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What is the special principle of relativity? One rough statement of the 
principle is

() Inertial, or unaccelerated, states of motion are observation-
ally indistinguishable.

We can make the principle clearer by expanding on what “observation-
ally indistinguishable” means. On one way of understanding this term, 
() is equivalent to

() If the same experiment is conducted in isolated laborato-
ries that are both moving inertially, the outcomes of those 
experiments must be the same.

But don’t take this talk of “experiments” in isolated “laboratories” too 
seriously. It is just a way of talking about isolated physical processes. 
Two particles orbiting their common center of mass far away from 
other matter may constitute an experiment conducted in an isolated 
laboratory, even though there is no physical laboratory housing them 
and no experimenter making measurements. Similarly, the outcomes 
of two experiments are the same just in case the physical systems that 
constitute the experiments are in the same final state, whether or not 
anyone could figure this out by making measurements. (By “final state” 
I mean “final state, intrinsically characterized”; two processes can be in 
the same final state even if, for example, they are moving at dierent 
velocities, or occurring in dierent countries.) 

Even with this precisification of “observationally indistinguishable,” 
there are two ways in which () is unclear. First, I haven’t said anything 
about which kinds of experiments we’re talking about. According to 
some histories of the principle of relativity, Galileo accepted some-
thing like () but limited it to “mechanical” experiments, while Einstein 
accepted something like () but extended it to all experiments, includ-
ing experiments involving electromagnetic phenomena. I am not 

. See [Brown and Sypel : ] and [Brown : –] for dissent.

ImprintPhilosophers’



   Local and Global Relativity Principles

’  –    – . , .  ( )

to do with whether there is any action at a distance. But the relation-
ship between local principles and action at a distance will come up in 
section .) There are also global relativity principles that apply only 
to the universe as a whole. Roughly speaking, according to the global 
version of the special principle of relativity, if you take the entire mate-
rial content of a physically possible world, and speed it up by the same 
amount in the same direction at each time, you end up with another 
physically possible world.

For a more formal statement we need some definitions. An iner-
tial frame is a congruence of parallel timelike geodesics in spacetime. 
Think of an inertial frame as a set of worldlines of inertial observers 
at relative rest who fill all of space. Now suppose for simplicity that 
we’re working with theories set in Minkowski spacetime. Then the 
Lorentz transformations are (some of the) symmetries of spacetime. 
The Lorentz transformations preserve inertial frames: they map iner-
tial frames to inertial frames, and for any two inertial frames there is a 
Lorentz transformation that maps one to the other. 

We need one more definition: a definition of “dynamical symmetry 
of T,” where T is a physical theory. This term is usually defined in terms 
of the models of a spacetime theory. For theories set in Minkowski 
spacetime the models have the form M = (M, hab, O, O...) where M is 
a dierentiable manifold, hab is a flat Lorentz metric on M, and the Oi 
are geometrical objects that represent the material contents of space-
time. Then a dieomorphism ϕ that maps M to M induces a map ϕ* 
from geometrical objects on M to geometrical objects on M, which in 
turn allows us to define a map from models to models: given M, Mϕ 
is (M, hab, ϕ*O, ϕ*O,...). Then ϕ is a dynamical symmetry of T if for 
every model M of T, Mϕ is also a model of T. With this machinery in 
place, our global principle of relativity is

() If ϕ is a Lorentz transformation, then it is a dynamical sym-
metry of all true physical theories.

. I follow the notation in [Earman : –].

interested in this dierence between principles of relativity, and so in 
this paper I will focus on unrestricted principles that apply to all kinds 
of experiments. 

There is a second way in which () is unclear. It contains “must,” a 
modal term; but there are dierent ways the quantifier over experi-
ments can interact with the modality. On one reading (maybe the most 
natural reading) of (), we have

() It is physically necessary that if the same experiment is 
conducted in isolated laboratories that are both moving 
inertially, then the outcomes of those experiments are the 
same.

This is an intra-world principle. It says that within any one physically 
possible world, outcomes of the same experiment type are the same. 
There is also an inter-world principle. This principle is most easily stat-
ed using possible-worlds talk:

() If the same experiment is conducted in isolated laborato-
ries that are both moving inertially, in the same or dier-
ent physically possible worlds, then the outcomes of those 
experiments are the same.

Obviously, () entails (). 
() and () are principles that presuppose determinism. They pre-

suppose that the laws and the state of the world at an instant (or on 
an appropriate spacelike hypersurface) fix a unique future. Stochastic 
laws that do not guarantee that () is true, or that () is true, can still 
respect the principle of relativity. It is enough for the laws to assign the 
same probabilities to outcomes in the two experiments. But through-
out this paper I will limit my attention to deterministic laws.

() and () are also local principles. They say things about particu-
lar experiments, particular subsystems of the universe. (That is just 
what I mean by “local principle.” That one of these local principles is 
true has nothing to do with locality, in another sense; it has nothing 
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of () would say that whatever spacetime is like, the transformations 
that preserve inertial frames are dynamical symmetries.

() entails () as a special case. The state of the entire universe at 
an instant (or on a hyperplane of simultaneity) is an experiment in an 
isolated laboratory, the outcome of which is the state of the universe 
at a later instant (that is, on a later hyperplane of simultaneity that be-
longs to the same foliation of spacetime by hyperplanes of simultane-
ity as the original one). Then the proof goes as follows. Suppose that f 
is a Lorentz transformation and that w is a physically possible world. 
I need to show that wf is also physically possible. Choose any instant 
H. (So H is a region of spacetime.) Then f (H) is also an instant. Let 
w’ be the unique physically possible world in which the state on f (H) 
is the same as the state on H in w. (So, for example, there is a particle 
at point p on H in w i there is a particle at point f (p) on f (H) in w’; 
the state of some field on H in w is given by the tensor T i the state 
of that field on f (H) in w’ is given by f*T; and so on. That w’ is unique 
follows from the fact that the laws are deterministic.) By (), for each 
later instant H in the same foliation as H, the state on H in w matches 
the state on f (H) in w’. That establishes that H in w matches f (H) in 
w’ for H later than H. But the dierence between the past and the fu-
ture is not intrinsic to spacetime, so we can run this argument in both 

. See [Budden : –] for a more detailed statement of the general ver-
sion of (). This approach to stating the principle of relativity goes back to 
[Anderson ]; see also [Earman ], [Friedman ], and [Norton : 
–]. Note that some of these authors require (as I do not) that trans-
formations between frames be symmetries of spacetime. On their view, no 
theory set in Newtonian spacetime satisfies the global version of the special 
principle of relativity.

. When I am discussing Minkowski spacetime I will always use “instant” to 
mean “hyperplane of simultaneity.”

. Given the assumptions I made in the text, the models of a theory just are 
possible worlds, on one respectable way of using “possible world”: they 
are abstract representations that specify ways the world might have been. 
Sometimes it is more convenient to use possible worlds talk, so I will freely 
switch between the two modes of speech.

Now, the principle of relativity is a modal principle. With the defini-
tions I have given, though, () is merely a model closure principle. 
Facts about what the set of models of a theory looks like do not auto-
matically entail anything about what the theory says is possible. For 
() to have modal content we need to make some connection between 
facts about the theory’s models and what the theory says is possible. 
How you make this connection can depend on your metaphysical 
commitments. Substantivalists, who believe that spacetime exists, 
may want to say that distinct models represent distinct possibilities. 
Relationalists, who deny that spacetime exists, may want to say that 
pairs of models like M and Mϕ (where ϕ is a Lorentz transformation) 
represent the same possibility. (In general, relationalists may want to 
say that two models that are related by a dieomorphism represent 
the same possibility. Some substantivalists — “sophisticated substanti-
valists” — say the same thing.) I am a substantivalist, and not a sophis-
ticated one, so I will assume in this paper that M and Mϕ represent dis-
tinct possibilities. With this assumption in place, () becomes a modal 
principle. The possibilities that M and Mϕ represent dier in the way I 
mentioned when I gave an informal statement of the global principle 
of relativity: according to Mϕ the material contents of the universe are 
moving faster by some fixed amount in some fixed direction (relative 
to a given frame) than they are according to M, while everything else 
is the same. 

() does not purport to capture the whole content of the special 
principle of relativity. It only covers the special case where spacetime 
has a Minkowski geometry. (The special principle of relativity is still 
true in Newtonian mechanics!) In Newtonian and Galilean spacetime 
it is the Galilean transformations that preserve inertial frames. In those 
spacetimes the special principle requires the Galilean transformations 
to be dynamical symmetries. So roughly speaking, the general version 

. Earman and Norton [] connect the substantivalism debate to these dier-
ent ways of interpreting models. On sophisticated substantivalism see [Belot 
and Earman ] and [Pooley ].
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(). Galileo’s statements about relativity are best understood as af-
firmations of (). A statement of the principle of relativity that did not 
capture what Galileo was saying would surely be leaving something 
out. In addition, since our direct empirical evidence is evidence about 
what goes on in the actual world, that evidence directly supports (), 
not (). So if () does not entail (), we are not doing enough to make 
our theories relativistic if we merely ensure that they are compatible 
with (). Finally, if () does not entail (), then it is not clear what em-
pirical content () really has. It merely says that if a certain world is 
possible, then so is a world that is qualitatively indiscernible from it. 
But the principle of relativity certainly has some empirical content.

If () does not entail () then these complaints about () may have 
some force. My aim is to defend () against those who would demote 
it. To dispel the doubts I will argue that () does, in fact, entail (). I 
will also explain why a counterexample to this entailment oered by 
Budden [] is not genuine.

The proof of () from () begins like this. Suppose that w is a physi-
cally possible world with the following features (see figure ). There 
are two experiments of the same type conducted in isolated, inertially 
moving laboratories. (A laboratory may be isolated at some times and 
not at others; I mean that these laboratories are isolated while the ex-
periments are being conducted.) But the labs are not at rest relative 
to each other. The experiments E and E have outcomes O and O, 
respectively. Maybe in both labs the experimenters time how long it 
takes a marble of unit mass to fall one meter. Maybe the experiments 
are much more complicated.

. See [Brown and Sypel ] and [Budden ] for expression of the worries 
that follow.

. Assuming that spacetime is Minkowskian. If the worlds contain Newtonian 
spacetime, and facts about absolute velocities are qualitative facts, then the 
worlds are not qualitatively indiscernible.

temporal directions. It follows that w’ = wf , and so that f is a dynamical 
symmetry.

I have now stated the versions of the principle of relativity that I 
want to talk about in this paper. Among them, () is regarded as the 
correct modern formulation of the special principle of relativity. It is 
regarded this way because of its connection with another common 
way of stating the special principle of relativity: as the claim that the 
laws of nature take the same form in all inertial frames. (This is how 
Einstein states it in his famous  paper [].) As is well known, 
this way of stating the principle gets into trouble: even theories that 
violate the spirit of relativity can be given a generally covariant formu-
lation, so that the equations of motion take the same form in any coor-
dinate system, including any coordinate system adapted to an inertial 
frame. It was proposed that () captures what was intended by the talk 
of laws taking the same form.

Let me repeat that all the principles I have stated are versions of 
the special principle of relativity. The general principle of relativity is, 
roughly, the claim that all states of motion, not just inertial states of 
motion, are observationally indistinguishable. I will not be interested 
in the general principle of relativity.

As I said, () is regarded as the correct modern formulation of the 
principle, but you might worry that it does not capture the entire con-
tent of the principle of relativity, as intuitively understood. These wor-
ries are driven by the suspicion that () does not entail either () or 

. The fact that there were dierent versions of the principle of relativity was 
discussed in the early th century; see [Treder ] and the references 
therein. Treder mentions principles much like () and () and notes that () 
entails (), but seems to deny the reverse entailment.

. See the references in footnote .

. See [Norton ] for the history.

. Leibniz seemed to accept the general principle; see his letter to Huygens 
dated / June,  (printed in [Stein : ]). As the history of relativity 
theory is usually told, Einstein thought that the general principle of relativity 
was true in the general theory of relativity, but he was wrong; Norton [] 
tells the story.
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In w two experiments, E and E, are conducted in isolated, inertially 
moving laboratories. These experiments are the same type as the ex-
periments conducted in w — E matches E and E matches E. Also, 
the outcomes of the experiments in w match the outcomes of the cor-
responding experiments in w. In particular, O is the same type of 
outcome as O. (By using the labels “E,” “E,” and so on, I wish to 
leave it open whether the experiments and outcomes in w are nu-
merically identical to the experiments and outcomes in w, or just of 
the same type. For my purposes, it does not matter which of these is 
true.) Finally, E takes place, in w, in the same region of spacetime 
(and so the same state of inertial motion) that E takes place in, in 
w. (That is, the laboratories for E and E occupy the same region of 
spacetime, and the experiments are conducted in corresponding parts 
of the laboratories; it is left open, so far, whether E and E have the 
same outcome.)

At this point you might worry: these three facts — that E is an ex-
periment of the same kind as E, that E happens in the same region of 
spacetime in which E happens (though in a dierent possible world), 
and that O and O are the same type of outcome — do not entail that 
O and O are the same type of outcome. But we have already made 
use of () in our proof. So there doesn’t seem to be anywhere else to 
go from this point.

There also seems to be a principled reason why we cannot go on. 
() is a conditional principle: it says that if a world is permitted by 
the laws, then some other world is also permitted by the laws. But it 
appears to place no unconditional constraints on which worlds are 
physically possible. It places no constraints on what goes on within 
any one physically possible world. So how can it entail (), which does 
place constraints on what goes on within each world?

It is true that we have not yet proved that O and O are the same 
type of outcome. But the proof can be completed. We have overlooked 
the fact that these experiments occur in isolated laboratories. The fol-

. Budden [: ] oers the apparent inability to go on from here as a reason 
to think that () does not entail ().

Figure :
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We need to show that O and O are the same type of outcome 
(that, for example, each experimenter recorded the same amount of 
time for his marble’s fall), assuming that () is true. Since the frames 
and experiments chosen were arbitrary, this will establish ().

Now, if () is true, then w is also a physically possible world (see 
figure ). It diers from w by a boost. 

Figure :
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I gave a brief justification of () in the previous section. Here I want to 
discuss its justification in more detail. 

() is a necessary truth about isolated laboratories in deterministic 
worlds because it follows from the definition of “isolated laboratory” 
and the fact that the laws are deterministic. But giving an adequate 
definition of “isolated laboratory” is a little tricky. The diculties can 
be sidestepped for one special case of (), and so I will look at that case 
first. If there is no action at a distance, then one way for a laboratory to 
be isolated is for it to be far away from everything else, out in empty 
space. That is, satisfying the following two conditions is sucient for 
a laboratory L to be isolated:

(a) There is an open region of spacetime R such that L occupies 
a subregion of R and R is otherwise completely empty;

(b) The laws are local. For a field theory, this means that the 
laws pick out the dynamically possible fields on spacetime 
by giving conditions on the state of the field and (finitely 
many of) its derivatives at each spacetime point. Then the 
laws have the global to local property: we can restrict the 
laws to any open region of spacetime U; then if w is a world 
permitted by the original laws, the state on U in w is permit-
ted by the restricted laws.

If we restrict our attention to laboratories that are isolated by satisfying 
conditions (a) and (b), then () follows immediately. For suppose 
that L and L are two laboratories satisfying the hypotheses in () in 
the same region of spacetime in dierent physically possible worlds 
w and w. By (a) we can find an open region U small enough that it 
contains L in w and contains L in w and is otherwise completely 
empty in both worlds. Then by (b) the state on U in both w and w 
satisfies the laws when restricted to U. But the state on U in w and the 

. This definition resembles Earman’s [Earman : ] locality principle (L). 
(Thanks here to Gordon Belot.)

lowing is a necessary truth about isolated laboratories in deterministic 
worlds:

() If the same type of experiment is conducted in the same re-
gion of spacetime in isolated laboratories in two physically 
possible worlds, then the outcomes of those experiments 
are the same.

After all, part of what it means for a laboratory to be isolated is for the 
outcome of an experiment in that laboratory not to depend on what 
is (or is not) going on outside of the laboratory. Note that () is not 
a relativity principle. It is compatible with () that some experiment 
can distinguish between dierent states of inertial motion. Of course, 
() does follow from a relativity principle: it follows from (). But my 
support for () comes from the meaning of “isolated laboratory,” not 
 from ().

I want to postpone a more complete justification of () until sec-
tion  and see how the proof proceeds once we accept (). It is () 
that allows us to get local results from a global principle. E and E are 
the same type of experiment conducted in isolated laboratories; they 
occur in the same region of spacetime; so using () we can conclude 
that O and O are the same type of outcome. Since I’ve already shown 
that O and O are the same type of outcome, it follows that O and 
O are the same type of outcome — which is what was to be shown. So 
() follows from (). A similar argument using () shows that () also 
follows from (). (Since () also entails (), this means that () and () 
are equivalent.)

. Or, at least, it is a necessary truth about isolated laboratories in flat spacet-
imes, which is the kind of case I am interested in.

. This argument was inspired by Sider and Paull’s [] argument that global 
supervenience is equivalent to strong supervenience for intrinsic properties. 
They use a principle of recombination to get from a global principle to a lo-
cal, intra-world principle. My () plays a role similar to that played by their 
principle of recombination. See also [Moyer ].
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cause of E; and (iii) C occurs outside of R; then C is a cause 
of E only because it is also a cause of an event that occurs 
inside the lab at the initial time of R.

That is my precisification of “isolated laboratory” that uses causal lan-
guage. It covers the examples I gave of isolated laboratories that do 
not satisfy (a) or (b). The laboratory surrounded by matter it does 
not interact with is still isolated, because no event involving the sur-
rounding matter is a cause of any event in the laboratory. And the lab-
oratory in the world with non-local laws is still isolated because no far 
away event is a direct cause of any event in the laboratory (after the 

“initial event,” that is). 
I proceed now to the argument that () is true of any pair of labo-

ratories that satisfy (). The argument requires some way to connect 
laws and causation. The intuitive idea is simple: in a deterministic 
world, the set of all causes of an event determines what that event is 
like. A more useful statement makes use of the concept of a complete 
set of causes of an event. A complete set of causes of an event is just a 
set of causes of that event such that every cause of that event is a cause 
of a member of that set. The idea is that the events that occur inside 
an isolated laboratory from the beginning of an experiment onward 
form a complete set of causes of the outcome of that experiment: by 
(), any other cause of the outcome is a cause of the event that began 
the experiment. 

My principle connecting laws and causation, then, is:

() If (i) E and E occur in the same region of spacetime in 
dierent possible worlds with the same deterministic laws, 
and (ii) there is a complete set of causes for E, and a com-
plete set of causes for E, and a correspondence between 
the sets of causes such that corresponding causes are the 
same type of event and occur in the same region of spacet-
ime, then E and E are the same type of event. 

. I take this phrase from [Lange : –].

state on U in w agree at the initial time (the same type of experiment 
is carried out in L and L); since the laws are deterministic, it follows 
that the state on all of U is the same in both worlds. But then the out-
come of L in w is the same as the outcome of L in w.

But (a) and (b) are not necessary for a laboratory to be isolated. 
Suppose that (a) fails: the laboratory is surrounded by all sorts of 
other physical goings-on. The laboratory may be still isolated if those 
other physical goings-on do not aect what happens in the laboratory. 
(Perhaps the laboratory is surrounded by a kind of matter that does not 
interact with any of the equipment in the laboratory.) Or suppose that 
(b) fails: the laws are non-local and so allow for action at a distance. A 
laboratory far away from everything else, out in empty space, may still 
be isolated, if no distant causes ever act on it. 

I am afraid that defining “isolated laboratory” so that it covers these 
cases will require me to use the word “cause” in the definition. It is a 
messy business, finding a causal definition of “isolated laboratory,” but 
it will be important for my discussion of proposed counterexamples to 
the claim that () entails (). So let us proceed. Things work best if I ex-
plicitly take into account the fact that a laboratory may be isolated for 
some parts of its career and not for others. So I will give necessary and 
sucient conditions for a laboratory to be isolated while it occupies 
some spacetime region R. Intuitively, a laboratory is isolated while it 
is in R just in the case that, once the laboratory has entered R, noth-
ing outside the laboratory has any influence on what goes on inside 
the laboratory. Now, since R is a region the lab occupies during one 
stage of its career, R has an “initial time”: there is some (flat) spacelike 
hypersurface S that overlaps the boundary of R, with the rest of R on 
the future side of S. We are interested in the outcomes of experiments 
conducted in isolated laboratories; this initial time is the time at which 
the experiment begins. I propose that the laboratory is isolated while 
it occupies R if and only if it meets this condition:

() If for any events C and E, (i) E is an event that occurs inside 
the laboratory while the laboratory occupies R; (ii) C is a 
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is false. In that world, E and E are the same type of experiment, both 
experiments are in inertial motion, but they have dierent outcomes. 
(A spacetime diagram of this world will closely resemble the diagram 
of world  in figure .) Then consider the physical theory according to 
which just that world and all Lorentz boosts of that world are physi-
cally possible. () is false but () is true according to this theory, since 
Lorentz boosts are dynamical symmetries by construction. 

I think there’s something fishy going on here. We have picked out a 
set of possible worlds; but is there really a physical theory according to 
which all and only those worlds are physically possible? There is if just 
any set of possible worlds (or any set of models) constitutes a physical 
theory — but is that claim true? What about the set containing just the 
actual world? If that set constitutes a physical theory, shouldn’t it be 
the best, most interesting one? (Surely it is not.) It sometimes seems 
to me that if T is a physical theory it must be possible to express T by 
giving the laws of T, including the dynamical laws. After all, what is 
a physical theory but a statement of some (possible) laws of nature? 
And it also seems to me that there are no dynamical laws that are true 
just in the actual world. Perhaps, for similar reasons, there is no theory 
according to which just the worlds mentioned in the previous para-
graph are physically possible. If so, then we have not actually found a 
theory according to which () is true and () is false.

But I do not want to rest much weight on this objection. Perhaps 
there is a weak sense of “dynamical laws” according to which for any 
set of worlds, there are laws that are true in just the members of that 
set. I do not want to try to argue for an account of laws of nature ac-
cording to which this is not so. (Still, the fact that it is dicult to make 
sense of these worlds’ laws will continue to make trouble.)

I have a better objection. Suppose there really is a theory according 
to which the possible worlds mentioned are the physically possible 
worlds. Even so, I don’t think that () is false in that theory. Instead, 
I think that () is vacuously true in that theory. It is vacuously true 
because there are no isolated experiments in those worlds. For con-
sider: in those worlds, it is physically necessary that if experiment E is 
conducted, then E is also conducted. It hardly seems that E is being 

(To avoid obvious counterexamples, “type of event” here must mean 
“maximally specific type, intrinsically characterized.” I require the 
events to occur in the same region of spacetime to avoid begging any 
questions. () is a premise in a proof of a relativity principle and so had 
better not presuppose it.) 

I take it that () is a necessary truth. Then () and () together say 
that once the role of the events that occur inside an isolated laboratory 
has been taken into account, no other events are relevant to deter-
mining the outcome of the experiment. Even if there were no other 
events anywhere else — even if the rest of the universe consisted only 
of empty spacetime — the outcome of the experiment would be the 
same. It is straightforward to see that () and () entail (). 

That completes my proof that () entails (). But my use of causal 
language in the justification of (), though necessary, comes with a 
price. The causal facts are not fundamental facts, and the fundamental 
facts at some world may leave it indeterminate just what the causal 
facts are at that world. And if it is indeterminate what the causal facts 
are in some world, then it may be indeterminate whether a given labo-
ratory in that world is an isolated laboratory. So it can be indetermi-
nate whether () is true at some world. (), though, is not infected 
with indeterminacy (or, at least, not in the same way). Perhaps, then, 
there are cases where () is true in some world but it is indeterminate 
whether () is. (We will see a case like this in the next section.) When I 
say that I have proved that () entails (), then, I mean to claim that in 
every world in which () is true and () is either determinately true or 
determinately false, () is determinately true.

Although I have given a proof that () entails (), some doubts might 
remain that () really does entail (). In this section I discuss some ap-
parent counterexamples to the entailment.

We might try to construct a counterexample to the claim that () en-
tails () by brute force. Start with just one possible world in which () 

. I learned this technique from [Arntzenius ].



   Local and Global Relativity Principles

’  –    – . , .  ( )

the same defect. In fact, it is even clearer that these other examples fail. 
Since they are more detailed there is less room for the kind of indeter-
minacy that makes the first example dicult to evaluate.

Tim Budden [] proposes a theory according to which (he al-
leges) () is true but () is false. His theory is set in a novel spacetime 
structure. Start with Minkowski spacetime, then remove one piece of 
structure and add another: remove the built-in unit for (spatiotempo-
ral) length by allowing dilations to be symmetries of the spacetime; 
then add a preferred congruence of parallel null lines N. (Adding this 
congruence removes some symmetries from the structure.) This spa-
cetime cannot be represented using a metric on a manifold, since a 
metric provides a built-in unit for length and so is not invariant under 
dilations. Instead this spacetime can be represented using the meth-
ods of synthetic geometry. In standard synthetic presentations of flat 
relativistic spacetime, the spacetime structure is characterized using 
just one intrinsic relation on spacetime points: x and y are lightlike relat-
ed. Using this relation we can define the standard spatial congruence 
and temporal congruence relations. (Intuitively, in metrical terms, x 
and y are spatially congruent to z and w i x and y are spacelike related, 
z and w are spacelike related, and the spatiotemporal interval between 
x and y is the same as between z and w. There is a similar intuitive ex-
planation of temporal congruence. But these are not the ocial defini-
tions of these relations in terms of lightlike connectability.) 

Budden uses the extra structure in his spacetime — the congru-
ence of null lines N — to define another temporal congruence relation, 
which he calls “~-.” First he defines ~- for pairs of pairs of points (a,b), 
(a,c) that have a point in common: ab ~- ac i a is timelike related to 
b and to c and “b and c lie on the same lobe of a light cone which has 
as apex a point on the element of N which passes through a’’ (). 
Figure  shows the set of points that are as far into the future of a, ac-
cording to ~-, as b is, in a two-dimensional spacetime. The set of points 
that are as far into the future of a as b is, according to the standard 

. The classic presentation is in [Robb ]. A more recent presentation is 
[Winnie ].

conducted in isolation if it is impossible to conduct it without E’s also 
being conducted.

That is what I believe. But, unfortunately, I do not think it can be 
conclusively established that E is or is not isolated. One way to show 
that E is isolated is to show that it meets the sucient conditions (a) 
and (b). But it does not meet those conditions: the laws do not satisfy 
(b). They are not locally deterministic. 

(One might try to argue that E is isolated because the laws factor 
into locally deterministic dynamical laws, and an additional, strange 
law that limits the admissible initial conditions. But this cannot work. 
If there were such locally deterministic dynamical laws, they would 
be Lorentz invariant. So my argument would apply to show that () is 
true relative to those dynamical laws, considered apart from the law 
restricting the initial conditions. But then () is also true in any theory 
that adds a restriction on initial conditions to those dynamical laws.)

Another way to show that E is or is not isolated is to inspect the 
causal facts in that possible world and use (). But I cannot figure 
out what the causal facts are in enough detail to arrive at a verdict. I 
suspect that this is because the causal facts are just not determinate 
enough to yield a verdict. Is any event in experiment E a direct cause 
of any event in E (that occurs after the initial time)? One way to figure 
out whether there is a causal connection between them is to survey 
the events in E and E, trying to find events A and B in them that 
make true the counterfactual: if B had not occurred but experiment E 
had still been started in the same initial state, then A would not have 
occurred. But I do not know whether any of these counterfactuals are 
true or false. I do not know how to evaluate them. The problem, again, 
is that it is not clear what the dynamical laws of this possible world are. 
So it is very dicult to say how things would have evolved forward in 
time in E, had things been dierent in E. 

I conclude, therefore, that this first example is not a clear counterex-
ample to the claim that () entails (). Now, this first example is simple, 
artificial, and contrived. Other, more complicated and less contrived 
counterexamples have been proposed. But they suer from essentially 
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That is the theory Budden proposes as a counterexample. Here is 
the argument that () is false according to this theory. We are going 
to perform an experiment to measure the round-trip speed of light, in 
two dierent inertial frames. We do this by attaching a mirror to the 
end of a measuring rod, and timing how long it takes light to get from 
one end of the rod to the other and back. Figure  is a spacetime dia-
gram of these two experiments: the first experiment occurs at rest in 
this diagram, and the other is moving at half the speed of light, relative 
to the first experiment. 

Figure :
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 Two Experiments in Budden’s Theory

(The diagram shows the experiments happening in overlapping 
regions of spacetime. I only do this for convenience. The second ex-
periment actually occurs shifted over to the right, in a nonoverlapping 
region of spacetime.)

definition, forms a hyperbola; this set forms a ray. (The element of N 
that passes through a is the purple lightlike geodesic leaving a towards 
the right. Budden extends his definition of ~- to cover pairs of pairs of 
points that do not have a point in common, using parallelograms; but 
I will not need the extended definition.) 

Figure :
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 The set of points x such that ax ~- ab, shown in red

That is the spacetime in which Budden’s theory is set. Now for the 
theory’s laws. In that theory, measuring rods behave just as they do 
in ordinary Minkowski spacetime. But (ideal) clocks do not. The law 
governing the behavior of clocks is:

If two (ideal) clocks move inertially, one from point a to 
point b, the other from point c to point d, then the same 
amount of time elapses according to both clocks if and 
only if ab ~- cd. 

(Clocks also observe obvious laws like: if a clock moves inertially from 
a to c and b is between a and c then more time elapses according to 
that clock between a and c than between a and b.) 
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deterministic? In fact it does not. To the extent that the laws look in-
deterministic, it is because we are misled by the appearance of clocks 
that read particular numbers in the models of Budden’s theory. (I have 
followed Budden in presenting them this way; see page  of his pa-
per.) It is easier to see, at first, how the theory works when its models 
are presented in that way. Now that we have seen how it works, I can 
sketch a more perspicuous presentation of the example. This presenta-
tion will make it clear that the theory is deterministic. The models look 
like this: clocks do not display numbers at all. Instead the two “clocks” 
work like this: each has a “start/stop/reset” button, and each can dis-
play one of five words: “ready”; “running”; “same”; “faster”; “slower.” It 
is physically necessary that one clock is in its ready state if and only if 
the other is in its ready state. At the beginning of the experiments, the 
start/stop buttons are pushed on the clocks, and the displays switch 
from “ready” to “running.” At the end of the experiments the buttons 
are pushed again. Then the clocks display “same” if the initial and final 
spacetime points are ~- congruent; if not, the clock that traveled the 

~--longer path reads “slower,” and the other reads “faster.” So in the 
experiment I discussed, the moving clock reads “slower” and the sta-
tionary clock reads “faster.” In this presentation, the experiments still 
have dierent outcomes, but just what each clock says at the end of 
the experiment is completely determined.) 

That is Budden’s argument that () is false in this theory. He also 
argues that () is true. I accept his argument and will not reproduce it 
here. (It is clear that () is true in two-dimensional models of his theo-
ry, but the proof is trickier in more dimensions.) If he is right about all 
of these claims, then () does not entail ().

There are a couple of things about this example that should raise 
suspicion. Could the clock law really be a law? You might think that 
to see how clocks behave in this spacetime, we must first write down 
some dynamical laws governing how the parts of clocks move, and 
then see whether that dynamics validates the clock law. It is not clear 

. Brown [] is an extended articulation and defense of this point of view.

In the diagram ab is a timeslice of the measuring rod for the experi-
ment conducted in the rest frame. The light ray travels from the origin 
to b to c while the clock travels from the origin to c. At the end of the 
experiment, at point c, the clock reads some number m — the amount 
of time that has elapsed since the beginning of the experiment, ac-
cording to that clock. (In this spacetime, as in Minkowski spacetime, 
light rays travel on null geodesics.) And de is a timeslice of the measur-
ing rod for the experiment in the moving frame. The light ray in this 
experiment travels from the origin to e to f while the clock travels from 
the origin to f. At the end of the experiment, at point f, the clock reads 
some number n. (I leave it open, for now, whether m = n.) 

Now, for this pair of experiments to show that () is false, they must 
be experiments of the same type but have dierent outcomes. It is 
clear that they are experiments of the same type: both experiments 
measure the round-trip speed of light using measuring rods that are 
the same proper length. (In fact, the points d,e, and f are the images un-
der a Lorentz boost of a,b, and c, respectively.) And the experiments 
do have dierent outcomes. The line cb in the diagram is a subset of 
the set of points x such that ox ~- oc (o is the origin). So when the mov-
ing clock reaches point k, it has recorded the same amount of time 
as the stationary clock has when it reaches point c. But the moving 
experiment doesn’t end until the moving clock reaches point f, which 
is past k. So in the moving experiment, the clock ends up recording 
more time than the clock in the stationary experiment. (That is, n > m.) 
And that means that the experiments have dierent outcomes.

(There is a way in which my presentation here is misleading, which 
I should clear up before going on. It will be important later. Given the 
initial state, it does not look like Budden’s laws determine just which 
numbers the two clocks display; the laws only determine the ratio 
between those numbers. Does this mean that Budden’s laws are not 

. If a,b, and c have (x,t) coordinates (,),(,), and (,), then d, e, and f have 
coordinates (/√, /√), (√, √), and (/√, /√).

. The equation for the line through b and c is t = -x. Since (/√, (√–)/ √) 
lies on that line, f = (/√, /√) lies above it.
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to falsify (). First, the experiments must be of the same type. Second, 
the experiments must have dierent outcomes. And third, the experi-
ments must be conducted in isolated laboratories. The first two condi-
tions are met but not the third. These experiments are not conducted 
in isolated laboratories. Call the world in which the described pair of 
experiments take place “world ”; call the stationary experiment in 
that world “,” and the moving experiment “.” Consider a world 
(world ) that is boosted relative to world . That world contains an 
experiment, , that is the boosted version of . World  is boosted 
in such a way that  is moving at half the speed of light (relative to 
the frame picked out by the diagram of world  — I leave this implicit 
from now on.) Since () is true in Budden’s theory, world  is physical-
ly possible. Also,  is the same type of experiment as : the clock, 
rod, and light rays in  occupy just the same regions of spacetime as 
the clock, rod, and light rays in . But these experiments have dif-
ferent outcomes. We are given that the clock in  reads n at the end 
of the experiment. Now at the end of the experiment the clock in  
is the image under a Lorentz transformation of the clock in ; since 
the clock in  reads m, so does the clock in . (To go through this 
more slowly: since the two clocks are related by a Lorentz transforma-
tion, and Lorentz transformations are dynamical symmetries, the two 
clocks end up in the same physical state at the end of the experiment, 
and so both read the same number.) But m does not equal n. Given (), 
this means that the experiments are not isolated. 

Let me dwell a little longer on the question whether there are iso-
lated laboratories in Budden’s theory. As in the first alleged counter-
example, Budden cannot use the sucient conditions (a) and (b) 
to argue that the laboratories are isolated. That is because Budden’s 
clock law is non-local: it enforces correlations between the readings 
of dierent clocks, no matter how far apart those clocks are, or what 

. Actually, since the experiments do not occur in overlapping regions of space-
time, world  diers by a boost and a spatial shift. This does not matter since 
spatial shifts are also dynamical symmetries.

that this can be done. Certainly some kinds of devices we might build 
in this spacetime that we might have thought were pretty good clocks 
turn out not to be. For example, the light clocks that appear in relativ-
ity texts are not ideal clocks in this theory. Budden’s experiment shows 
this directly. (To build a light clock, you take a measuring rod, attach 
mirrors to both end, and bounce a light ray back and forth between 
them; the clock “ticks” each time the light ray hits, say, the mirror on 
the left. So Budden’s experiments amount to two comparisons of a 
light clock with a co-moving ideal clock. Since the outcomes of the 
experiments are dierent, light clocks do not always tick in sync with 
ideal clocks.) 

Someone might reply, on behalf of Budden, that it doesn’t matter 
whether it is physically possible to build good clocks. It is enough that 

~- be the temporal congruence relation, even if it is physically impos-
sible for a clock to keep correct time. We can understand the claim 
about the behavior of ideal clocks as an indirect way to say that ~-, 
and not the standard congruence relation on timelike pairs of points 
definable from lightlike connectability alone, is the temporal congru-
ence relation. 

I am sympathetic with a lot of this reply. I agree that it need not 
be physically possible to build an accurate clock. The laws of physics 
could conspire against us. But I have a related worry. Is it really pos-
sible that ~- be the temporal congruence relation? If it is not possible, 
then Budden’s clock law could not be a law. However, I think it is very 
dicult to know how to go about settling whether ~- could be the 
temporal congruence relation. Budden does not do much to argue that 
it could be, but I do not know how to argue that it could not.

Those are some reasons to be suspicious about Budden’s alleged 
counterexample. But I do not rest my case against it on those suspi-
cions. I accept, for the sake of argument, that the clock law could be a 
law and that there could be clocks that obey that law. I reject Budden’s 
claim that () is false in his theory. I think, instead, that () is true in 
Budden’s theory.

Three things must be the case for the experiments described above 
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erning the movements of the clocks’ parts that entail Budden’s clock 
law without having those clocks interact.

I conclude, therefore, that Budden has not produced a possible 
physical theory according to which () is true but () is false. 

I have argued that () entails (). My argument is meant to undermine 
doubts that () deserves its current status as the standard formulation 
of the special principle of relativity. But in giving the argument we 
have seen new reasons to think that it, rather than (), does deserve 
that status. First, in a theory that does not allow for isolated experi-
ments (other than the “experiment” that is the evolution of the entire 
universe in time), () is vacuously true. Yet it seems that the special 
principle of relativity is not automatically true in that theory. That 
theory might still treat one frame of reference as special. () is the 
principle that lets us separate that theory out from theories accord-
ing to which states of inertial motion really are all indistinguishable. 
And second, the principle of relativity, whatever it is, expresses some 
important and fundamental truth about the way the world is. But () 
contains the word “isolated,” which is defined in causal terms. As I 
said earlier, causation is a messy thing, and the causal facts about the 
world are not fundamental facts. So we should keep causation out of 
the principle of relativity.

. For those who are still skeptical that Budden’s clocks interact, there may be 
another interpretation of his example that also has it fail to be a genuine 
counterexample. It was suggested by an anonymous referee. On this inter-
pretation, the experiments fail to be isolated because the state of the pair of 
clocks is nonseparable. That is, for any two spacelike separated points x and y 
on the worldlines of the stationary and moving clocks, respectively, the state 
of the pair of clocks on the instant containing x and y is not completely speci-
fied by specifying the intrinsic physical state of the clock at x and the intrinsic 
physical state of the clock at y. (In my discussion, and in my definition of 

“isolated laboratory,” I presupposed that things could not be in this kind of 
nonseparable state.)

. Thanks to Frank Arntzenius, Phillip Bricker, Chris Wuthrich, two anonymous 
referees, and the MIT Work in Progress Seminar for helpful comments.

insulating walls are built between them. The laws cannot be used to 
predict the outcome of an experiment with one clock without using 
information about what other clocks are being used in other experi-
ments, no matter how far away those experiments are. 

We can use the non-locality of the clock law to argue directly that the 
laboratories in Budden’s theory are not isolated. The kind of lawfully 
enforced correlation that appears in that law is sucient for causation. 
It is sucient because it entails counterfactual dependence, and coun-
terfactual dependence is sucient for causation. Given Budden’s law, 
if one of the clocks had registered a dierent elapsed time, the other 
one would have as well. So there is some kind of continuous direct 
interaction between the clocks, maintaining their coordination. 

Someone might hesitate to accept that there is direct interaction 
between the clocks; he might want first to see the details. He might de-
scribe two clocks, perhaps clocks built from completely dierent ma-
terials and operating according to completely dierent principles, and 
demand an account of how the interaction works, how the one clock 
signals the other. Only when a satisfying account has been presented 
would he accept that there is such an interaction. 

Of course, I cannot give such an account. That is not my fault; it is 
Budden’s. The clock law is the only law we are given. Either it is sup-
posed to be a fundamental law, or it is not. If it is a fundamental law (as 
I assumed it was in my argument in the previous paragraph), then the 
demand that the direct interaction between the clocks be explained is 
misplaced, since it amounts to the demand that a fundamental law be 
derived from some other laws. If it is not a fundamental law, then we 
do not know what the fundamental laws of Budden’s theory are. But I 
do not think that there is a way to specify more fundamental laws gov-

. Budden knows that his theory is non-local — see page .

. No claim about the connection between causation and counterfactuals is un-
controversial, but this is one of the less controversial claims. I should note 
that dependence is only sucient for causation when the two events are logi-
cally distinct. Socrates’ death does not cause Xanthippe to become a widow. 
But in this case this condition seems to be met (though see footnote ).
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