Does Temperature have a Metric Structure?”
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Abstract

Is there anything more to temperature than the ordering of things from colder
to hotter? Are there also facts, for example, about how much hotter (twice as
hot, three times as hot...) one thing is than another? There certainly are—but
the only strong justification for this claim comes from statistical mechanics.
What we knew about temperature before the advent of statistical mechanics
(what we knew about it from thermodynamics) provided only weak reasons

to believe it.

1. The tea in the mug on my desk is hotter than the air in my office. And the
surface of the sun is hotter than the surface of the earth. Is there anything more
to temperature than these kinds of facts—facts about how things are ordered with
respect to temperature? Is it also true, for example, that the temperature difference
between the surface of the sun and the surface of the earth is some definite number
of times larger than the temperature difference between the tea and the air? Are
there, in general, also facts about the ratios of lengths of temperature intervals? Or,
instead, is it meaningless to ask what these ratios are?

If it does make sense to ask then (I will say) temperature has a metric struc-
ture. It is easy to see that temperature has a metric structure when one looks at what
statistical mechanics says temperature is. But do we need to appeal to statistical
mechanics to justify the claim that temperature has a metric structure? Statistical

mechanics, I will argue, provides the only strong justification for this claim. What
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we knew about temperature before the advent of statistical mechanics (especially
what we knew about it from thermodynamics) provided at best only weak reasons

to think that temperature has a metric structure.

2. The thesis I am defending might seem outrageous at first. One might be tempted
to argue against it like this: the temperature of the surface of the sun is close to
5700 Kelvin and the temperature of the surface of the earth averages something
like 300 Kelvin. That is a separation of 5400 Kelvin. But the temperatures of the
tea and the air are separated by less than 100 Kelvin. So the temperatures of the
sun and the earth are separated by an interval at least 34 times larger than the one
that separates the temperatures of the tea and the air. Someone who knows nothing
about statistical mechanics can arrive at this conclusion. All he needs is a good way
to measure temperature on the Kelvin scale (a scale that was established before
statistical mechanics was developed).

But the fact that the difference between the numbers the Kelvin scale assigns
to the temperatures of the earth and the sun is 34 times larger than the difference
between the numbers the Kelvin scale assigns to the tea and the air does not entail
that the first temperature difference itself is 34 times greater than the second, or
more generally that temperature differences stand in definite ratios. We have to be
careful when drawing conclusions about temperatures themselves from features of
the scale(s) we use to measure temperature.

When we use real numbers to represent the values of a physical quantity like
temperature we are using relations between the numbers to represent relations be-
tween the values of the quantity themselves. (Quantities like temperature are deter-
minables; by the value of a quantity I mean a property that is a determinate of that
determinable. One and the same value for temperature may be assigned O on the
Celsius scale, 32 on the Fahrenheit scale, and 273.15 on the Kelvin scale.) But not
every relation among the numbers represents a relation among the values. Take, for
example, the use of non-negative real numbers to represent masses on the kilogram
scale. The number 1 is mathematically special: it is the only number y satisfying
yx = x for all x. But there is nothing physically special about the mass value as-

signed the number 1 on the kilogram scale. So it is possible (for all that has been



said so far) that when we use the Kelvin scale (or any scale) for temperature, the
only aspect of the real numbers that does any representational work is the order of
the numbers—higher numbers correspond to hotter temperatures. If this possibility
is actual then in the Kelvin scale neither the function f(x,y,z,w) = |x — y|/|z — w|
that gives the ratio of the distances between two pairs of numbers nor the function
g(x,y) = x/y that gives the ratio of two numbers does any representational work.

The other possibility is that one or both of these mathematical functions does
do representational work in the scales we use to measure temperature. In this case
there are functions defined on the temperature values themselves, functions that give
the set of temperature values their structure, that are represented by the functions
on numbersE] The question I started with is: are there such structuring functions on
temperature values, or not

If there are such functions then there is some natural metric structure on tem-
perature values—a function on temperature values represented by one of the func-
tions on numbers f or g defined above lets us speak of the “distance” between two
temperature values, as measured with respect to some unit. That is why I use “tem-
perature has a metric structure” to express the claim that there are such functions.
Of course, temperature has more structure if there are objective, scale-independent
facts about temperature ratios—if there is a structuring function represented by g—
than it does if there are only objective, scale-independent facts about ratios of mag-

nitudes of temperature intervals (represented by f). In the first but not the second

'Perhaps at a more fundamental level the temperature values are given their
structure by a distinguished set of relations on temperature values, not a distin-
guished set of functions from temperature values to numbers. (This is, for example,
the view defended by Mundy (1987).) Even so, the distinguished relations pick out
a set of distinguished functions, and it is more convenient for my purposes to talk
about a distinguished set of functions.

Stevens (1946) introduced the distinction between ordinal scales, interval
scales, and ratio scales of measurement (see also Ellis 1966; Krantz et al 1971).
On an ordinal scale, only the order relations among numbers represent relations
among the values of the quantity being measured; on an interval scale, the function
f also does representational work; on a ratio scale, the function g also does repre-
sentational work. In Stevens’ terminology I am asking which of these scale-types
is appropriate for measuring temperature.



case there is a natural zero point for temperature. But the differences between these
two structures will not play a role in what follows, so I lump them together as kinds

of metric structure.

3. One might maintain that there neither are nor could be any physical quanti-
ties with metric structures. I shall call this thesis “conventionalism,” for the fol-
lowing reasonE] Whenever we set up a scale for measuring some quantity we
must establish some conventions. Conventionalists think that setting up a scale
requires more conventions than non-conventionalists do. Take, for example, length.
Non-conventionalists think that there are scale-independent facts about the ratios of
lengths. They take length to be a paradigm case of a quantity with a metric struc-
ture. If this is right then we only need to make one conventional choice in order to
set up a scale for measuring length. For a faithful scale for measuring length will
have the property that the ratios of the numbers assigned to length values are equal
to the scale-independent ratios of the corresponding values. So the only freedom
we have when setting up a scale (if the non-conventionalist is right) is freedom to
choose which length shall be assigned the number 1. Once we pick which length
value § this is (say by legislating that S is the length value instantiated by a certain
bar made of platinum-iridium alloy under certain conditions), anything else’s length
will be //S, the (scale-independent) ratio of that thing’s value [ for length to S ﬂ
Conventionalists do not think that this procedure succeeds in setting up a
scale for measuring length. For they deny that there are scale-independent facts
about length ratios. So an utterance of “Let our scale assign to each length value

3] also call it “conventionalism” because it resembles claims that conventional-
ists like Henri Poincaré made. I am not sure whether Poincaré actually accepted
this thesis (see for example Poincare 1905, 17-28). Reichenbach (1957, 14-30) also
claims to find more conventions than we might originally have thought existed in
our measurement practices.

“I suspect that this non-conventionalist view of length is also the majority view.
It is certainly the view of the International Bureau of Weights and Measures. Its
brochure on the international system of units says ‘“The value of a quantity is gener-
ally expressed as the product of a number and a unit. The unit is simply a particular
example of the quantity concerned which is used as a reference, and the number is
the ratio of the value of the quantity to the unit” (2006, 103).
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[ the number that is the (scale-independent) ratio of / to S has a false presupposi-
tion. Conventionalists think that we need to establish more conventions, besides a
conventional choice of standard, in order to assign a unique number to each length
value.

Here is the sort of thing a conventionalist might do to set up a scale for mea-
suring length. He starts, as the non-conventionalist does, but selecting a particular
thing—a particular metal bar in this case—to be the scale’s standard for length.
Then he stipulates that a length / shall be assigned a positive integer n iff n copies
of the standard, laid end to end, reach exactly from one end to another of anything
that instantiates /. (There is a natural way to complete this scale so that each length
value is assigned some positive real number.) This last stipulation is an additional
convention.

Now, the conventionalist and the non-conventionalist who use the scales de-
scribed above will agree on the lengths of things—as long as there is nothing funny
going on. So it is worth emphasizing the differences between their views. The
conventionalist will insist that even after a standard has been adopted he was free
to adopt an alternative convention for assigning numbers to lengths and still have
a scale that faithfully represents the structure of length. The non-conventionalist
will deny this; those alternative conventions result in scales that are not faithful.
The non-conventionalist will also say that the convention the conventionalist actu-
ally adopted makes what is as a matter of contingent fact a reliable procedure for
finding out the lengths of things into a procedure that is reliable by definition. (The
conventionalist has made it true by definition that metal bars do not change their
length when they are moved around.)

Of course one might deny that length has a metric structure without being
a conventionalist. Conventionalists believe that no possible quantity has a metric
structure. If conventionalism is true then it follows, of course, that temperature in
particular does not have a metric structure. So the debate over conventionalism is
certainly relevant to the topic of this paper. But arguments for conventionalism are
general, all-purpose arguments that apply to any possible quantity. And I am inter-
ested in what we should think about the structure of temperature on the assumption

that it is at least possible for a quantity to have a metric structure. So I am going



to assume that conventionalists’ all-purpose arguments do not succeed. We need to
look at what temperature is and how it works before we can reach any conclusions

about its structure.

4. 1 will begin investigating what we should think about the structure of tempera-
ture in ignorance of statistical mechanics by looking (in this section and the next)
at the scales we use to measure temperature. As we saw in the last section, the
conventions we make when we establish a scale for measuring some quantity make
presuppositions about the structure of that quantity. So what do temperature scales
presuppose about the structure of temperature?

This discussion is really just a prelude to my discussion of thermodynamics.
As we will see, none of the temperature scales we have used presuppose that tem-
perature has a metric structure. But even if one of them did, the fact that it did would
by itself not establish much: we would need to know what reason there is to believe
that the presupposition is correct. So why am I discussing temperature scales at
all? Because what reason there is in thermodynamics to think that temperature has
a metric structure comes from the role the Kelvin scale plays in that theory. So it is
worth going over how that scale is established and what its presuppositions are. But
before discussing the Kelvin scale I will discuss the “empirical” scales the preceded
it.

We have already seen what presuppositions are made when we establish a
scale for measuring a quantity with a metric structure. It will be useful to have
that example in mind when we look at temperature scales. For the way early scales
for measuring temperature were set up is very different from the way the scale for
measuring length is set up. Those scales for temperature did not presuppose that
temperature has a metric structure.

A mercury-based centigrade scale for measuring temperature, for example, is
set up as follows. A small amount of mercury is encased in an otherwise evacuated
glass bulb from which a very thin cylinder extends. A mark is made on the cylinder
indicating the point to which the mercury extends when the bulb is placed in thermal
contact with boiling water and allowed to settle into thermal equilibrium. This is

the 100 mark. Another mark is made on the cylinder indicating the point to which



the mercury extends when the bulb is placed in thermal contact with melting ice
and allowed to settle into thermal equilibrium. This is the O mark. The idea is that
a given thermodynamic system’s temperature on this scale will be proportional to
the ratio of two distances. Let p be the point on the cylinder coincident with the top
of the mercury column when the bulb is placed in thermal contact with the system.
We decree that that the number measuring the system’s temperature on this scale is
equal to 1003—;, where d1 is the distance between the 0 mark and p and 42 is the
distance between the 0 mark and the 100 mark. (That is its temperature if p is above
the 0 mark; its temperature is —100% if p is below the 0 mark.

We can see that the presuppositions about temperature made here are dif-
ferent from the presuppositions made about length (by non-conventionalists). The
numbers assigned to lengths on the meter scale are defined in part in terms of the
(scale-independent) ratios of length values. But no ratios of temperature values, or
ratios of lengths of intervals of temperature values, are used to define the numbers
assigned to temperatures on this scale.

We might, of course, believe that temperature has a metric structure, and
wonder whether the mercury-centigrade scale faithfully represents that structure.
(We might wonder, that is, whether the result of applying the function |x—y|/|z—w]| to
numbers this scale assigns to temperatures is always equal to the scale-independent
ratio of the lengths of the corresponding temperature intervals). Many scientists in
the late 18th and early 19th century did believe and wonder just these things. (Some
of them wondered this because they accepted the caloric theory of heat, which (we
will see below) says that temperature has a metric structure). For example, Johann
Lambert wrote that “One hesitates as to whether the actual degrees of heat are really
proportional to the degrees of the expansion” of the substance in the thermometer.

Similarly, Joseph Gay-Lussac wrote that “The thermometer as it is today cannot

>The mercury-based centigrade scale is not the same as (what we currently call)
the Celsius scale. Both assign 0 to water’s freezing point and 100 to its boiling
point (under standard conditions), but they differ over how intermediate numbers
are assigned. The first scale assigns intermediate numbers so that (by definition)
mercury expands linearly with temperature. Mercury does not expand linearly with
temperature on the Celsius scale. By definition, something’s temperature in Celsius
is just its temperature in Kelvin, minus 273.15.



serve to indicate the exact proportion of heat, as we do not yet know what relation
there is between the degrees of the thermometer and the quantity of heat which it is
supposed to indicate. We generally believe, it is true, that equal divisions of the tube
represent equal quantities of the caloric, but this opinion is not founded on anything
positive.’ﬂ Still, even if scientists frequently wondered whether temperature scales
like the mercury-based centigrade scale correctly represent the metric structure of
temperature, it is nevertheless true that the presuppositions made when setting up
these scales leave it open whether there is a question to be answered here at all.

As a matter of historical fact, different centigrade scales were set up using
different substances (mercury, alcohol, ...). And the result of applying the function
|x — y|/|z = w| to the numbers the mercury scale assigned to some temperatures was
not the same as the result of applying it to the numbers the alcohol scale assigned
to the very same temperatures. So if temperature does have a metric structure at
most one of these scales faithfully represents that structure. But without further

theoretical input there is no way to decide which, if either, is faithful.

S. So far I have discussed the presuppositions made when setting up “empiri-
cal” temperature scales, scales that correlate temperature changes with properties
(like volume changes) of particular substances (mercury, alcohol, air,...). Famously,
William Thomson (later Lord Kelvin) proposed a scale for measuring temperature
that did not make reference to the properties of any particular substance. (That is
what is meant by the claim that his scale is an absolute temperature scale.) So what
about Kelvin’s scale? Does that scale presuppose that temperature had a metric
structure?

Here is a brief description of the way the Kelvin scale is established. It is
based on a theorem in thermodynamics. Consider heat engines that work in a cycle

between two heat reservoirs at different temperatures: they absorb some amount

®Both of these quotations appear in Ernst Mach’s “Critique of the Concept of
Temperature,” originally published 1896. An English translation appears as Ap-
pendix I of (Ellis 1966). The quotations appear on page 190 of that version. Chang
(2004, 60-62) has more on early scientists’ worries about the adequacy of their
scales for measuring temperature.



of energy Q) from a hot reservoir, do work, expel some amount of energy Q. to a
cold reservoir, and return to their initial state. The values of Q;, and Q. are different
for different heat engines; they depend on how efficient the engine is. But Sadi
Carnot proved that among all heat engines working between two heat reservoirs,
reversible heat engines are maximally efficient. Thomson decreed, in effect, that the
numbers assigned to temperature values on the Kelvin scale shall have the following
property: if T and T, are the numbers assigned by the scale to the temperatures of

two heat reservoirs (and 7 is assigned to the hotter reservoir), then

I _ O

T, 0
where Q; is the energy absorbed from the hotter reservoir in one cycle by a re-
versible heat engine (that works between the two reservoirs), and Q, is the amount
of energy expelled to the colder reservoir in one cycle.

This constraint on the ratios of numbers assigned to temperatures is not yet
enough to establish a temperature scale. But all that remains is to decree (arbitrarily)
what number shall be assigned to one particular temperature. By convention 273.16
is assigned to water at its triple point.

Although Kelvin’s scale is “absolute” the stipulations that establish it do not
presuppose that temperature has a metric structure. (It certainly does not explicitly
presuppose this. It does, of course, presuppose Carnot’s theorem, and one might
wonder whether Carnot’s theorem presupposed this. It does not either; I will return
to this in the next section.) Instead of presupposing that there are scale-independent
facts about temperature ratios, the Kelvin scale is set up by first assigning ratios
to numbers representing temperatures using ratios of energies. All this scale pre-
supposes about the metric structure of any quantity, then, is that there are scale-
independent facts about ratios of energies.

None of the temperature scales we have looked at presuppose that temperature
has a metric structure. And there is no more recent temperature scale that might
have different presuppositions; the Kelvin scale is still the scale sanctioned by the
International Bureau of Weights and Measures. But even though the Kelvin scale

does not presuppose that temperature has a metric structure, one might think that



the Kelvin scale’s special properties do provide reason to think that temperature has
a metric structure. I will return to this thought below.

Before proceeding with my argument I want to say something about why
scientists who believed that temperature had a metric structure set up scales for
measuring temperature that did not presuppose this.

A temperature scale is just an assignment of numbers to temperatures, and a
faithful scale is one that faithfully represents the structure of temperature. There
is nothing in the definition of “scale for measuring a quantity” that entails that it
is within our power to use that scale to measure the value anything has for that
quantity. It is possible, therefore, to set up a scale for measuring temperature that
is completely impractical: a scale which is such that it is impossible for anyone to
learn what temperature anything has on that scale.

It is not hard to see how to set up an impractical scale for measuring some
quantity. We could set up an impractical length scale by choosing as our standard
for length something to which we have no access—say, the height of the first human
to set foot on Mars. Supposing humans do colonize Mars (and there is a single first
human who gets there), each thing is assigned a length on this scale. But none of
us can know how tall he is on this scale.

No temperature scale presupposes that temperature has a metric structure sim-
ply because (in the absence of theoretical advances) we could never determine what
number any temperature value is assigned on such a scale. Even if we firmly be-
lieved that temperature has a metric structure, it is completely impractical to set
up a temperature scale that by saying that the number that measures something’s
temperature on that scale is equal to 273.16+-, where v it that thing’s value for tem-
perature and W is water’s value for temperature at its triple point. The problem is
that temperature is not a quantity we can directly measure. The scales we do use do
not suffer from this problem. On them we can measure temperature indirectly, by
finding the value for some other quantity (the volume of a gas for example) that we

can measure directly.

6. It is time to turn to the main part of my argument. If there were reasons to think

(before the advent of statistical mechanics) that temperature has a metric structure,
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those reasons are to be found in the theories that existed prior to the development of
statistical mechanics in which temperature plays a role. What do those theories tell
us? After briefly discussing the caloric theory of heat I will turn to thermodynamics.

Before we can know what a theory says about the structure of temperature
we need to know where in a theory to look for this kind of information. And there
are several ways in which a theory can indicate something about the structure of
temperature.

One way a theory can do this is by explicitly saying what temperature is. The
caloric theory is an example of an early (and false) theory that does this. Actually,
there were several different caloric theories; but for our purposes it is enough to
work with a simplified version of one of them[] Now if one body is hotter than
another then “heat will flow” from the first body to the second when they are put
into thermal contact. The caloric theory explains this phenomenon by postulating
the existence of a fluid—caloric—and identifying the temperature of a body with
the density of the caloric fluid in that body. (Higher temperatures just are higher
densities of caloric.) Caloric flows from regions of high caloric density to regions
of low caloric density; so this theory has temperature behaving the way it should.

If the caloric theory is true then temperature has a metric structure. For the
density of caloric in a body is just the amount of caloric divided by the volume of
the body, and both volume and (presumably) amounts of caloric are quantities with
metric structures.

But the caloric theory is false. So it is no guide to the structure of tempera-
ture. The theory we should be looking at, of course, is thermodynamics. Like the
caloric theory, thermodynamics is false. But statistical mechanics assigns the false
statements of thermodynamics extremely high probabilities. So it is close enough
to being true to take what the theory says about temperature as good evidence about
the structure of temperature.

But (unlike caloric theories) thermodynamics does not explicitly tell us what

’See (Chang 2004, 170-2) for brief descriptions of the dominant caloric theories.
The simplified theory I present is closest to the Irvingist’s theory; the main differ-
ence is that the Irvingists define a body’s temperature as the total caloric contained
in the body divided by the body’s heat capacity, not by its volume.
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temperature is. It does not identify temperature with a combination of other quan-
tities. Instead, thermodynamics tells us how temperature behaves—it formulates
laws involving it. (Maybe by doing this it implicitly tells us what temperature is:
it is whatever quantity plays the right role in its laws. But that is no help, since it
was not until the development of statistical mechanics that we knew which quantity
that was and could check directly whether it has a metric structure.) Does thermo-
dynamics contain any information about the structure of temperature? It does, but
the information is harder to extract. We need to look at what the laws of thermody-

namics presuppose about the structure of temperature.

7. Even if thermodynamics does not tell us what temperature is, it can still be
a guide to the structure of temperature. Consider the case of electromagnetism.
Electromagnetism does not say anything helpful about what electric charge is. It
does not identify electric charge with a combination of other, more fundamental
quantities (the way, for example, it identifies electric current with the amount of
charge that passes per unit time). But we can still see that electric charge has a
metric structure by looking at the laws of electromagnetism. Those laws presup-
pose that electric charge has a metric structure. So if the laws of thermodynamics
presuppose that temperature has a metric structure, then (since thermodynamics is
approximately true) temperature does in fact have a metric structure.

There are (at least) two kinds of “laws” of thermodynamics in which temper-
ature appears. It appears in the laws of thermodynamics properly so-called. And it
also appears in equations of state like the ideal gas law.

I am going to discuss what the laws of thermodynamics properly so-called
presuppose about the structure of temperature first. I am going to proceed this way
because I do not see how the ideal gas law (for example) could indicate anything
about the structure of temperature than the laws of thermodynamics do not. I will
return to equations of state later.

Temperature appears in the zeroth, second, and third laws of thermodynamics.
The zeroth law of thermodynamics ensures that it is consistent to say that there is
such a quantity as temperature. That there is such a quantity as temperature entails

that if @ and b have the same temperature, and so do b and ¢, then a and ¢ also
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have the same temperature. But two bodies have the same temperature if and only
if they are in thermal equilibrium. These two claims are consistent only if thermal
equilibrium is an equivalence relation. And that is what the zeroth law says. But
the zeroth law does not say anything more about the structure of temperature.

The third law of thermodynamics says that no thermodynamic system (or part
of a thermodynamic system) may be cooled to absolute zero (in a finite number of
operations). The third law, therefore, says that the (physically realizable) tempera-
tures are bounded from below. This law places restrictions on the order type of the
temperature values. But it does not presuppose that the temperature properties have
a metric structure.

So what about the second law of thermodynamics? It is more complicated
to say what the second law of thermodynamics presupposes about the structure of
temperature, because there are many statements of the second law. I will start by
looking at two of the most famous statements of the second law: Kelvin’s statement

and Clausius’s statement. Their statements may be paraphrased as follows:ﬂ

(K) No cyclical process is possible whose sole results are the transfer of energy

by heating out of some heat reservoir and the performance of work.

(C) No cyclical process is possible whose sole result is the transfer of energy by
heating out of a colder body and the transfer of energy by heating into a hotter
body.

It is clear that neither of these statements presuppose that temperature has a metric
structure. Kelvin’s statement does not mention temperature differences at all. Clau-
sius’s statement does, but it presupposes only that bodies are ordered from lower to

higher temperatures. The magnitudes of temperature differences play no role in it.

8. The most well-known statement of the second law of thermodynamics uses the

concept of entropy:

(E) For any process undergone by an adiabatically isolated system that begins

8Uffink (2001) has a comprehensive discussion of the many versions of the sec-
ond law.
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and ends in an equilibrium state, the entropy of the final state is not less than

the entropy of the initial state.

(A system is adiabatically isolated if energy cannot enter or leave it through heat-
ing; energy is permitted to enter or leave only through the performance of work.)
The word “temperature” does not even appear in (E) so it is not immediately ob-
vious what, if anything, (E) presupposes about the structure of temperature. But
(E) does employ the concept of entropy, which (in classical thermodynamics) is
defined in terms of temperature, so (E) may indirectly presuppose something about
the structure of temperature.

However, “presuppose” is not really the right word here. If (E) makes it
reasonable to believe that temperature has a metric structure it is not because (E)
presupposes that temperature has that structure. It is for a different reason. And, in
fact, figuring out what (E) indicates about the structure of temperature is not at all
easy. Let me explain why.

In standard presentations of classical thermodynamics (E) is not the funda-
mental statement of the second law. Instead, some other statement of the second
law that does not presuppose that temperature has a metric structure (like the Kelvin
or Clausius statements, or some generalization of them, like the one Serrin [1979]
uses) is used to prove that there is such a state function as entropy. Then it is proved
further that (E) is equivalent to those statementsﬂ Kelvin’s temperature scale plays
an important role in this proof.

I want to look at some of the details of this proof. But we are already in a
position to say a few things about what (E) might indicate about the structure of
temperature. There is some reason to think that (E) does not indicate that tempera-
ture has a metric structure. For (E) is derived from other statements of the second
law that do not presuppose that temperature has a metric structure. How could (E)
say, or presuppose, more about the structure of temperature than the principles from
which it is derived? If it did it would seem like something had come from nothing.

On the other hand, there is also reason to think that (E) does indicate that

“Technically, (C) and (K) are not equivalent, so are not both equivalent to (E).
But it took the recognition of the existence of negative absolute temperatures to see
this (see Uffink 2001, 325-30).
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temperature has a metric structure. For the Kelvin scale plays an important role in
the proof that entropy is a state function. Now suppose that the only scales that can
play this role agree with Kelvin’s on the ratios of numbers assigned to temperature
values. Then this class of scales is the unique class that plays an important and
foundational role in the theory. Maybe that makes it reasonable to think that there
are scale-independent facts about the ratios of temperature values. For if there are
such facts then we can explain why this class, and not some other class, plays this
important role. It plays this role because it is the class of scales that faithfully
represent the ratio structure of temperature.

That is why it is not clear what we should think about the structure of tem-
perature in the light of (E). To try to form a more settled opinion let us look more
closely at some of the details of the proof that entropy is a state function.

The entropy difference between two equilibrium states s; and s, is defined to

52
As:f Q
g T

where the integral is taken along any “reversible” path through the space of equi-

be

librium states that connects s; and s,. Here dQ is the one-form giving the energy
absorbed by heating during an infinitesimal change and 7 is the system’s tempera-
ture on the Kelvin scale (for typographical reasons I write “d(Q” without the bar on
the “d”; dQ is not an exact differential).

This definition of entropy makes sense only if we get the same result no matter
what path from s; to s, we choose. The proof that this is so usually proceeds, in
outline, as follows. First the second law (Clausius version) is used to prove Carnot’s

Theorem (mentioned above):

e No heat engine operating between two heat reservoirs is more efficient than a

reversible engine.

Now the efficiency of a heat engine operating between two heat reservoirs is equal

to 1 — Q./Qy. So Carnot’s theorem says that for any heat engine,
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where Q,. and Q,, are the energies absorbed and emitted by a reversible engine.
That is,

Qe Q. (1)
th Qh
If we use Kelvin’s scale to measure temperature, then by definition
QrC TC
== 2)
th Th
Equations (I)) and (2)) entail
o _0
T, T.

or, replacing Q. with —Q, so that Q. denotes the amount of ener at the engine
placing Q. with —Q, so that Q. denotes th t of energy that the eng

absorbs from the cold reservoir,

Z%so.

The next step (the details of which I omit) is to argue that, in general, for any cyclic

g

Now for any reversible cyclic process, both 9§dQ/ T <0 and 9§dQ/ T > 0. This
(together with the claim that any two equilibrium states can be connected by a
reversible process) implies that SEdQ/ T = 0, and this implies that fs Tz dQJT is

independent of path—entropy is a state function.

process (not just for heat engines),

What is important about this proof for our purposes is the following. Only if
T stands for the numbers assigned to temperatures on the Kelvin scale or a scale
similar to the Kelvin scale (a scale obtained from it by multiplying all numbers it
assigns to temperature values by some constant) is fs ‘:2 dQ/T independent of path.

Now I earlier presented an argument that this proof provides a reason to be-
lieve that temperature has a metric scale. That main premise at work in that argu-

ment is the following conditional:

(*) If scales of temperature similar to the Kelvin scale are the only scales that
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can be used to prove that entropy is a state function, then temperature has a

metric structure that these scales faithfully represent.

This is a plausible claim. However, I do not think its antecedent is true.

Consider the temperature scale that assigns to any temperature value the num-
ber —1/T, where T is the number assigned to that temperature value on the Kelvin
scale. This scale agrees with the Kelvin scale on how temperature values are or-
dered, but not on their ratios, or on the ratios of temperature intervals I will use
“1” to stand for the numbers assigned to temperatures on this new scale. This scale
can also be used to prove that entropy is a state function. For the integral — ﬁ ?2 7dQ
is independent of path, and is equal to the entropy difference between s; and s,. As
far as being of use to prove that entropy is a state function, then, the Kelvin scale
and the 7 scale work equally well. And that means we cannot appeal to (*) to justify
belief that temperature has a metric structure.

Of course if f(x) is any smoothly increasing (and so invertible) function from
numbers to numbers we can define a new temperature scale that assigns the number
f(T) to the value to which the Kelvin scale assigns the number 7. If we let “T”
denote numerical temperature values on this scale, then the integral fs ‘:2 dQ/f~\(T)
will be independent of path. So for each such function f we can define a tem-
perature scale that is a counterexample to the antecedent of (*). But if f is some
extremely complicated function then this might look like a trick. We apply f to
define the new scale, but then apply its inverse in the definition of entropy; it still
looks like the Kelvin scale is doing the real work.

But I do not think that the argument that appeals to the 7 scale is a trick. The
situation we are in with respect to 7 is this: there is a temperature scale (the Kelvin
scale) with the property that when you divide dQ by temperature on this scale you
get a differential whose integral is independent of path (and we use this integral to
define entropy); and there is another scale (the 7 scale) with the property that when

you multiply dQ by temperature on this scale you get a differential whose integral

107t also assigns all temperature values negative numbers. (Actually, it assigns
negative numbers to values to which the Kelvin scale assigns positive numbers. But
I am ignoring the existence of temperature values to which the Kelvin scale itself
assigns negative numbers).

17



is independent of path (and we use this integral to define entropy). When you put
it that way, it does not look like the proof that uses the 7 scale must be thought of
as parasitic on the proof that uses the Kelvin scale, or that it is the Kelvin scale that
is doing the real work. Multiplication is no more complicated, and no less natural,
than division.

So there are temperature scales that are equally useful when it comes to prov-
ing that there is such a state function as entropy, and those scales do not agree on
the ratios of numbers assigned to temperature values. I think this shows that look-
ing at (E) and the proof that entropy is a state function does not give us grounds for

believing that temperature has a metric structure.

9. Temperature appears in thermodynamics in places other than the laws of thermo-
dynamics. It also appears in equations of state, like the ideal gas law. Now I said
earlier that I do not see how the ideal gas law could indicate that temperature has a
metric structure if the fundamental laws of thermodynamics do not. Still, it is worth
looking in to how we should think about equations like the ideal gas law if we ac-
cept that the fundamental laws of thermodynamics do not indicate that temperature
has a metric structure.

One might use the ideal gas law to argue that temperature has a metric struc-
ture (and also establish that this structure is correctly represented by air thermome-
ters and not by mercury or alcohol thermometers) as follows. The ideal gas law is
PV = NkT. Thus when the pressure of a sample of gas is held constant its tempera-
ture is proportional to its volume. (This special case of the ideal gas law is Charles’
law.) So if a sample of gas is heated (at constant pressure) until its volume doubles,
then its temperature has also doubled. But to say that the temperature has dou-
bled is to say that the scale-independent ratio of the final temperature to the initial
temperature is two. Doesn’t this settle that there are scale-independent temperature
ratios?

Well, does it follow from PV = NkT that doubling a gas’s volume (at constant
pressure) doubles its temperature? Let’s think about what PV = NkT means (and
more generally what equations between physical quantities mean). It does notr mean

that the result of multiplying a gas’s value for pressure and its value for volume is
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identical to the result of multiplying its value for temperature and Nk. You can only
multiply numbers, and pressure values, volume values, and temperature values are
not numbers. They are properties that are assigned numbers relative to scales of
measurement. What PV = NkT means, then, is that the result of multiplying the
number that is assigned to the gas’s pressure value (on a certain scale) and the
number that is assigned to the gas’s volume value (on a certain scale) is identical
to the result of multiplying the number assigned to its temperature value on the
Kelvin scale and Nk[']

So it does not follow from PV = NkT alone that doubling a gas’s volume
doubles its temperature. This only follows if we also assume that temperature has a
metric structure that is correctly represented by the Kelvin scale (since it is relative
to that scale, and scales similar to it, that PV = NkT is correct). But this assumption
is just what is in question. So this argument that temperature has a metric structure
is circular.

There is, however, more to be said. The questions I have been asking about
the structure of temperature can (and have) been asked about other quantities. There
are analogous debates about what laws involving those quantities indicate about the
structure of those quantities. One famous example is duration: do durations have
a metric structure?E] Look at F = ma. There is an argument analogous to the one
I just gave that starts from F' = ma and concludes that accelerations have a metric
structure (and if they do, so do durations, in terms of which they are defined). And
there is an analogous reply: F = ma is true relative to one scale for measuring
duration (or, better, one coordinate system for time). If we wanted to use a different
coordinate system, we would have to use a different equation to express this law.
Maybe duration does have a metric structure (that is faithfully represented by one

of these coordinate systems), but that it is a law that F = ma does not give us reason

Usually we do not want to write equations in physics so that they are only true
relative to a particular scale for measuring a quantity. Instead write the equations
so that they are true relative to a whole family of similar scales (scales that agree on
the ratios of numbers assigned to quantity values). Equations like that are “dimen-
sionally homogenous.”

12Newton (2004) famously argued that they do; Barbour (1999) is a recent pro-
ponent of the view that they do not.
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to think so.

In the case of duration, however, this is not the end of the story. To settle the
issue we write Newton’s theory (including his second law) in a way that is valid in
any coordinate system whatever. This is the “generally covariant” formulation of
the theory (Friedman [1983, 71-124] has the details.) When we do that the temporal
metric appears explicitly in the equations expressing the theory. This is conclusive
evidence that in Newtonian mechanics duration has a metric structure.

One might hope that something similar can be done for the case of temper-
ature. Write the ideal gas law (and other equations of thermodynamics) so that it
is true no matter what scale we choose to measure P, V, and T. Then look to see
if metric structure for 7 appears explicitly in that formulation of the theory. But I
know of no formulation of thermodynamics like this. So we cannot use this strategy
to settle the question.

The best we can do, I think, is appeal to simplicity. The equations for thermo-
dynamics take on a relatively simple form when written relative to the Kelvin scale.
Perhaps this gives us some reason to think temperature has a metric structure that
is faithfully represented by the Kelvin scale. But these reasons are weak. (For one
thing, it is not obvious that these equations are less simple when written relative to

the 7 scale.)

10. When we turn to statistical mechanics there is a clear and straightforward case
to be made for the proposition that temperature has a metric structure. I will close
by rehearsing it.

Statistical mechanics, unlike thermodynamics but like the caloric theory, ex-
plicitly says what temperature is. In statistical mechanics temperature is not treated
as a fundamental quantity and is identified with a combination of more fundamental
quantities.

Statistical mechanics says that a body’s temperature is the derivative of its

internal energy with respect to its entropy (with external parameters held ﬁxed)E]

B1t does not say that a body’s temperature is the average kinetic energy of its
constituent molecules. This claim is false for many reasons; for one thing, there are
thermodynamic systems (ideal paramagnets, for example) that can have negative
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In symbols this is
1 aS

T OE

Of course, we can infer nothing from (3]) about the structure of temperature unless

3)

we know something about the structure of entropy. But statistical mechanics also
tells us what entropy is: the (Boltzmann) entropy of a system is the logarithm of the
number of possible microstates (or: the measure of the set of possible microstates)
of that system that are compatible with the system’s macrostate, times Boltzmann’s
constantm This quantity clearly has a metric structure. (The scale-independent
ratio of system A’s entropy to system B’s is r iff A has n” available microstates,
where n is the number of microstates available to B.) Energy also has a metric
structure. Since energy and entropy are quantities with metric structures, it follows
from (3)) that temperature is as well["]
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