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Abstract We deal with the ranking problem of the nodes in a directed graph. The
bilateral relationships specified by a directed graph may reflect the outcomes of a
sport competition, the mutual reference structure between websites, or a group prefer-
ence structure over alternatives. We introduce a class of scoring methods for directed
graphs, indexed by a single nonnegative parameter α. This parameter reflects the inter-
nal slackening of a node within an underlying iterative process. The class of so-called
internal slackening scoring methods, denoted by λα , consists of the limits of these pro-
cesses. It is seen that λ0 extends the invariant scoring method, while λ∞ extends the
fair bets scoring method. Method λ1 corresponds with the existing λ-scoring method
of Borm et al. (Ann Oper Res 109(1):61–75, 2002) and can be seen as a compromise
between λ0 and λ∞. In particular, an explicit proportionality relation between λα and
λ1 is derived. Moreover, the internal slackening scoring methods are applied to the
setting of social choice situations where they give rise to a class of social choice cor-
respondences that refine both the Top cycle correspondence and the Uncovered set
correspondence.
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1 Introduction

Recently, by the application of scoring and ranking methods in search engines on the
World Wide Web (such as PageRank in the Google search engine), scoring, and rank-
ing methods for directed graphs regained attention in the literature. For an extensive
survey of various scoring methods we refer to Laslier (1997). Kendall (1955) studied
a method from Wei (1952), which has come to be called the long path method. Daniels
(1969) and Moon and Pullman (1970) reconsidered this method, where Daniels (1969)
introduced a normalized version with a better interpretation from a consistency point
of view as well. We refer to this method as the normalized long-path method. In addi-
tion, Daniels (1969) proposed a different set of fair scores, based on a procedure that
has come to be called the Markov method. A recent detailed comparison between the
Markov method and the normalized long path method is given by Slutzki and Volij
(2006), who refer to them as the fair bets and invariant scoring method, respectively.
Finally, Borm et al. (2002) introduced an iterative procedure resulting in the λ-method.

In this article, we integrate the three scoring methods mentioned above into a sin-
gle iterative framework. The three methods are shown to be limits of specific iterative
procedures. In each of these iterative procedures initially each node in the digraph
has an initial score equal to one, and the iteration involves taking the output scores of
the previous step as input scores for the next step. We argue that the basic difference
between these procedures is by how much in every step of the iteration a node itself
shares in the division of its own input score. In fact, we consider a parameterized
class of scoring methods λα that are obtained by an iterative procedure where in each
step to get (new) output scores, a node shares with a nonnegative weight α ∈ (0,∞)

in its own current input score, while each of its predecessors shares equally in this
with weight one. The boundary cases α = 0 and α = ∞ are defined by considering
well-defined limits. We refer to these scoring methods λα with α ∈ [0,∞] as internal
slackening scoring methods.

The domain of these scoring methods is formed by the class DN of all irreflexive
and connected digraphs (abbreviated to digraphs from now on) on a fixed node set N ,
although we will mainly restrict attention to the subclass DN

1 of digraphs with exactly
one top cycle. The internal slackening scoring method λ1 coincides with the λ-scoring
method of Borm et al. (2002). The definitions of the invariant scoring method I and
the fair bets scoring method F as proposed in the literature are restricted to subclass
DN

N of DN
1 of digraphs for which the entire node set N is a top cycle. We show that the

internal slackening scoring methods λ0 and λ∞ coincide with I and F on this subclass,
respectively, and thus can be viewed as an extension of these methods to a wide range
of digraphs. Since λ1 is the λ-measure of Borm et al. (2002), this scoring method can
be seen as some kind of compromise between the I and F methods. Moreover, on
the class DN

1 , an explicit proportional relation is derived between the various internal
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slackening scoring methods. In particular, the score λα
i for a certain node i can be

expressed in terms of λ1
i , α, and the number of predecessors of i in the underlying

digraph only.
Social choice situations are explicitly considered as an application. Generalizing

the result of Borm et al. (2004) with respect to the λ-scoring method we show that
each social choice correspondence associated to an internal slackening scoring method
refines both the Top cycle correspondence and the Uncovered set correspondence.

Finally, we highlight some computational aspects of internal slackening scoring
methods on arbitrary digraphs in DN , i.e., digraphs with the possibility of multiple
top cycles. It is derived that the relative ordering within a specific top cycle does not
depend on the digraph structure outside this top cycle. Moreover, the fraction of the
score coming from a node not contained in any top cycle to a specific top cycle can be
computed explicitly and, interestingly, does not depend on the slackening parameter α.

The article is organized as follows. Section 2 recalls basic concepts regarding
digraphs and existing scoring methods. Section 3 formally introduces the class of
internal slackening scoring methods, discusses relations with the invariant method
and the fair bets method, and derives a proportionality result between the inter-
nal slackening scoring methods for the class of digraphs with a unique top cycle.
Section 4 discusses the application to social choice problems. Section 5 highlights
some specific computational aspects for arbitrary digraphs.

2 Preliminaries: invariant, fair bets, and λ-scoring methods

We consider digraphs (N , D) with N a finite set of nodes and D ⊂ N × N a binary
relation on N . When there can be no confusion about the node set we will just write
D instead of (N , D). We assume the digraph D to be irreflexive, i.e., (i, i) �∈ D
for all i ∈ N , and to be connected, i.e., the related undirected graph in which each
arc is replaced by an edge is connected. The collection of all such digraphs on N is
denoted by DN . In the sequel, we refer to irreflexive and connected digraphs simply
as digraphs.

Let D ∈ DN . D is asymmetric if (i, j) ∈ D implies that ( j, i) �∈ D for all i, j ∈ N .
D is complete if {(i, j), ( j, i)}∩ D �= ∅ for all i, j ∈ N , i �= j . D is a tournament if it
is complete and asymmetric. With i ∈ N , the nodes in SD(i) = { j ∈ N | (i, j) ∈ D}
are called the successors of i in D, and the nodes in PD(i) = { j ∈ N | ( j, i) ∈ D}
are called the predecessors of i in D. The cardinality of these sets is denoted by
sD(i) and pD(i), respectively. By tr(D) ∈ DN we denote the transitive closure of
D, i.e., (i, j) ∈ tr(D) if and only if there exists a sequence of nodes (h1, . . . , ht )

such that h1 = i, (hk, hk+1) ∈ D for all 1 ≤ k ≤ t − 1, and ht = j . The nodes in
SD(i) = Str(D)(i) are called the subordinates of i in D. A subset T ⊆ N is a top
cycle in D if

(i) i, j ∈ T ⇒ (i, j) ∈ tr(D), and
(ii) i �∈ T, j ∈ T ⇒ (i, j) �∈ tr(D).

We denote the class of all digraphs with a unique top cycle by DN
1 . The subclass DN

N
contains all digraphs for which N is a top cycle. Note that every tournament belongs
to DN

1 .
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Further, the N × N -adjacency matrix AD with entries aD
i j associated with D is

defined by:

aD
i j =

{
1 if (i, j) ∈ D;
0 otherwise.

A scoring method with domain D ⊆ DN is a function f : D → IRN that assigns
a score vector to every digraph in D. Scoring method f : D → IRN is efficient if∑

i∈N fi (D) = |N | for all D ∈ D.
In defining the invariant scoring method I and the fair bets scoring method F on

the domain DN
N , we follow Slutzki and Volij (2006). The invariant scoring method

assigns to a digraph D ∈ DN
N the unique solution I (D) of the system1

Ii (D) =
∑
j∈N

ai j∑
k∈N akj

I j (D) for all i ∈ N ;
∑
i∈N

Ii (D) = |N |.

Similarly, the fair bets scoring method assigns to a digraph D ∈ DN
N the unique

solution F(D) of the system2

Fi (D) =
∑
j∈N

ai j∑
k∈N aki

Fj (D) for all i ∈ N ;
∑
i∈N

Fi (D) = |N |.

For an interpretation and motivation of these methods we refer to Slutzki and Volij
(2006, p. 80).

Finally, we recall the definition of the λ-scoring method on DN as introduced by
Borm et al. (2002). Let D ∈ DN . Define β0(D) = eN , where eN ∈ IRN is the vector
consisting of all ones. Then, for t ∈ {1, 2, 3, . . .} define recursively

β t
i (D) =

∑
j∈SD(i)∪{i}

β t−1
j (D)

pD( j) + 1
for all i ∈ N .

Defining the transition matrix �D as the N × N -matrix with entries π D
i j given by

π D
i j =

{ 1
pD( j)+1 if (i, j) ∈ D or i = j

0 otherwise,

1 Opposed to most of the literature, we normalize to |N | rather than 1.
2 Again, we normalize to |N | rather than 1.

123



Internal slackening scoring methods 449

Fig. 1 The digraph of Example 2.1

it readily follows that β t (D) = (
�D

)t
eN for all t ∈ {0, 1, 2, . . .}. The scoring method

λ : DN → IRN is defined by

λ(D) = lim
t→∞(�D)t eN .

It turns out that λ(D) is a stationary distribution of �D , i.e., �Dλ(D) = λ(D).
Moreover, if D ∈ DN

1 then �D has a unique stationary distribution (upon normaliza-
tion), and thus the stationarity conditions together with the fact that

∑
i∈N λi (D) = |N |

completely determine λ(D).

Example 2.1 Consider the digraph D ∈ DN
N with N = {1, 2, 3, 4} and D =

{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (4, 1)} as represented in Fig. 1.
With

�D =
⎡
⎢⎣

1
2

1
2

1
3 0

0 1
2

1
3

1
3

0 0 1
3

1
3

1
2 0 0 1

3

⎤
⎥⎦ and AD =

⎡
⎣

0 1 1 0
0 0 1 1
0 0 0 1
1 0 0 0

⎤
⎦

it follows that λ(D), I (D), and F(D) are uniquely determined by efficiency (allocat-
ing a total score of 4) and the equalities

(�D − IN )λ(D) = 0,

(M I − IN )I (D) = 0,

(M F − IN )F(D) = 0,

where

M I =
⎡
⎢⎣

0 1 1
2 0

0 0 1
2

1
2

0 0 0 1
2

1 0 0 0

⎤
⎥⎦ , M F =

⎡
⎢⎣

0 1 1 0
0 0 1 1
0 0 0 1

2
1
2 0 0 0

⎤
⎥⎦ ,

and IN is the identity matrix with ones on the main diagonal and zeros off-diagonal. It is
found that λ(D) = 4

23 (8, 6, 3, 6), I (D) = 4
26 (8, 6, 4, 8), and F(D) = 4

20 (8, 6, 2, 4).
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3 Internal slackening scoring methods

In each step of the iterative process underlying the λ-scoring method, the current score
of a node is divided among the node itself and its predecessors. In fact, the node itself
receives exactly the same part of its current score as each of its predecessors. This
equal treatment of a node and its predecessors was motivated by a game-theoretic
perspective in Borm et al. (2002). Here, we generalize this approach and introduce a
parameter α ∈ [0,∞] representing the sharing weight of a node in his own current
score, assuming that all of its predecessors have equal weight, say 1. Obviously, with
respect to the λ-scoring method, α = 1.

First, we focus on the case α ∈ (0,∞). Let D ∈ DN . Define βα,0(D) = eN and

β
α,1
i (D) =

∑
j∈SD(i)

β
α,0
j (D)

pD( j) + α
+ α

β
α,0
i (D)

pD(i) + α

for all i ∈ N . For α = 1, this measure is studied by van den Brink and Borm (2002).3

The following example illustrates the impact of the newly introduced parameter α

on the scores of the nodes.

Example 3.1 Consider the digraph D of Example 2.1. Then, for α ∈ (0,∞),

βα,1(D) =
(( 1

1 + α
+ 1

2 + α

)
+ α

1 + α
,

( 1

2 + α
+ 1

2 + α

)
+ α

1 + α
,

( 1

2 + α

)
+ α

2 + α
,

( 1

1 + α

)
+ α

2 + α

)

=
(

1 + 1

2 + α
, 1 + α

(1 + α)(2 + α)
, 1 − 1

2 + α
, 1 − α

(1 + α)(2 + α)

)
.

Taking the scores provided by βα,1 as new input scores on the nodes we obtain βα,2

etc. By repeating this procedure, we recursively define for t ∈ {1, 2, 3, . . .}

β
α,t
i (D) =

∑
j∈SD(i)

β
α,t−1
j (D)

pD( j) + α
+ α

β
α,t−1
i (D)

pD(i) + α

for all i ∈ N .

Definition 3.1 With α ∈ (0,∞) the internal slackening scoring method λα : DN →
IRN is determined by

λα(D) = lim
t→∞ βα,t (D).

for all D ∈ D.

3 We remark that this measure for α = 1 is different from the original β-measure considered in van den
Brink and Gilles (2000), which, in a restricted setting, comes down to a similar definition with α = 0.
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Along the lines of Borm et al. (2002) it can be shown that λ1 equals the λ-scoring
method. For the extreme cases α = 0 and α = ∞, λα will be defined separately later
on.

For D ∈ DN it follows that λα is a solution to the following system of equations:

λα
i (D) =

∑
j∈SD(i)

λα
j (D)

pD( j) + α
+ α

λα
i (D)

pD(i) + α
for all i ∈ N ; (1)

∑
i∈N

λα
i (D) = |N | (2)

For general D ∈ DN , the system determined by (1) and (2) does not necessarily have
a unique solution.

The iterative process underlying the definition of λα can be seen as a Markov chain
with N × N -transition matrix Pα(D) (for the exact definition of this matrix we refer
to Section 5). As all diagonal elements of Pα(D) are positive, all states are aperiodic.
For all D ∈ DN

N , i.e., digraphs with N as its unique top cycle, all states are accessible
from each other, i.e., the chain is irreducible. It is well-known that a Markov chain on
a finite set of states that is aperiodic and irreducible converges to its unique station-
ary distribution. This in turn implies that for all D ∈ DN

N the solution of the system
determined by (1) and (2) is unique. This result can be extended to DN

1 by noting that
the relative asymptotic behavior in the top cycle does not change by adding transient
states (states not in a top cycle), and all transient states end up with score zero.

In this iterative setting, our newly introduced parameter α has an appealing inter-
pretation. In each step of the procedure above the current scores of the nodes are
reallocated. In fact only part of the score of a node remains with this node and the
remainder will be distributed (equally) among its predecessors. So, as α increases the
internal slackening increases as well.

The following theorem provides a proportionality result between internal slack-
ening scoring methods λα with α ∈ (0,∞). It is seen that for D ∈ DN

1 the score
λα

i (D) can be expressed in terms of λ1
i (D), the internal slackening parameter α, and

the number pD(i) of predecessors of i . For two vectors x, y ∈ IRn++, we will write
x ∼ y if there is a k > 0 such that xi = kyi for all i ∈ {1, . . . , n}.

Theorem 3.1 Let D ∈ DN
1 and let α ∈ (0,∞). Then

λα(D) ∼
(
λ1

i (D)
2(pD(i) + α)

(1 + α)(pD(i) + 1)

)
i∈N

.

Proof As D ∈ DN
1 and α ∈ (0,∞), the system determined by (1) and (2) has a

unique solution. Clearly, it suffices to show that the vector
(
λ1

i (D)
2(pD(i)+α)

(1+α)(pD(i)+1)

)
i∈N

is a solution of (1). Take i ∈ N . Then,
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∑
j∈SD(i)

λ1
j (D)

2(pD( j)+α)
(1+α)(pD( j)+1)

pD( j) + α
+ α

λ1
i (D)

2(pD(i)+α)
(1+α)(pD(i)+1)

pD(i) + α

=
∑

j∈SD(i)

2λ1
j (D)

(1 + α)(pD( j) + 1)
+ α

2λ1
i (D)

(1 + α)(pD(i) + 1)

= 2

1 + α

∑
j∈SD(i)

λ1
j (D)

pD( j) + 1
+ 2α

(1 + α)(pD(i) + 1)
λ1

i (D)

= 2

1 + α

(
λ1

i (D) − λ1
i (D)

pD(i) + 1

)
+ 2α

(1 + α)(pD(i) + 1)
λ1

i (D)

= 2(pD(i) + α)

(1 + α)(pD(i) + 1)
λ1

i (D)

The third equality follows by (1) for the case α = 1. We conclude that vector(
λ1

i (D)
2(pD(i)+α)

(1+α)(pD(i)+1)

)
i∈N is a solution of (1).

This completes the proof. ��
We apply this theorem in the following example.

Example 3.2 Reconsider the digraph D from Example 2.1 and 3.1. Since λ1(D) =
λ(D) = 4

23 (8, 6, 3, 6) we derive

λα(D) ∼
(

8 · 2 + 2α

2 + 2α
, 6 · 2 + 2α

2 + 2α
, 3 · 4 + 2α

3 + 3α
, 6 · 4 + 2α

3 + 3α

)
.

So, for example, λ3(D) ∼ (8, 6, 2 1
2 , 5). As the sum of the scores shared equals 4, we

obtain λ3(D) = 4
43 (16, 12, 5, 10).

Now we turn to the extreme cases α = 0 and α = ∞. Following the lines set out
by Definition 3.1 for α ∈ (0,∞) will be problematic as will be illustrated in Example
3.4. Note however, that the right-hand side expression in Theorem 3.1 has well-defined
limits for α going to 0 or infinity. This leads to the following definition for λ0 and λ∞
on DN

1 .

Definition 3.2 The internal slackening methods λ0 : DN
1 → IRN and λ∞ : DN

1 →
IRN are determined by

λ0
i (D) := |N | · λ1

i (D)
2pD(i)

pD(i)+1∑
j∈N λ1

j (D)
2pD( j)

pD( j)+1

; (3)

λ∞
i (D) := |N | · λ1

i (D) 2
pD(i)+1∑

j∈N λ1
j (D) 2

pD( j)+1

. (4)

for all D ∈ DN
1 and i ∈ N .
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Fig. 2 The digraph of Example 3.4

Example 3.3 For the digraph D considered in the previous examples Definition 3.2
leads to

λ0(D) = 4

26
(8, 6, 4, 8) and λ∞(D) = 4

20
(8, 6, 2, 4).

Note that λ0(D) = I (D) and λ∞(D) = F(D). In fact, this holds for any D ∈ DN
N as

will be proven in Theorem 3.2.

The definition above for α equal to 0 and for α equal to infinity can be seen as
taking limits for t as well as α. The following example illustrates that the order of
taking limits is relevant.

Example 3.4 Consider the digraph D ∈ DN
N with N = {1, 2, 3, 4, 5}, and D =

{(1, 2), (1, 4), (2, 3), (3, 1), (4, 5), (5, 1)} as represented in Fig. 2.
Straightforward calculations show that

lim
α↓0

βα,t (D) =
⎧⎨
⎩

(2, 1, 1
2 , 1, 1

2 ) if t ∈ {1, 4, 7, . . .};
(2, 1

2 , 1, 1
2 , 1) if t ∈ {2, 5, 8, . . .};

(1, 1, 1, 1, 1) if t ∈ {3, 6, 9, . . .}.

So, limt→∞ limα↓0 βα,t (D) does not exist. Using Definition 3.2 one finds that
λ0(D) = ( 5

3 , 5
6 , 5

6 , 5
6 , 5

6 ).4

The following lemma provides equations satisfied by the two extreme internal
slackening scoring method.

Lemma 3.1 Let D ∈ DN
1 .

(i) For all i ∈ N,

λ0
i (D) =

∑
j∈SD(i)

λ0
j (D)

pD( j)
.

4 Using periodicity arguments one can show that it is not a coincidence that λ0(D) = 1
3
(
(2, 1, 1

2 , 1, 1
2 ) +

(2, 1
2 , 1, 1

2 , 1) + (1, 1, 1, 1, 1)
)
.
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(ii) If the unique top cycle of D consists of at least two nodes, then for all i ∈ N

λ∞
i (D) =

∑
j∈SD(i)

λ∞
j (D)

pD(i)
.

Proof (i) Let i ∈ N . Put δ = 2|N |∑
j∈N λ1

j (D)· 2pD ( j)
pD ( j)+1

. From Definition 3.2 and Eq. (1)

for α = 1 we obtain

∑
j∈SD(i)

λ0
j (D)

pD( j)
= δ

∑
j∈SD(i)

λ1
j (D)

pD( j) + 1

= δ

(
λ1

i (D) − λ1
i (D)

pD(i) + 1

)

= λ0
i (D).

(ii) Let i ∈ N . Note that the condition in this part of the lemma implies that

pD(i) �= 0. Put γ =
∑

j∈N λ1
j (D)· 2pD ( j)

pD ( j)+1∑
j∈N λ1

j (D)· 2
pD ( j)+1

. From Definition 3.2 and part (i) we

obtain

∑
j∈SD(i)

λ∞
j (D)

pD(i)
= γ

pD(i)

∑
j∈SD(i)

λ0
j (D)

pD( j)

= γ

pD(i)
λ0

i (D)

= λ∞
i (D).

��
The following theorem illustrates that the two extreme internal slackening scoring

methods coincide with the invariant and fair bets scoring methods in case all nodes
belong to the top cycle.

Theorem 3.2 Let D ∈ DN
N . Then λ0(D) = I (D) and λ∞(D) = F(D).

Proof From Lemma 3.1 (i) it follows for all i ∈ N

λ0
i (D) =

∑
j∈SD(i)

1

pD( j)
λ0

j (D)

=
∑
j∈N

aD
i j∑

k∈N aD
kj

λ0
j (D),

where the second equality holds by definition of AD . Since
∑

i∈N λ0
i (D) = |N | it

follows from the definition of I (D) that λ0(D) = I (D).
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It follows from Lemma 3.1 (ii) that,5 for all i ∈ N ,

λ∞
i (D) =

∑
j∈SD(i)

λ∞
j (D)

pD(i)

=
∑
j∈N

aD
i j∑

k∈N aD
ki

λ∞
j (D),

where the second equality follows from the definition of AD . Since
∑

i∈N λ∞
i (D) =

|N | it follows from the definition of F(D) that λ∞(D) = F(D). ��

4 An application to social choice situations

In this section, we apply the internal slackening scoring methods to define a specific
class of social choice correspondences. We first recall the basic framework of social
choice situations. A social choice situation is a triple (A, N , p) where A is a finite
set of agents, N a finite set of alternatives (later on the nodes of a digraph) and the
profile p = {pa}a∈A a collection of weak orders on N describing the preference rela-
tions of the agents over the set of alternatives. With i, j ∈ N the notation i pa j
means that individual a prefers alternative i to alternative j . Throughout we assume
that individual preference relations are weak orders, i.e., reflexive, weakly complete,
and transitive. Note that a social choice situation (A, N , p) can be identified with the
preference profile p. The class of all social choice situations p with set of agents A
and set of alternatives N is denoted by S A,N .

Although it is straightforward to find the most preferred alternative(s) in a weak
order, this is not the case for a preference profile consisting of a collection of such indi-
vidual preference relations. A social choice correspondence C on a subclass S ⊆ S A,N

assigns to each p ∈ S a non-empty social choice set C(p) of N . For surveys on such
social choice correspondences we refer to Fishburn (1977) and Laslier (1997).

Given a social choice situation p ∈ S A,N the corresponding simple majority win
digraph Dp ∈ DN is defined as follows. With i, j ∈ N , (i, j) ∈ Dp if and only if
n p(i, j) > n p( j, i), where n p(i, j) = |{a ∈ A | i pa j and ¬( j pa i)}| is the number
of individuals that strictly prefer i to j in the profile p.

A social choice correspondence C on S ⊆ S A,N is called majoritarian if the
social choice set C(p) only depends on the simple majority win digraph Dp for all
p ∈ S. Two widely applied majoritarian social choice correspondences are the Top
cycle correspondence and the Uncovered set correspondence. Schwartz’s Top cycle
correspondence TOP (cf. Schwartz (1990)) assigns to every social choice situation
p ∈ S A,N the union of all top cycles in Dp. To define the Uncovered set correspon-

5 For |N | = 1, there is nothing to prove. For |N | ≥ 2 obviously the condition in Lemma 3.1 is satisfied
because D ∈ DN

N .
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dence we introduce the following terminology. Let D ∈ DN and i, j ∈ N . Then we
say that node i is covered by6 node j if

(i) ( j, i) ∈ D,
(ii) (i, k) ∈ D ⇒ ( j, k) ∈ D for all k ∈ N , and

(iii) (k, j) ∈ D ⇒ (k, i) ∈ D for all k ∈ N .

The Uncovered set correspondence UNC assigns to every social choice situation
p ∈ S A,N the set of alternatives that are not covered by any other alternative in Dp.

Given an internal slackening scoring methodλα , we define the corresponding major-
itarian social choice correspondence Cα that assigns to every social choice situation
the set of alternatives that have the highest λα-score. We restrict attention to the
domain S1 of social choice situations for which the corresponding simple majority
win digraph has a unique top cycle.7 Note that this class contains all social choice situ-
ations for which the simple majority win digraph is a tournament: a regular assumption
in the social choice literature. Formally, the social choice correspondence Cα on S1 is
defined by

Cα(p) = {i ∈ N | λα
i (Dp) ≥ λα

j (Dp) for all j ∈ N }

for all p ∈ S1.
Borm et al. (2004) showed that the social choice correspondence C1 is a refinement

of the Top cycle and Uncovered set correspondences. The main result of this section
shows that this result can be generalized to any Cα with α ∈ [0,∞].

Theorem 4.1 Let p ∈ S1. Then, Cα(p) ⊆ TOP(p) and Cα(p) ⊆ UNC(p) for all
α ∈ [0,∞].

Proof For α = 1 the statements in the theorem follow from Theorem 4.3 in Borm
et al. (2004). Moreover, from well-known results on stochastic matrices as discussed
in, e.g., Berger (1993) it follows that λ1

i (Dp) = 0 for i �∈ TOP(p) and λ1
i (Dp) > 0

for i ∈ TOP(p).
Consequently, using Theorem 3.1 for α ∈ (0,∞) and Definition 3.2 for α = 0

and α = ∞ it follows for all α ∈ [0,∞] that λα
i (Dp) = 0 for all i ∈ N \ TOP(p),

and λα
i (Dp) > 0 for all i ∈ TOP(p). Hence, Cα(A, N , p) ⊆ TOP(A, N , p) for all

α ∈ [0,∞].
Now, let i ∈ Cα(p) and suppose that i �∈ UNC(p). Then there is a j ∈ N \ {i}

with ( j, i) ∈ Dp, SDp (i) ⊆ SDp ( j) and PDp ( j) ⊆ PDp (i). Since i ∈ TOP(p), also
j ∈ TOP(p), and thus λα

j (Dp) > 0. To shorten notation, abbreviate Dp to D and
pDp (k) to p(k) for all k ∈ N .

First, consider the case α ∈ (0,∞).

6 We follow the definition of Borm et al. (2004), which generalizes the definition of Laslier (1997) from
tournaments to arbitrary digraphs. Laslier (1997) uses the covering relation that only requires conditions
(i) and (ii). Clearly, for tournaments both definitions are equivalent.
7 Section 5 will illustrate that this assumption can be dropped easily.
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Then by rearranging terms in (1), for all r ∈ N ,

(
1 − α

p(r) + α

)
λα

r (D) =
∑

k∈SD(r)

λα
k (D)

p(k) + α
.

As

p( j) < p(i) ⇒
(

1 − α

p( j) + α

)
<

(
1 − α

p(i) + α

)

and

SD( j) ⊇ SD(i) ∪ {i} ⇒
∑

k∈SD( j)

λα
k (D)

p(k) + α
>

∑
k∈SD(i)

λα
k (D)

p(k) + α

we conclude, λα
j (D) > λα

i (D), contradicting the fact that i ∈ Cα(p).
Second, consider α = 0. Using Lemma 3.1 (i) twice we find

λ0
j (D) =

∑
k∈SD( j)

λ0
k(D)

p(k)

=
∑

k∈SD(i)

λ0
k(D)

p(k)
+ λ0

i (D)

p(i)
+

∑
k∈SD( j)\(SD(i)∪{i})

λ0
k(D)

p(k)

= (1 + 1

p(i)
)λ0

i (D) +
∑

k∈SD( j)\(SD(i)∪{i})

λ0
k(D)

p(k)

> λ0
i (D).

Again, this contradicts with the fact that i ∈ Cα(p).
Third, consider α = ∞. Since both i and j belong to TOP(p), Lemma 3.1 (ii)

implies

λ∞
j (D) =

∑
k∈SD( j)

λ∞
k (D)

p( j)

=
∑

k∈SD(i)

λ∞
k (D)

p( j)
+ λ∞

i (D)

p( j)
+

∑
k∈SD( j)\(SD(i)∪{i})

λ∞
k (D)

p( j)

=
(

p(i) + 1

p( j)

)
λ∞

i (D) +
∑

k∈SD( j)\(SD(i)∪{i})

λ∞
k (D)

p( j)

> λ∞
i (D).

This contradicts with the fact that i ∈ Cα(p).
So, for all α ∈ [0,∞] we may conclude that i ∈ Cα(p) implies that i ∈ UNC(p)

and hence, Cα(p) ⊆ UNC(p) ��
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5 Internal slackening scoring methods on DN

This section highlights some computational aspects of the internal slackening scoring
methods λα, α ∈ (0,∞), on the general domain DN of digraphs, i.e., with the possi-
bility of multiple top cycles. Furthermore, the definition of λ0 and λ∞ is extended to
DN .

Let D ∈ DN and α ∈ (0,∞). In line with Borm et al. (2002) for the case α = 1
the iterative procedure underlying the definition of λα can be explicitly determined by
an N × N -transition matrix Pα(D) which entries pα

i j (D) are given by

pα
i j (D) =

⎧⎨
⎩

1
pD( j)+α

if (i, j) ∈ D;
α

pD( j)+α
if i = j;

0 otherwise.

Clearly,

λα(D) = lim
t→∞(Pα(D))t eN .

Now let T be a top cycle of D. For j ∈ N define ρα
T ( j) to be the probability of arriving

in T starting from j according to the stochastic process associated with the transition
matrix Pα(D) defined above. Furthermore, define M ⊆ N as the set of nodes not
contained in any top cycle of D. Then ρα

T ( j) is uniquely determined by

ρα
T ( j) =

⎧⎨
⎩

1 if j ∈ T ;
0 if j ∈ N\(M ∪ T );∑

i∈T pα
i j + ∑

i∈M pα
i jρ

α
T (i) if j ∈ M.

The following lemma implies that ρα
T ( j) is independent of the explicit choice of the

slackening parameter α. From this lemma on let ρT ( j) = ρα
T ( j) for all α ∈ (0,∞).

Lemma 5.1 Let D ∈ DN , T ⊆ N a top cycle of D, and α ∈ (0,∞). Then ρα
T ( j), j ∈

M, is uniquely determined by the system

ρα
T ( j) = |T ∩ PD( j)|

pD( j)
+ 1

pD( j)

∑
i∈M∩PD( j)

ρα
T (i) for all j ∈ M.

Proof By definition ρα
T ( j), j ∈ M , is uniquely determined by

ρα
T ( j) =

∑
i∈T

pα
i j +

∑
i∈M

pα
i jρ

α
T (i) for all j ∈ M,
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equivalently by

ρα
T ( j) =

∑
i∈T ∩PD( j)

1

pD( j) + α
+

∑
i∈M∩PD( j)

1

pD( j) + α
ρα

T (i)

+ α

pD( j) + α
ρα

T ( j) for all j ∈ M,

i.e., by

pD( j)

pD( j) + α
ρα

T ( j) = |T ∩ PD( j)|
pD( j) + α

+ 1

pD( j) + α

∑
i∈M∩PD( j)

ρα
T (i) for all j ∈ M,

equivalently by

ρα
T ( j) = |T ∩ PD( j)|

pD( j)
+ 1

pD( j)

∑
i∈M∩PD( j)

ρα
T (i) for all j ∈ M.

��

The next theorem shows that the relative ordering within a specific top cycle does
not depend on the digraph structure outside this top cycle. For D ∈ DN and a top
cycle T of D, define the restriction DT ∈ DT

1 by (i, j) ∈ DT if and only if (i, j) ∈ D
for all i, j ∈ T .

Theorem 5.1 Let D ∈ DN , T a top cycle of D and α ∈ (0,∞). Then

λα
i (D) =

∑
j∈N ρT ( j)

|T | λα
i (DT )

for all i ∈ T .

Proof By (1), λα(D) is a solution of the system

xi =
∑

j∈SD(i)

x j

pD( j) + α
+ α

xi

pD(i) + α
for all i ∈ N . (5)

As λα
j (D) = 0 for all nodes j that are not in a top cycle and nodes in a different top

cycle cannot be successor of a node in T , we find that (λα
i (D))i∈T is a solution of the

system

xi =
∑

j∈SD(i)∩T

x j

pD( j) + α
+ α

xi

pD(i) + α
for all i ∈ T . (6)
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Fig. 3 The digraph of Example 5.1

As SD(i) ∩ T = SDT (i) and pD(i) = pDT (i) for all i ∈ T, (λα
i (D))i∈T is a solution

of the system

xi =
∑

j∈SDT (i)

x j

pDT ( j) + α
+ α

xi

pDT (i) + α
for all i ∈ T . (7)

Consequently,
( |T |∑

j∈N ρT ( j)λ
α
i (D)

)
i∈T

is a solution to (7) as well, while simultaneously∑
i∈T

|T |∑
j∈N ρT ( j)λ

α
i (D) = |T |∑

j∈N ρT ( j)

∑
j∈N ρT ( j) = |T |. As (7) corresponds to (1)

for DT , we conclude that
( |T |∑

j∈N ρT ( j)λ
α
i (D)

)
i∈T

coincides with the unique solution

of (1) and (2) for DT . This completes the proof. ��

On the basis of Lemma 5.1 and Theorem 5.1 we are able to consistently extend the
definition of λ0 and λ∞ to the domain DN .

Definition 5.1 Let D ∈ DN . Then

λ0
i (D) :=

{ ∑
j∈N ρT ( j)

|T | λ0
i (DT ) if i is contained in the top cycle T of D;

0 otherwise.

and

λ∞
i (D) :=

{ ∑
j∈N ρT ( j)

|T | λ∞
i (DT ) if i is contained in the top cycle T of D;

0 otherwise.

We conclude by providing two examples.

Example 5.1 Consider the digraph D ∈ DN with N = {1, 2, 3, 4, 5, 6, 7, 8} and D
as represented in Fig. 3.
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Fig. 4 The digraph of Example 5.2

Clearly, there are two top cycles, T1 = {1, 2, 3, 4} and T2 = {5}. Moreover, solving
the system of Lemma 5.1 one finds that ρT1(6) = 3

4 , ρT1(7) = 1
2 , and ρT1(8) = 5

8 .
Consequently, using Theorem 5.1 and Definition 5.1,

λ0
T1

(D) = 47

32
λ0(DT1) = 47

32

4

26
(8, 6, 4, 8)

λ1
T1

(D) = 47

32

4

23
(8, 6, 3, 6);

λ∞
T1

(D) = 47

32

4

20
(8, 6, 2, 4);

λ0
5(D) = λ1

5(D) = λ∞
5 (D) = 68

32
,

while λ0
i (D) = λ1

i (D) = λ∞
i (D) = 0 for all i ∈ {6, 7, 8}. Hence, node 5 is ranked

first according to λ0 and λ1, and second according to λ∞.

Example 5.2 Consider the digraph D ∈ DN with N = {1, 2, 3, 4, 5} and D as repre-
sented in Fig. 4.

Consider an arbitrary α ∈ (0,∞). Node 2 will end up with score 1 1
2 , consisting of

his own starting score in the iterative process and half of the starting score of node 1.
As node 1 is not in a top cycle he will end up with score 0. Nodes 3, 4, and 5 equally
divide the total score of their top cycle (which includes the other half of the starting
score of node 1) resulting in λα = (

0, 1 1
2 , 1 1

6 , 1 1
6 , 1 1

6

)
for all α ∈ (0,∞), which is

straightforwardly extended to hold for all α ∈ [0,∞].
As for α = 2

(
λ1

i (D)
2(pD(i) + α)

(1 + α)(pD(i) + 1)

)
i∈N

=
(

0, 2, 1
1

6
, 1

1

6
, 1

1

6

)
�∼

(
0, 1

1

2
, 1

1

6
, 1

1

6
, 1

1

6

)

= λα(D).

we conclude that the proportionality result of Theorem 3.1 cannot be extended to DN .
We stress that the proportionality result does hold per top cycle.

6 Concluding remarks

We dealt with the ranking problem of the nodes in a directed graph and introduced a
class of scoring methods for directed graphs, indexed by a single nonnegative param-
eter α.
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For directed graphs with all nodes in the unique top cycle the scoring methods
for α = 0 and α = ∞ coincide with the well-known invariant scoring method and
fair bets scoring method (cf. Slutzki and Volij (2006)), respectively. As our scoring
methods are defined on the set of all connected digraphs, these two extreme internal
slackening scoring methods provide natural unique extensions of both fair bets and
invariant scoring methods to directed graphs with several top cycles. For α = 1 the
scoring method corresponds with the existing λ-scoring method of Borm et al. (2002)
and can be seen as a compromise between λ0 and λ∞.

Existing scoring methods generally focus on ranking within a top cycle. Our meth-
ods allow comparisons between top cycles as well. In doing so, the total score of the
nodes in a top cycle is shown to be independent of the specific internal slackening
scoring method selected.

In addition, we provided an explicit proportionality relation between λα and λ1 for
directed graphs with a unique top cycle. This facilitates comparison between the results
of the different internal slackening scoring methods and the well-known methods they
were shown to coincide with. For general digraphs this proportionality relation does
not hold for the full set of nodes, even though it holds per top cycle.

Finally, we introduced social choice correspondences with respect to the scoring
methods presented. Each of these correspondences is shown to be a refinement of
two correspondences from the literature, namely the Top cycle and Uncovered set
correspondences.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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