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1. Introduction. The explanatory value of equilibrium depends on the underlying

dynamics. First there are questions of dynamical stability of the equilibrium that are

internal to the dynamical system in question. Is the equilibrium locally stable, so that

states near to it stay near to it, or better, asymptotically stable, so that states near to it are

carried to it by the dynamics? If not, we should not expect to see this equilibrium. But

even if an equilibrium is asymptotically stable, that is no guarantee that the system will

reach that equilibrium unless we know that the system's initial state is sufficiently close

to the equilibrium.  Global stability of an equilibrium, when we have it, gives the

equilibrium a much more powerful explanatory role. An equilibrium is globally

asymptotically stable if the dynamics carries every possible initial state in the interior of

the state space to that equilibrium. If an equilibrium is globally stable, it can have

explanatory value even when we are completely uncertain about the initial state of the

system.

Once questions of dynamical stability are answered with respect to the dynamical

system in question, there is the further question of structural stability of that system itself.

That is to say, are dynamical systems close to the one in question (in a sense to be made
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precise) topologically equivalent to that system? If not, a slight mispecification of the

model may make predictions that are drastically wrong.

Structural stability is defined in terms of small changes in the model. But we may

also be interested in what happens with some rather large changes in the model. A

structurally stable model might, after all, be badly mispecified.  Interest in such questions

depends on the plausibility of the large changes being contemplated.

Here I would like to discuss these stability questions with respect to three simple

dynamical evolutionary models from my book, Evolution of the Social Contract. Two are

models of simplified bargaining games, one with random encounters and one with

correlated encounters. The third is a model of a simplified signaling game. These models

all use replicator dynamics.

In modeling evolution - even cultural evolution - we face considerable uncertainty

concerning early states of the system. Considerations of dynamical stability are therefore

crucial to the evaluation of the explanatory significance of the model. If we can only

show that an equilibrium is stable (that is to say, locally stable), we have only a "how

possible" explanation. If we can show global stability, then the early state of the system is

immaterial and, providing the dynamical system is the correct model, we have approach a

"why necessarily" explanation.
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Good reasons can be given why the replicator dynamics is a plausible candidate

for a dynamics of cultural evolution. A number of different models of  social learning by

imitation have been shown to yield the replicator dynamics.  [Binmore, Gale and

Samuelson (1995), Björnerstedt and Weibull (1995), Sacco (1995), Schlag (1998)].  As I

have said elsewhere, I believe that the replicator dynamics is a natural place to begin

investigations of dynamical models of cultural evolution, but I do not believe that it is the

whole story. [Skyrms (1999)] That means that structural stability, and more generally,

stability under perturbations of the dynamics itself, are important. The more robust the

result is to perturbations of the dynamics, the more likely it is of real significance in

cultural evolution.

 In Evolution of the Social Contract I make, without presenting proof, some claims

about stability.  I will substantiate those claims here. I will prove local asymptotic

dynamic stability in the bargaining game with random encounters and global asymptotic

dynamical stability in the other two models.

The dynamical stability results are of a rather different character for the

bargaining game of chapter one than for the signaling game of chapter five. Accordingly

I make explanatory claims of different strengths for these two cases. In the bargaining

game with random encounters, there are two attracting equilibria: one where everyone

settles for equal shares and one where there is a population in which some demand a lot

and some demand a little. I argue that, in the game in question, the equal division

equilibrium in the one selected by commonly held norms of justice. The equal division
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equilibrium has the largest basin of attraction, but the basin of attraction of the

inegalitarian equilibrium is not so small as to be negligible.  At this point the power of the

dynamics to explain cultural evolution of egalitarian norms is not impressive, and I say

so. However, it may be that such norms evolved in an environment where encounters are

not random, but there is positive correlation between types - for which various reasons

might be given. A small amount of positive correlation incorporated in the second

bargaining model eliminates the inegalitarian basin of attraction, and makes the equal

division equilibrium a global attractor. (Larger amounts of positive correlation have the

same qualitative result.) I conclude: "This is, perhaps, the beginning of an explanation of

the origin of our concept of justice."  [Skyrms (1996) p. 21].  The words were chosen

carefully. The claim of explanatory significance is meant to be modest.

In the case of the signaling game, the dynamical stability properties are quite

different. In the model with random encounters and with one signaling system

equilibrium and two anti-signaling system equilibria (my third model), the signaling

system equilibrium is a global attractor. This remains true if positive correlation is added.

In larger models with many signaling system equilibria, almost all possible initial

populations are carried to one signaling system equilibrium or another. In this case the

dynamical stability results are much stronger than in the bargaining game, and I make a

much stronger explanatory claim: "The emergence of meaning is a moral certainty."

[Skyrms (1996) p. 93].
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 In a recent article, D'Arms, Batterman and Górny, with whom I agree on the

importance of stability, raise questions about the structural stability of my second model.

[ D'Arms, Batterman and Górny (1998) p. 91.]  In fact, I will show that this is the only

one of the three models that is structurally stable. Modification of model 3 to allow

correlated encounters, however, results in a structurally stable system.  I will then show

that a number of the foregoing results remain true if we substitute any dynamics in a large

class of qualitatively adaptive dynamics. This strengthens the explanatory force of my

models, because it identifies behavior that does not depend on the replicator dynamics or

some dynamics very close to it being the right dynamics to use in a theory of cultural

evolution. Of course, it is possible that dynamics that are even further afield may be of

interest and importance.  But I think that it is useful to have the questions addressed here

settled.  The techniques used to do so may also be of interest in the analysis in more

complicated models.

2. The Three Dynamical Models

The dynamics underlying each of these models is the replicator dynamics.  The

proportion of the population playing strategy i is xi. In each of the models considered here

there are three strategies, so the state of the population is a vector, x = <x1, x2, x3>.  The

state space is the 3-simplex where x1+ x2 + x3 =1, with x1, x2, x3, non-negative, as shown

in figure 1.

(Figure 1 here)
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The average fitness of strategy i in population state x is denoted by "U(xi | x)". [For future

reference we also U(y | x), the average fitness of a in infinitesimal subpopulation playing

strategies in the proportion specified by vector y when random paired with members of a

population in states x, as Si yi • U(xi | x).] The average fitness of the whole population in

state x is denoted by "U(x | x)". The replicator dynamics is then given by the system of

differential equations:

dxi /dt =  xi ∏  [U(xi | x) - U(x | x )]

The 3-simplex is invariant under this dynamics. If x is in the 3-simplex at a time, it

remains within the 3-simplex for all time. The dynamics for three strategies thus lives on

a plane.

The replicator dynamics was introduced by Taylor and Jonker (1978) as a

simplified model of differential reproduction underlying the notion of evolutionarily

stable strategy introduced by Maynard Smith and Price (1973). It has also been derived as

the dynamics of various models of cultural evolution [Binmore, Gale and Samuelson

(1995), Björnerstedt and Weibull (1996), Schlag (1998)] and as a limiting case of

reinforcement learning [Borgers and Sarin (1997)].

Model 1.

The three models differ in how fitnesses are determined. In the first model

individuals are paired at random from an infinite population to play a bargaining game.

The three strategies are S1: Demand 1/3 of the cake, S2:Demand 2/3 of the cake, and S3:
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Demand 1/2 of the cake. If demands total more that 1, no one gets anything; otherwise,

players get what they demand. Fitness here equals amount of cake. Those who demand

1/3 have demands that are compatible with all players and always get 1/3:

 U(x1 | x) = 1/3

Those who demand 2/3 only get their demand when they are paired with those who

demand 1/3, otherwise they get nothing. Their average fitness is:

U(x2 | x) = 2/3  ∏ x1

Those who demand 1/2  get their demand except when matched against those who

demand 2/3. Their average fitness is:

U(x3 | x) = 1/2  ∏ (1-x2)

The average fitness of the population is gotten by averaging the average fitnesses of the

various strategies:

U(x | x) = x1 ∏ U(x1 | x) + x2 ∏ U(x2 | x) + x3 ∏ U(x3 | x)

Model 2.

In the second model the strategies and basic game are the same as in model one,

but the individuals are not paired at random. Rather, there is some positive correlation in

the encounters determined by a parameter, e. The probability that strategy i meets itself,

p(Si|Si) is not simply the proportion of the population playing that strategy, xi, as in the

random pairing model, but rather it is inflated thus:

p(Si|Si) = xi + e • (1-xi)

The probability of strategy Si meeting a different strategy, Sj is correspondingly deflated:

p(Sj|Si) = xj - e • xj
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We will take e = 1/5, which is a case discussed both in chapter 1 of my book and in

D'Arms, Batterman, and Górny. Then, as before:

U(x1 | x) = 1/3

but :

U(x2 | x) = 2/3  ∏  4/5  ∏ x1

and:

U(x3 | x) = 1/2  ∏ (x3 + 1/5 (1-x3)) + 1/2 ∏  4/5  ∏ x1

The average fitness of the population is calculated as before.

Model 3.

This is a random pairing model like model 1, but the underlying game is a

signaling game from Chapter 5, pp. 91-93 of my book. There are two antisignaling

system strategies, x1, x2, and one signaling system strategy, x3. Each antisignaling system

strategy does badly against itself for a fitness of zero, well against the other for a  fitness

of one and middling against the signaling system for fitness of one-half. The signaling

system has fitness one-half against either of the antisignaling systems and fitness of one

against itself. This gives the following average fitnesses for the three strategies:

U(x1 | x) = x2 + (1/2) ∏ x3

U(x2 | x) = x1 + (1/2) ∏ x3

U(x3 | x) = x3 +  1/2  ∏ (x1 +x2)
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3.  Local Dynamical Stability of Equilibria

First we will identify the equilibria and their local stability characteristics in each

of our three models. The equilibria can be identified by solving equations.  Their

dynamical stability characteristics can be investigated by evaluation the eigenvalues of

the Jacobian matrix of partial derivatives at the equilibrium point. [See, for instance,

Hirsch and Smale (1974) Ch. 9.] If the eigenvalues all have non-zero real part, the

equilibrium is said to be hyperbolic and the eigenvalues determine the local dynamical

stability properties of the equilibrium. If the real parts of the eigenvalues are all negative,

then the equilibrium is called a sink, and it is asymptotically stable. If the real parts of the

eigenvalues are a positive, the equilibrium is called a source, and if both positive and

negative real parts occur it is called a saddle. Sources and saddles are unstable.  If the

point is non-hyperbolic, local stability must be investigated by different means.

Model 1.

Recall that this is the bargaining game with just three strategies, S1 (Modest) =

Demand 1/3; S2 (Greedy) = Demand 2/3; S3(Fair) = Demand 1/2. Each vertex of the

simplex represents a state in which the population is totally composed of one of the types.

Here, as always in the replicator dynamics, each vertex is a dynamic equilibrium. (If the

other guys are extinct, they can't reproduce.) At an equilibrium in the interior of the S1-S2

edge, both these strategies must have the same fitness. Solving the equations:

x1+ x2 =1 and (1/3) = (2/3) x1 , we find a Modest-Greedy equilibrium at x1=1/2, x2=1/2.

There are no equilibria interior to the other edges. An equilibrium interior to the simplex

must have all three strategies having equal fitnesses. Solving these equations we find a
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Modest-Greedy-Fair equilibrium  at  x1=1/2, x2=1/3, x3=1/6. These five states are the only

equilibrium states in this model.

We proceed to examine the eigenvalues of the Jacobian at these points. Since the

state space - the three-simplex- is a two-dimensional object, we need only consider the

dynamics in terms of two of the three variables, any two will do. For each point we will

get two eigenvalues. (We could evaluate eigenvalues for the Jacobian in the three

variable system, but this would generate one spurious zero eigenvalue, associated with

the eigenvector pointing out of the simplex. See Bomze(1986) p.48 or van Damme(1987)

p. 222.)  All the calculations of eigenvalues reported in this paper were performed using

Mathematica.  The calculations for Model 1 are given in the appendix.

At  the All Fair equilibrium, x3 = 1 the eigenvalues are {-1/2, -1/6}. The two

negative eigenvalues identify this as a sink - an asymptotically stable equilibrium.  The

Modest-Greedy equilibrium at x1=x2=1/2 is likewise asymptotically stable with a pair of

negative eigenvalues {-1/6, -1/12}. The Modest-Greedy-Fair equilibrium in the interior

of the simplex at x1=1/2, x2=1/3, x3=1/6, has one negative and one positive eigenvalue.

The values are approximately {-0.146525, 0.061921}. This indicates that this equilibrium

is a saddle, which is attracting in one direction and repelling in another. This equilibrium

is dynamically unstable. The All Modest equilibrium at x1=1 has two positive

eigenvalues{1/6,1/3}, which identifies it as a source, an unstable repelling equilibrium.

This leaves All Greedy equilibrium at x2= 1. This has eigenvalues {0,1/3}. Because of the

zero eigenvalue, this is not a hyperbolic equilibrium, and its local dynamical stability
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properties cannot be completely inferred from the eigenvalues of the Jacobian. The one

positive eigenvalue, however, shows that it is not stable. We will be able to say more

about it, using different techniques, in the next section. The information that we have

about model 1 so far is summarized in Table 1.

EQUILIBRIUM EIGENVALUES STABILITY

x1=1, x2=0, x3=0 1/6, 1/3 Unstable (source)

x1=0, x2=1, x3=0 0, 1/3  (non-hyperbolic)

x1=0, x2=0, x3=1 (All Fair) -1/2, -1/6 Stable (sink)

x1=1/2, x2=1/2, x3=0 -1/6, -1/12 Stable (sink)

x1=1/2, x2=1/3, x3=1/6 -0.146525, 0.0631921 Unstable (saddle)

Table 1

Model 2.

Model 2 is the bargaining game with correlation of encounters at the .2 level.

There are four equilibria. Each of the vertices is an equilibrium. There is an equilibrium

on the Greedy-Modest edge, at x1=5/8, x2=3/8.   There is no equilibrium in the interior of

the 3-simplex. When we evaluate the eigenvalues of the Jacobian at these equilibria we

find that they are all hyperbolic, so we have a complete characterization of the local

stability characteristics of these equilibria. These are collected in the following table:
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EQUILIBRIUM EIGENVALUES STABILITY

x1=1, x2=0, x3=0 1/6,1/5 Unstable (source)

x1=0, x2=1, x3=0 1/10,1/3 Unstable (source)

x1=0, x2=0, x3=1 (All Fair) -1/2, -1/6 Stable (sink)

x1=5/8, x2=3/8, x3=0 -1/8, 1/60 Unstable (saddle)

Table 2

Model 3.

In model 3, x1 and x2 are two "antisignaling system strategies" and x3 is a

signaling system strategy. There are four equilibria - the three vertices and an

antisignaling polymorphism at x1 = x2 = 1/2. We have three hyperbolic equilibria and one

non-hyperbolic equilibrium. The analysis is summarized in table 3.

EQUILIBRIUM EIGENVALUES STABILITY

x1=1, x2=0, x3=0 1/2, 1 Unstable (source)

x1=0, x2=1, x3=0 1/2, 1 Unstable (source)

x1=0, x2=0, x3=1 (Signaling) -1/2, -1/2 Stable (sink)

x1=1/2, x2=1/2, x3=0 -1/2, 0 (non-hyperbolic)

Table 3
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4.  Global Dynamical Stability of Equilibria

The sinks identified in section 3 are dynamically asymptotically stable. This is a

local property that is established by dynamical behavior in some neighborhood of the

equilibrium. But the neighborhood might be very small. It would be more powerful if we

could demonstrate that an equilibrium has a significant basin of attraction, or even that it

is globally asymptotically stable - that the dynamics carries every point in the interior of

the state space to it, in the limit.

The main technique employed in this section is the use of  the Kullbach-Leibler

relative entropy as a Liapunov Function for replicator dynamics. A Liapunov function is

a generalization of the notion of potential. Liapunov showed that if x is an equilibrium

and V is a continuous real-valued function defined on some neighborhood, W, of x,

differentiable on W-x such that :

(i) V(x)=0 and for y∫x in W, V(y)>0.

(ii) The time derivative of V, V' < 0 in W-x.

Then the orbit of any point in W approaches x as time goes to infinity. If these

requirements can be shown to hold taking the neighborhood as the whole state space (or

its interior), then x is globally asymptotically stable. [ See Hirsch and Smale ,Ch.9 Sec 3.

and Guckenheimer and Holmes pp. 5ff.].

The Kullback-Leibler relative entropy serves as an appropriate Liapunov function.

The Kullback-Leibler relative entropy of state y with respect to state x is:

Hx(y) = Si xi log (xi /yi) 
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with the sum being taken over the carrier of x, that is to say over the strategies that have

positive population proportion in state x. This function meets the requirements of

continuity and differentiability for a Liapunov function and assumes its minimum at x.

Its time derivative of Hx(y) is just -[U(x | y) - U(y | y)], which we need to be

negative to complete the requirements for a Liapunov function. So we only need to check

that  [U(x | y) - U(y | y)] is positive throughout the neighborhood in question. . [See

Bomze (1991) and Weibull(1997) 3.5 and 6.5.]

Model 3

We can now prove global convergence to the signaling system equilibrium in the

signaling game of model 3.  The state of fixation of the signaling system strategy is at

x3=1. We consider the neighborhood, x3 > 0, where this strategy is not extinct This

includes the vertex, x3=1, the x1-x3 and x2-x3 edges, and the interior of the 3-simplex. We

use as a Liapunov function the entropy relative to the state where x3=1. We now need to

check that if x3>0, U(x3 | x) - U(x | x) is non-negative everywhere and equal to zero only

where x3 = 1.

First, we want to show that for a fixed value of x3, U(x3 | x) - U(x | x) assumes its

minimum at the point where x1=x2. Then  we need only check that on the line, x1=x2, to

establish the desired result. For a fixed values of  x3,   U(x3 | x) = 1/2 x1 + 1/2 x2 + x3 is

constant so U(x3 | x) - U(x | x) assumes its minimum when U(x | x) assumes its maximum.
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For fixed  x3,    U(x | x) = x1 U(x1) + x2 U(x2) + x3 U(x3) assumes its maximum when

x1 U(x1) + x2 U(x2) does.  The quantity, x1 U(x1) + x2 U(x2) = x1(x2 + x3/2) + x2(x1+x3/2) =

2x1x2 + x3/2(x1 + x2) now assumes its maximum where 2x1x2 does, that is where x1=x2.

Now consider a point, x, on the line, x1 = x2. Here U(x3|x) = (1/2)(2x1) + (1- 2x1) =

1-x1.  And U(x2|x) = U(x1|x) = x2 + (1/2) x3 = x1 + (1/2)(1-2 x1) = 1/2. So when x1, x2, x3,

are all positive, U(x3 | x) > U(x | x) when (1-x1) > 1/2.   On the line x1 = x2 in the interior

of the simplex, 1/2 >x1 >0 so , U(x3 | x) > U(x | x). By definition at x3=1,

U(x3 | x) =U(x |x). Thus, in the global neighborhood, x3 > 0, where the signaling strategy

is not extinct, our Liapunov function is non-negative and equal to zero only at the point

of fixation of that strategy. In Model 3 we have global convergence to the signaling

system equilibrium.

This result answers the lingering question about the local stability properties of

the equilibrium x1= x2=1/2, that was left by zero the eigenvalue that showed up in the

local stability analysis of the previous section. This equilibrium is locally dynamically

unstable within the 3-simplex. However, within the subsimplex consisting of the x1-x2

line (where x3 is extinct) this equilibrium is globally stable. This can be shown by

applying the same techniques within the sub-simplex.

Model 2.

The qualitative analysis of Model 2 is much like that of model 3. We use the same

relative entropy Liapunov function. The quantity  U(x3 | x) - U(x | x), which simplifies to
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1/30 (x1 (5-28 x2) + 3(5-4 x2) x2), is positive throughout the entire region where x3>0.

Here I will let a picture stand in for the algebraic proof. Figure 2 is a plot of this function

above the x1-x2 plane. It is positive on the relevant region [x1>0, x2 >0, ~(x1 + x2 >1)]. The

line x3 = 0, is a subsimplex. On this subsimplex the Greedy-Modest mixed equilibrium is

global asymptotically stable (even though it is not even locally stable on the whole 3-

simplex).

Model 1.

In model 1, there is no globally asymptotically stable equilibrium. Both

the All Fair equilibrium, x3 = 1, and the Greedy-Modest equilibrium, x2 = x3 = 1/2, are

asymptotically stable sinks. They both have basins of attraction that include points in the

interior of the 3-simplex. Liapunov functions can be used as before, however, to prove

that an equilibrium attracts all points in some significantly extended neighborhood. As an

illustration, consider the neighborhood of the All Fair equilibrium defined by x3 > .7.

(This is by no means the whole basin of attraction for this equilibrium, but it makes for a

quick example.) It is easy to see that U(x3 | x) - U(x | x) must be positive throughout this

neighborhood. The minimum value that U(x3 | x) can have is (.7)(.5) = .35. U(x1 | x) is

constant at 1/3. U(x2 | x) has its maximum at (2/3)(.3) = .2. So U(x3 | x) must always be

greater than the average, U(x | x).  We will have reason refer back to this illustration in

section 6.

To summarize, we have established:
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4.1 the All Fair and Signaling System equilibria, of models 2 and 3 

respectively, are globally asymptotically stable.

4.2 The All Fair equilibrium in model 1 is locally asymptotically stable and 

attracts every point in the neighborhood x3 > .7.

5. Structural Stability of the Dynamical System

A dynamical system system is structurally stable if small enough, but otherwise

arbitrary, perturbations result in a topologically equivalent system. That is to say that all

dynamical systems sufficiently close to the one under consideration, are topologically

equivalent. This will be made precise shortly.

It is sometimes held that only structurally stable dynamical systems have

explanatory value, but this stability dogma, has also been questioned (as in

Guckenheimer and Holmes, Ch. 5.) The point is that the only perturbations that are

crucial are those that are physically possibly for the phenomena under consideration.

To demand structural stability may be to demand too much.  It might also be to demand

too little, as plausible perturbations of the dynamical system might be large.

 Nevertheless, is may be useful to see whether a dynamical system is structurally

stable, and if it fails to be so to see how it fails. With regard to the models under

consideration here, the question of structural stability of model 2 is raised by D'Arms,
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Batterman and Górny (1998) p. 91. (They also have concerns about larger perturbations

of the model.)  It may somewhat surprising, then, that we will be able to prove that of our

three models only Model 2 is structurally stable.

First, we need a precise definition of structural stability. [Piexoto (1962), Smale

(1980), Guckenheimer, J. and Holmes, P. (1986)]. In each of our models, the differential

equations of the replicator dynamics generate a dynamical system on the compact subset

of the x1-x2 plane, where x1 and x2 are non-negative and their sum does not exceed one.

Call this region, M. (As noted earlier, we need only consider this system, since the values

of x1 and x2 determine the value of x3.) The planar nature of M simplifies the following

discussion in a number of ways.

 The differential equations define a continuously differentiable vector field on this

region, M.  The vector field is a function that associates with every point the vector

<dx1/dt, dx2/dt> with the derivatives being evaluated at that point. This vector field can be

thought of as being the dynamical system. It determines a family of solution curves, or

orbits, on M. Two dynamical systems are topologically equivalent if there is a

homeomorphism from M to M taking which preserves orbits and their temporal sense.

To consider dynamical systems "close" to one of our models, we need a space of

dynamical systems and a sense of closeness. For the space of dynamical systems, we take

the continuously differentiable vector fields on M, c(M). Closeness can be defined

relatively simply because of the nice nature of our underlying state space, M.  For each
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dynamical system, X in  c(M), let its norm, 7X7, be that maximum of the following

numbers:

least upper bound | dx1/dt |

least upper bound | dx1/dt |

least upper bound | ∑[dx1/dt]/∑x1 |

least upper bound | ∑[dx1/dt]/∑x2 |

least upper bound | ∑[dx2/dt]/∑x1 |

least upper bound | ∑[dx2/dt]/∑x2 |

with the least upper bounds being taken over all points in M. Now we can define a metric

on the space of dynamical systems, c(M). For two such dynamical systems, X, Y, we

take d(x,y) =  7X - Y7. Now we can give a precise definition of structural stability:

A vector field, X, is structurally stable, if there is a neighborhood of  X such that 

every vector field, Y, in that neighborhood is topologically equivalent to X.

The tool to be used in this section to establish structural stability is Peixoto's Theorem

[Peixoto (1962), Guckenheimer and Holmes(1986) p. 60.]:

A vector field defined on a compact region of the plane is structurally stable if an only if

(1) The number of equilibrium points and closed orbits is finite and each is 

hyperbolic.

(2) There are no orbits connecting saddle points.

(We note again that the planar nature of  M simplifies the form of the theorem used here.)
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Since the conditions are necessary for structural stability, and since models 1 and

3 have non-hyperbolic equilibria, we can conclude that these dynamical systems are not

structurally stable. What about model 2? In section 3, we saw that it has a finite number

of equilibria, all of which are hyperbolic. In section 4 we saw that the "All Fair"

equilibrium at x3=1 is globally asymptotically stable for the subregion where x3>0. The

leaves only the line x3=0. We saw that the Greedy-Modest mixed equilibrium is globally

asymptotically stable on the interior of that line. Therefore there are no closed orbits and

there are no orbits connecting saddles. Since the conditions are sufficient for structural

stability, Model 2 is structurally stable.

5.1 Models 1 and 3 are not  structurally stable

5.2 Model 2 is structurally stable.

(Analysis of structural stability is more complicated in higher dimensional systems.

Model 2 is a Morse-Smale system [Guckenheimer and Holmes p. 64.] In higher

dimensions being Morse-Smale is a sufficient condition for structural stability, but is no

longer a necessary condition.)

6. Qualitatively Adaptive Dynamics

 Let us say that a dynamics is qualitatively adaptive if, according to that

dynamics, a strategy that is not extinct increases its proportion if the population if its

fitness is higher that the population average, decreases its population proportion if its

fitness is less that the population average, and keeps the same population proportion if its

fitness is equal to the population average. That is to say:

If xi > 0, then dxi /dt  agrees in sign with U(xi | x) - U(x | x)
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The replicator dynamics is a member of this class, but there are many other qualitatively

adaptive dynamics. Substituting another qualitatively adaptive dynamics for the replicator

dynamics in out three models can significantly perturb the vector field. Structural

stability does not guarantee anything about behavior of the dynamical systems under this

class of perturbations. Nevertheless we can show that the global stability results of

section 4 generalize to all these systems.

We use the same relative entropy as a Liapunov function. To prove convergence

to the equilibrium as x3=1, the entropy relative to the equilibrium at state x is just:

- log (x3)

This function is continuous and non-negative on the simplex and equals zero only at the

equilibrium. Its time derivative is:

-(1/x3) dx3/dt

To prove convergence, we now need only to show that this is negative on the region

consisting of the neighborhood x3>0 with the equilibrium removed - that its to say when 0

< x3 < 1. Here the time derivative is negative just where dx3/dt is positive, which is where

U(x3 | x) - U(x | x) is positive since the dynamics is adaptive.

Thus the results of section 4 carry over:

6.1  With any qualitatively adaptive dynamics substituted for the replicator 

dynamics, the All Fair and Signaling System equilibria, of models 2 and 3 

respectively, are globally asymptotically stable.
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6.2 For any qualitatively adaptive dynamics substituted for the replicator 

dynamics, the All Fair equilibrium in model 1 is asymptotically stable and attracts

every point in the neighborhood x3 > .7.

We can even strengthen 6.2 to include a broader class of dynamics. Say that a dynamics

is weakly qualitatively adaptive  if a strategy, si, has positive growth in population

proportion, dxi/dt >0, in any state in which it is not extinct and its fitness is the highest of

any strategy represented in the population. (A dynamics may be weakly qualitatively

adaptive, without being qualitatively adaptive if, for instance, being second best and

better than the average counts for nothing.)  Now we say that in model 1, if x3 >.7, then

strategy 3, Demand 1/2, is the fittest strategy. Then by the same reasoning as before we

have:

6.3 For any weakly qualitatively adaptive dynamics substituted for the replicator 

dynamics, the All Fair equilibrium in model 1 is asymptotically stable and attracts

every point in the neighborhood x3 > .7.

In chapter 1 of Evolution of the Social Contract, (p.11), in a passage quoted by D'Arms,

Batterman and Gorny, I claimed that the fact that the All Fair equilibrium is

asymptotically stable was robust for a wide class of adaptive dynamics:

[Demand 1/2's] strong stability properties guarantee that it is an attracting

equilibrium in the replicator dynamics, but also make the details of that dynamics
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unimportant. Fair division will be stable in any dynamics with a tendency to

increase the proportion (or probability) of strategies with greater payoffs, because

any unilateral deviation from fair division result in a strictly worse payoff. For

this reason, the Darwinian story can be transposed into the context of cultural

evolution, in which imitation and learning play an important role in the dynamics.

Proposition 6.2 establishes the technical claim that I make in this passage, and

proposition 6.3 strengthens it in a way that supports my general conclusion.

7. Correlation Structure

Is model 2 robust against arbitrary changes in the correlation structure?  Model 1

shows that it is not. Model 2 is not topologically equivalent to model 1.  If you take

model 2 and gradually reduce the correlation you come to a point where there is a

bifurcation and the four equilibrium points of model 2 become the five equilibrium points

of model 1. The modest-greedy equilibrium changes from a saddle to a sink. Arbitrary

changes to the correlation structure can make a qualitative difference here, as they can in

almost any game. (D'Arms, Batterman and Górny (1998) make the same point by

constructing an alternative model with anti-correlation.)  But we know that model 2 is

robust against local changes in correlation structure, those within some small

neighborhood, as a result of our structural stability result.

Model 3 is not structurally stable. What happens to it if we add a small amount of

positive correlation?  We get:
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Model 4

U(x1 | x) = (1-e) ∏ x2 + (1/2) ∏ (1-e) ∏ x3

U(x2 | x) = (1-e) ∏ x1 + (1/2) ∏ (1-e) ∏ x3

U(x3 | x) = x3 +e ∏ (x1 +x2) + 1/2 ∏ (1-e) ∏ (x1 +x2)

With e=0, Model 4 reduces to model 3 and the equilibrium at x1 = x2 = 1/2 is non -

hyperbolic with eigenvalues {-1/2, 0}. In model 4, the eigenvalues of the Jacobian

evaluated at this equilibrium are:

{1/4 (-1 +3e - SQR(1 + 2e + e2), 1/4(-1 + 3e + SQR(1 + 2e + e2)}

For any small positive e, the equilibrium becomes hyperbolic. For example, for e=.001,

the eigenvalues are {-0.4995, 0.001}. The equilibrium is a saddle, and thus unstable. The

local stability properties of the other equilibria remain unchanged. We now have a

structurally stable system that bears a qualitative resemblance to model 2. [That is to say

that there are two sources at x1=1 and at x2=1, a mixed equilibrium saddle on the x1-x2

line, and a sink at x3=1.]

Clearly, correlation structure can be very important in determining the stability

properties of an evolutionary dynamical system. It is of particular interest to consider

alternative models where correlation is endogenously generated.  D'Arms, Batterman, and

Górny have ideas in this direction that might be profitably pursued in more detail. If I am

not mistaken, with easier (and therefore higher levels of) correlation and anti-correlation

of the kind that they consider in their paper, the Greedy-Modest equilibrium again

becomes unstable. It would be interesting to have the whole story.
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An alternative route to endogenous correlation structure uses interactions with

neighbors in a spatially explicit structure. In Alexander (1999) and Alexander and

Skyrms (1999) it is shown that the correlation that emerges in this sort of model for

bargaining games (like that of model one) has dramatic effects on both the proportion of

initial conditions that evolve to the All Fair equilibrium, and the speed with which that

process takes place.

8. Stability and Explanatory Significance

Stability considerations are only one ingredient to be taken into account in

assessing the explanatory significance of dynamical models.  There are also larger

considerations regarding the aptness of the model (or class of models) to the process

being modeled - in this case the process of cultural evolution. I will not address these

larger considerations here. They have been discussed elsewhere. [D' Arms (forthcoming),

Barrett, Eells, Fitelson and Sober (1999), Bicchieri (1999), Bolton(1997), (forthcoming),

Carpenter (forthcoming), Gintis (forthcoming), Güth and Güth (forthcoming), Harms

(forthcoming),   Kitcher (1999), Krebs (forthcoming), Mar(forthcoming),  Nesse

(forthcoming), Proulx(forthcoming), Skyrms (1999), (forthcoming)]. But, bracketing

these concerns, we can ask what bearing the stability results of this paper have on the

explanatory significance of the models discussed here.
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The fact that the All Fair equilibrium is an attractor in the bargaining game of

Models 1 and 2 is extremely robust. It holds not only in both these models, but also in

models in which the replicator dynamics is replaced by any other dynamics in the class of

weakly qualitatively adaptive dynamics.  But the All Fair equilibrium is not a global

attractor in model one. Adding a modest amount of positive correlation (e=1/5 or more)

turns it into one, in a structurally stable dynamical system. Independent arguments for

this degree of positive correlation during the evolution of the norm (or for some modified

dynamical model) would be required to complete the explanation. My models do not give

the whole story of the evolution of the equal split - they begin that story.

 The fact that the signaling system equilibrium is a global attractor in Model 3 and

remains so if the replicator dynamics is replaced by any qualitatively adaptive dynamics,

strikes me as explanatorily powerful. But the fact that model 3 is not structurally stable

demands attention. Adding positive correlation takes us to model 4, which is structurally

stable, and in which the signaling system equilibrium remains a global attractor.  Here -

in contrast to the case of the bargaining game - any amount of positive correlation, no

matter how small, will do.

In general, these results should focus our attention on correlation. Correlation

structure is of the utmost importance. Models of the co-evolution of strategic interaction

with correlation structure are a promising direction for future research.
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Appendix

Calculation of Eigenvalues of the Jacobian at Equilibria for Model 1 using Mathematica


