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Abstract. We show that given ω many supercompact cardinals,
there is a generic extension in which the tree property holds at
ℵω2+1 and the SCH fails at ℵω2 .

1. Introduction

The tree property at κ+ states that every tree with height κ+ and
levels of size at most κ has an unbounded branch. Equivalently, there
are no κ+-Aronszajn trees. In the 1980’s Woodin asked if the failure
of the Singular Cardinal Hypothesis (SCH) at ℵω implies the existence
of an Aronszajn tree at ℵω+1. To motivate the question we note a
few facts about Aronszajn trees. By Magidor and Shelah [9], the tree
property holds at successors of singular limits of strongly compact car-
dinals. On the other hand, Solovay [12] showed that SCH holds above a
strongly compact cardinal. Generalizing the original question, in 1989
Woodin and others asked if the failure of SCH at a singular cardinal κ
of cofinality ω implies the existence of an Aronszajn tree at κ+.

The first progress on Woodin’s question was made by Gitik-Sharon
[6], who showed the consistency of the failure of SCH at a singular car-
dinal κ together with the non-existence of special κ+-Aronszajn trees.
They also pushed down their result to κ = ℵω2 . Then in 2009, Neeman
[10] obtained the failure of the singular cardinal hypothesis at some
large singular cardinal κ, together with the full tree property at κ+.
It remained open whether this construction can be pushed down to
smaller cardinals. In this paper we show that his result can indeed be
obtained at smaller cardinals. In particular, we prove that it is con-
sistent relative to large cardinals that ℵω2 is a strong limit cardinal,
2ℵω2 > ℵω2+1, and the tree property holds at ℵω2+1. It still remains
open whether an analogous result holds for ℵω.

Theorem 1. Suppose that in V , 〈κn | n < ω〉 is an increasing sequence
of supercompact cardinals and GCH holds. Then there is a generic
extension in which:

The author thanks Itay Neeman for his invaluable comments and corrections.
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(1) κ0 = ℵω2,
(2) the tree property holds at ℵω2+1,
(3) SCH fails at κ.

The rest of the paper presents the proof of Theorem 1. In section 2
we define the forcing notion and give some basic properties about the
forcing. Section 3 deals with a preservation lemma, which will be used
to show the tree property. Finally in section 4 we prove that the tree
property holds at ℵω2+1.

2. The forcing

Let 〈κn | n < ω〉 be an increasing sequence of supercompact car-
dinals. We start by using Laver’s forcing to make κ0 indestructably
supercompact while maintaining GCH above κ0. Let V be the result-
ing model. Denote κ = κ0, ν = supn κn and µ = ν+. First we force
with C, where C is the full support iterated collapse to make each κn
be the n-th successor of κ. Let H be C-generic over V . Then we force
with Add(κ, ν++). Let E be Add(κ, ν++) generic over V [H]. Work in
V [H][E].

Proposition 2. There is a normal measure on Pκ(κ+ω+1), U , such
that for each n < ω if we let Un be the projection of U to Pκ(κ+n) and
jn = jUn, then there exists a (Col(κ+ω+2, < jn(κ)))Nn - generic filter,
Kn, over Nn = Ult(V [H][E], Un).

Proof. See Gitik-Sharon [6]. �

Let U be a normal measure on Pκ(κ+ω+1) given by the above proposi-
tion. For each n, let Un be the projection of U to Pκ(κ+n) and jn = jUn .
Using standard reflection arguments, we choose sets Xn ∈ Un for n < ω,
such that for all x ∈ Xn:

• κ ∩ x = κx is κ+n
x -supercompact.

• (∀k ≤ n)o.t.(x ∩ κ+k) = κ+k
x . In particular, o.t.(x) = κ+n

x .

Fix generic filters 〈Kn | n < ω〉 as in the above proposition. We are
ready to define the main forcing. Basically, we take the forcing in
Gitik-Sharon [6] with collapses using the filters 〈Kn | n < ω〉.

We use the notation x ≺ y to denote that x ⊂ y and |x| < κy.

Definition 3. Conditions in P are of the form p = 〈d, 〈pn | n < ω〉〉,
where for some integer l = lh(p) (the length of p), we have:

(1) For n < l, pn = 〈xn, cn〉 such that:
• xn ∈ Xn and for i < n, xi ≺ xn,
• if n < l − 1, then cn ∈ Col(κ+ω+2

xn , < κxn+1), and cl−1 ∈
Col(κ+ω+2

xl−1
, < κ).
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(2) For n ≥ l, pn = 〈An, Cn〉 such that:
• An ∈ Un, An ⊂ Xn, and xl−1 ≺ y for all y ∈ An.
• Cn is a function with domain An, for y ∈ An, Cn(y) ∈
Col(κ+ω+2

y , < κ),
• [Cn]Un ∈ Kn.

(3) if l > 0, then d ∈ Col(ω, κ+ω
x0

), otherwise d ∈ Col(ω, κ).

For a condition p, we will use the notation p = 〈dp, 〈pn | n < ω〉〉,
pn = 〈xpn, cpn〉 for n < lh(p), and pn = 〈Apn, Cp

n〉 for n ≥ lh(p). The
stem of p is h = 〈dp, 〈pn | n < lh(p)〉〉. Sometimes we will also denote
the stem of p by 〈dp, 〈~x,~c〉〉, where ~x and ~c are with length lh(p), and
for i < lh(p), pi = 〈xi, ci〉.

q = 〈dq, 〈qn | n < ω〉〉 ≤ p = 〈dp, 〈pn | n < ω〉〉 if lh(q) ≥ lh(p) and:

• dq ⊃ dp,
• for all n < lh(p), xpn = xqn, c

q
n ⊃ cpn,

• for lh(p) ≤ n < lh(q), xqn ∈ Apn and cqn ⊃ Cp
n(xqn),

• for n ≥ lh(q), Aqn ⊂ Apn and for all y ∈ Aqn, Cq
n(y) ⊃ Cp

n(y)

We say that q is a direct extension of p, denoted by q ≤∗ p, if q ≤ p
and lh(q) = lh(p). For two stems h1 and h2, we say that h1 is stronger
or an extension of h2 if there are conditions p1 ≤ p2 with stems h1 and
h2 respectively.

Note that any two conditions with the same stem are compatible. That
is since the collapsing part is taken to be in the filters Kn. For two
conditions p, q with the same stem we define p ∧ q to be the weakest
common extension.

Let G be P generic over V [H][E], and let 〈xn | n < ω〉, where each
xn ∈ Pκ(κ+n), be the components derived from the generic set G. Set
λn = xn ∩ κ. By Gitik-Sharon [6], we get:

Proposition 4.

(1) If 〈An | n < ω〉 ∈ V [H][E] is a sequence of sets such that every
An ∈ Un, then for all large n, xn ∈ An.

(2)
⋃
n xn = ν = (κ+ω)V [H][E].

(3) For each n ≥ 0, the cofinality of κn = (κ+n)V [H][E] in V [H][E][G]
is ω.

(4) Since any two conditions with the same stem are compatible,
P has the µ = (κ+ω+1)V [H][E] chain condition. So, cardinals
greater than or equal to µ are preserved.

(5) In V [H][E][G], 2κ = µ+ and GCH holds from µ upward.
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(6) P has the Prikry property. I.e. if p is a condition with length
at least 1 and φ is a formula, then there is a direct extension
p′ ≤∗ p which decides φ.

Remark 5. The main point in the proof of the Prikry property is the
diagonal lemma, which states that for p ∈ P with length at least 1 and
lh(p) < n < ω if H is a set of stems of length lh(p)+n and 〈qh | h ∈ H〉
are conditions stronger than p such that each qh has a stem h, then
there is q ≤∗ p such that if r ≤ q is a condition of length at least
lh(p) + n, then r ≤ qh for some h ∈ H.

Remark 6. Using the closure of the collapsing posets, we get the fol-
lowing corollary to the Prikry property: If p is a condition with length
n+ 1 and φ is a formula, then there is a direct extension q ≤∗ p, such
that q � n = p and if r ≤ p decides φ, then r � n_q � (ω \ n) decides φ.

The last property implies that all cardinals χ, such that λn ≤ χ ≤
λ+ω+2
n for some n > 0 are preserved. In particular, in V [H][E][G] every
λn for n > 0 is a cardinal. And so, κ remains a cardinal, as well. Also,
P preserves (λ+ω+1

0 )V [H][E], (λ+ω+2
0 )V [H][E], and collapses (λ+ω

0 )V [H][E] to
ω. So in V [H][E][G], κ = ℵω2 , µ = κ+, (λ+ω+1

0 )V [H][E] = ℵ1, and
2ℵω2 = ℵω2+2. So, SCH fails at ℵω2 .

3. The preservation lemma

In this section we prove a preservation lemma, which will be used
to show the tree property. The proof of this lemma is motivated by
the Preservation Theorem in Magidor-Shelah [9]. The main difference
is that instead of trees, here we are working with narrow systems,
which are defined below. Throughout this section V will denote some
arbitrary ground model. We say that a poset is χ-closed if it is closed
under sequences of length χ. We start with defining the notion of a
narrow system. This is the same as the definition given in Magidor-
Shelah [9].

Definition 7. S = 〈I × κ,R〉 is a narrow system of height ν+ and
levels of size κ < ν if:

• I is an unbounded subset of ν+, and for each α ∈ I, Sα =
{α} × κ is the α-level of S,
• R is a set of transitive binary relations on I × κ, such that for

all R ∈ R, if 〈α, δ〉R〈β, ξ〉, then α < β.
• |R| < ν.
• For every α < β in I, there are u ∈ Sα, v ∈ Sβ, and R ∈ R

such that 〈u, v〉 ∈ R.
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• For all R ∈ R, if u1, u2 are distinct elements of I × κ such that
〈u1, v〉 ∈ R and 〈u2, v〉 ∈ R, then 〈u1, u2〉 ∈ R or 〈u2, u1〉 ∈ R.

For a1, a2 ∈ S and R ∈ R we write a1 ⊥R a2 if 〈a1, a2〉 /∈ R and
〈a2, a1〉 /∈ R, and in that case say that a1, a2 are R-incomparable.

A branch of S is a set b ⊂
⋃
α∈I Sα such that for some R ∈ R, we

have that for all u, v ∈ b, 〈u, v〉 ∈ R or 〈v, u〉 ∈ R. In this case we
say that b is a branch through R (or with respect to R). We say that
b ⊂ I × κ is unbounded if for unboundedly many α ∈ I, b ∩ Sα 6= ∅.

Theorem 8. Suppose that ν is a singular cardinal of cofinality ω,
κ, τ < ν are regular cardinals, and in V , Q is κ+ c.c notion of forcing
and R is a max(κ, τ)+ closed notion of forcing. Let E be Q-generic
over V and let F be R-generic over V [E]. Suppose that S = 〈I,R〉
is a narrow system in V [E] of height ν+, levels of size κ, and with
R = 〈Rσ | σ < τ〉. Suppose that in V [E][F ] there are (not necessarily
all unbounded) branches 〈bσ,δ | σ ∈ L, δ < κ〉, such that:

(1) every bσ,δ is a branch through Rσ, and for some 〈σ, δ〉 ∈ L× κ,
bσ,δ is unbounded.

(2) for all α ∈ I, there is 〈σ, δ〉 ∈ L× κ, such that Sα ∩ bσ,δ 6= ∅.
Then S has an unbounded branch in V [E].

Proof. Let σ < τ, δ < κ. For α < ν+, p ∈ Q, and r1, r2 ∈ R, we say
that p Q “r1, r2 force contradictory values about ḃσ,δ ∩ S<α” if there
are nodes u1 = 〈α1, ξ1〉, u2 = 〈α2, ξ2〉 with α1 < α2 < α, such that:

• p Q “α1, α2 ∈ İ and 〈u1, u2〉 /∈ Ṙσ”

• p Q “r1 R u1 ∈ ḃσ,δ and r2 R u2 ∈ ḃσ,δ”.

The following lemma uses an argument from a branch lemma by Spencer
Unger [13]. Versions of this lemma were also proved by Baumgartner,
Foreman and Spinas while they were working on [1].

Lemma 9. (Splitting Lemma) Let σ < τ, δ < κ. Suppose that for some

β < ν+, p Q “r R ḃσ,δ is an unbounded branch or r R ḃσ,δ ⊂ S<β”,

and p forces that Ṡ has no unbounded branches through Ṙσ in V Q.
Let r1, r2 ∈ R be stronger than r. Then there are r∗1 ≤ r1, r∗2 ≤ r2,
a maximal antichain A ⊂ Q of conditions below p and α < ν+ with
α ≥ β, such that for all p′ ∈ A, p′ Q “r∗1 and r∗2 force contradictory

values about S<α ∩ ḃσ,δ”, or p′ Q “r R ḃσ,δ ⊂ S<β”.

Proof. First we show the following claim.

Claim 10. For any r′1 ≤ r1 and r′2 ≤ r2 the set Dr′1,r
′
2 = {p′ ≤ p | p′′ Q

“r R ḃσ,δ ⊂ S<β” or (∃r′′1 ≤ r′1)(∃r′′2 ≤ r′2)(∃α < ν+)(p′ Q “r′′1 , r
′′
2

force contradictory values for ḃσ,δ ∩ S<α”)} is dense below p.
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Proof. Let r′1 ≤ r1, r′2 ≤ r2, p′ ≤ p. Let q ≤ p′ be such that q Q “r R
ḃσ,δ is unbounded”, or q Q “r R ḃσ,δ ⊂ S<β”. If the latter holds, than
q ∈ Dr′1,r

′
2 , so we are done.

Now suppose that q Q “r R ḃσ,δ is unbounded”. Let E ′ be Q-
generic over V with q ∈ E ′. In V [E ′] define E1 = {a ∈ I × κ | (∃r′′ ≤
r′1)(r′′  a ∈ ḃσ,δ)} and E2 = {a ∈ I × κ | (∃r′′ ≤ r′2)(r′′  a ∈ ḃσ,δ)}.
Then since in V [E ′], r forces that ḃσ,δ is unbounded, we have that both
{α ∈ I | E1 ∩ Sα 6= ∅} and {α ∈ I | E2 ∩ Sα 6= ∅} are unbounded in
I. Also since S has no unbounded branches through Rσ in V [E ′], we
have that for any a ∈ E1, there are Rσ incomparable nodes c, d in E1

with 〈a, c〉 ∈ Rσ and 〈a, d〉 ∈ Rσ. The same holds for E2. So, we can
find Rσ incomparable nodes c1 ∈ E1 and c2 ∈ E2 as follows. Let a1, a2

be Rσ-incomparable nodes in E1 and let c2 ∈ E2 be of level above the
levels of a1, a2. Then c2 must be Rσ-incomparable with at least one of
these nodes. Let c1 be a1 if a1 ⊥Rσ c2, otherwise let c1 = a2. Then
there are p′′ ≤ q, r′′1 ≤ r′1, r′′2 ≤ r′2, and α < ν+, such that p′′ Q “r′′1 , r

′′
2

force contradictory values for ḃσ,δ∩S<α”, as witnessed by c1 and c2. �

The rest of the proof of the lemma uses Spencer Unger’s diagonal
construction argument to get the antichain and r∗1, r

∗
2 as desired. The

only difference is that here all antichains are below p, and r0
1 ≤ r1,

r0
2 ≤ r2. We include it for completeness.

Inductively construct antichains 〈Aξ | ξ < κ+〉 in Q, conditions

〈rξ1, r
ξ
2 | ξ < κ+〉 in R and 〈αξ | ξ < κ+〉 as follows. Let A0 = ∅, α0 = β,

r0
1 = r1, and r0

2 = r2. For δ limit, set Aδ =
⋃
ξ<δ Aξ and rδ1, r

δ
2 to be

lower bounds of 〈rξ1 | ξ < δ〉 and 〈rξ2 | ξ < δ〉, respectively. Also set
αδ = supξ<δ αξ. At successor stages, suppose we have defined Aξ. If
Aξ is a maximal antichain below p, then set Aξ+1 = Aξ, αξ+1 = αξ,

rξ+1
1 = rξ1 and rξ+1

2 = rξ2. Otherwise, let q ≤ p be such that q is
incompatible with every condition in Aξ. Applying the claim, let q′ ≤ q

be such that q′ ∈ Drξ1,r
ξ
2 . If q′ Q “r R ḃσ,δ ⊂ S<β”, set αξ+1 = αξ,

rξ+1
1 = rξ1, and rξ+1

2 = rξ2. Otherwise let αξ+1 > αξ, r
ξ+1
1 ≤ rξ1, and

rξ+1
2 ≤ rξ2 be such that q′ Q “rξ+1

1 , rξ+1
2 force contradictory values for

ḃσ,δ ∩ S<αξ+1
”. Set Aξ+1 = Aξ ∪ {q′}.

Since Q has the κ+ chain condition, for some δ < κ+, we have that
Aδ is a maximal antichain below p. Set α = αδ, r

∗
1 = rδ1 and r∗2 = rδ2.

Then Aδ, α, r∗1, and r∗2 are as desired.
�

Let λ = max(κ, τ)+. The Splitting lemma yields the following corollary.
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Corollary 11. Let σ < τ, δ < κ. Suppose that for some β < ν+,
p Q “r R ḃσ,δ is an unbounded branch or r R ḃσ,δ ⊂ S<β”, and

p forces that Ṡ has no unbounded branches through Ṙσ in V Q. Let
〈ri | i < λ〉 be conditions in R that are stronger than r. Then there is
a sequence 〈r′i | i < λ〉 and α < ν+, such that each r′i ≤ ri and for all
i < j < λ, there is a maximal antichain Aij ⊂ Q of conditions below p,
such that for all p′ ∈ Aij, p′ Q “r′i and r′j force contradictory values

about S<α ∩ ḃσ,δ”, or p′ Q “r R ḃσ,δ ⊂ S<β”.

Proof. By induction on η < λ, we build sequences 〈〈rηi | i < η〉 | η < λ〉
of conditions in R, such that:

(1) for all i < λ, 〈rηi | η > i〉 is decreasing,
(2) for all i < j < λ, there is a maximal antichain Aij in Q of

conditions below p and αij < ν+, such that for all p′ ∈ Aij,

p′ Q “rj+1
i , rj+1

j force contradictory values about ḃσ,δ ∩ S<αij”
or p′ Q “r R ḃσ,δ ⊂ S<β”.

Set r1
0 = r0. At limit stages, suppose ρ < λ is limit and we have defined

〈〈rηi | i < η〉 | η < ρ〉. For i < ρ, set rρi to be stronger than each rηi for
i < η < ρ.

For successor stages, suppose we have defined 〈rρi | i < ρ〉. Define
〈rρ+1
i | i ≤ ρ〉 as follows. Inductively apply the splitting lemma for

all i < ρ to get a decreasing sequences of conditions 〈qi | i < ρ〉
in R below rρ and rρ+1

i ≤ rρi , such that for every i < ρ, there is
αiρ < ν+ and an antichain Aiρ of conditions below p, such that for all

p′ ∈ Aiρ, p′ Q “rρ+1
i , qi force contradictory values about ḃσ,δ ∩ S<αiρ”

or p′ Q “r R ḃσ,δ ⊂ S<β”. Then set rρ+1
ρ to be stronger than each qi.

This completes the construction.
Finally let r′i be stronger than each rηi for i < η < λ, and α =

supi<j<λ αij.
�

We return to the proof of the theorem. Suppose for contradiction
that S has no unbounded branch in V [E]. Since R is max(κ, τ)+ dis-
tributive in V [E], we can find r ∈ F and β0 < ν+, such that for all

〈σ, δ〉 ∈ τ × κ, either r  “ḃσ,δ is unbounded”, or r  “ḃσ,δ ⊂ S<β0”.
Also by (2) from the assumptions of the theorem, by further strength-
ening r, we can assume: (†) r  “for all α ∈ I, there is 〈σ, δ〉 such that

Sα ∩ ḃσ,δ 6= ∅”.
Now let p ∈ E be such that p forces that for all 〈σ, δ〉 ∈ τ × κ,

either r  “ḃσ,δ is unbounded”, or r  “ḃσ,δ ⊂ Sβ0”. Suppose also
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that p forces that Ṡ has no unbounded branches in V Q. Working in
V , we will define a sequence 〈ri | i < λ〉 of conditions stronger than r
as follows. For every 〈σ, δ〉 ∈ τ × κ using the last corollary we build

conditions 〈rσ,δi | i < λ〉 stronger than r and βσ,δ < ν+, such that:

(1) for every i, 〈rσ,δi | 〈σ, δ〉 ∈ τ×κ〉 is decreasing according to some
enumeration of τ × κ,

(2) for every 〈σ, δ〉 ∈ τ ×κ and every i < j < λ, there is a maximal

antichain Aσ,δi,j in Q of conditions below p, such that, for every

p′ ∈ Aσ,δij , p′ Q “rσ,δi and rσ,δj force contradictory values about

ḃσ,δ ∩ S<βσ,δ” or p′ Q “r R ḃσ,δ ⊂ S<β0”.

Then for every i < λ, set ri to be stronger than all of 〈rσ,δi | 〈σ, δ〉 ∈
τ × κ〉.

Work in V [E]. Let β ∈ I be such that β > supσ,δ β
σ,δ. For all i < λ,

let r′i ≤ ri be such that for some ξi, σi, δi,

r′i  〈β, ξi〉 ∈ ḃσi,δi .

We can find such r′i by (†).
Since λ > max(τ, κ), for some ξ < κ and 〈σ, δ〉 ∈ τ × κ, there are

distinct i < j < λ, such that ξi = ξj = ξ, σi = σj = σ and δi = δj = δ.

Let p′ ∈ E ∩ Aσ,δij . Then there is p′′ ≤ p′, such that:

(1) p′′ Q “ri, rj force contradictory information about ḃσ,δ ∩ S<β”

or p′′ Q “r forces that ḃσ,δ ⊂ S<β0”,

(2) p′′ Q β ∈ İ , ṙ′i ≤ ri, ṙ
′
j ≤ rj”,

(3) p′′ Q “ṙ′i forces that 〈β, ξ〉 ∈ ḃσ,δ”,

(4) p′′ Q “ṙ′j forces that 〈β, ξ〉 ∈ ḃσ,δ”
If p′′ Q “r forces that ḃσ,δ ⊂ S<β0”, then by (2), we get that p′′ Q “ṙ′i
forces that ḃσ,δ ⊂ S<β0”, but this is a contradiction with (3).

On the other hand if p′′ Q “ri, rj force contradictory information

about ḃσ,δ ∩ S<β”, then by (2), it follows that p′′ Q “ṙ′i, ṙ
′
j force con-

tradictory information about ḃσ,δ ∩ S<β”. But since ḃσ,δ is forced to be
a branch, then by (3) and (4) we have that p′′ must force that ṙ′i and

ṙ′j force the same values for ḃσ,δ at levels below β. Contradiction.
�

Remark 12. We can actually get something stronger. Starting from the
assumptions of the Preservation Theorem, we can show that for some
σ < τ and δ < κ, bσ,δ is unbounded, and there is an unbounded branch
b in V [E] through Rσ with bσ,δ ⊂ b. To do this, we just modify the
assumptions of the Splitting Lemma to state that p forces that either
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r  ḃσ,δ ⊂ S<β or r  “ḃσ,δ is unbounded and Ṡ has no unbounded

branch b in V Q through Ṙσ, such that ḃσ,δ ⊂ b”. Then carry over the
same assumption to the corollary to the splitting lemma. The rest of
the argument is exactly the same. We will use this stronger version in
Lemma 16 of next section.

4. The tree property

In this section we will show that in V [H][E][G] the tree property
holds at κ+. Let Ṫ in V [H][E] be a P - name for a ν+ tree with levels of
size at most κ, such that this is forced by the empty condition. Denote
the α-th level of T by Tα. We may assume that Tα = {α} × κ for
α < ν+. We will show that T has a cofinal branch in V [H][E][G]. The
outline of our proof is motivated by Neeman [10]. The main difference
is that we have to deal with the poset C and rely on the Preservation
Lemma from the last section.

Lemma 13. There is n < ω and an unbounded I ⊂ ν+ in V [H][E],
such that for all α < β in I, there are ξ, δ < κ and a condition q with
length n, such that q  〈α, ξ〉 <Ṫ 〈β, δ〉.

Proof. Recall that U was the normal measure on Pκ(ν+) fixed in ad-
vance and each Un is the projection of U to Pκ(κn). Let j = jU :
V [H][E] → M . Let G∗ be j(P) - generic over M and T ∗ = j(Ṫ )G∗ be
such that the first element of the generic sequence added by G∗ is κ.
We can arrange that since κ ∈ j(X0). Then (ν+)V remains a regular
cardinal in M [G∗].

Fix a node u ∈ T ∗ of level γ, where sup(j′′ν+) < γ < j(ν+). Then
for all α < ν+ let ξα < j(κ) be such that 〈j(α), ξα〉 <T ∗ u and pα ∈ G∗
be such that pα  〈j(α), ξα〉 <j(Ṫ ) u. Then in M [G∗] there is an

unbounded I∗ ⊂ ν+ and a fixed n, such that for all α ∈ I∗, pα has
length n.

Denoting pα = 〈dα, 〈pαi | i < ω〉〉, by further shrinking I∗ we can
assume that for some d ∈ Col(ω, κ+ω), for each α ∈ I∗, dα = d. Also,
for each α ∈ I∗ and i < n, denote pαi = 〈yi, cαi 〉. Note that by choice
of G∗, we have that y0 = κ. Let b = 〈d, 〈~y,~c〉〉 be a stem in j(P) with
length n such that ~y = 〈yi | i < n〉 and ~c = 〈ci | i < n〉 where each
ci =

⋃
α c

α
i . We can take this union since for 0 < i < n, ci belongs to a

poset which is < (j(κ)∩ yi)+ω+2 closed, and c0 ∈ Col(κ+ω+2, < j(κ)y1).
In particular, the closure is larger than ν+ = κ+ω+1.

Define I = {α < ν+ | ∃p ∈ j(P) stem(p) = b, and ∃ξ < j(κ)p 
〈j(α), ξ〉 <j(Ṫ ) u}. Then I ∈ V [H][E] and I∗ ⊂ I, so I is unbounded.
So, I is as desired. �
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Remark 14. Note that for any condition p, we can strengthen Lemma
13 to get an unbounded set I and n < ω, such that for all α < β in
I, there are ξ, δ < κ and a condition q ≤ p with length n, such that
q  〈α, ξ〉 <Ṫ 〈β, δ〉. To do this, if k = lh(p), we choose G∗, so that the
kth element of the generic sequence added by G∗ below j(κ) is κ and
below that we take the stem of p. More precisely, if 〈x∗i | i < ω〉 is the
G∗-generic sequence, we arrange so that j(κ) ∩ x∗k = κ, and for i < k,
x∗i = j(xpi ) = j”xpi .

Let n̄ and I be as in the conclusion of the above lemma. We will
say that a stem h ∗ φ if there is a condition p, such that the stem
of p is h and p  φ. Since any two conditions with the same stem are
compatible, we have that if h ∗ φ, then h 6∗ ¬φ

Lemma 15. There is, in V [H][E], an unbounded set J ⊂ ν+, a stem
h of length n̄, and a sequence of nodes 〈uα | α ∈ J〉 with every uα of
level α, such that for all α < β in J there is a condition p with stem
h, such that p  uα <Ṫ uβ.

Proof. Let j : V → N be a ν+ - supercompact embedding with crit-
ical point κn̄+2. Using standard arguments, extend j to j′ : V [H] →
N [H∗], where H∗ is j(C) generic over V . We can arrange so that
H∗ = H ∗ E ∗H ′, where H ′ is C′- generic over V [H][E] (see [8]). We
have that C′ is < κn̄+1 distributive in V [H][E], and it is < κn̄+1 closed
in V [H]. Let F be Add(κ, j(ν++)) generic over V [H][E]. Then F is
also generic over V [H][E][H ′], since Add(κ, j(ν++)) has the κ+ chain
condition. Define E∗ = {f : j(ν++) × κ → κ | |f | < κ, f � (j”ν++) ∈
j′”E, f � (j(ν++) \ j”ν++) ∈ F}. Then E∗ is Add(κ, j(ν++)) generic
over V [H∗] = V [H][E][H ′], such that j′”E ⊂ E∗. It follows that we can
extend j to j∗ : V [H][E] → N [H∗][E∗] where j∗ ∈ V [H][E][F ][H ′] =
V [H][E][H ′][F ].

Let γ ∈ j∗(I) be such that sup(j′′ν+) < γ < j(ν+). By elementarity
for all α ∈ I we can fix ξα, δα < κ and pα ∈ j∗(P) with length n̄ such
that pα j∗(P) 〈j∗(α), ξα〉 <j∗(Ṫ ) 〈γ, δα〉. Let hα be the stem of pα. Note

that the function α 7→ 〈ξα, δα, hα〉 is in V [H][E][F ][H ′].
First we will use the Preservation Lemma to show that J as in the

statement of the lemma exists in V [H][E][F ]. Then we will use the
arguments in Neeman [10] to get J ∈ V [H][E].

The number of possible stems in j∗(P) of length n̄ is less than κn̄.
Then since ν+ is regular in V [H][E][F ] and C′ does not add sequences
of length less than κn̄, we have that in V [H][E][F ][H ′] there is a cofinal
J ⊂ I, δ < κ, and a stem h such that for all α ∈ J , δα = δ and hα = h.
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We consider the narrow system S = 〈I,R〉 of height ν+ and levels
of size κ, in V [H][E] (and so in V [H][E][F ]), where:

• R = 〈Rh | h is a stem of length n̄〉; |R| < κn̄.
• For nodes a, b, we say that 〈a, b〉 ∈ Rh iff h ∗ a <Ṫ b

Note that {h | h is a stem of length n̄} ∈ V [H]. Also each Rh is
transitive since conditions with the same stem are compatible and Ṫ
is forced to be a tree by the empty condition. Apply the preservation
lemma to S for V1 = V [H], Q = Add(κ, j(ν++)), and R = C′, and the
branches:

bh,δ =def {〈α, ξ〉 | h ∗j∗(P) 〈j(α), ξ〉 <j∗(Ṫ ) 〈γ, δ〉}.

Note that the preservation lemma works for any R = 〈Rσ | σ ∈ L〉
with the index set L in the ground model for the lemma, which in this
case is V1.

We get that S has an unbounded branch in V [H][E][F ]. I.e. in
V [H][E][F ], there are an unbounded J ⊂ I, α 7→ ξα and a stem h such
that for all α, β ∈ J with α < β, we have that h ∗ 〈α, ξα〉 <Ṫ 〈β, ξβ〉.

Then by the argument in Lemma 3.2 from [10], we can get such
J, h, α 7→ ξα in V [H][E]. Setting uα = 〈α, ξα〉 for α ∈ J , we get that
for all α < β in J there is a condition p with stem h which forces that
uα <Ṫ uβ. �

Fix n̄, h̄, J , and α 7→ uα as in the conclusion of the above lemma.
By shrinking J we may assume that for some ξ < κ, each uα = 〈α, ξ〉.

Lemma 16. Suppose that h is a stem of length k, L ⊂ ν+ is unbounded,
and for all α < β with α, β ∈ L, h ∗ uα <Ṫ uβ. Then there are ρ < ν+

and sets 〈Aα, Cα : α ∈ L \ ρ〉 in V [H][E] such that:

(1) Each Aα ∈ Uk, dom(Cα) = Aα, Cα(x) ∈ Col(κ+ω+2
x , < κ) for

x ∈ Aα, and [Cα]Uk ∈ Kk.
(2) For all α < β in L \ ρ, for all x ∈ Aα ∩Aβ such that Cα(x) and

Cβ(x) are compatible,

h_〈x,Cα(x) ∪ Cβ(x)〉 ∗ uα <Ṫ uβ.

Proof. Let j : V → N be a ν+ - supercompact embedding with critical
point κk+3. As in the previous lemma, extend j to j′ : V [H]→ N [H∗],
where H∗ = H ∗ E ∗ H ′ is j(C) generic over V , and H ′ is C′- generic
over V [H][E]. We have that C′ is < κk+2 distributive in V [H][E] and
< κk+2 closed in V [H]. Let F be Add(κ, j(ν++)) generic over V [H][E].
Then F is also generic over V [H][E][H ′], and so E∗ =def {f : j(ν++)×
κ → κ | |f | < κ, f � (j”ν++) ∈ j′”E, f � (j(ν++) \ j”ν++) ∈ F} is
Add(κ, j(ν++)) generic over V [H∗] = V [H][E][H ′], such that j′”E ⊂
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E∗. It follows that we can extend j to j∗ : V [H][E] → N [H∗][E∗]
where j∗ ∈ V [H][E][F ][H ′] = V [H][E][H ′][F ].

First we will adapt the arguments in Neeman [10] to include the
collapses and use them to show that there are ρ < ν+, α 7→ A∗α and
α 7→ C∗α as in the statement of the lemma in V [H][E][H ′]. Then we
will use the Preservation Lemma to show that we can find these objects
in V [H][E].

For all α < β in L, by the assumptions of the lemma, we can fix
(in V [H][E]) [Cα,β]Uk ∈ Kk, such that for almost all x ∈ Pκ(κk),
h_〈x,Cαβ(x)〉 ∗ uα <Ṫ uβ. Since Kk is closed under sequences
of length κ+ω+1, let [C∗]Uk ∈ Kk be stronger than [Cα,β]Uk for all
α < β in L. Then for all α < β in L, there is r ∈ P with stem
h, such that r  uα <Ṫ uβ, and denoting rk = 〈Ark, Cr

k〉, we have
that [Cr

k ]Uk = [C∗]Uk . Without loss of generality we can assume that
dom(C∗) = Pκ(κk).

Claim 17. In V [H][E][H ′], there are ρ < ν+, α 7→ A∗α and α 7→ C∗α
that satisfy the conclusion of the lemma.

Proof. The argument follows closely Lemma 3.5 in [10], so we only
outline the main points. The difference here is that we are also dealing
with collapses. Let γ ∈ j∗(L) be such that j“ν+ < γ < j(ν+). We
write uγ for the γth member of the sequence j∗(〈uα : α ∈ L〉). By
elementarity of j∗, we can find conditions 〈rα : α ∈ L〉 in N [H∗][E∗],
such that each rα ∈ j∗(P), the stem of rα is h and

rα j∗(P) j(uα) <j∗(Ṫ ) uγ.

We may assume that for each α, [Crα
k ]j∗(Uk) = j∗([C∗]Uk) = [C∗]j∗(Uk).

For x ∈ Pκ(κk), set Jx = {α ∈ L | h_〈x,C∗(x)〉 ∗ j(uα) <j∗(Ṫ ) uγ}.
Also, letKx = {C ⊂ L | C is unbounded and (∃b ∈ Add(κ, j(ν++)))(b 
J̇x = C)}. Then each Kx and x 7→ Kx is in V [H][E][H ′]. We have that
(see [10]):

• If Jx is unbounded in ν+, then Jx ∈ V [H][E][H ′].
• If C1 6= C2 are both in Kx, then they are disjoint on a tail end.
• For all C ∈ Kx, if α < β in C, then h_〈x,C∗(x)〉 ∗ uα <Ṫ uβ.

Then let ρ < ν+ be such that for all x and C1, C2 ∈ Kx, C1 and C2

are disjoint above ρ. For α ∈ L \ ρ and x ∈ Pκ(κk) define f(x, α)
to be the unique C ∈ Kx such that α ∈ C if such a C exists and
undefined otherwise. Note that if Jx is unbounded in ν+ and α ∈ Jx,
then f(x, α) = Jx. Let α0 = min(L \ ρ) and for α ∈ L \ ρ, set:

A∗α = {x ∈ Pκ(κk) | f(x, α0) = f(x, α)}.
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By the arguments in [10] and since for each α, [Crα
k ] = [C∗], each

A∗α ∈ Uk. We remark that here when adapting the argument from [10],
we use that H ′ adds no sequences of length κk and that ν+ is regular
in V [H][E]. Set C∗α = C∗ � A∗α. Then ρ, α 7→ A∗α and α 7→ C∗α are as
desired.

�

Fix ρ < ν+, α 7→ A∗α and α 7→ C∗α as in the above claim. Note that
for each α, C∗α = C∗ � A∗α. Let L′ = L \ ρ. For every x ∈ Pκ(κk), let
bx = {α ∈ L \ ρ | x ∈ A∗α}. Note that each bx ∈ V [H][E][H ′] and for
all α < β in bx, h

_〈x,C∗(x)〉 ∗ uα <Ṫ uβ.

Claim 18. For every A ∈ Uk, there is x ∈ A, such that bx is unbounded
and there is an unbounded set b ⊂ ν+ in V [H][E], such that:

• bx ⊂ b,
• for all α < β in b, h_〈x,C∗(x)〉 ∗ uα <Ṫ uβ.

Proof. Let R = {Rx | x ∈ Pκ(κk)}; |R| = κk. We consider the narrow
system S = 〈L′,R〉, where for α ∈ L′, Sα = {α}×κ and for nodes a, b,
we say that 〈a, b〉 ∈ Rx iff:

h_〈x,C∗(x)〉 ∗ uα <Ṫ uβ

Each Rx is a transitive relation since Ṫ is forced to be a tree by the
empty condition and any two conditions with the same stem are com-
patible. For x ∈ Pκ(κk), set b∗x = {uα | α ∈ bx} if x ∈ A, and
b∗x = ∅ otherwise. We have that {b∗x | x ∈ Pκ(κk)} are branches in
V [H][E][H ′], such that:

(1) each b∗x is a branch through Rx.
(2) for all α ∈ L′, there is x, such that b∗x ∩ Sα 6= ∅ (just take any

x ∈ A∗α ∩ A),
(3) for some x, b∗x is unbounded.

(3) holds because otherwise, for all x, let αx be a bound for bx (in
V [H][E][H ′]) and let α = supx∈Pκ(κk) αx. Since H ′ does not add se-

quences of length κk+1 and ν+ is regular in V [H][E], we have that
α < ν+; contradiction.

We apply the preservation lemma to S for V1 = V [H], Q = Add(κ, ν++),
R = C′, and these branches to get an unbounded branch through
S in V [H][E]. So, in V [H][E] we have an unbounded b ⊂ L and
x ∈ Pκ(κk), such that bx ⊂ b and bx is unbounded. Here we use
the stronger version of the preservation lemma, see Remark 12. Since
bx is unbounded, we know that x ∈ A. So, since the preservation
lemma produces a branch through Rx, we have that for all α < β in b,
h_〈x,C∗(x)〉 ∗ uα <Ṫ uβ. �
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For every x ∈ Pκ(κk), let †x be the statement: bx is unbounded, and
there is an unbounded set b ⊂ ν+ in V [H][E] with bx ⊂ b, such that
for all α < β in b, h_〈x,C∗(x)〉 ∗ uα <Ṫ uβ.

Corollary 19. A =def {x ∈ Pκ(κk) | †x holds } ∈ V [H][E] and A ∈
Uk.

Proof. A is in V [H][E] since C′ is distributive enough. Now suppose
for contradiction that A is not measure one. Then Y = {x | †x does
not hold } ∈ Uk. Apply the above claim to Y to get a contradiction.

�

For every x ∈ A, let Lx ⊂ L witness †x. I.e. Lx ∈ V [H][E], it is
unbounded in ν+, bx ⊂ Lx, bx is unbounded, and for all α < β in Lx,
we have that h_〈x,C∗(x)〉 ∗ uα <Ṫ uβ. Note that by distributivity
of C′, we have that x 7→ Lx is in V [H][E]. Finally, for α ∈ L′, define:

Aα = {x ∈ A | α ∈ Lx}.

Claim 20. For all α ∈ L′, Aα ∈ Uk
Proof. Suppose otherwise. Then Y = Pκ(κk) \ Aα ∈ Uk. Let x ∈
Y ∩ A∗α ∩ A. Then †x holds, and α ∈ bx ⊂ Lx. But we assumed that
x /∈ Aα, contradiction �

For α ∈ L′, define Cα = C∗ � Aα. Now suppose α < β in L′,
x ∈ Aα ∩ Aβ and c ≤ Cα(x) ∪ Cβ(x) = C∗(x). Then α, β ∈ Lx, and so
h_〈x,C∗(x)〉 ∗ uα <Ṫ uβ. So, h_〈x, c〉 ∗ uα <Ṫ uβ.

�

Lemma 21. There is some ρ < ν+ and a sequence of conditions 〈pα |
α ∈ J \ρ〉 with stem h̄ such that for α < β in J \ρ, pα∧pβ  uα <Ṫ uβ.
(Recall that pα ∧ pβ denotes the weakest common extension of pα and
pβ.)

Proof. The proof is an adaptation of the argument given in [10].
First we make some remarks on taking diagonal intersections. Let

H be a set of stems of length n, and let 〈Ah | h ∈ H〉 be a sequence of
Un- measure one sets. For a stem h = 〈d, 〈~y,~c〉〉 in H and z ∈ Pκ(κn),
we write h ≺ z to denote that yn−1 ≺ z, i.e. that |yn−1| < κz and
yn−1 ⊂ z. Note that h ≺ z iff for some c, h_〈z, c〉 is a stem. Then A =
4h∈HA

h = {z ∈ Pκ(κn) | z ∈
⋂
h≺z A

h} is the diagonal intersection of
〈Ah | h ∈ H〉 and A ∈ Un.

We will define sequences 〈ρn | n̄ ≤ n < ω〉, 〈Anα | α ∈ J \ ρn, n̄ ≤ n <
ω〉, and 〈Cn

α | α ∈ J \ ρn, n̄ ≤ n < ω〉 by induction on n, such that for
all n:
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(1) For all α ∈ J \ ρn, we have that Anα ∈ Un, [Cn
α ]Un ∈ Kn,

dom(Cn
α) = Aα, and Cn

α(x) ∈ Col(κ+ω+2
x , < κ) for x ∈ Anα.

(2) For all α < β in J \ ρn, for all stems h = 〈d, 〈~x,~c〉〉 of length
n + 1 extending h̄, such that for n̄ ≤ i ≤ n, xi ∈ Aiα ∩ Aiβ and

ci ≤ Ci
α(xi) ∪ Ci

β(xi),

h ∗ uα <Ṫ uβ.

Let ρn̄ and 〈An̄α, C n̄
α | α ∈ J\ρn̄〉 be given by the above lemma applied

to h̄. Then by the conclusion of the lemma, both of the conditions above
for n̄ are satisfied. Now suppose we have defined ρn and 〈Anα, Cn

α | α ∈
J \ ρn〉 such that (1) and (2) above hold for n. We have to define ρn+1

and An+1
α , Cn+1

α for α ∈ J \ ρn+1.
For a stem h = 〈dh, 〈~x,~c〉〉 of length n + 1 extending h̄, we say that

h fits α iff each xi ∈ Aiα and ci ≤ Ci
α(xi) for i ≤ n. Set

Jh = {α ∈ J \ ρn | h fits α}.

Define a function h 7→ ρh on stems of length n + 1 extending h̄ as
follows:

• if Jh is bounded in ν+, let ρh < ν+ be a bound,
• otherwise, let ρh and 〈Ahα, Ch

α | α ∈ Jh \ ρh〉 be given by the
previous lemma applied to h and Jh (here we use the inductive
assumption for n).

Set ρn+1 = sup{ρh | h is a stem of length n + 1 extending h̄}. For
α ∈ J \ ρn+1, set Hα(n + 1) = {h | h has length n + 1, extends h̄, and
fits α}. For each α ∈ J \ ρn+1, let

An+1
α = 4h∈Hα(n+1)A

h
α.

Also set [Cα]Un+1 =
⋃
{[Ch

α]Un+1 | h ∈ Hα(n+1)} ∈ Kn+1. By shrinking
An+1
α (via diagonal intersections), we can arrange that for all x ∈ An+1

α ,
Cα(x) =

⋃
{Ch

α(x) | h ≺ x}.
It remains to check that (1) and (2) hold for n+1. The first condition

holds by construction. For the second condition, we have to show that
for all α < β in J \ ρn+1, for all stems t of length n + 2, which extend
h̄ and fit both α and β, we have that

t ∗ uα <Ṫ uβ.

So, suppose that α < β are in J \ρn+1 and h_〈x, c〉 is a stem as above.
Since h fits α and β and ρh < α, β, we have that Jh is unbounded
and ρh was given by applying the previous lemma. Then h ∈ Hα(n +
1) ∩ Hβ(n + 1) and since we took diagonal intersections, it follows
that x ∈ Ahα ∩ Ahβ and c ≤ Ch

α(x) ∪ Ch
β (x). So, by construction of
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Ahα, A
h
β, C

h
α, C

h
β , we have that h_〈x, c〉 ∗ uα <Ṫ uβ. This completes

the construction.
Now let ρ = supn ρn and set pα for α ∈ J \ ρ to be such that:

• the stem of pα is h̄,
• for all n ≥ n̄, let pαn = 〈Anα, Cn

α〉.
Then 〈pα | α ∈ J \ ρ〉 is as desired. For if α < β are in J \ ρ, and q ≤
pα ∧ pβ, then by the construction, we have that stem(q) ∗ uα <Ṫ uβ,
and so q 6 uα 6<Ṫ uβ. It follows that pα ∧ pβ  uα <Ṫ uβ. �

Lastly, we show that {uα | α < ν+, pα ∈ G} is an unbounded branch
of T . It suffices to prove the following:

Proposition 22. B = {α < ν+ | pα ∈ G} is unbounded.

Proof. Otherwise, let q ∈ G be such that q  Ḃ is bounded. Since both
Lemma 13 and Lemma 15 can be done below any condition, we may
assume that (by strengthening q if necessary) stem(q) = h̄. P has the
ν+ chain condition, so for some α < ν+, q  Ḃ ⊂ α. Let β ∈ J \ α,
and let r be a common extension of q and pβ. Then on one hand we

have that r  pβ ∈ Ġ, but also r  uβ 6∈ Ḃ. Contradiction.
�

Then {uα | α ∈ B} is an unbounded branch of T . This completes
the proof of the tree property. To summarize, starting from ω many
supercompact cardinals, we have constructed a generic extension in
which there are no Aronszajn trees at ℵω2+1 and the SCH fails at ℵω2 .

We conclude this paper with an open problem. It is still not known
whether it is consistent to have the tree property at ℵω+1 and not SCH
at ℵω.
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