bar{h}, such that for $\bar{n} \leq i \leq n, x_{i} \in A_{\alpha}^{i} \cap A_{\beta}^{i}$ and $c_{i} \leq C_{\alpha}^{i}\left(x_{i}\right) \cup C_{\beta}^{i}\left(x_{i}\right)$,

$$
h \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta} .
$$

Let $\rho_{\bar{n}}$ and $\left\langle A_{\alpha}^{\bar{n}}, C_{\alpha}^{\bar{n}} \mid \alpha \in J \backslash \rho_{\bar{n}}\right\rangle$ be given by the above lemma applied to \bar{h}. Then by the conclusion of the lemma, both of the conditions above for \bar{n} are satisfied. Now suppose we have defined ρ_{n} and $\left\langle A_{\alpha}^{n}, C_{\alpha}^{n}\right| \alpha \in$ $\left.J \backslash \rho_{n}\right\rangle$ such that (1) and (2) above hold for n. We have to define ρ_{n+1} and $A_{\alpha}^{n+1}, C_{\alpha}^{n+1}$ for $\alpha \in J \backslash \rho_{n+1}$.

For a stem $h=\left\langle d^{h},\langle\vec{x}, \vec{c}\rangle\right\rangle$ of length $n+1$ extending \bar{h}, we say that h fits α iff each $x_{i} \in A_{\alpha}^{i}$ and $c_{i} \leq C_{\alpha}^{i}\left(x_{i}\right)$ for $i \leq n$. Set

$$
J^{h}=\left\{\alpha \in J \backslash \rho_{n} \mid h \text { fits } \alpha\right\} .
$$

Define a function $h \mapsto \rho^{h}$ on stems of length $n+1$ extending \bar{h} as follows:

- if J^{h} is bounded in ν^{+}, let $\rho^{h}<\nu^{+}$be a bound,
- otherwise, let ρ^{h} and $\left\langle A_{\alpha}^{h}, C_{\alpha}^{h} \mid \alpha \in J^{h} \backslash \rho^{h}\right\rangle$ be given by the previous lemma applied to h and J^{h} (here we use the inductive assumption for n).
Set $\rho_{n+1}=\sup \left\{\rho^{h} \mid h\right.$ is a stem of length $n+1$ extending $\left.\bar{h}\right\}$. For $\alpha \in J \backslash \rho_{n+1}$, set $H_{\alpha}(n+1)=\{h \mid h$ has length $n+1$, extends \bar{h}, and fits $\alpha\}$. For each $\alpha \in J \backslash \rho_{n+1}$, let

$$
A_{\alpha}^{n+1}=\triangle_{h \in H_{\alpha}(n+1)} A_{\alpha}^{h} .
$$

Also set $\left[C_{\alpha}\right]_{U_{n+1}}=\bigcup\left\{\left[C_{\alpha}^{h}\right]_{U_{n+1}} \mid h \in H_{\alpha}(n+1)\right\} \in K_{n+1}$. By shrinking A_{α}^{n+1} (via diagonal intersections), we can arrange that for all $x \in A_{\alpha}^{n+1}$, $C_{\alpha}(x)=\bigcup\left\{C_{\alpha}^{h}(x) \mid h \prec x\right\}$.

It remains to check that (1) and (2) hold for $n+1$. The first condition holds by construction. For the second condition, we have to show that for all $\alpha<\beta$ in $J \backslash \rho_{n+1}$, for all stems t of length $n+2$, which extend \bar{h} and fit both α and β, we have that

$$
t \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta} .
$$

So, suppose that $\alpha<\beta$ are in $J \backslash \rho_{n+1}$ and $h^{\complement}\langle x, c\rangle$ is a stem as above. Since h fits α and β and $\rho^{h}<\alpha, \beta$, we have that J^{h} is unbounded and ρ^{h} was given by applying the previous lemma. Then $h \in H_{\alpha}(n+$ 1) $\cap H_{\beta}(n+1)$ and since we took diagonal intersections, it follows that $x \in A_{\alpha}^{h} \cap A_{\beta}^{h}$ and $c \leq C_{\alpha}^{h}(x) \cup C_{\beta}^{h}(x)$. So, by construction of
$A_{\alpha}^{h}, A_{\beta}^{h}, C_{\alpha}^{h}, C_{\beta}^{h}$, we have that $h^{\complement}\langle x, c\rangle \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta}$. This completes the construction.

Now let $\rho=\sup _{n} \rho_{n}$ and set p_{α} for $\alpha \in J \backslash \rho$ to be such that:

- the stem of p_{α} is \bar{h},
- for all $n \geq \bar{n}$, let $p_{\alpha_{n}}=\left\langle A_{\alpha}^{n}, C_{\alpha}^{n}\right\rangle$.

Then $\left\langle p_{\alpha} \mid \alpha \in J \backslash \rho\right\rangle$ is as desired. For if $\alpha<\beta$ are in $J \backslash \rho$, and $q \leq$ $p_{\alpha} \wedge p_{\beta}$, then by the construction, we have that $\operatorname{stem}(q) \Vdash^{*} u_{\alpha}<_{\dot{T}} u_{\beta}$, and so $q \Vdash u_{\alpha} \not{ }_{\dot{T}} u_{\beta}$. It follows that $p_{\alpha} \wedge p_{\beta} \Vdash u_{\alpha}<_{\dot{T}} u_{\beta}$.

Lastly, we show that $\left\{u_{\alpha} \mid \alpha<\nu^{+}, p_{\alpha} \in G\right\}$ is an unbounded branch of T. It suffices to prove the following:

Proposition 22. $B=\left\{\alpha<\nu^{+} \mid p_{\alpha} \in G\right\}$ is unbounded.
Proof. Otherwise, let $q \in G$ be such that $q \Vdash \dot{B}$ is bounded. Since both Lemma 13 and Lemma 15 can be done below any condition, we may assume that (by strengthening q if necessary) stem $(q)=\bar{h} . \mathbb{P}$ has the ν^{+}chain condition, so for some $\alpha<\nu^{+}, q \Vdash \dot{B} \subset \alpha$. Let $\beta \in J \backslash \alpha$, and let r be a common extension of q and p_{β}. Then on one hand we have that $r \Vdash p_{\beta} \in \dot{G}$, but also $r \Vdash u_{\beta} \notin \dot{B}$. Contradiction.

Then $\left\{u_{\alpha} \mid \alpha \in B\right\}$ is an unbounded branch of T. This completes the proof of the tree property. To summarize, starting from ω many supercompact cardinals, we have constructed a generic extension in which there are no Aronszajn trees at $\aleph_{\omega^{2}+1}$ and the SCH fails at $\aleph_{\omega^{2}}$.

We conclude this paper with an open problem. It is still not known whether it is consistent to have the tree property at $\aleph_{\omega+1}$ and not SCH at \aleph_{ω}.

References

[1] James Baumgartner, Matthew Foreman, Otmar Spinas, The spectrum of the Γ-invariant of a bilinear space., J. Algebra, vol. 189(1997), no. 2, pp. 406418.
[2] James Cummings and Matthew Foreman, Diagonal prikry extensions, J. of Symbolic Logic, vol. 75(2010), no. 4, pp. 1383-1402.
[3] James Cummings, Matthew Foreman and Menachem Magidor, Squares, scales and stationary reflection, J. of Math. Log., vol. 1(2001), pp. 35-98.
[4] --, Canonical structure in the universe of set theory I, Ann. Pure Appl. Logic, vol. 129(2004), no. 1-3, pp. 211243.
[5] -, Canonical structure in the universe of set theory II, Ann. Pure Appl. Logic, vol. 142(2006), no. 1-3, pp. 5575.
[6] Moti Gitik and Assaf Sharon, On SCH and the approachability property, Proc. of the AMS, vol. 136 (2008), pp. 311-320
[7] Thomas Jech, Set theory, Springer Monographs in Mathematics, SpringerVerlag, 2003.
[8] Menachem Magidor, Reflecting Stationary Sets., J. of Symbolic Logic, vol. 47 (1982), no. 4, pp. 755-771
[9] Menachem Magidor and Saharon Shelah, The tree property at successors of singular cardinals., Arch. Math. Logic , vol. 35 (1996), no. 5-6, pp. 385404
[10] Itay Neeman, Aronszajn trees and the failure of the singular cardinal hypothesis, J. of Mathematical Logic vol. 9 (2009, published 2010) pp. 139-157.
[11] Saharon Shelah, Cardinal arithmetic. , Oxford Logic Guides, 29, Oxford Uniersity Press 1994.
[12] Robert M. Solovay, Strongly compact cardinals and the GCH, Proceedings of the tarski symposium (proc. sympos. pure math., vol. xxv, univ. california, berkeley, calif., 1971), Amer. Math. Soc., 365-372, 1974.
[13] Spencer Unger, preprint
Department of Mathematics, University of California Irvine, Irvine, CA 92697-3875, U.S.A

E-mail address: dsinapov@math.uci.edu

