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Abstract
It is a well-known fact that mathematics plays a crucial role in physics; in fact, it is
virtually impossible to imagine contemporary physics without it. But it is questionable
whether mathematical concepts could ever play such a role in psychology or philoso-
phy. In this paper, we set out to examine a rather unobvious example of the application
of topology, in the form of the theory of persons proposed by Kurt Lewin in his
Principles of Topological Psychology. Our aim is to show that this branch of mathe-
matics can furnish a natural conceptual system for Gestalt psychology, in that it
provides effective tools for describing global qualitative aspects of the latter’s object
of investigation. We distinguish three possible ways in which mathematics can con-
tribute to this: explanation, explication (construed in the spirit of Carnap) and metaphor.
We hold that all three of these can be usefully characterized as throwing light on their
subject matter, and argue that in each case this contrasts with the role of explanations in
physics. Mathematics itself, we argue, provides something different from such expla-
nations when applied in the field of psychology, and this is nevertheless still cogni-
tively fruitful.
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1 Introduction

The question of the role of mathematics in science has been extensively discussed, as
mathematics plays a crucial role there. Even so, what this role really amounts to
remains an object of live philosophical debate. Topological explanations, in particular,
have received increasing attention in recent years (e.g. in medicine, biology and the
neural sciences).1 Taking this ongoing discussion as a starting point, the present authors
will address the problem of how mathematical notions, especially topological ones, can
make a positive contribution to understanding in respect of Gestalt psychology.

Our principal subject matter will be furnished by the ideas of Kurt Lewin, taken
from his book Principles of Topological Psychology (Lewin 1936), in which that
author proposed a topological model of persons. According to this model, a person
can be represented as a specific region in the space of life. Between the space of life and
the person falls a boundary, which is modelled by Lewin using a Jordan curve. Then,
within the person construed as a certain mathematical space, Lewin distinguishes many
more regions, ranging from boundary zones closely connected to their surroundings
environment to more central inner-personal regions located much further away from the
latter and so more difficult to reach from outside. The regions themselves are separated
by boundaries: some are connected, forming strongly defined wholes that, in their final
form, take on the form of Gestalts, and some are connected by paths, these being the
connections captured in a Jordan curve. They also influence each other, creating a
dynamic system of energy flows.

Even from such a cursory account of Lewin’s ideas as the above, one can discern the
importance of the role played by such spatial concepts as space, boundary, connection,
change, Jordan curve and path. These are hardly methods and concepts of the
statistical kind that we have become accustomed to in modern psychology. Rather,
they are qualitative concepts of the sort studied in topology—a branch of contemporary
mathematics. Topology essentially explores that which remains unchanged during
continuous transformations. A circle and a square on a plane count as the same object
for a topologist, in that a circle can easily be continuously transformed into a square
without tearing it apart or joining together its otherwise discrete parts: one may just
imagine it as being made of rubber. Topology, then, is the geometry of rubber—
metaphorically speaking! It is thus clear that shape is not important here. But in that
case, what is? Well, in topological terms, the common properties of a circle and a
square are qualitative properties: for example, the fact that both a circle and a square
divide a plane into two parts consisting of an inside and an outside, or that their
dimension also persists unchanged through continuous transformations. Put simply, all
these are topological properties.

Our proposal will be that mathematics can indeed make genuine contributions to
understanding certain notions in theoretical psychology at a fundamental conceptual
level, and that these will carry with them a deep philosophical significance that itself
then calls for thorough analysis from within that discipline. Our hope is that the present
paper will also assist those seeking to understand in a more general way how mathe-
matics enters into scientific theorizing, and what roles it can play—especially in terms

1 Cf. Kostić (2018a) (Introduction to a special issue of Synthese on topological explanations) for an overview.
See also Kostić (2018b) for a more detailed disscussion.
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of the thought that the latter can be not just explanatory, but also explicatory. With such
goals in mind, we shall describe the general phenomenon of the conceptual and
cognitive contribution of mathematics to this subject matter by invoking, as suitably
illustrative, the concept of throwing light on something. Mathematics, and in particular
topology, has the potential to serve as a common unifying framework for diverse
approaches (notably phenomenological and neuroscientific ones), in that it focuses on
the very structure of the problems being addressed, as distinct from details pertaining to
particular mechanisms and more localized features.

The paper falls into three main parts. We begin in Section 2 with a presentation of
the topological way of thinking as manifested in Lewin’s own approach to the issue of
personhood. We discuss examples of the use of spatial concepts in Lewin, as well as
briefly examining what topology itself is. In order to furnish a proper context of
understanding, we also point to the role of topology in formal ontology, which
constituted a fundamental science for Husserl. Section 3 then addresses the role of
mathematical explanation in general, touching upon (a) explanatory, (b) explicatory,
and (c) heuristic-metaphorical roles played by mathematics in the context of science. In
Section 4, using ideas from Kazimierz Twardowski and Tarja Knuuttila,2 we introduce
the concept of throwing light on something, and juxtapose this with both explanation
and metaphor. As an example of explication, we present the notion of the centre of a
person as construed by Lewin, and as an example of metaphor, we put forward his
conception of schizophrenia. Our thesis will be that both explication and metaphor are
only possible in these contexts because Lewin has shed a distinctively spatial light on
personhood. Finally we, present our overall conclusions.

2 The topological mode of thinking in Lewin’s approach
to personhood

2.1 The problematic nature of mathematical explanations in psychology

Generally speaking, the question of what persons amount to locates itself on the border
between psychology and philosophy, and specifically philosophical uses of topology
could prove especially inspiring and important for our current investigation. Following
Lewin (one of the most prominent psychologists of the twentieth century3), we shall be
viewing this problem from an essentially non-reductive phenomenological perspective.
Our focus will therefore be on trying to understand certain psychological notions as
they show up in their own right (without engaging in any form of hypothetical
explanatory reduction invoking underlying causes, no matter whether these be

2 We wish to thank an anonymous reviewer for directing our attention to (Knuuttila 2017). This paper allowed
us to better define the process of casting light on something.
3 Kurt Lewin was ranked 18th on the list of the most prominent psychologists of the twentieth century drawn
up by the Review of General Psychology—the journal of the American Psychological Association. “Eminence
was measured by scores on 3 quantitative variables and 3 qualitative variables. The quantitative variables were
journal citation frequency, introductory psychology textbook citation frequency, and survey response fre-
quency. The qualitative variables were National Academy of Sciences membership, election as American
Psychological Association (APA) president or receipt of the APA Distinguished Scientic Contributions
Award, and surname used as an eponym” (Haggbloom et al. 2002, p. 139).
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neurophysiological, biological, chemical or physical), and on capturing the possible
role that mathematics might be found to play therein.

Certainly, we should not expect to see such spectacular applications of mathematics
in psychology as in physics, where powerful mathematical techniques are deployed to
unify extensive and wide-ranging results, predict phenomena, and arrive at precise and
empirically testable quantitative characterizations. In this regard, it seems reasonable to
think that each field of science will inevitably afford its own distinctive level of
accuracy. To be sure, the theory of persons does not present itself as an obvious
candidate when it comes to the debate about the epistemic role and strengths of
mathematics, but Lewin’s approach to persons is directly dependent on topological
(i.e. mathematical) concepts. Lewin also employs some equivalents of other scientific
concepts, such as field (he is, in fact, widely known for his field theory), force, energy
and permeability—though topological concepts are particularly important for him in
the context of the problem of mathematical explanations. Pursuing such an unobvious
application, then, may hopefully contribute to enriching our understanding of the wider
problem of the epistemic significance of mathematics, even as it opens up novel
perspectives on how mathematical concepts can be applied to an otherwise seemingly
non-mathematizable approach in psychology.

2.2 The spatial mode of thinking in Lewin’s theory of persons

When we think about persons in a psychological context, temporal aspects show up
as important in many respects. To think of consciousness is to think of something
distinguished by its own specific temporality, in that our mental acts themselves
unfold in time. However, Lewin claimed that what determines the structure of the
person are not temporal considerations, but rather spatial ones. The person is not a
simple and homogeneous object, and as such possesses parts—parts which in turn
exhibit a spatial character.

Lewin offers some examples of spatial representations within real, physical space
(Lewin 1936, p. 41–50). The first concerns a prisoner and a cell. The prisoner is
separated from what is outside their cell, or from what is outside the prison. The space
of their bodily movement is confined to just what can occur within the space of the
prison (the cell, corridor and courtyard), and as such is strictly limited. However, they
may well think about what is going on outside the prison—about their family and
friends—and may meet up with their family. Thus, it may be said that as long as they
are thinking about something outside of the prison, the space of their mental and social
life is not as limited as the space of their bodily movement: “The solidity of the
boundary of the prison is different for bodily, for social, and for mental locomotions”
(Lewin 1936, p. 44).

The notion of space appears in several contexts in Lewin’s theory, and one of its
more important applications takes the form of the notion of a life space (Lewin 1936, p.
216). This is the totality of possible events capable of determining the behaviour of a
person. It takes in both the person and their environment. The first approximation of a
person we can have will be that of an undifferentiated region in such a life space.
However, as we mentioned earlier, a person is not a simple and homogeneous object: it
contains many parts, which Lewin calls regions—so we might model the person as a
system of such regions.

B. Skowron, K. Wójtowicz



For example, if a person’s dream is fulfilled, some of its other parts will change, while
some will remain untouched; if one becomes a parent due to an expected child being born,
this might not affect one’s work efficiency, but could have a major impact on one’s family
life. These can be linked by dynamic relationships: certain changes in one region may or
may not cause changes in another one. Taking into account all possible changes to regions
caused by a change of state in one of them, Lewin arrived at a certainmathematical structure:
every region comes with a set of neighbouring ones—i.e. those which could, possibly, be
influenced by it. Lewin refers to the system of such changes as one of dynamic dependency
(Lewin 1936, p. 168), and formulates the following definition:

a and b are parts of a connected region (region of influence) if a change of state of
a results in a change of state of b. (Lewin 1936, p. 169)

This, of course, is not unconnected with his clarification of the well-known concept of
Gestalt:

Gestalt: a system whose parts are dynamically connected in such a way that a
change of one part results in a change of all other parts. (Lewin 1936, p. 218)

2.3 The person as a topological space

Different types of change will result in one and the same region’s exerting an
influence on different groups of regions, where this fact can then serve as a basis for
defining the topology of the person as the entire system of regional dependencies
associated with all possible changes of this sort. In topological terms, this is a
neighbourhood system, and it is thus that a person comes to be represented as a
topological space. In Lewin’s words:

The concepts which we have developed in this book concern the whole psycho-
logical life space, that is, person and environment. They allow treatment of all
problems of position and connections of the life space and its parts. They are
applicable to quasi-physical as well as to quasi-social and quasi-conceptual facts.
By means of these concepts one can represent the structural changes of person
and environment and all kinds of locomotion. To a certain extent one can also
deal with those problems of psychology that are dynamic in a narrower sense of
the word, for instance the friction of a region, the solidity of a barrier with respect
to locomotions, the degree of separation of regions with respect to communica-
tions of different kinds, and the degree of wholeness (dynamic Gestalt) of
systems of the environment and the person. Finally one can treat certain problems
of tension and changes of state of regions, for instance the liquidity or solidity of
a region. (Lewin 1936, p. 204–205)4

4 In (Kirchhoff, Kiverstein 2019) the authors determine a boundary for the mind by using the Markov blanket
formalism. It is interesting to observe that the Markov blanket formalism is also used for analyzing topological
properties of certain causal networks.

Throwing spatial light: on topological explanations in Gestalt...



Space in mathematics may consist of any type of objects: stretched lines,
planes, sequences, functions, and also regions of the person. The space can
be simple or highly tilted, compressed or stretched, flat or multi-dimensional,
metrizable or not, etc. The general concept of a space turns out to be most
important for Lewin, not only in mathematics and the natural sciences, but also
in psychology itself.

Other examples given by Lewin include the use of spatial and topological concepts
as real psychological concepts: the extent of what a child is allowed and what their own
abilities permit them to do, the freedom to move around in a social space of rich and of
poor individuals, approaching some goal or, say, fleeing from another person. If the
goal of a child, say, is to become a physician, then “the ‘path’ to this goal […] leads
through definite stages: college-entrance examinations […], college […], medical
school […], internship […], establishing a practice” (Lewin 1936, p. 48).5

2.4 Topology and Husserlian formal ontology

Topology is a far-reaching generalization of geometry. A broad-brush approximation
could be given by saying that its subject-matter consists of those properties that remain
unchanged under continuous transformations. Consider a rubber ball and its continuous
transformations, such as squeezing, stretching, twisting, etc.—but not tearing, gluing or
drilling holes. What will remain untouched by such transformations? The volume of the
ball and its shape will change. But that it (1) is in one piece, (2) is three-dimensional,
(3) has no holes, and (4) has an interior, an exterior and a boundary—all these are
features that will not change under continuous transformation. All of them are examples
of properties explored by topology. Topology is a far-reaching generalization of these
intuitions from the “geometry of rubber”, and examples of topological invariants
(topological properties) studied in a general kind of way are, for example, connected-
ness (and its variants, such as path-connectedness or local connectedness), compact-
ness (and its variants), separability, density, and many others. (It is of interest to many
non-mathematicians because its subjects are qualitative properties, rather than the
quantitative ones with which mathematics is commonly but erroneously identified).
Thus, from a topological point of view, a square and a triangle are the same object.
They differ in shape, but preserve other important properties: for example, both of them
divide a plane into two connected parts: an outside and an inside. This is, in fact, a
qualitative property. A well-known joke about topologists describes them as people
who cannot distinguish a coffee mug from a donut, since one can be continuously
transformed into the other.

Topology might well be regarded as the science of general aspects of space as such.
That is why it is a kind of formal ontology in Husserl’s sense—in that it can be realized
across multiple fields where spatial aspects are under investigation. It permeates all of
modern mathematics, and also serves as an indispensable tool for physics, chemistry,
biology and many other areas of science. It also comes as no surprise, we think, that

5 The notion of social space is one of the concepts of social neuroscience. And spatial cognition might be
relevant for social navigation. The problem is investigated in (Tavares et al. 2015), and according to the
authors “The results predict that an impaired geometric representation of social space in the hippocampus may
accompany social dysfunction across psychiatric populations.” (Tavares et al. 2015, p. 240).
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topology shows up as inherently present in psychology and philosophy,6 and in
particular phenomenology.

One of the places where phenomenology meets topology is the part-whole theory of
Husserl, presented in his Third Investigation, which is entitledOn the Theory of Wholes
and Parts (Husserl 2001, p. 1–46). Husserl constructs a general theory for this, in
which the basic concept is that of foundation: “If a law of essence means that an A
cannot as such exist except in a more comprehensive unity which connects it with an
M, we say that an A as such requires foundation by an M or also that an A as such
needs to be supplemented by an M” (Husserl 2001, p. 25). If an object is founded upon
a certain moment, then we can say that this object is non-independent. Husserl
examined the relation of non-independence very carefully, and discovered many things
about it. For example, he noted that this relationship is a transitive one, in that “[a] non-
independent part of a non-independent part is a non-independent part of a whole”
(Husserl 2001, p. 26). If colour saturation is a non-independent part of colour, and
colour is a non-independent part of a whole, then colour saturation is a non-
independent part of that whole. Along with this relation, he introduced a number of
formal-ontological concepts of fundamental importance: moment, abstractum, whole,
unity, concretum, piece (portion), thing, etc. All these concepts were then taken up and
used by his students. Roman Ingarden made use of Husserl’s considerations pertaining
to the phenomenon of independence in his Controversy over the Existence of the World
(Ingarden 2013), in particular in his existential ontology.

For a contemporary mathematician studying Husserl’s writing, it is fairly clear that
behind his investigations lie topological ideas. This has been shown directly by Kit Fine
(2006), who has employed topology to formalize Husserl’s theory of part-whole
relations. It is also significant that Husserl himself indicated that his theory stood in
need of formalization, and it turns out that Husserl would have had some reasons of his
own to be mindful of topology, as Smith explains:

That Husserl was at least implicitly aware of the topological aspect of his ideas,
even if not under this name, is unsurprising given that he was a student of the
mathematician Weierstrass in Berlin, and that it was Cantor, Husserl’s friend and
colleague in Halle during the period when the Logical Investigations were being
written, who first defined the fundamental topological notions of open, closed,
dense, perfect set, boundary of a set, accumulation point, and so on. Husserl
consciously employed Cantor’s topological ideas, not least in his writings on the
general theory of (extensive and intensive) magnitudes which make up one
preliminary stage on the road to the third Investigation. (Smith 1994)

3 The possible roles of mathematics

We can distinguish many different more or less precisely given senses in which
mathematics can contribute to understanding in some particular area or other. This

6 Examples of the use of topology in philosophy can be found in Fine (2006), Kaczmarek (2019a, b),
Mormann (1995, 1997, 2013), Schulte and Cory (1996), Skowron (2017) and Smith (1994).
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applies to science, and to philosophy as well—in that many philosophical problems are
analysed in contexts informed by technically specialized results. Such findings (i.e.
notions, theories, etc.) do not solve philosophical problems, but they do often allow us
to view the latter from new perspectives and gain new insights—so that we can, in
connection with this, speak of “seeing a problem in the light of certain results”. Of
course, this expression is somewhat vague and indefinite—but we might nevertheless
wish to claim that it captures the kind of relationship that obtains between some
mathematical results, definitions, or theories on the one hand, and some philosophical
notions or questions on the other. Few people will claim, for instance, that the model-
theoretic definition of satisfaction (Tarski) resolved the problem of the nature of truth
once and for all, but it certainly sheds some light on this topic. So the use of
mathematical notions and theories can serve to enhance our understanding of a given
domain. Also, more particularly, it may contribute to the latter by enhancing the
expressive power of our language.

We might wish to think of the following as roles potentially played by mathematics
in relation to science generally and psychology in particular:

1 Explanation;
2 Explication;
3 Metaphor.

These three are different, but have something in common in that they all fall under
the general category of throwing light on something. Moreover, two essentially
distinct factors can be distinguished here: a passive and an active one. The passivity
of casting light on something consists in our uncovering global structural similar-
ities between entire fields without adding anything, while its active element is what
this illumination itself brings to the subject matter under consideration. To use some
illustrative language, when we throw light on a thing, we illuminate a certain side of
the whole object, pointing to what was not previously visible. Displaying a certain
side instead of another one, we emphasize its importance. We then focus our
attention on the content that we had not previously distinguished. Moreover, it is
clear that if we throw—metaphorically speaking—a red light, then the object will
be seen as red, if a green light, then the object will be seen as green, and so on. The
casting of light therefore adds new content to the object, which the object did not
previously possess. This is what we actively and creatively contribute to the object
when we throw light on it.7

In particular, topology contributes to our understanding of psychological concepts
and problems, as it provides fruitful methods for conceptualizing certain vaguely
understood notions. Moreover, even if it should turn out that we cannot directly
translate topological notions and theorems into psychological language, they can still
be heuristically useful and inspiring, and encourage us to formulate new psychological
hypotheses, thanks to the distinctively spatial light that has been shed on them.

7 The process of throwing light can be seen as a process of increasing conceptual order. If we put it that way,
the process of throwing light can be added to the list of mechanisms increasing the conceptual order
catalogued by Edwin Hutchins (2012).
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3.1 Mathematical explanations in science

The role of mathematical explanation in the natural sciences has received much
attention, especially recently. We all would like to know whether mathematics itself
has some inherent explanatory power (when applied to physics, or in relation to science
in general), or whether it only serves as a means of capturing and expressing some
(causal) relationships between physical phenomena. According to many authors, there
are examples of such explanations in science: i.e. examples of explanations where it is
not scientific laws, but rather truths of mathematics (theorems) that are doing the real
explanatory work. A familiar and much-discussed example is provided by the bridges
of Königsberg: the fact that they cannot be crossed is explained by a simple theorem in
graph theory, not by citing any physical properties of the system of bridges. Another
frequently considered example is the periodical life-cycle of cicadas (13 and 17 years),
introduced by Baker (2005): it is a striking fact that these cycles are prime numbers, so
the claim is that to explain this phenomenon we must take note of the properties of
prime numbers. (Hence, the explanation has a purely mathematical character, rather
than a biological—or, more generally, a causal—one). An interesting example of a
relevant biological phenomenon is the hexagonal structure of honeycombs, it being
claimed that the proper explanation for this is provided by the Honeycomb theorem
(Hales 2000, 2001) stating that hexagonal tiling is optimal with respect to total
perimeter length. (Thus, returning to biology, the bees minimize the amount of wax
needed for their work, where this proves evolutionarily advantageous.) Examples in
physics, moreover, are abundant. Lange (2013) discusses the phenomenon of a pen-
dulum’s possessing exactly four equilibria, concluding that this is explained by a
topological theorem on functions defined on a torus. The Borsuk-Ulam theorem,8

meanwhile, offers a mathematical explanation of the fact that there are always two
antipodal points on the surface of the Earth, where temperature and pressure are the
same (cf. Baker 2005, 2009; Baker and Colyvan 2011). Hence, the topic has been much
discussed, and the problem of whether there really are mathematical explanations in
science, and what makes them so special, remains a pressing one.9

For our purposes, the notion of topological explanation is of particular interest,
given the prominent role that topological notions play in Lewin’s approach. Indeed, it
has become an object of increasing attention in medicine, (evolutionary) biology and
neuroscience. According to Kostić:

[T]opological explanations explain by reference to structural or mathematical
properties of the system (e.g. graph-theoretical properties, topological features, or
properties of mathematical structures in general), and abstract away from the
details of particular causal interactions or mechanisms. (Kostić 2018a, p. 2).

Many such investigations focus on topological graph theory—an approach (initiated in
Watts and Strogatz (1998)) that explores the topological properties of graphs and

8 The theorem states that for any continuous function f from a sphere into R2, there will be two antipodal points
x and y, such that the value f(x) = f(y).
9 The literature on this is vast, so that even just giving a general overview would exceed the scope
of this study.
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networks. What is distinctive here is that the explanatory input itself comes from
mathematics, and especially topology.

In our view, it is the concern with structural properties that makes the topological
account especially attractive, as topology can provide a conceptual basis for identifying
some very general features of our perceptual (or, in general, phenomenal) experience
on the one hand, and of the neurophysiology of the brain on the other.10

3.2 Mathematical explications in science

This notion of mathematical explication has been extensively discussed, and we shall
focus here on Carnap’s account, which can be taken as paradigmatic.11 He describes the
function of explicatory notions in the following, general way:

The task of making more exact a vague or not quite exact concept used in
everyday life or in an earlier stage of scientific or logical development, or
rather of replacing it by a newly constructed, more exact concept, belongs
among the most important tasks of logical analysis and logical construc-
tion. We call this the task of explicating, or of giving an explication for,
the earlier concept. (Carnap 1947, p. 7–8)

In fact, a large part of philosophical analysis and scientific work can be viewed as being
engaged in procedures for furnishing such explications. (See Brun (2016) for more
examples and analysis). These can take various different forms, and one of the
possibilities is to do this by formulating postulates. As an example, consider those of
quantum mechanics. These are not meant to furnish a framework for testing that would
enable one to actually grasp the ontological nature of quantum states—in fact, they
might even be viewed as metaphysically agnostic. Yet they provide us with some
formal counterparts of the notions involved, and explain how these should be incor-
porated into the system of scientific concepts. A topological explication of psycholog-
ical concepts might equally be viewed in this way, in that it aims to capture the abstract
structure of things rather than any specific causal dependencies.

3.3 Mathematical metaphors and their heuristic role

The general problem of metaphors in science, not to mention metaphors in general,
is a vast subject, so we must be highly selective in our treatment here. We shall
focus on some specific accounts in the philosophy of mathematics that make use of
this notion. One example is the conception of Yablo (2002a, b), who views

10 Duch (2018, p. 15) discusses the relationship between psychology and neurophysiology, and mentions
some neurophysiological phenomena, notably claiming that “noise in the system and new stimuli may push
the system out of the attractor basins. This process has been described in Lewin theory in terms of
psychological forces that act on life energy field changing its state”.
11 Brun (2016) offers an interesting survey and analysis, mentioning many examples of such explicatory
concepts (such as knowledge, valid inference, justice, etc.). In addition, Leitgeb (2013, p. 271) points out
“three paradigm case examples from the 1930s, 1950s, and 1970s, respectively: Alfred Tarski’s explication of
truth, Carnap’s own explication of confirmation of hypotheses by evidence, and Ernest Adams’s explication of
the acceptability of conditionals”.
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mathematics as a kind of make-believe game—in that our use of it resembles a game
as and when we pretend to believe certain claims. Basing his theory on Walton’s
account of metaphor, the aforementioned author has put forward some fairly strong
claims concerning the similarity between mathematical sentences and metaphorical
utterances. According to Walton, the employment of make-believe “is useful for
articulating, remembering and communicating facts” (Walton 1993, p. 40). An
important notion here is the principle of generation—which is a kind of bridging
law linking internal facts within the make-believe game with reality. For a simple
example, consider what happens when children play, and one of them is the king of
France: a claim such as The king of France is injured will show up as being
perfectly intelligible within the realm of pretence, even though there really is no
such king (and the supposed king is obviously not in fact injured).

Spivey’s account presented in his book The Continuity of Mind (Spivey 2007) is an
interesting example of a metaphorical modelling. The author recognises that the three
systems originally treated as distinct: perception, cognition, and action are not separat-
ed, but overlap and form one continuous mental flow. The notion of metaphor is used
frequently: “You will find throughout this book that I tend to mix my metaphors
between dynamical systems and information processing terminologies.” (Spivey 2007,
p. 138). His account of mental phenomena is based on notions from dynamical systems
theory—phase space, trajectory, attractor, basin of attraction etc., which also have a par
excellence topological character. They are used to express novel claims about mental
phenomena, but their use might be considered to be metaphorical, even in the case of
the fundamental notion of the phase space. Spivey gives some metatheoretic discussion
concerning the use of metaphors, indicating that metaphors are used when the target
domain is too complex—and:

we can import a richer understanding of other similar and somewhat simpler
source domains, for example, dynamical systems theory and attractor networks,
to provide descriptions and explanations of how the mind might function. Done
properly, this requires a cyclic interplay between empirical predictions made by
the metaphor/model, and results of those empirical tests being used to improve
the metaphor/model. (Spivey 2007, p. 33)

Spivey’s aim is to produce a model which also has predictive power and is not just a
metaphorical description. Nevertheless, mathematical metaphors play an important role
in his approach.

4 Throwing light on something: Discussion of the concept

In his analysis of the structure of persons, Lewin himself made use of several topolog-
ical notions, including regions’ boundaries, boundary zones, connected regions, sep-
arated regions, paths, dimensions, and so on. He identified some important structural
properties of persons that resemble structural topological properties. Exploring further
levels of this same analogy, he made it possible to formulate some claims concerning
the nature or structure of persons, and in this sense we can say that he threw new, and
distinctively spatial, light on the question of what a person is. Throwing new light on
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something, thus construed, means uncovering structural (i.e. global) properties that are
shared with some other, unexpectedly comparable domain, where this allows us to
identify a previously unnoticed property of the original one. Such a property must, of
course, bring something significantly new to our understanding—otherwise, there
would be no new light and little reason to attach a positive value to this procedure.

Lewin noted how certain topological notions can be applied in order to describe
properties of persons, and some of his intuitions have been experimentally confirmed
(for a discussion see (Roeckelein 1998, p. 305)). For example, if two regions are
separated, they cannot be connected, and if one region of a person belongs to a higher
dimension than some others, this will mean that its boundaries also belong to that
higher dimension. It is important that showing (exhibiting) something in a new light is a
global process that takes with it the entire network of connections: we might say that it
is not possible to throw new light on just a very small part or aspect of any given
issue—a certain minimum of engagement on our part is required. It might lead to
making some sort of highly significant conceptual contribution.12

Casting, throwing or—if one prefers—shedding new light on something involves
taking over connections from some other domain, and so is a creative process. This is
as much as to say that it creates some new content pertaining to a previously
unmanifested subject-matter. In his theory of cognition, Kazimierz Twardowski
(1977, p. 79) claimed that there are no absolutely adequate representations: i.e. that
we are always losing something from the content of the object and adding something to
it. Therefore, this is not only a process of finding certain forms in a given object that are
actually there within it, but also a matter of creatively inserting (or even imposing) a
certain content into (or onto) the object under investigation.13 In the case of Lewin’s
theory of persons, the creative input consists in the introducing of a spatial light and
accompanying topological notions, where these allow us to exhibit important connec-
tions within the life of the person.

Throwing light on an object is not a completely arbitrary process. It is to cast a
specific light on a specific object for a specific purpose. A novel representation of an
object, such as is created after it has been illuminated anew, is a representation serving a
predetermined purpose. This representation is, in fact, an epistemic artefact that can be
transformed, developed, or even used for an entirely different purpose than its origi-
nally intended one (cf. Knuuttila 2017). Knuuttila has proposed that the models used in
science should be considered epistemic artefacts of a specific kind: ones that enable
both the creation of new knowledge and its embodiment (by means of appropriate
media)—together with its transfer. Hence, on the basis of her ideas, it can be said that
throwing new light on an object is tantamount to creating a new epistemic artefact that,
though not itself absolutely cognitively transparent, nevertheless determines (for

12 This notion is not perfectly clear, but it captures an important aspect of the use of mathematical methods in
philosophy and science. We cannot say, for instance, that metalogical limitative theorems (Gödel’s theorems,
the Skolem-Löwenheim theorems, the unsolvability of certain problems (e.g. the halting problem), and many
others) apply to the problem of our epistemological limitations in a direct way, or that they can be
straightforwardly applied to generate a ready solution. But they do nevertheless shed new light on the subject,
and are of essential value to the discussion.
13 Hence, this is—generally speaking—a point of view that might well be accepted by Kantians, as Kant’s
critical philosophy paid attention to the creative aspect of cognition.
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instance, through representational embodiments) what can be conceived. It thus deter-
mines a new horizon of possibilities for thinking about the object on which it falls.

Aiming to get to know some object ever more effectively, we survey it from an ever
closer position. Just as we want to take a picture from a distance, but do not want to lose
any details, so we often use our camera’s zoom function. This allows us to zoom in,
focusing on a smaller part of the previous image and seeing more details as a result. But
it also allows us to zoom out and display a wider picture with less detail. The operations
of throwing light on something and zooming in and out are different, though strongly
linked.14 Lighting contains an active factor that introduces new content to the object
being illuminated. Lewin, by casting a spatial light on personhood, has somehow
added something to our understanding of persons that we had not seen before.
Nevertheless, after becoming acquainted with Lewin’s concept, it seems quite natural
for persons to be thought of as constituting separate regions in the space of life. But it is
only so, given Lewin’s already having shed light on it of this distinctively spatial sort.
Once it has been illuminated as an object, such zooming in and out is possible, but
otherwise not. Hence, any zooming in and out presupposes the existence of the light
thrown upon the object, and it can therefore be said—to use Husserlian ontological
language—that zooming in and out is an operation founded on the latter. The casting of
light is thus what is ontologically prior, and it is only this that makes it possible to zoom
in and out.

4.1 Mathematical explanations in (Gestalt) psychology?

One important feature of topological explanations (in contrast, say, to mechanistic ones)
is that they allow us to abstract from the causal structure of the underlying mechanism
involved and concentrate instead on its formal mathematical features, which themselves
are taken to furnish explanatory input. Consequently, it is not necessary to trace the
underlying (neurophysiological, etc.) mechanism, and what matters instead is that we
furnish a goodmathematical conceptualization and description. If we agree that this also
constitutes explanation in psychology, then we can treat the presence of topological
notions in Lewin’s account as fulfilling an explanatory role.15

Nevertheless, we acknowledge that this might be viewed as problematic, given that
the examples of mathematical explanation in physics that are usually discussed involve
a direct application of mathematical theorems (and not just a formalization of infor-
mally disclosed notions). There, what we see is that theorems are important ingredients
of the explanans. The difficulty is that nothing similar can be observed in the case of
topological psychology.

Here, in fact, we encounter a more general problem pertaining to the possible
explanatory role of mathematics in psychology. It is fairly indisputable that there are
vast differences between physics and psychology in its present state (not to mention

14 We wish to thank an anonymous reviewer for indicating the relevance to our research of the metaphor of
zooming in and out.
15 Cf. the opinion expressed in Darrason (2018, p.147), who gives an overview of topological explanations
within medical genetics and network medicine, claiming that “topological explanations in network medicine
can help solving the conceptual issues that pure mechanistic explanations of the genetics of disease are
currently facing”. Here, the impact on conceptual issues is stressed. And in this sense topology (and
mathematics) can obviously contribute to a better understanding.
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psychology as it was in the 1930s), where these make the application in psychology of
such complex mathematical methods as we see employed in physics virtually impos-
sible. It seems obvious that we cannot expect a predictive role to be fulfilled in any
comparably strict sense to what goes on in physics. Therefore, our position is that
mathematics, at least for the present, cannot play an explanatory role in psychology in
any sense similar to that which it performs in physics.16 In the latter, we can find natural
areas of application for highly non-trivial forms of mathematics (examples abound!),
but it is hard to imagine how a theorem on, say, the spectra of operators on Hilbert
spaces could have any plausible bearing on psychological representations or be needed
to explain some psychological phenomenon or other. It is quite probably the case that
the range of mathematical theorems that might be interpreted as directly expressing
non-trivial psychological theses (or even as having plausible psychological counter-
parts) is rather limited.

But regardless of how one construes the notion of mathematical explanation in
psychology, mathematics (and topology, in particular) can be of great epistemic value
to psychology in other ways: one important role is that of providing a framework for
conceptualization, where mathematics can offer just the tools we need. So, even if it has
only very limited explanatory power, it can still have great explicatory power, as well
as performing an important heuristic role.17

Our expectation, then, is that the use of topological notions will chiefly enhance the
possibilities for arriving at and formulating interesting claims about the structure of
persons by helping us to explicate concepts (and by furnishing inspiring metaphors). In
particular, we think that such notions are very well suited to expressing some of the
distinctive intuitions and proposals of the Gestalt approach, as many of the topological
notions concern global properties of systems, which cannot be retrieved from just their
local features. Moreover, what makes these contributions possible is itself an intriguing
philosophical question to ask.

4.2 An example of explication: The Centre of the person

In Lewin’s theory, persons are not mere simples: they exhibit internal structure, and we
must therefore seek adequate conceptual tools in order to make the differentiations
needed for grasping the latter. Our proposed example concerns the intuitive concept of
the core or centre (or perhaps, even, the heart) of the person. We have an everyday
experience that certain parts of our personality are more important than others. The
most important parts form the core of the person—they are its centre. It is necessary to
clarify these intuitive concepts. Lewin undertakes this clarification, which is de facto an
explication in the sense of Carnap; however, explication of the latter sort is only
possible in the wake of the construction of a global analogy encompassing all of its

16 Of course, there are advanced mathematical models in use in mathematical psychology: e.g., when we try to
describe risk aversion quantitatively, or focus on neurophysiologial hard data, or when statistical correlations
are being analysed. But our own focus here is rather on theoretical descriptions of certain fundamental
questions, and as was mentioned before, we are approaching the theory of persons from a non-reductive
perspective.
17 In Kuś and Wójtowicz (in preparation) the role of the theory of dynamical systems in embodied cognition
is investigated, with similar conclusions: their explanatory role is very limited, while they might play an
fruitful heuristic role, enhancing understanding of the problem.
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consequences, especially as regards our taking over of some network of conceptual
connections.18 Thus, what we are dealing with here is a process of throwing light on the
subject matter in question, where this is what makes such explication possible—much
like the metaphor of zooming in or out.

Lewin offers the following general description of the structure of the person:

The person is to be represented as a connected region which is separated from the
environment by a Jordan curve. Within this region there are part regions. One can
begin by distinguishing as such parts the ‘inner-personal’ regions (I) from the
motor and perceptual region (M). The motor and perceptual region has the
position of a boundary zone between the inner-personal regions and the environ-
ment […]. (Lewin 1936, p. 177)

The motor and perceptual regions include speech, hearing, seeing, etc. They are
responsible for contact with what is outside the person. Hidden more deeply, though,
there are also more central parts of the person. To reach these, one must penetrate
further regions. Within the inner-personal regions Lewin distinguishes inner-personal
peripheral parts of I that are closer to motor-perceptual regions, and more central parts
of I that are further from the perceptual parts. But how might one distinguish these
central parts without resorting to metaphors, so that one employs instead the sort of
strict language that will also prove useful when designing psychological experiments?
Here is Lewin’s answer:

It is of great general importance whether a psychological process belongs to more
central or to more peripheral strata. Dembo’s experimental investigations […] on
anger have shown the significance of this factor for emotions. If only peripheral
strata of the person are touched, manifestations of anger occur more easily. The
outbreaks of anger are then more superficial. If more central strata are involved an
open outbreak of affect is more rare. (Lewin 1936, p. 180)

It thus turns out that manifestations of anger show how deeply located the affected part
of the person is. But where does such a connection come from? Lewin responds to this
as follows:

Indeed the boundary zone between the central strata […] and the environment (E)
is stronger than the boundary zone between the peripheral strata (p) and the
environment. (Lewin 1936, p. 180)

Furthermore:

The peripheral strata come more easily into connection with the motor region to
which they lie closer. Therefore expression usually occurs more readily when

18 Carnap (1950, p. 7) issues the following demand: “The characterization of the explicatum, that is, the rules
of its use (for instance, in the form of a definition), is to be given in an exact form, so as to introduce the
explicatum into a well-connected system of scientific concepts”.
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events of more peripheral strata are concerned. One speaks about personal matters
only under special circumstances. (Lewin 1936, p. 180)

The notion to be explicated here (the explicandum) is the centre of the person. As an
explicatum, Lewin uses the notion of parts of the person that lie far from the motor-
perceptual region. These two exhibit genuine similarity, as required by Carnap. The
explicatum is embedded in a well-connected system of scientific concepts: namely, the
construction corresponding to the overall framework of Lewin’s topological psychol-
ogy. More precisely, it figures in the psycho-empirical nomological claim that if more
central strata are involved, an open outbreak of affect will be rarer. Of course, the
explicatum cannot itself be overly complex—it should rather be a clear and relatively
simple concept. So Carnap’s demands for being an adequate explicatum are fulfilled.

It is worth noting, moreover, that this explication of the concept of the centre of the
person allows for new experiments to be designed, and permits us to describe states of a
given person regardless of whether they happen to be affected by some sort of tension
or not (for details, see Lewin 1936, p. 181). It also affords a description of the current
state of the person that may then count as a part of their self-knowledge. Thus, the
procedure maybe said to be cognitively fruitful (where this is considered an important
and desirable feature). Of course, the behaviour of a person cannot be predicted with
the degree of precision characteristic of the natural sciences when predicting how
material objects will behave—but that is because persons per se only allow for so
much accuracy. What really counts as a major cognitive and theoretical gain here,
anyway, is not any increase in predictive power, but rather the conceptual insights that
become possible when we apply the language and concepts of topology (and of
mathematics more generally).19

To sum up:

1 Lewin notes that a person has regions, and that these depend dynamically on one
another.

2 He also observes the structure of these regions, and describes this using spatial
concepts such as space, boundary, connection, separation, etc.

3 Because a formal system for such concepts has already been developed by topol-
ogists, Lewin is able to employ topology to formulate, formalize and expand upon
his original spatial intuition.

4 In this way, he constructs a global analogy between a person and topological space;
this allows him to offer explications (in the sense of Carnap) for many concepts—in
particular, the intuitive concept of a person’s centre.

5 We might therefore say that in this way he throws new, and spatial, light on the
problem of the structure of personhood.

Lewin also proffered explications of other notions, describing such properties of
persons as the harmoniousness of their character (Lewin 1936, p. 187), their being

19 We do not mean to suggest that the introduction of topological notions will increase predictive power in any
direct and immediate or entirely straighforward fashion: rather, first and foremost, it will contribute positively
to a process of theoretical reflection of a highly general (and possibly metaphysical, or metaphilosophical)
character.
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affected by tension (ibidem, p. 181), their degree of differentiatedness and
integratedness (ibidem, p. 182–187), and others. All of these explications are spatial
and topological in nature.

4.3 An example of metaphor: Dimensions of the person and schizophrenia

Throwing, casting or shedding light on something is an operation that consists in our
putting a given subject matter forward for consideration in a novel global context, albeit
for specific purposes. It makes visible some previously neglected aspects—ones that
permeate the entirety of the phenomenon. The explicatory significance, in turn, comes
from the fact that we manage to precisely define our intuitive concepts in locally
specified terms via an appeal to certain already more precise concepts furnished by an
existing conceptual field (in our case, topology)—hence the thought that this corre-
sponds to the general phenomenon of throwing light on something. We will now
interpret the use of metaphor as offering a less strict version of explication thus
construed.20 Metaphor, on such a reading, does not consist in a global approach to
the subject matter under consideration, but rather in one’s constructing looser local
analogies without taking over an entire network of conceptual connections. Lewin
himself also sought to develop several such metaphors, including one relating to
schizophrenia, which we present below.

Furthermore, the heuristic role performed in such cases may be different from that of
simply explicating a pre-existing psychological concept. An explication is—broadly
speaking—a mapping Φ:P→ T, from the class of psychological notions P onto the
class of topological notions T. And certainly, the class T is richer than P. But if we have
such a (even informally) defined mapping, we might also then think up a procedure for
re-translating topological notions back into psychology. This might allow us to formu-
late some quite new ideas, concepts and hypotheses: i.e. we could take topological
notions, concepts, results and theorems, and explore them to see whether they inspire us
to formulate some novel psychological ideas. So—still informally speaking—we can
conceive of some sort of re-translation, in the sense of a mapping Ψ:T→ P*.21 And if
such a heuristic procedure were indeed to prove productive, this would mean we have
enriched our initial class of psychological concepts P to obtain an (enriched) P*.

One fact of importance is that in the target domain T (topology) there are many
conceptual connections available, and immersing the domain P into T enables us to make
use of these pre-existing connections. For this reason, the topology resembles the formal
ontology of Husserl’s Logical Investigations. If the mapping Ψ:T→P* is plausible, then
some topological concepts and facts might prompt us to explore certain novel

20 At least, this is how we shall make use of the notion of metaphor in this paper. Of course, there is a vast
literature concerning this, including as it pertains to science and mathematics. However, a serious discussion of
the general problem of metaphor would exceed the scope of the present article. Here we shall only mention the
position of Lakoff (2012), as it to some extent supports our view concerning the role of mathematical
metaphors.
21 We are not employing the symbols Φ:P→T and Ψ:T→P* in any formal sense here (as P is
obviously not formalized). Φ:P→T is rather a paraphrase (of an explicatory sort), and Ψ:T→P* is
also to be understood in an informal way. We might also characterize the procedure in question as
an instance of “rational reconstruction of a theory”—an expression also employed by Carnap
himself. However, we shall not go into details about this here. Hutchins (2012, p. 319-320) calls
these types of cognitive operations “mappings across conceptual spaces”.
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psychological concepts and hypotheses, which in turn may reveal some previously
hidden facts—and, in particular, could also enable us to reveal some facts latent within
the initial formulation of the theory of personhood. As Heinrich Hertz famously stated:

One cannot escape the feeling that these mathematical formulas have an inde-
pendent existence and an intelligence of their own, that they are wiser than we
are, wiser even than their discoverers […]. (quoted in Bell (1937))

Even if we consider this no more than a rhetorically expressive exclamation (as
opposed to a philosophical thesis), it describes an interesting phenomenon and would
seem to be applicable to the situation in question: if the representation Φ:P→T is
plausible, then indeed, topology (T) is able to disclose some new information that could
not have been discovered within psychology (P) itself. So “explications give rise to a
feedback effect” (Brun 2016, p. 1237).

If we view the person as modelled by a family of regions, then we can ask what the
properties of the boundary of these regions are. Is the topological fact that the boundary
has a lower dimension than the regions somehow psychologically suggestive? Quite
possibly not, and probably in the case of a large majority of topological concepts there
will be no plausible psychological counterparts. Nevertheless, in some cases there may
well be. For example, could it be that the topological concept of retraction will
somehow contribute to our understanding of someone’s being in a state of shock?
Hence, the cognitive fruitfulness of topology within psychology can assume a number
of forms. It is especially worth noting that even the basic principles of Gestalt
psychology (or at least some of them) exhibit a highly topological flavour: notions
such as similarity, closure, good form (Prägnanz), proximity and region can all be
defined within topology.22

If we represent the person as a topological space, we will want to describe the
properties of this space: in particular, we might investigate its dimensionality. It is well
known that this is an invariant of homeomorphisms—which means it is a topological
property. We might (after making the necessary identifications) see fit to speak of the
dimensions of persons (or perhaps, rather, of their regions). However, it would be
implausible to claim, say, that a person has seven dimensions—and perhaps it is not
even possible to talk about a person’s (or the person’s parts’) dimensions in a strict
sense. Only metaphors remain. Lewin was struggling with these problems (Lewin
1936, p. 200–202), and he finally suggested that dimensionality should be understood
in terms of degrees of reality.

Some human activities are certainly real, and impact strongly on our environment. In
fact, Lewin himself understood psychological reality in terms of its efficaciousness.
Cycling is real: it brings with it a real change in the position of the body. Nevertheless,
the human personality includes dreams, goals, fantasies, inventions, delusions, and so
on. All of these lead, in one way or another, to what is unreal. Our mental reality falls
into degrees, and Lewin proposed representing higher degrees of unreality as

22 Analysing Lewin’s overall approach, Duch (2018, p. 12) observes that “[h]e has introduced several new
constructs, such as valence, action research, sensitivity training, group dynamics, mind as a complex energy
field, behavior as a change in the state of this field, regions, life space, forces and tension, equilibrium states.
Complex energy field can be presented in the language of dynamical systems”.
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successive dimensions of the person—dimensions, of course, in a rather metaphorical
sense. The higher the personality dimension we are considering, the more fluid will be
the structure of the person. As he puts it: “the boundaries between person and
environment are less clear and the structure of the environment depends to a greater
extent on the needs of the person” (Lewin 1936, p. 199–200).

After analysing the dimensionality of personality and its problematic nature, Lewin,
in passing, constructs a metaphor for schizophrenia, which can be represented as “two
dynamically relatively separated regions which belong to different levels of reality”
(Lewin 1936, p. 201). It can be assumed that this metaphor was dictated by his
construction of a global analogy between persons and topology, rather than being
something the author had specifically intended. We may speculate that it is as if
topology (together with the other scientific terms used by Lewin) had somehow
imposed this metaphor on him. The reader should recall that we mentioned (in an
informal way) two procedures: Φ:P→ T (as a kind of explicatory paraphrase), and
Ψ:T→ P* (as some kind of retranslation and reinvention). Using these symbols, we
can say that this way of viewing schizophrenia was not present within the original P,
but emerged within the enriched P*. In this way, it became possible for some
interesting new claims to be put forward.23

Of course, the notion of topological dimensionality should be handled with great
care, if we intend to use it to describe psychological phenomena. It is really hard to
imagine a plausible psychological counterpart (i.e. within P*) of the notion of, say, a
locally compact space with an uncountably infinite number of dimensions. Perhaps
only very few abstract topological notions can serve as an inspiration for psychological
investigations. (Lewin was certainly well aware of that). Even so, in everyday language
we do speak vaguely and loosely of “dimensions” in a range of contexts, and we need a
method for understanding this. We might even try to explicate, in formal terms, claims
such as “this dimension of somebody’s personality is reduced/twisted/fractional”. Even
if we consider such claims vague and merely metaphorical, we might attempt to exploit
this metaphor and try to “extract” some new ideas from our precise conceptual
system.24 At this point, it should also be recalled that throwing light on something is
not without a purpose—that, as Knuuttila (2017) has noted, all modelling in science is
intentional, and is carried out with some aim in mind. Certainly, Lewin’s goal was not
to build a theory of persons that would be as strict as the research conducted in modern
mathematics; his aspiration was rather to make sense of the phenomenon of persons
and to confirm this understanding through experimentation.

5 Conclusion

Lewin observed that the conceptual system of topology is well suited to conceptualiz-
ing the notion of personhood. In particular, he noted that we can view the person as
having certain parts, that there are certain relations between these parts, that these parts

23 The situation is to some extent similar to that of category theory; see Kuś et al. (2019) and Wójtowicz
(2019) for discussion of this.
24 Hempel famously described mathematics as a theoretical juice extractor. We might adopt such an analogy,
viewing topology as such a kind of spatial juice extractor that provides methods for conceptualizing the field
while also furnishing new insights and ideas.
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can be either separated from each other or connected, that they have boundaries, etc. As
a result, he was able to construct a formal spatial ontology of persons, distinguishing
many spatial forms that can serve as the subject of topological research. In fact, he took
over many conceptual elements from topology, which led him to distinguish new
aspects and features of persons. This, moreover, was a creative contribution, and one
that he made by casting topological light on the subject matter in question. Without the
use of topological concepts, he would not have been in a position to perceive and
describe many of the important relations that obtain between parts of a person. He
would also not have been able to construct his distinctive metaphors and explications.
In his work, the use of topology thus contributed to the theoretical endeavour of
understanding the person in an important way, and so we can also state more specif-
ically that he threw spatial light on the problem of the structure of persons.

It can reasonably be argued that mathematics plays an explanatory role in physics,
but it would be difficult to assign a similar role to it in the context of psychology—
especially if we opt to construe it in a theoretical and non-reductionist way. Yet, in spite
of this, mathematics can still play a very fruitful cognitive role here. Lewin’s theory
provides us with a telling example that confirms this point. Mathematics is employed
there to arrive at fruitful explications of psychological concepts and create inspiring
metaphors. An array of topological concepts makes possible a perspicuous conceptu-
alization of a set of important psychological notions, embedding these in more precise
language, and this in turn means that we take over, in one way or another, a ready-made
system of conceptual relations. Lewin’s topological psychology is thus also an instruc-
tive case for formal philosophy (cf. Leitgeb 2013). There are several reasons why this is
so. First of all, within a single conceptual system we witness him using multiple
conceptual schemes, including ones taken from the fields of physics and mathematics.
Secondly, he employs topological concepts, even though in his time—as now—formal
philosophy was dominated by logic. Thirdly, his results have had, and continue to have,
a huge impact on psychology and related fields. Fourthly, he modelled psychological
phenomena using qualitative topological concepts rather than quantitative statistical
tools. Fifthly, he first uncovered some recurring spatial schemes in the form of
structural spatial resemblances, and only on the basis of the resulting analogies (which
were unclear and difficult to express) constructed his model of persons. It was precisely
because of the fact that he saw analogies in such distant areas as topology and
psychology that he was able to achieve such a far-reaching influence: what he
accomplished in this regard cannot be found elsewhere—in any known schema of
formal philosophy.

Our view, then, is that Lewin’s work furnishes a most interesting illustration of a
more general phenomenon: namely, the fruitfulness of applying mathematical concepts
when seeking to make sense of methodological and philosophical problems. What
makes it particularly engaging is its use of topology, and of certain highly general
spatial notions in the context of a theory of personhood: that surely constitutes a
strikingly original approach. Moreover, the rising importance of topological explana-
tions in science generally and cognitive science in particular shows that his intuitions
turned out to possess a certain brilliance, even if they could not be fully developed back
in 1936, given the state of the discipline then.

Finally, let us remark that the topological way of thinking is particularly well suited
to Gestalt psychology, and has the potential to enhance interdisciplinary work and
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further the integration of diverse approaches, in that topological explanations are
formulated in terms of properties of an abstract underlying structure, rather than
through identifying, and translating into spatial form, underlying causal mechanisms.
It is mathematics and mathematical dependencies that are taken to be of importance, not
some physical implementation. Hence, this approach can also be regarded as most
attractive from a phenomenological point of view.
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