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Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, 
and to maximize energy efficiency. Grid-linked technologies vary widely in form and 

function, but generally share common potentials: to reduce energy consumption via 

efficiency and/or curtailment, to shift use to off-peak times of day, and to enable 

distributed storage and generation options. Although end users are central players in 

these systems, they are sometimes not central considerations in technology or program 

design, and in some cases, their motivations for participating in such systems are not 
fully appreciated. Behavioral science can be instrumental in engaging end-users and 

maximizing the impact of smart grid technologies. In this paper, we present emerging 

technologies made possible by a smart grid infrastructure, and for each we highlight ways 

in which behavioral science can be applied to enhance their impact on energy savings. 

Keywords: smart grid, energy conservation, energy efficiency, behavioral science, human factors, technology 
adoption 

Background and Significance 

Smart grid systems are rapidly being deployed across the world. Although smart grid technologies 
vary considerably, they generally share common potentials, all of which contribute to a more reliable 
grid: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times 
of day, and to expand distributed storage and generation options. In each of these areas, human 
behavior is integral to unlocking the full potentials of these smart grid technologies. 

At its core, a smart grid system involves high-resolution meters for quantifying electricity 
consumption. However, metering infrastructure alone will not result in improved efficiency. In the 
1980s, automatic meter reading (AMR) technology advanced power systems by enabling remote 
collection of electricity use data at higher resolution than manual readings. Building on AMR, 
advanced metering infrastructure (AMI) technology involves meters that collect near real-time 
consumption data (“smart meters”). Importantly, AMI networks also enable two-way data commu-
nication between utilities and consumers. The ability to interact with consumers in real-time is one 
key route for engaging consumers with techniques from behavioral science. This connectivity has 
spawned a variety of new programs and technologies that require consumer adoption and proper 
use to function optimally. Traditionally, although utilities have involved end-users to some extent 
in power systems, consumers have often not been central considerations in technology or program 
design, and in some cases, their motivations for participating in such systems have not been fully 
appreciated. Consequently, there is a glaring need to understand the ways in which individuals 
interact with smart grid systems. Leveraging behavioral science can advance our knowledge of 
how to partner with customers in the smart grid and ultimately lead to more efficient uses of 
energy. 
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TABLE 1 | Behavioral science tools for unlocking potentials of smart grid technologies. 

Smart grid technology Potential Target behavior Behavioral science tools 

Demand response Reduce peak demand 

Time-of-use pricing plans Reduce peak demand 

Energy feedback Increase energy efficiency 

Disaggregation technologies Increase energy efficiency 

Smart automation Reduce peak demand 

Electric vehicles Distributed storage 

Solar panels Distributed generation 

Increase program enrollment 

Increase program enrollment 

Reduce energy consumption 

Reduce energy consumption 

Maximize participation in demand 
response events 

Increase adoption and program 
enrollment 

Increase adoption 

Incorporate motivators/barriers into messaging; use flexible 
defaults 

Incorporate motivators/barriers into messaging 

Leverage social influence; tailor feedback to address 
barriers/motivators 

Provide high-resolution feedback and specific recommendations 

Use flexible defaults 

Leverage social influence and symbolic attributes; reduce barriers, 
including providing financial incentives; use flexible defaults 

Leverage social influence and symbolic attributes; reduce barriers, 
including providing financial incentives 

Behavioral Science in the Smart Grid 

Historically viewed as engineering challenges, power systems have 
benefited from integrating behavioral science perspectives. For 
instance, a number of recent reviews have applied behavioral sci-
ence to better understand the theoretical underpinnings of energy 
use behavior (Steg and Vlek, 2009), explore the effectiveness of 
interventions aimed at reducing energy and other resource use 
(Abrahamse et al., 2005; Abrahamse and Steg, 2013), identify pre-
dictors of alternative energy resource acceptance (Perlaviciute and 
Steg, 2014), and propose models of sustainable energy technology 
acceptance (Huijts et al., 2012). Building on the existing literature, 
this paper focuses on consumer adoption and optimal use (i.e., 
using the technologies in a manner that maximizes energy savings 
and/or peak load reductions) of emerging technologies in smart 
grid systems. 

In the sections below, we briefly review selected models from 
behavioral science that aid in understanding the adoption and 
use of smart grid technologies. The models selected are not 
intended to provide an exhaustive list, but rather to illustrate 
some of the major conceptual and theoretical approaches that 
can help to inform smart grid programs. We then provide an 
overview of several strategies that utilize smart grid infrastructure 
to encourage electricity savings among residential users. We sum-
marize specific examples, discuss the underlying behavior change 
tools at work, and suggest ways in which these strategies can 
be improved by leveraging behavioral science, offering practical 
advice for researchers and practitioners alike. See Table 1 for an 
overview. 

Behavioral Foundations 
There is a large and growing body of research on theoretical 
models that have been proposed for understanding energy use 
behaviors. Although a detailed theoretical synthesis is outside 
the scope of this paper, we selected several models that have 
received considerable empirical support in explaining various 
pro-environmental behaviors, and can be extended to better 
understand smart grid technology adoption and use. We link each 
of the models described below to one or more of the smart grid 
technologies discussed later in this paper: 

•	 The Theory of Planned Behavior (TPB) postulates that behav-
ior is proximally determined by intention to perform the 
behavior, which is more distally predicted by attitudes, nor-
mative beliefs, and perceived control (for details see Ajzen, 
1991). 

•	 The Norm Activation Model (NAM) posits that altruistic 
behavior begins with learned social norms regarding proper 
behavior, which give rise to personal norms tied to self-concept 
(Schwartz, 1994). When a person is aware of the consequences 
of her/his behavior, and ascribes responsibility for these con-
sequences to the self, personal norms become “activated,” and 
the person will behave in accordance with them. 

•	 The Value-Belief-Norm (VBN) theory builds on the NAM, 
suggesting that value orientation predicts environmental 
worldview, awareness of consequences, and ascription of 
responsibility, which in turn gives rise to norms, which more 
proximally predict behavior (Stern, 2000). 

•	 Focusing more closely on social norms, The Focus Theory 
of Normative Conduct (Cialdini et al., 1990) differentiates 
between two primary types of social norms: (1) descriptive 
norms, which convey what others typically do in a particu-
lar situation; and (2) injunctive norms, which convey social 
approval or disapproval for a given behavior. The model pro-
poses that the impact of norms on behavior depends on which 
norms are most salient to an individual in a given situation 
(e.g., Schultz et al., 2007). 

•	 The field of Behavioral Economics also offers insights to help 
explain why people make decisions that do not always max-
imize their expected utility or economic benefit (Kahneman, 
2003). This approach takes into account the influence of infor-
mation processing biases on decision-making, such as choice 
framing effects (i.e., framing a choice as either a gain or a loss) 
and default policies (i.e., opt-in vs. opt-out). 

•	 Under the framework of Self-Determination Theory, support-
ing an individual’s autonomy, competence, and relatedness 
(connection with others) fosters motivation that can increase 
the likelihood of engaging in a variety of behaviors (Deci and 
Ryan, 1985). 
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•	 The Theory of Operant Conditioning states that behavior that 
is reinforced or rewarded tends to be repeated, behavior that is 
not reinforced, and moreover, behavior that is punished, tends 
to become extinguished (Skinner, 1953). 

•	 Diverging a bit from the above models, Community-Based 
Social Marketing (CBSM; McKenzie-Mohr, 2000) is a frame-
work for behavior change that involves identifying motivators 
and barriers to the acceptance and adoption of a particular 
behavior among a given population, and devising tailored 
strategies to enhance motivators and overcome barriers. This 
approach has been used successfully to promote a range of 
pro-environmental behaviors, ranging from recycling to water 
efficiency to energy conservation (for detailed review of CBSM 
programs, see McKenzie-Mohr and Schultz, 2014). We view 
CBSM as one promising approach to promoting the adoption 
and utilization of smart grid technologies due to its flexibility 
and potential to address aspects of all aforementioned models. 

In the remainder of this paper, we discuss how these models can 
be used to understand and expand the adoption and use of sev-
eral smart grid technologies. Previous work has classified energy 
conservation behaviors into efficiency and curtailment categories 
(Gardner and Stern, 2008). Curtailment involves using existing 
equipment less frequently or intensively but requires repetition 
of curtailment behaviors to achieve savings. On the other hand, 
efficiency behaviors typically involve infrequent capital improve-
ments and do not require the same level of repetition or behavioral 
maintenance. We view the smart grid technologies described 
below as falling into the efficiency category if they require infre-
quent actions on the part of the consumer and/or primarily 
involve utility direct control of equipment (i.e., direct control 
demand response, smart automation, electric vehicle adoption, 
and solar panel installation), whereas technologies in the cur-
tailment category require ongoing participation by consumers to 
achieve energy reductions (i.e., voluntary curtailment demand 
response, time-of-use pricing programs, energy feedback, disag-
gregated feedback). 

Demand Response Programs 
Electric power interruptions often result from demand exceeding 
available supply. Even relatively brief lapses in power reliability 
have significant consequences. Estimates for annual economic 
losses from power interruptions include €150 billion among 
European Union businesses and $80 billion in the United States 
(LaCommare and Eto, 2004). Because demand varies by time 
of day, growing efforts are being made to manage demand by 
reducing peak loads as an alternative to the traditional strategy of 
bringing on additional generation, usually from higher-polluting 
energy sources (California Independent Systems Operator, 2013). 
Accordingly, U.S. utilities are investing $700 million annually 
in demand response (DR) strategies to curtail peak loads and 
thereby make more efficient use of the existing generation and 
transmission infrastructure (United States Energy Information 
Administration, 2015a). Although DR forecasting models predict 
when, where, and how much energy will be used, solving the 
key problem of reducing peak demand requires programs that 
encourage electricity consumers to make behavioral changes. 

In alignment with the curtailment vs. efficiency framework, 
utility DR programs generally fall into one of two categories: (1) 
voluntary curtailment, which involves appealing to consumers to 
temporarily curtail consumption by changing behavior in real-
time in response to alerts (e.g., California Independent Systems 
Operator Flex Alerts); or (2) direct control, in which consumers 
permit utilities to remotely control home equipment (e.g., South-
ern California Edison’s air conditioning cycling program). Volun-
tary curtailment programs generally rely on behavioral prompts 
and appeals in their attempt to persuade consumers to curtail 
usage. However, generic informational appeals to save energy have 
not been particularly effective for reducing overall energy use (e.g., 
Schultz et al., 2007; Nolan et al., 2008; Schultz, 2010). Findings 
from studies of persuasion suggest alternatives for enhancing par-
ticipation rates and reducing demand, for instance by tapping into 
social norms (Schultz et al., 2007; Nolan et al., 2008) or obtaining 
commitments. 

Even when applying effective tools of persuasion, voluntary 
curtailment still relies on consumers to undertake a series of deci-
sions and actions, including: (1) attending to the alert, (2) mentally 
cataloging energy use in home, (3) deciding what action(s) to take 
to reduce energy use, (4) executing such actions, and (5) maintain-
ing this lower level of use over some period of time. This multi-
step process requires mental, physical, and additional resources, 
and must be repeated for each DR event. There may be benefits 
to this repetition: previous work has found that people look to 
their own past pro-environmental actions as a signal of their own 
environmental identities, potentially resulting in positive spill-
over to other behaviors (Van der Werff et al., 2014). Because 
voluntary curtailment provides people with many opportunities 
to engage in energy conservation efforts, it may foster environ-
mental identity and lead to performance of other environmentally 
beneficial behaviors. 

To maximize impact, however, it is also important to consider 
longevity of savings and accuracy in curtailment forecasting (i.e., 
efforts to predict the magnitude and temporal and geographic 
distribution of load reduction for upcoming DR events, which are 
critical for maintaining power reliability). Because people often 
have inaccurate perceptions about the impacts they can make with 
various energy conservation behaviors (Attari et al., 2010), leaving 
curtailment choices to consumers may result in smaller or less 
reliable reductions than a direct control approach, even among 
motivated consumers. On the other hand, while direct control 
systems permit less consumer choice, they may be associated with 
lower variability in curtailment levels, thereby improving curtail-
ment forecasts. Under many direct control programs, participat-
ing in DR events is the default choice, eliminating the need for 
consumers to repeatedly go through the previously described pro-
cess, and often requiring no action at all on the part of end-users. 
Research from the field of Behavioral Economics has demon-
strated that people are significantly more likely to select default 
options (Johnson and Goldstein, 2003), including those related 
to electric power (Pichert and Katsikopoulos, 2008), and direct 
control DR systems leverage this principle. Additionally, in sim-
plifying the load curtailment process via automation, direct con-
trol programs also require less ongoing effort of end-users, which 
could potentially support savings over longer periods of time. 
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Despite the strength of direct control programs in achiev-
ing reliable reductions, their appeal can be marred by privacy 
and autonomy concerns. Among the most notable concerns are 
perceptions that utilities can use smart grid technologies to (1) 
directly control a variety of home equipment without consumer 
permissions or opt-out options; and (2) infer specific behaviors 
in which occupants are engaging, such as cooking or eating 
(Krishnamurti et al., 2012; Hess, 2014). In a similar vein, a recent 
study found that consumers preferred the option of choosing 
how to curtail consumption to direct control technologies (Leijten 
et al., 2014). These finding are in alignment with the TPB, which 
states that perceived control is an important predecessor of behav-
ior. Accordingly, direct control programs that do not foster a sense 
of control will likely have lower program enrollment compared to 
DR programs that do so. 

To gain greater acceptance, direct control systems should cul-
tivate a sense of consumer control. This could potentially be 
accomplished by providing some level of consumer choice. What 
may be indicated is a flexible control strategy, allowing consumers 
to retain control of home equipment while also maintaining the 
accuracy of load predictions via default settings that maximize 
curtailment. This can be achieved by developing systems that 
allow for consumer override, flexibility in curtailment levels, 
and other consumer adjustments; these parameters should also 
be accounted for in curtailment forecast models. It is equally 
important that consumers recognize that they can adjust such 
systems—and that participation benefits the environment. For 
some consumers, however, voluntary curtailment may remain 
a more attractive option. Identifying moderating variables that 
differentiate the impacts of types of consumers, DR strategies, and 
contextual influences on technology adoption is a growing area to 
which behavioral science can contribute. 

Flexible control DR strategies may offer one path forward, but 
program enrollment represents a significant barrier to partici-
pation, and overcoming this barrier is not trivial. Current DR 
program participation rates are estimated at less than 10%, and 
actual compliance rates are likely lower (United States Federal 
Energy Regulatory Commission, 2009). Achieving the load reduc-
tion objectives of the coming decades will require increasing lev-
els of consumer engagement. Toward this end, utility-consumer 
connectivity must be enhanced. For instance, it has been recom-
mended that programs shift from a one-way, utility-to-consumer 
approach to a more interactive relationship (Vine et al., 2013). 
Using CBSM to identify motivators for program participation, and 
building these into recruitment strategies, could boost enrollment 
rates. 

Time-of-use Pricing 
Another smart grid tool that can reduce peak load is variable 
pricing plans. For instance, time-of-use (TOU) pricing plans aim 
to discourage energy use during peak times of the day by charging 
more during high-use periods (typically mid-afternoon hours) 
and less during off-peak hours. Under TOU programs, usage tends 
to shift to off-peak times, but the total amount consumed generally 
remains consistent (Lutzenhiser et al., 2007). By applying financial 
incentives, these programs invoke operant stimulus control to 
reduce consumers’ peak energy use, specifically by punishing 

(with higher prices) on-peak use and reinforcing (with lower 
prices) off-peak use (Skinner, 1953). A large body of research has 
shown that reward can be effective in promoting behavior change, 
especially while incentives are in place, and reward have been 
effective in reducing home energy consumption below baseline 
use levels (Hayes and Cone, 1977; Walker, 1979; Winett et al., 
1979; McClelland and Cook, 1980) as well as below levels of 
information-only and control groups (Winett et al., 1979; Midden 
et al., 1983). 

Despite the potential for reward to reduce demand, energy 
savings associated with reward have been shown to wear off 
(McClelland and Cook, 1980) and even to rebound after reward 
are withdrawn (Walker, 1979). For TOU pricing, if off-peak price 
breaks cannot be sustained long-term, energy loads typically 
return to pre-TOU pattern. This effect has been observed across a 
variety of behaviors, including recycling (Wang and Katzev, 1990), 
hand washing among healthcare workers (Pareira das Neves et al., 
2004), and smoking cessation (Donatelle et al., 2004), and may 
suggest behavioral habituation. One promising alternative can be 
found in Self-Determination Theory, which suggests that pro-
viding reward for behavior that might otherwise occur through 
intrinsic motivation can weaken intrinsic motives, and may ulti-
mately reduce the performance of the target behavior (Deci and 
Ryan, 1985). In other words, reward can be counterproductive 
over the long-term if they undermine intrinsic motivation to act. 

Combining reward with other behavior modification strategies 
in a way that facilitates transition of the contingency from external 
reward to internal factors may be a more effective long-term 
strategy. For example, one approach is to identify underlying 
values as indicated by the Value-Belief-Norm Theory. CBSM 
offers a vehicle for identifying these values and developing an 
intervention with which they resonate. Such interventions have 
been found to be more effective in promoting pro-environmental 
intentions than simple information alone (Bolderdijk et al., 2013). 
Historically, utilities have relied heavily on financial incentives 
to drive consumer behavior, but this is slowly changing with 
availability of newer technologies that leverage other principles of 
behavior change. Given the cost of incentives and their potential 
to undermine long-term goals, we recommend that reward be 
applied to one-time actions or to behaviors that are performed 
infrequently, rather than recurring actions. 

Energy Feedback 
The proliferation of smart electric meters, most of which record 
energy data in intervals of one hour or less, has greatly expanded 
the possibilities for partnering with consumers. First, providing 
immediate feedback mitigates the issue that people are generally 
more responsive to immediate rather than future consequences, 
which arises from the fact that most consumers pay for energy 
long after using it (Frederick et al., 2002). Smart meter data can be 
made available in near real-time to consumers through a variety 
of platforms, including websites, mobile phones, and in-home 
displays, enabling consumers to connect their behavior with its 
consequences. The more granular energy data has enabled utilities 
to advance from providing energy feedback as part of monthly 
(or even annual) billing to providing near real-time data that can 
enhance usability and relatability. 
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Utilities generally view this feedback as a form of education, 
but evidence from behavioral science shows that feedback can 
be a very powerful tool for changing behavior. Studies suggest 
that personalized feedback can produce significantly more energy 
savings than merely providing educational materials about house-
hold energy use (Seligman and Darley, 1977; Midden et al., 
1983; Hutton et al., 1986). In addition, smart meters offer higher 
resolution feedback, which has been found to produce greater 
levels of energy conservation (Ehrhardt-Martinez et al., 2010), 
highlighting this potential of the smart grid to support energy 
efficiency. 

Energy feedback represents one type of feedback, but with 
energy data of entire consumer bases, utilities can also provide 
feedback about the performance of others, thereby conveying nor-
mative information. A growing body of research has shown that 
descriptive normative feedback—information about what oth-
ers are doing—can be associated with behavior change (Cialdini 
et al., 1990; Schultz et al., 2007; Goldstein et al., 2008; Nolan 
et al., 2008; Abrahamse and Steg, 2013). Under the Theory of 
Planned Behavior, Norm Activation Model, Value-Belief-Norm 
Theory, and Focus Theory of Normative Conduct, this may occur 
through enhancing normative beliefs in support of conservation. 
In addition, as per the Focus Theory of Normative Conduct, 
combining descriptive normative feedback with an injunctive 
message—feedback that conveys social approval—can mitigate 
the undesirable “boomerang” effect that arises when an individual 
increases use after receiving feedback that others are consum-
ing more. For instance, Schultz et al. (2007) found that among 
households using less energy than average at baseline, those who 
received descriptive normative feedback only increased their use, 
but this effect was attenuated among those who also received 
injunctive feedback (in this case, a smiley face affirming lower use 
than average). This is a relatively new area of research, but find-
ings suggest that building social tools into the delivery of energy 
data offers considerable promise in efforts to improve energy 
efficiency. Refinement of social feedback tools requires a better 
understanding of several potential moderators: type of social feed-
back, household characteristics (e.g., household size), sociodemo-
graphic considerations such as income, and psychosocial factors 
such as group cohesion (Abrahamse and Steg, 2011, 2013). 

Disaggregation Technologies 
Moving beyond household-level feedback, technologies that pro-
vide energy feedback at the appliance level are coming to market. 
One option is through smart appliances, which monitor and 
report their level of consumption, but which are often cost-
prohibitive. Another option is non-intrusive load monitoring, 
which disaggregates the household energy signal into individual 
appliance loads. Non-intrusive load monitoring is only possible 
with high-resolution consumption data such as that provided by 
smart grid technologies. 

The level of specificity offered by appliance feedback marks a 
significant innovation from whole-house feedback, which, while 
useful when compared to on-bill feedback, falls short of providing 
information on specific behaviors consumers can undertake to 
conserve. Household-level feedback still requires consumers to 
generate a mental list of what is using energy in their home, which 

can be overwhelming and ultimately inhibit action. Eliminating 
the need for this process, appliance-level feedback instead informs 
consumers of exactly which appliances are consuming energy, 
enabling them to associate discrete behaviors with energy (and 
sometimes cost) impacts. Disaggregation can also offer a straight-
forward action step, which may lead to an enhanced sense of com-
petence or perceived control, as suggested by Self-Determination 
Theory and Theory of Planned Behavior, respectively. 

Combined with specific recommendations for improved effi-
ciency and conservation, disaggregated feedback is a promising 
strategy. However, to date, few studies have evaluated the effec-
tiveness of such technologies on load-shifting and conservation, 
in part because such systems are so new. Future research in this 
area is needed. 

Smart Automation 
Some smart appliances such as thermostats and dishwashers offer 
more than just appliance-level feedback; they also offer scheduling 
capabilities and DR signal automation (the ability to be directly 
controlled by utilities). Technologies such as Internet-enabled 
programmable thermostats are outfitted to dovetail with direct 
control DR strategies to curtail peak loads, in addition to offering 
conservation potential. These technologies can function as “set 
and forget,” requiring minimal ongoing effort on the part of the 
end-user after initial device purchase, installation, and set-up. 
As mentioned, research suggests that the conservation poten-
tial of efficiency technologies is greater than that of curtailment 
approaches (Gardner and Stern, 2008). Automation removes the 
need to sustain behavior change over time, reducing end-user bur-
den and increasing predictability of curtailment outcomes, which 
is important for improving the accuracy of demand forecasting 
and supporting power reliability. 

However, it is also important to point out that effort is only 
one of several important factors predicting adoption and optimal 
use of smart automation and other efficiency technologies. Behav-
ioral science can help address additional challenges in technology 
design and adoption. For instance, in line with the Theory of 
Planned Behavior and Self-Determination Theory, devices should 
foster a sense of control and autonomy, for instance, with user-
friendly designs and ease of operation. Similarly, for products that 
permit utility control, flexible default and remote control settings 
that allow for consumer modifications should be developed (see 
Demand Response section above). 

Electric Vehicles 
Electric vehicles (EVs) offer potential for supporting grid reliabil-
ity. Specifically, vehicle battery technologies that discharge energy 
back into the grid during high usage periods offer potential for 
distributed storage networks and a fundamentally new strategy for 
managing peak demand. In such a system, AMI technology col-
lects data on vehicle charging schedules, which can be used to gen-
erate intelligent, automated charging and discharging schedules 
that dynamically accommodate grid-wide demand fluctuations. 
Because each vehicle battery has relatively low storage capacity, 
widespread consumer adoption is a necessity for making this 
possible. Globally, less than 1% of light-duty passenger vehicles are 
EVs (Trigg and Telleen, 2013). For EVs to plug into the smart grid 
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as a viable distributed storage technology, using behavioral science 
to increase consumer adoption of EVs, as well as enrollment and 
optimal participation in charge–discharge programs, are critical. 

As an emerging technology, EVs face financial, technical, and 
social barriers to broader consumer acceptance. Perceived costs, 
including financial and convenience, are among the strongest 
barriers to adoption (Bockarjova and Steg, 2014). Because pur-
chasing a car tends to be a relatively infrequent behavior, the use of 
financial incentives, such as government subsidies and tax breaks, 
is likely to be helpful for increasing EV adoption. The availability 
of financial incentives is positively correlated with EV adoption 
rates, but price signals represent only one predictor of EV adoption 
(Bockarjova and Steg, 2014; Sierzchula et al., 2014). Even among 
consumers with favorable attitudes toward EVs, reduced range 
and long charging times are among the top concerns, and many 
consumers report unwillingness to compromise on these features 
(Ewing and Sarigöllü, 2000; Hidrue et al., 2011). However, the 
same consumers are willing to pay high, up front premiums for 
EVs with longer ranges and faster charging capabilities (Hidrue 
et al., 2011), highlighting that price breaks alone are not sufficient 
to increase adoption rates. Symbolic attributes, which signal the 
impact of a belonging on one’s identity and social status, have also 
been identified as a key factor underlying EV purchase, over and 
above practical considerations such as cost and range (Heffner 
et al., 2007; Noppers et al., 2014). Campaigns that tap into these 
identity concerns may contribute to higher adoption rates. 

Diffusion of Innovations theory suggests that social influence 
also plays an important role in the adoption of new technologies 
(Rogers, 2003). Under this model, the first 2.5% of individuals 
to adopt a technology (Innovators) tend to rely on technical 
information, followed by the Early Majority, who incorporate the 
opinions of others in their decision-making about new technolo-
gies. More Early Majority individuals will be acquiring EVs as the 
EV market share expands, and therefore harnessing the power of 
social influence is indicated. Recent research has demonstrated 
the success of social influence in promoting engagement in a 
variety of sustainable behaviors, but most of these studies have 
focused on changing low-cost, habitual behaviors (Schultz et al., 
2007; Goldstein et al., 2008; Nolan et al., 2008). Energy efficiency 
technologies such as EVs involve one-time or infrequent behaviors 
and high up-front costs, yet offer long-term energy conservation 
potential and require minimal ongoing effort from consumers. 
Research is needed to investigate whether social influence can 
effectively be used as a tool of persuasion in such contexts. 

Another consideration is that drivers may object to having 
their batteries drained during high-use periods, a barrier to 
charge–discharge programs. As with direct control DR and smart 
automation, it is essential that flexible rules be developed to permit 
some consumer control in charge–discharge programs, and that 
consumers retain a sense of control. Using approaches such as 
CBSM to uncover additional barriers and motivators to partici-
pation in such programs will be critical in crafting strategies to 
increase enrollment. 

Solar Panels 
By offering on-site, distributed generation, the excess of which can 
be routed to overstressed portions of the grid, residential solar 

panels fit into the smart grid by offering another strategy to boost 
grid reliability. Currently, however, solar accounts for less than 
5% of energy generated in the United States (United States Energy 
Information Administration, 2015b). As with EVs, for solar to be 
a viable distributed generation option, consumers must adopt the 
technology on a considerably wide scale; because solar panels offer 
long-term savings without ongoing consumer efforts, increasing 
installations is currently a key issue. High up-front costs and 
technical considerations represent barriers to this being a reality. 
Financial incentives may be well-suited to increasing residential 
solar installations, but alone will not address all barriers to adop-
tion. For instance, recent findings suggest that social influence 
plays an important role in the installation of rooftop solar systems. 
Described as the “solar contagion” effect, studies have found that 
adding a solar system, which is usually visible to passersby, to a 
single home in a neighborhood significantly increases the average 
number of installations within a half-mile radius (Bollinger and 
Gillingham, 2012; Graziano and Gillingham, 2014). As per the 
Theory of Planned Behavior, Norm Activation Model, Value-
Belief-Norm Theory, and Focus Theory of Normative Conduct, 
a social influence approach like this can strengthen normative 
beliefs in support of solar panel installation, and contribute to 
elevated adoption rates. In addition, solar panels are often very 
visible features of a home, perhaps conveying to others something 
about the occupants’ identities and/or social status. Behavioral 
science should identify potential symbolic attributes of solar sys-
tems, as tapping into these may also support higher adoption 
rates. 

Conclusions and Future Directions 

In summary, behavioral science can play an important role in 
unlocking the potentials of smart grid technologies to reduce 
overall energy consumption, curtail peak demand, and expand 
distributed storage and generation options. There is a growing 
body of research focused on the behavioral aspects of energy 
consumption, and findings from this research can be overlaid 
on programs that leverage the emerging smart grid infrastruc-
ture. As reviewed in this paper, behavioral science is already 
being used and can be further leveraged to improve DR pro-
grams, time-of-use pricing, energy use and disaggregated feed-
back, smart automation, and distributed storage and generation 
options through EVs and solar panels. 

In this review, we described how different theories can be 
used to explain the adoption and use of different smart grid 
technologies. As has been pointed out previously in relation 
to other environmentally-relevant behaviors (Huijts et al., 2012; 
Perlaviciute and Steg, 2014), we believe there is value in devel-
oping a more integrated approach to explain the acceptance, 
adoption, and use of smart grid technologies. Such a frame-
work can guide researchers and practitioners in the application 
of relevant theories to varying contexts, technologies, consumer 
characteristics, and behaviors. For instance, such a framework 
could aid in understanding, and potentially facilitating, spill-over 
effects: how does adopting and/or using one smart grid tech-
nology translate to the adoption and/or use of others? A recent 
study based on the Norm Activation Model suggests that general 

Frontiers in Psychology | www.frontiersin.org 6 April 2015 | Volume 6 | Article 410 

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Sintov and Schultz Behavioral science in the smart grid 

awareness of the impact of energy use on the environment, belief 
that one can mitigate these impacts, and a sense of moral obliga-
tion to do so can motivate a variety of energy reduction behaviors 
(Van der and Steg, 2015). In addition, because different factors 
appear to foster adoption and use of different smart grid technolo-
gies, it is also important to identify the role of moderators on sev-
eral levels: household characteristics, sociodemographic variables, 
and psychosocial variables (Abrahamse and Steg, 2011, 2013). 
Segmenting consumers to identify what technologies resonate 
best with whom, in what situations, can maximize savings. 

A central consideration in partnering with consumers in the 
smart grid relates to persistence of behavior, which influences 
energy savings and power reliability. Available data show that 
effects of behavioral curtailment strategies tend to taper off over 
time, leading to questions about the long-term value of these 
strategies. On the other hand, efficiency strategies such as direct 
control DR, smart automation, EV adoption, and solar panel 
installation are not subject to the same limitations. How to move 
consumers past the higher up-front costs, privacy/autonomy 
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