
 

 
Can Computers Carry Content ‘Inexplicitly’?1 
 
PAUL G. SKOKOWSKI 
Department of Philosophy, Stanford University, Stanford, CA, 94305, U.S.A. 
(paulsko@csli.stanford.edu) 

 

Abstract.  I examine whether it is possible for content relevant to a computer's behavior 

to be carried without an explicit internal representation.  I consider three approaches.  

First, an example of a chess playing computer carrying 'emergent' content is offered from 

Dennett.  Next I examine Cummins' response to this example.  Cummins says Dennett's 

computer executes a rule which is inexplicitly represented.  Cummins describes a process 

wherein a computer interprets explicit rules in its program, implements them to form a 

chess-playing device, then this device executes the rules in a way that exhibits them 

inexplicitly.  Though this approach is intriguing, I argue that the chess-playing device 

cannot exist as imagined.  The processes of interpretation and implementation produce 

explicit representations of the content claimed to be inexplicit.  Finally, the Chinese 

Room argument is examined and shown not to save the notion of inexplicit information.  

This means the strategy of attributing inexplicit content to a computer which is executing 

a rule, fails.   

 

Introduction 

Is it possible for representational content that is relevant to the explanation of a 

computer’s behavior to be carried by the computer without explicit internal 

                                                 
1I wish to thank Fred Dretske and John Perry for helpful comments and suggestions.  I would also like to 
thank an anonymous reviewer for suggesting I take a look at the implications of the Chinese Room 
argument for the notion of inexplicit information.  Earlier versions of this paper were read at the American 
Philosophical Association Pacific Division Meeting in San Francisco in March, 1993, and at the 7th 
International Conference on Computing and Philosophy in Orlando in August, 1992.   

1 



 

representation of that content?  In this paper I will examine some answers to this 

question.  One answer is to hold that the content is an emergent property of the system.  It 

is content that is convenient for describing behavior of the system, but the content plays 

no causal role for the system.  This is the view of Daniel Dennett.  Another, more 

interesting answer is that the content is somehow carried and used by the system in a way 

relevant to its performance, but that there is no representational state in the system which 

can be singled out as carrying that content.  Since there is no state carrying the content, 

the content is said to be carried by the computer inexplicitly.  This is an intriguing view 

defended recently by Robert Cummins (1986) in his paper Inexplicit Information.  

Dennett’s view in effect poses a problem to someone like Cummins who seeks to 

attribute a bona fide role to content which Dennett describes as emergent.  I start with an 

example by Dennett. 

 

1.  The Problem of Emergent Content in Digital Computers 

In Brainstorms, Dennett describes the behavior of a certain chess-playing program in the 

following way: 

 
 In a recent conversation with the designer of a chess-playing program I 
heard the following criticism of a rival program:  “It thinks it should get its queen 
out early.”  This ascribes a propositional attitude to the program in a very useful 
and predictive way, for as the designer went on to say, one can usually count on 
chasing that queen around the board.  But for all the many levels of explicit 
representation to be found in that program, nowhere is anything roughly 
synonymous with “I should get my queen out early” explicitly tokened.  The level 
of analysis to which the designer’s remark belongs describes features of the 
program that are, in an entirely innocent way, emergent properties of the 
computational processes that have “engineering reality”. (Dennett, 1978, p. 107) 

 

The point Dennett is making here is that though it appears that the chess-playing 

computer behaves as if it had a representational state with the content  “I should get my 

queen out early,” there is no state in the computer with that content.  Or, on the 

2 



 

programming level, there is no line in the computer program to the effect that the 

computer should get its queen out early.  Since there is no such explicit state to be found, 

the content attributed to the computer appears, on his view, to be ‘emergent’. 

 The explicit representational states, qua lines in the program that run the 

computer, play a causal role in the life of the computer.  Emergent contents, on the other 

hand, may help us explain the behavior of the computer, but play no causal role for the 

machine.   

 Dennett’s view on content goes beyond this, of course.  He ultimately claims that 

all attributions of content to systems are dependent on the explainer’s stance. (Dennett, 

1987)  So, in a perverse way, it doesn’t even matter whether contents are carried by 

‘explicitly tokened’ representations (his terminology) or not, since all contents fall in the 

same boat:  if a particular set of contents work for explaining the behavior of a system 

then we needn’t worry about details like attributing the particular contents used in the 

explanation to particular states in the system being explained.  ‘Emergent’ contents are 

just as good as determinate contents for explaining behavior. 

 But the above quote shows that Dennett is feeling generous about internal 

content-carrying states; he allows that some explicit representations are to be found in the 

chess-playing program.  Therefore, we can presumably take him to mean that the 

computer has certain states which do  function as representational states with content.  

Surely chess-playing computers have some internal representation of the positions of the 

pieces on the chess board during every move.  They may even have certain ‘goals’ such 

as ‘try to take the highest-ranking white piece at the earliest opportunity.’  Such states 

might be understood as the computer’s analogues of belief and desire states.  

Furthermore, these explicit tokens, or states, are what cause the computer to move its 

pieces on the board.  These are states, then, which appear to have representational 

content; states which  cause the computer to behave for reasons. 

3 



 

 But again, there is no state with the content “I should get my queen out early” in 

the computer.  And this poses a problem for anyone who prefers to explain the behavior 

of computers entirely by reference to the causal powers of their internal representational 

states.  How can one holding such a view deal with the claim that certain intentional 

descriptions we apply to systems at best describe ‘emergent’ properties of the system?  

Dennett’s example appears to show that although many intentional ascriptions appear to 

apply to physical states which are causally efficacious and have content in the right sorts 

of ways for explaining behavior, not all intentional ascriptions do.  Our chess-playing 

computer exhibits queen-out-early behavior, and predictably.  But there is no queeen-out-

early internal state playing a causal role in the computer.  If intentional ascriptions such 

as these do not apply to distinct physical states, then how do whatever it is they do apply 

to cause anything?  And perhaps even more disturbing, how would such a thing (if it is a 

thing) carry content?   

 

2.  Cummins’ Solution:  Inexplicit Content 

An intriguing answer to this question is offered by Robert Cummins (1986).  In Inexplicit 

Information Cummins deliberates upon Dennett’s example of the content exhibited by the 

chess-playing computer: 

 
 If we turn back to Dennett’s parable now, we find something of a muddle.  
Evidently, the case in which we have a rule explicitly tokened in memory is not 
the one at issue.  In the case lately imagined, however, although we do have an 
instruction in the program, nothing like DEPLOY THE QUEEN EARLY is 
tokened by the system.  This is the case we are interested in, but here it seems 
plainly incorrect to say that the system thinks or believes that it should deploy the 
queen early, though this does apply to the programmer.  Instead, the correct 
description seems to be that in the system there is a kind of inexplicit information, 
information lodged, as it were, in whatever physical facts underwrite the capacity 
to execute the program.  Explanatory appeals to this sort of information evidently 
differ radically from explanatory appeals to the system’s representations -- e.g., 
representations of current position. (Cummins, 1986, p. 124) 

4 



 

 

This quote suggests that the machine carries a determinate content while running, a 

content Cummins calls inexplicit information.2  For Cummins, this content is in the form 

of what he calls rules.  These rules are not explicitly represented in the machine as, say, 

knowledge or beliefs or desires would be.  Rather, the rules are inexplicitly represented in 

virtue of being ‘executed’. 

 The rule Cummins says Dennett’s computer seems to be executing is:  IF IT IS 

EARLY IN THE GAME THEN DEPLOY THE QUEEN.  Let us follow Cummins in 

calling this rule “(R)”.  He says, 

 

 There are two ways in which a system can “have” a rule like (R):  (R) 

might be a rule that is represented in the system’s memory, or (R) might be an 

instruction, i.e., a rule in the program that the system executes. (Cummins, 1986, 

p. 122) 

 

If a system has (R) in the first way described in the quote, then (R) is explicitly 

represented.  Indeed, a system with (R) represented in memory “knows what to do.” (p. 

121)  Such a representation in memory therefore plays the role of a knowledge or belief 

state with the content (R).  For Cummins, an explicit representation “is available as a 

premise in reasoning, and is subject to evidential assessment.” (p. 125)   As Cummins 

recognizes, this way of representing a rule is fairly straightforward, and so isn’t all that 

interesting.  However, if a system has (R) in the second way, where (R) is a rule executed 

by the system, then he claims (R) is inexplicitly represented.  Here is where things get a 

little more interesting. 

                                                 
2Note that Cummins uses the term “information” more in the way others use “content”.  That is, for 
Cummins, information may be false.  (See p. 118 of Inexplicit Information.)  I will follow Cummins and 
use both terms interchangeably in this paper. 

5 



 

 Let us look at what Cummins calls the second way in which a system can “have” 

a rule (R).  Cummins asks us to consider a device called CHESS, which plays chess in 

the way which Dennett describes.3  Cummins says, 

 
What about the case in which (R) is a rule in the program that the system executes 
-- i.e., an instruction?  Let’s move back to the original example derived from 
Dennett.  Suppose the program executed by the device CHESS contains the 
following rule:   
 
IF IT IS EARLY IN THE GAME THEN DEPLOY THE QUEEN. 
 
Does CHESS -- the device executing the program -- believe that it should deploy 
its queen early?  The programmer certainly believed it.  And CHESS will behave 
as if it believed it too:  hence the characterization Dennett reports.  But CHESS 
(as we are now imagining it) simply executes the rule without representing it at all 
. . . (Cummins, 1986, p. 122) 

 

Here Cummins suggests a contrast between:  (1) a rule (R) written explicitly as an 

instruction in a program, and (2) the subsequent execution of that rule by a device 

running that program -- where the device, even though running the program, doesn’t 

represent the rule (R).  Let me explain these in order. 

 First, what does it mean to have a program with the rule (R) contained as an 

instruction within it?  An instruction is a line in the computer program which expresses, 

in a high-level computer language, the rule (R).  Of course, programming languages are 

never written in plain English.  So instructions representing the rule (R) will be written 

differently from one computer language to the next.  For example, in the programming 

language C+, the rule (R) might be expressed by a line in the program written:   

 
                                                 
3Throughout this paper, Cummins vacillates between calling CHESS a system and a device.  The key to 
discerning the difference between when a system is a device and when a system is something else appears 
to be this:  systems which are devices execute programs and rules, whereas systems simpliciter represent 
programs and rules.  This, I take it, is Cummins’ distinction.  I will use the following conventions for the 
rest of this discussion on Cummins.  I will use device  when and only when talking of Cummins’ device 
CHESS.  I won’t use the term system for this.  When I talk about the entire computer system, or a part 
thereof, I will make it clear what I mean -- but it won’t mean device. 

6 



 

  if n ≤ 10 {q1 = x }; 

 

which says something like “if the current move is one of the first 10 move the queen from 

Q1 to position x (presumably already calculated)” -- in other words, IF IT IS EARLY IN 

THE GAME THEN DEPLOY THE QUEEN, where “EARLY” is for simplicity taken to 

be the first opportunity in the initial 10 moves of the game.  Instructions such as these 

therefore act as representations of the rule (R), since (R) cannot be directly expressed in 

English in the program that the computer runs.  These instructions serve as explicit 

representational states within the program.   

 Second, let me explain a device executing a rule in a program.  Note that even 

though (R) may be explicitly represented by an instruction in the program, the device 

CHESS, according to Cummins, does not represent this rule.  Rather, he says, CHESS 

executes the rule.  This execution of a rule (R) by a device is what he claims leads to the 

device carrying the inexplicit information that (R).  The idea is that the device CHESS -- 

not the program containing CHESS’s instructions -- has no representational state with the 

content that (R), and yet behaves as if it did.   Cummins says of this inexplicit 

information  

 
When we formulate the content of this information and attribute it to the system, 
we intentionally characterize the system, and rightly so, even though the 
propositional contents of our characterizations are not represented by the system 
we characterize. (Cummins, 1986, p. 125) 

 

So at one level, the level of the program that CHESS runs, the rule (R) is represented by 

an instruction in the program.  At the level of the device CHESS, on the other hand, the 

rule (R) is not represented, but is executed.   

 In this way, Cummins makes a distinction between rules represented in a program 

and rules executed by a device.  Cummins intends to drive this distinction home by 

7 



 

showing how he thinks CHESS, though implemented on a computer, will not represent a 

rule (R) -- even though (R) is a rule in the very program “interpreted” by the computer in 

order to implement CHESS in the first place.  He says, 

 
. . . if CHESS is implemented on a general purpose computer, rather than 
hardwired, the program itself will also be represented “in” the system:  it may be 
on a disk, for example.  But these are not representations to CHESS, they are 
representations to the system that implements CHESS, typically an interpreter and 
an operating system.  The interpreter “reads” these rules, not CHESS...  CHESS 
doesn’t represent its program, it executes it, and this is made possible by the fact 
that a quite different system does represent CHESS’s program. (Cummins, 1986, 
p. 123) 

 

Certainly on the face of it this seems reasonable, since programs written in a high-level 

language must be ‘interpreted’ or ‘compiled’ in order for the computer to run them.  So 

the device CHESS won’t come to exist until such an interpretation or compilation is 

done.  Think of it this way.  You own a brand new Mac II, and you want to play chess 

against it.  Well, it does no good to just turn it on and try to play chess against it.  You 

must write a program, preferably in a high-level language (to save the tedium of writing 

the 1’s and 0’s required of machine language), to do this.  Once you have the program in 

the high level language, you use a ‘compiler’ or ‘interpreter’ program to ‘implement’ 

your new program on the machine.  The product of this implementation of a high-level 

program is what Cummins means by the device CHESS.  It is this product, the device 

CHESS, that you play your games of chess against.  Again, the device CHESS is not the 

high-level program; it is the implementation of the program.  So, returning to the original 

point, Cummins claims that though rules like IF IT IS EARLY IN THE GAME THEN 

DEPLOY THE QUEEN are represented in the high-level program as it sits 

‘uninterpreted’ on the disk, they are not represented in the device CHESS implemented 

on the machine.   

8 



 

 Cummins’ notion of the device CHESS executing, without representing, the rule 

(R) relies heavily on understanding how a computer ‘compiles’ or ‘interprets’ and then 

executes a program.  If we can clearly grasp these notions of compiling, interpreting and 

executing a high-level program, we will discover a problem with this analysis.    

 

3.  Why Cummins’ Solution Won’t Work for Digital Computers 

Compilers and interpreters are examples of programs called translators.  Imagine for a 

moment the sort of job that a human translator does -- expressions written or spoken in 

one language are translated, with the goal of preserving meaning, into another language.  

Translator programs operate on similar principles: 

 
 A translator is a program that takes as input a program written in one 
programming language (the source language) and produces as output a program 
in another language (the object or target language).  If the source language is a 
high-level language such as FORTRAN, PL/I, or COBOL, and the object 
language is a low level language such as an assembly language or machine 
language, then such a translator is called a compiler.  (Aho & Ullman, 1979, p. 1) 

 

Let’s look at a simple example of a translation.  Suppose we denote a statement in the 

high level language C+ by, say AC, where the subscript “C” indicates that the statement 

is in C+.  A compiler given this statement will produce a statement, call it AM, in 

machine language (the object language) which the computer can run directly.  AM will be 

made up entirely of 0’s and 1’s, but it is a sequence which represents the same rule in 

machine language as AC did in C+.  Thus if AC is the statement X=1+1, for example, 

then AM will be a direct translation of that statement in the 0’s and 1’s of machine 

language.  

 Note that interpreters are also translators, that is, they take high-level program 

languages and translate them into lower-level languages, but they operate slightly 

differently from compilers.  (Other examples of translators are assemblers and 

9 



 

preprocessors.)  For the purposes of understanding the example of a chess-playing 

computer, just about any type of translator will do.  I will stick with the most common 

type of translator, a compiler, in this discussion. 

 Now that we have a handle on compiling a high-level programming language, we 

can understand how such a program is executed: 

 
 Executing a program written in a high-level programming language is 
basically a two-step process, as illustrated in Figure 1.  The source program must 
first be compiled, that is, translated into the object program.  Then the resulting 
object program is loaded into memory and executed. (Aho & Ullman, 1979, p. 
1,2) 

 

 

Compiler

Object 
Program

Source 
Program

Object 
Program

Object 
Program 

Input

Object 
Program 
Output

 

 

 

Fig. 1.  Program Compilation and Execution 

 

The second step in executing a program is important.  It involves the object program 

(written in machine language) residing in memory -- this memory is local to the Central 

Processing Unit, or CPU -- and then being executed by the CPU.  As the second part of 

Figure 1 shows, the object program takes input and produces output.  That is, it is the 

object program, written in machine language, which is executed. 

10 



 

 But now that we have these notions of programming language, object language, 

translation, compilation, and execution in hand, we can see a problem with Cummins’ 

analysis of inexplicit information.  Recall that, at the level of the program  (written in a 

high-level language) that CHESS runs, the rule (R), IF IT IS EARLY IN THE GAME 

THEN DEPLOY THE QUEEN, is represented by an instruction in the program.  At the 

level of the device CHESS, on the other hand, the rule (R) is not represented, but is 

executed.  This is because CHESS is not itself a program, rather it is the implementation 

of the program -- a product of interpreting or compiling the high-level program -- which 

Cummins calls the device CHESS.  Thus, though there is an instruction representing the 

rule (R) in the high-level program, there will not, according to Cummins, be a 

representation of (R) in the device CHESS which executes the program.   

 Here is where the problem surfaces.  We now know that when a high-level 

program is compiled, or interpreted, the result will be a second program, the object 

program, written in machine language.  This object program is a translation of the high-

level program.  Thus if the high-level program contained a representation of a rule (R) 

written in it, then the object program will contain a translation of (R), written in it.  

Therefore the object program also has a representation in it -- a representation of the rule 

(R).  To illustrate this point, let’s return to an earlier example.  Suppose our chess playing 

program is written in the language C+.  Recall that the statement “if n ≤ 10 {q1 = x };” is 

an instruction in the high level language C+ that represented the rule IF IT IS EARLY IN 

THE GAME THEN DEPLOY THE QUEEN.  Now, according to Cummins, this is a 

representation in the program, but not in the device CHESS.  But to get the device 

CHESS, we must implement it on the machine.  In order to implement it we must 

compile the high-level program.  We do this.  Now we have the object program residing 

in memory local to the CPU.  But now note the following.  We look in the object 

program, and lo and behold, there is an instruction, say  “0110010001110001”, which is a 

11 



 

direct translation of the statement “if n ≤ 10 {q1 = x };”.  This is because our compiler 

directly translated the instruction “if n ≤ 10 {q1 = x };” which was written in the high-

level language C+.  And this translated instruction is a representation of the rule (R).   

 Now recall Figure 1.  Note that the product of compilation (or interpretation) is 

not just an abstract device -- it is an object program.  Furthermore, this program, by 

virtue of the compiler, contains instructions which represent the same rules that the high-

level program being translated did.  Thus, what is implemented on the computer is not an 

abstract device without representations, instead, what is implemented is a new program, 

complete with lots of representations.  In particular, if rule (R) is represented in our high-

level program as “if n ≤ 10 {q1 = x };”, then it will be implemented in our new object 

program as the instruction “0110010001110001”, where this instruction also represents 

the rule (R).  Thus the device CHESS, what is implemented on our computer, has 

representations of the rule (R) after all, contrary to Cummins' claims that it did not. 

 Cummins reply to this surely must be that the device CHESS executes the rule 

(R), it doesn’t represent it.  Executing and representing are entirely different matters.  But 

this reply hinges entirely on what a device is.  For if a device contains a representation of 

a rule within it, as part of the device, then it is false to say that by executing a rule the 

device doesn’t represent the rule.  For the rule is still represented by the device by the 

instruction residing within the device.   

 To see this, note that there are exactly three possibilities for Cummins as to what 

the device CHESS is.  Upon compilation of the high-level program, only two entities are 

required for execution of a program:  the object program and the CPU.  And these two 

entities considered alone, or considered together, add up to the following three possible 

devices:  (1)  the object program by itself is the device CHESS;  (2)  the CPU by itself is 

12 



 

the device CHESS; or, (3)  the object program together with the CPU is the device 

CHESS.4  Let’s consider each of these in turn. 

 First, let us consider possibility (1).  Is the object program by itself the device 

CHESS?  Suppose it is.  But then there are two problems.  First, the object program 

contains a representation of the rule (R), and as we know by now, the device CHESS 

should not contain any representations of this rule.  Second, the object program by itself 

can’t execute anything.  It needs a CPU to run it.  Since we know from Cummins that the 

device CHESS executes, then the object program by itself won’t do, since it can’t execute 

anything. 

 Second, let us consider possibility (2).  Is the CPU by itself the device CHESS?  

Suppose it is.  But then there is a problem.  For a CPU that sits by itself, with no program 

written in machine language in local memory for it to run, will sit there idly forever.  

CPU’s are entirely deterministic; they don’t do anything until told to, and what they are 

told to do is precisely what is contained in the program written in machine language 

residing in their local memory -- a program chock full of rules like (R).  But we are 

considering the possibility that the device CHESS is the CPU alone, without such a 

program.  Of course, if this is the case, then the CPU will never execute anything.  Still 

further, suppose again that the CPU by itself is the device CHESS.  But then it would 

have been the device CHESS even before we ever loaded a chess-playing program onto 

our machine.  And this conclusion is absurd. 

 This leaves us with possibility (3).  Is the object program together with the CPU 

the device CHESS?   Suppose it is.  Then it can execute the rule (R), as required.  So far, 

so good.  Indeed, it can execute the object program just as the definition of execution 

given separately above requires.  Even better.  But now also note that the device CHESS 

contains, as a part, the object program.  Thus the object program contains within it a 
                                                 
4Note that nothing else can be the device CHESS.  The operating system, interpreter/compiler and the 
high-level program have already been ruled out by Cummins.  See pp. 122 and 123. 

13 



 

representation of the rule (R).  But then the device CHESS contains within it a 

representation of the rule (R).  And this, as we by now know fully well, contradicts the 

claim that “CHESS simply executes the rule without representing it at all”. 

 

4.  A Visit to the Chinese Room 

It is worth visiting Searle’s famous Chinese Room for a moment to see if the key to 

inexplicit information resides within.  The Chinese Room merits a visit because, for 

Searle, it is a room completely devoid of meaning, or representational content.  On the 

face of it, this is a similar situation to that we've been considering:  namely, that the rules 

in a computer's program are inexplicitly represented when executed.  The reader may 

recall that the occupant of the Chinese Room is given a batch of Chinese writing, and 

after checking some rules, hands another batch of Chinese writing out of the room.  The 

occupant knows no Chinese.  For the purposes of this discussion I replace the occupant of 

this room with one who receives expressions in the computer language C+ and sends out 

(after consulting a table), appropriately translated lines of code in machine language.  

The new occupant is thoroughly computer illiterate -- to him the expressions he receives 

in C+ are so many meaningless squiggles and the machine language instructions he 

passes on out of the room are so many meaningless squoggles.5  Thus the new occupant 

plays the role of a compiler as discussed above, though he doesn’t know it. 

 Our occupant also understands nothing regarding the computer program he is 

translating -- that it is a chess-playing program, that it was written in C+, and so on.  

Perhaps then, this room can now behave as the device CHESS described above was 

intended to behave.  That is, the Chinese Room will execute the rule (R), IF IT IS 

EARLY IN THE GAME THEN DEPLOY THE QUEEN, without representing it.  Even 

though there is an instruction representing the rule (R) in the high-level program handed 
                                                 

5Here I use the technical terminology of 'squiggles' and 'squoggles' introduced in (Searle, 1980). 

14 



 

into the room, there will not be a representation of (R) in the room when the program 

executes.  Hence, semantic properties vanish in the room after the compilation takes 

place, perhaps in a manner amenable to Cummins’ formulation of inexplicit information. 

 After a thorough walk-through and inspection of the Chinese Room however, I 

find it has little to offer in saving the notion of inexplicit information that we have been 

examining.  Let me make two points to justify this claim. 

 The first point is that for Searle, the occupant of the room understands nothing 

about the computing job he is performing for his (external) programmers.  Searle uses 

this fact as a way to show that a computer has no beliefs, or other attitudes we normally 

associate with intentional beings.  But this is no different from the compiler described 

earlier, which blindly (but nomically) translated statements from C+ to machine 

language.  As far as I know, no extant computer understands its operations in the way 

Searle requires.  Certainly my compiler doesn’t understand (or need to) that is is 

compiling instructions for a chess-playing program, or that there is a rule in the program 

telling it to get its queen out early.  This, I take it, is not an issue, and so the Chinese 

Room offers no help for inexplicit information here. 

 The second point is that representation in a computer can take other forms than 

those Searle concentrates on.  For example, Searle will insist that the statement “if n ≤ 10 

{q1 = x};” that is handed to the occupant in the room will not represent anything -- to the 

occupant.  But this does not mean the written statement, the actual physical token 

manipulated by the occupant, does not represent anything.  Indeed, both Cummins and I 

have accepted throughout the above that this statement written in C+ did represent 

something to the programmer, namely the rule (R):  IF IT IS EARLY IN THE GAME 

THEN DEPLOY THE QUEEN.  This is a representational content we have assigned by 

convention to this statement given our goal to write a chess-playing program that gets its 

15 



 

queen out early.6  The statement was assigned this representational content given the rest 

of the program, and our goal.  Of course this same line could occur in numerous other 

computer programs and not represent anything like the same thing.  

 But what about the statements in machine language that the inhabitant passes out 

of the room after translating them?  Do these represent anything?  Before I answer this 

question, consider the following story.  I call up my wife at her workplace and leave a 

message on her voice mail, saying “I mailed the package to your brother this morning.”  

Later in the day she listens to the message and gets the information.7  Now, in this 

exchange, informational content flowed through various media before it reached the 

intended recipient, and translation occurred at many stages along the way.  Acoustic 

signals generated by my speaking into the phone were picked up by the phone, translated 

into analogue electrical signals and transmitted to a phone exchange substation; these 

signals were then transmitted to my wife’s voice mail, where they were compressed, 

converted to digital form, and stored; and when she listened to the mail, these digital 

signals were translated back to analogue form which drove the speaker in her phone to 

play back my spoken message.   

 In this example I maintain that the original informational content has been 

preserved throughout the various stages of transmission and translation, and despite the 

various physical media transmitting and storing the states carrying this information.  The 

information is transmitted, translated, and stored due to nomic relations between the 

various operating parts of the system.  Neither I nor my wife know the exact details of 

                                                 
6A clear discussion of representational categories may be found in (Dretske, 1988).  Representations 
according to agreed conventions are called Type I representations, according to the hierarchy of 
representations Dretske develops. 
7Though 'representation' and 'information' are used interchangeably in this article (see footnote 2), I prefer 
to use 'information' when the content is true, as I'm assuming in this example.  Besides, it just seems more 
natural to say that phone lines carry information rather than representations, though frankly, I'm sure just 
the opposite is true. 

16 



 

this transmission, translation and storage, but we don't need to.8   As long as the nomic 

relations are as they should be for phone lines, exchange stations, digital storage media, 

phone speakers, etc. in the phone system, the information will be delivered.  It is not only 

the acoustic signals (which sound like my voice) which carry the information “I mailed 

the package to your brother this morning”, it is also the electrical impulses and digital 

disk patterns which carry this information.9  And again, they carry this information 

because of nomic relations between the various parts of the phone system which were 

designed to transmit phone conversations. 

 In the same fashion, the statements in machine language that the occupant passes 

out of the Chinese Room after translating them will represent what the statements handed 

to him in C+ represented.  The machine language statements passed out of the room will 

include the representation of the rule (R), IF IT IS EARLY IN THE GAME THEN 

DEPLOY THE QUEEN, since there was a statement representing that rule in the high-

level program handed to the occupant.   And this is because, by hypothesis (given us by 

Searle) there is a nomic relation ensuring that the statement handed to the occupant “if n 

≤ 10 {q1 = x};” will be translated to its machine-language instruction 

“0110010001110001”.   In a computer, this translation will occur just as dependably, and 

not just by hypothesis, since (de-bugged) compilers tend to be very reliable.  In the 

Chinese Room, Searle ensures us by his hypothesis of the very same degree of reliability 

-- it is just delivered a bit more slowly, since the translation is delivered by ‘meatware’ (a 

person) rather than ‘hardware’ (a CPU).  Thus the machine language statement will also 

represent the rule (R), by virtue of a nomic relation realized by the compiler, whether that 

compiler be instantiated in meatware or hardware.   

                                                 
8As correctly pointed out in (Dretske, 1981), our knowledge of these processes of transmission and 
translation is irrelevant to the accurate delivery of the information. 
9Due to the Xerox principle of information (If A carries the information that B, and B carries the 
information that C, then C carries the information that C), the information content will be conserved at the 
various stages discussed in the example.  See (Dretske, 1981). 

17 



 

 

5.  Conclusion 

We have seen that there are three possibilities for Cummins as to what the device CHESS 

is.  We have also seen that none of these three meet his criteria for what this device 

should do:  namely, execute a rule (R) without representing it.  Thus the device CHESS 

does not exist as Cummins imagines it.  We have also seen that analogies with the 

Chinese Room argument do not save the notion of inexplicit information.  And this 

means that the strategy of attributing inexplicit information to a chess-playing computer 

by virtue of the computer executing a rule (R), where (R) is an instruction in a program, 

fails.   

 This conclusion means that if Dennett’s chess playing computer carries inexplicit 

information, it does so for different reasons than those examined here.  Nevertheless, 

Cummins gives us something worth thinking about when he says we can rightly 

intentionally characterize a system, even though the propositional contents of our 

characterizations are not ‘tokened’ (explicitly represented) in the system.  Moreover, this 

inexplicit content, being somehow “lodged in . . . physical facts” is a lot closer to doing 

some real causal work than mere ‘emergent’ contents are.  So now at least we have seen 

an alternative to Dennett’s view, though I believe it is an alternative that fails.   

 

18 



 

References 

 

Aho, A. and Ullman, J. (1979), Principles of Compiler Design, Reading, MA:   Addison 

Wesley. 

Cummins, R. (1986), ‘Inexplicit Information’, in M. Brand and R. Harnish, eds.,  The 

Representation of Knowledge and Belief , Tucson, AZ:  University of Arizona Press, 

pp. 116-126. 

Dennett, D. (1978), Brainstorms, Cambridge, MA:  MIT Press. 

Dennett, D. (1987), The Intentional Stance, Cambridge, MA:  MIT Press. 

Dretske, F., (1981), Knowledge and the Flow of Information, Cambridge, MA:  MIT 

Press. 

Dretske, F., (1988), Explaining Behavior, Cambridge, MA:  MIT Press. 

Searle, J., (1980), ‘Minds, Brains and Programs’, The Behavioral and Brain Sciences 3, 

pp. 417-424. 

19 


	Introduction

