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Abstract 
 
Does connectionism spell doom for folk psychology?  I examine the proposal that cognitive representational states 
such as beliefs can play no role if connectionist models -- interpreted as radical new cognitive theories -- take hold and 
replace other cognitive theories.  Though I accept that connectionist theories are radical theories that shed light on 
cognition, I reject the conclusion that neural networks do not represent.  Indeed, I argue that neural networks may 
actually give us a better working notion of cognitive representational states such as beliefs, and in so doing give us a 
better understanding of how these states might be instantiated in neural wetware.   
 

 

An important article by Ramsey, Stich and Garon offers the tempting thesis that 

connectionist networks support eliminativism with regards to folk psychological notions 

such as belief or memory.  They buttress their arguments with examples of neural 

networks they have trained to encode propositions.  I say their thesis is tempting because 

I agree with them that connectionism does offer a radically different way of interpreting 

cognition and cognitive states, and because I agree with them that many existing theories 

which purport to be foundational for the propositional attitudes fall far short of that goal.  

But even given this level of agreement I am not yet ready to conclude that the death knell 

for belief has been rung by the neural network theorists.  The reason for this is that, 

notwithstanding the arguments given by Ramsey, Stich and Garon, I believe neural 

networks may actually give us a better working notion of cognitive states such as beliefs 

or memories, and in so doing, give us a better understanding of how these states might be 

instantiated in neural wetware.   
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 In this article I will concentrate on countering Ramsey, Stich and Garon's (1991, 

217) claim that connectionist models have "...no discrete, semantically interpretable 

states that play a causal role in some cognitive episodes but not others."  The states that 

they refer to here are belief or memory states, and I will follow their lead in using these 

terms interchangeably. I will therefore consider my job done if I manage to save a 

working notion of belief from their frontal assaults.  Doing this will, I believe, throw 

doubt upon their entire eliminativist program for the propositional attitudes.   

 Ramsey, Stich and Garon start with the assumption that folk psychology is a 

theory, and that states such as beliefs, desires and so on are posits of the theory.  They 

argue that this theory is a prime candidate for replacement because it can't possibly be 

telling us all there is to know about psychology.  What is crucial to the Folk 

Psychologist's program, they insist (1991, 204), is the claim of Propositional Modularity.  

Propositional Modularity holds that the propositional attitudes are: 

 • functionally discrete 

 • semantically interpretable, and 

 • play a causal role (in mental and behavioral output). 

 Thus, in classical folk psychological models it is clear when a functionally 

distinct representation such as a belief plays a causal role.  But Ramsey, Stich and Garon 

point out that there are classes of connectionist models that fly in the face of 

Propositional Modularity.  These connectionist models become candidates to replace 

their folk psychological counterparts. 

 They offer as examples two networks of their own design:  Network A and 

Network B.  Both encode simple propositions, such as 'Cats have fur' and 'Dogs have 

legs' with binary strings of length 16.  These binary strings count as input to the 16 input 

nodes of the network.  Four units comprise the hidden unit layer, and there is a single 

output node which (after training) will register a '1' (or very close to it) for a true 
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proposition and a '0' (or very close to it) for a false proposition.  Network A was trained 

on 16 propositions using back propagation until it was accurate at distinguishing true 

from false in the training set.  It then was seen to 'generalize', for it gave an affirmative 

answer to the new proposition (not in its training set) 'Cats have legs', and negatively to 

the proposition 'Cats have scales'.  Network B was just like Network A in architecture, 

but its training set included one additional proposition, 'Fish have eggs', for a total of 17 

propositions in the training set.  Network B performed similarly after training to Network 

A in accuracy and generalization. 

 In contrast with classical models, say Ramsey, Stich and Garon, connectionist 

networks like Networks A and B have no distinct states or parts that serve to represent 

particular propositional contents.  Information storage is distributed across the network 

and is holistic.  Following Smolensky, this sort of representation is termed subsymbolic.  

Thus, any particular unit or weight value can encode information about many different 

contents.   

 Connectionist models of this sort, they claim, have three properties:(Ramsey, 

Stich and Garon, 1991, 207) 

  

• their encoding of information in the weights is widely distributed, not localist 

• the individual units have no symbolic interpretation -- they are subsymbolic 

• the models are not intended as implementations, but as true (and ontologically 

radical) cognitive theories that compete with traditional cognitive theories. 

Given the stark contrast between propositional modularity and connectionist models, 

Ramsey, Stich and Garon remark that: 

It simply makes no sense to ask whether or not the representation of a particular 

proposition plays a causal role in the network's computation.  It is in just this 

respect that our connectionist model of memory seems radically incongruent with 
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the propositional modularity of common sense psychology.  For ... common sense 

psychology seems to presuppose that there is generally some answer to the 

question of whether a particular belief or memory played a causal role in a 

specific cognitive episode.  But if belief and memory are subserved by a 

connectionist network like ours, such questions seem to have no clear 

meaning.(Ramsey 1991, 212) 

Since connectionist networks lack modular propositional states, they won't have the 

discrete features required to make them fall under psychological generalizations.  

Classically, seeing an F generally leads to me believing (B) that F.  A law connects the 

object F with my belief B.  But according to the analysis given by Ramsey, Stich and 

Garon, there are no discrete, functionally distinct, belief states or structures like B that 

are implemented by all the networks that appear to exemplify such beliefs.  Thus 

Network A's belief that F will differ from Network B's belief that F, since the individual 

weights and unit activations, and hence their internal representations, are necessarily 

different.  They go on to claim that "these networks have no projectable features in 

common that are describable in the language of connectionist theory."(Ramsey 1991, 

213) 

 There is a lot I agree with in the account offered above.  I agree that encoding in 

connectionist networks is distributed, and that individual units rarely have a symbolic 

interpretation.  But I don't think that accepting such things means that such networks 

don't represent at all.  There are, I believe, connectionist -- and ultimately, neural -- 

correlates of belief. 

 Let me start by debunking a myth.  The myth is that neural networks don't have 

distinct states or parts that serve to represent particular contents.  Consider again 

Networks A and B which were claimed above to lack distinct states that represented 

particular propositional contents.  We seem to have conveniently forgotten the input units 



Paul Skokowski   
Belief in Networks , p. 5 

here.  These represent the propositional contents in a distinct and straightforward way, 

and they have the added convenience that they are part of the network in question.  So it 

appears the network does represent propositions.  It is even a distributed representation, 

but then the English sentence "Cats have fur" is also a distributed representation -- 

distributed across letters -- of the proposition, or content, cats have fur.1  

 This might appear to be cheating, but it's not.  Presumably what connectionist 

models are going to be useful for is explaining human (and other animal) cognitive 

phenomena.  But humans have their analogues of input units too:  the senses and their 

wiring into the brain.  These inputs vary nomically with outside conditions.  When an 

infant and an adult look at a flower, they both have nearly identical retinal, optical tract, 

optical chiasm, and cortical (V1-V4, say) stimulations.  Their retinas, and the rest of their 

sensory delivery systems, then, carry the same information.  This information is 

distributed:  the entire retina may be stimulated, and similarly for the bundles of neurons 

delivering the signals further downstream in a parallel (and distributed) fashion.   The 

sensory systems for both the infant and adult vary in lawlike, and very similar, ways with 

the external environment.  It is what happens after that information has been picked up -- 

a story to do with learning -- which determines what content is available for behavioral 

output for the agent.2  The adult believes the object is a flower, and he can behave in 

appropriate ways.  The infant, on the other hand, lacks the appropriate beliefs; she hasn't 

learned about flowers yet.  Similarly for a neural network.  The information at the input 

level is a lot like sensory information.  It is only after learning that the network can 

distinguish categories in the training set. 

 It is important to understand the difference between two kinds of physical 

properties in a neural network.  The first kind of property is that which occurs when the 

units are activated, say by the presentation of an F.  This is a property that occurs at a 
                                                 
1A similar point about the ubiquitousness of distributed representations is made in van Gelder (1991). 
2See, for example, Dretske (1988), or Papineau (1987). 
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time.  Electrical signals pass through the network upon such a presentation.  Consider a 

network which has learned to recognize F's.  The input units will exemplify a 

characteristic activation pattern, call it I, corresponding to an F when presented with one.  

Similarly, the output units exemplify a characteristic output pattern, call it O, upon such a 

presentation.  But also notice that the hidden units exemplify an activation pattern after 

learning, call it H.  The property H exemplified by the hidden units is different from the 

(learned) final weight configuration, call it W.  The former property H is a transient one, 

it occurs at a time.  The latter property is stable; it lasts for more than the moment over 

which electrical signals stimulate the network to be activated. 

 After learning, the network's hidden units may exemplify two sorts of properties, 

H and W.  Note that these are like the properties of real neurons instantiated in wetware.  

A collection of neurons may fire in some manner, thus exhibiting a property which is the 

analogue of an activation pattern H in a neural network.  A collection of neurons also has 

the fairly stable property of intersynaptic connections.  This property is the analogue of 

the property W in neural networks. 

 We know that after learning, the weight structure W becomes a stable, permanent 

feature of a neural network.  Since it is stable, it won't change with different incoming 

signals.  It also isn't a property that is exemplified only when an input arrives -- it is there 

over long periods of time whether signals are coming in or not.  As such, this is not the 

sort of property which we would tend to associate with a regularity, such as the regularity 

which occurs between the input units and outside conditions F:  When an F is presented 

under the right conditions, a pattern I will occur on the input units.  As pointed out above, 

this is the sort of regularity we normally associate with the carrying of information.   

 According to Ramsey, Stich and Garon (1991, 215-217), neither of the states H or 

W occurring in networks can be considered to be beliefs or memories. The activation 

pattern H won't do because it is transient, and beliefs are supposed to be enduring.  Thus 
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John believes that kangaroos are marsupials even when he isn't thinking about kangaroos.  

The weight structure W won't do because they find it extremely implausible that weights 

encode content in functionally discrete ways.  That is, it is unlikely that W has discrete 

encoding properties corresponding to properties in the environment (or a training set).  

However, they do remark that there might indeed be some system of encoding in the 

weights that they are unfamilar with.  And, "Moreover we concede that if such a covert 

system were discovered, then our argument would be seriously undermined."(Ramsey 

1991, 215)  We will return to this point below. 

 Since neither activation patterns nor weight states fit Ramsey, Stich and Garon's 

criteria for representational states such as beliefs or memories, there are no 

representational states in neural networks.  They have been eliminated in the brave new 

world of connectionism.  As I have said before, though I am sympathetic, I remain 

unconvinced.  In what follows, I propose how we should interpret belief in networks.   

 The first thing we should recognize is that the story of belief that has just been 

told is incomplete.  It ignores that beliefs are also causes of output, which can take the 

form of actions in agents, or output patterns in networks.  A belief must be a physical 

occurrence of an internal state at a time, which can cause appropriate action at that time.  

A tree is in front of me and I see it.  Because I believe the tree is in front of me, I swerve 

to the side on my run through the park.  Does this mean I have to have an enduring tree-

belief?  This seems implausible for this sort of perceptual belief.  What I need are 

cognitive capacities for recognizing trees.  A tree-recognition neural event -- the actual 

occurrence at a time -- is a belief.  If this sort of belief was forced to fit in the 

straightjacket of 'enduring' beliefs given above, then by having the belief permanently, I 

would be forever swerving.  But I am not.  Consider now a neural network that has been 

taught to recognize trees.  It has been fitted with a digital camera front-end which feeds 

an input layer, and an output layer that drives a speech-synthesizer.  It too only responds 
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to trees when presented with one.  It says "tree".  But once it is taught, it doesn't say 

"tree" all day long -- only when one is presented. 

 I don't happen to believe in belief-boxes or grandmother cells.  These would be, I 

presume, places in the brain where particular propositional contents are stored.  But one 

does not need such artifices in order to accomodate belief.  If one has a causal notion of 

belief, then believing F is a matter of encountering or perceiving F in appropriate 

circumstances.  And the circumstances are given with extreme simplicity in the case of 

neural networks.  They give us a very powerful, mechanistic, and simplified model for 

what appears to be going on in the brain under certain conditions.   

 The internal circumstances are provided by learning.  Learning, which involves 

actual physical encounters with the environment (or training set), is what installs a 

weight state W.  Without learning, one cannot hope to attain the regularities associated 

with belief (beyond the information-carrying capacity of the input units).  That is, 

without learning one cannot hope to attain outputs appropriate to the training task:  

yielding a "1" when given the proposition "Cats have Fur"; saying "tree" when presented 

with a tree; swerving when encountering a tree on a run.  Learning, by installing an 

enduring weight state W, delivers the background conditions required for an 

informational state, such as a perceptual or input state, to get an executive capacity and 

cause output. 

 Before learning, an infant or a neural network may carry information about its 

surroundings, but neither will yet have a belief, something that can guide its behavioral 

output.  The infant "sees" trees, but does not recognize them; does not have beliefs about 

them.  The network "sees" trees in its input units, but does not produce the sound "tree" 

in its output.  Learning corrects this deficit.  Not by changing anything at the input level.  

The input, or sensory, states still carry informational content in the same way.  They 

covary nomically with external conditions.  What is changed is the internal weight state, 
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or neural structure, of the system.  Note that the causal work for an occurrent belief or 

memory is done by the electrical signals in a neural network, or the electro-chemical 

signals in the brain.  This is the transient activation state.  But the background weight 

state W acts to modify or guide the signal in a way that produces output appropriate to 

the input. 

 Beliefs should cause output when they occur in an agent.  Beliefs should be 

caused by appropriate external conditions.  Beliefs should carry representational content.  

Belief in networks, then, should be seen as the activation pattern occurring in the input 

and hidden units, after learning.  This includes what I earlier called I together with the 

hidden unit activation pattern H.  Call this combined state B.  It is important that we don't 

have B until after learning.  Just like the infant or the neural network, we lack cognitive 

abilities until we have learned them.  So being presented with a tree before learning won't 

evoke a response appropriate to a belief about trees.  But after learning, B causes 

appropriate output.  B is also caused by appropriate external conditions.  When presented 

with the proposition "Cats have Fur", Network A registers input 1111000011110000 on 

its input layer, which in turn causes further activation in the network.  When perceiving a 

tree on a run, the adult swerves.  B also carries representational content.  This is 

guaranteed by including the input activation I as part of B.  I, everyone has agreed so far, 

carries content.  B therefore does by default.   

 Earlier, Ramsey, Stich and Garon discounted the possibility of the weights W of a 

neural network encoding contents.  They conceded such encoding would severely 

weaken their argument.  Clustering techniques for exploring weight space such as 

Principal Components Analysis (PCA) have been around for a while now and have been 

used successfully to find correlations between weight space properties and properties in 

the subject matter (training set/environment) being learned.  In particular, studies on 

language tasks by Elman (1990) and (1991) and Sejnowski (1989) show that weight 
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space is indeed partitioned after learning. For example, Elman (1990) has used clustering 

to reveal a partitioning of state space which corresponds to lexical and grammatical 

categories that are learned in the course of doing a word-prediction task. He has also used 

PCA to find encodings of distinctions between verbs and nouns, marking number of main 

clause subject, and other "internal representations" (Elman 1991, 13). 

 The point I wish to make here is that, despite Ramsey, Stich, and Garon's claims 

to the contrary, it now appears that trained networks have the capacity to encode contents 

both within activations, I and H, and within their weights W.  The upshot is that in a 

trained network we can pinpoint discrete states, which I have called B, that are 

semantically interpretable and that play a causal role in some cognitive episodes but not 

others.  It appears we have indeed found an excellent candidate for belief in networks. 3 

 

                                                 
3 I would like to thank audiences at the American Philosophical Association Eastern Division and the 
Society for Philosophy and Psychology Conferences for helpful comments and suggestions.  Work on this 
paper was made possible by a McDonnell-Pew Visiting Fellowship in Philosophy at the Centre for 
Cognitive Neuroscience, Oxford University, and a Visiting Fellowship at St. Edmund Hall, Oxford, and I 
am grateful to the McDonnell-Pew Foundation, the Centre, and St. Edmund Hall for their support.  Special 
thanks to Martin Davies. 
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