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Abstract: We show that, when the number of par-
ticipating agents n tends to infinity, all classical so-
cial choice rules are asymptotically strategy-proof with
the proportion of manipulable profiles being of order

O (1/v/n).

1. Introduction

The well-known impossibility theorem of Gibbard [6] and Satterthwaite
[10] states that every non-dictatorial social choice function is manipulable.
Nitzan [8] numerically showed the severity of this problem for relatively small
societies (up to 90 agents). Nevertheless there always has been hope that
for large societies manipulability might not be an issue if the social choice
function is chosen correctly. In other words, it is important to know which
social choice functions are nonmanipulable asymptotically, i.e. for which of
them the proportion of profiles, at which a successful attempt to manipulate
might take place, tends to zero as the number of agents grows.

This question was studied by Peleg [9] who proved that every repre-
sentable positionalist voting system (in the sense of Gérdenfors [5]) is asymp-
totically nonmanipulable. This class of voting systems includes, for example,
the plurality rule and the Borda count. Fristrup and Keiding [3, 4], sharpened
this result for the plurality rule by proving that the proportion of manipu-
lable profiles for the plurality is bounded from above by K/ /n, where n is
the number of participating agents and K is a number which depends only
on the number of alternatives but not on n.



The author proved that the same asymptotic behavior of the proportion
of manipulable profiles can be also observed for the run-off procedure [11] and
the majoritarian compromise [12]. Since STV or Hare’s rule can be treated in
the same way as the run-off procedure, there are two main types of rules left
for which asymptotic strategy-proofness has not been established yet or was
established without estimates on the speed of convergence of the proportion
of manipulable profiles to zero. These are rules based on the majority relation
and the scoring rules, with Borda being the main unresolved case.

The main result of this paper is that, for all rules based on the majority
relation and for all faithful scoring rules, — the most important of which being
the Borda rule, — the proportion of manipulable profiles is of order O (1/4/n).

As the result of this paper shows, we can state now that all classical rules
are asymptotically strategy-proof. But this is not true for all rules. We refer
the reader to [9] to Example 4.1 which shows that not all rules are asymp-
totically strategy-proof. In fact, the rule given there is even anonymous,
monotonic and Paretian.

We note also that in [11] it was proved that for the plurality the asymp-
totic lower bound for the proportion of manipulable profiles is also k/y/n, for
some k > 0 not depending on n. No other lower bounds have been discovered
so far.

2. Definitions and Basic Concepts

Let A and N be two finite sets of cardinality m and n respectively. The
elements of A will be called alternatives, the elements of N agents. We
assume that the agents have preferences over the set of alternatives. By
L = L(A) we denote the set of all linear orders on A; they represent the
preferences of agents over A. The elements of the cartesian product

L(A)" =L(A) x...x L(A) (n times)

are called n-profiles or simply profiles. They represent the collection of pref-
erences of an n-element society of agents N. If a linear order R; € L(A)
represents the preferences of the i-th agent, then by aR;b, where a,b € A, we
denote that this agent prefers a to b.

A family of mappings F = {F,}, n € N,

Fo: L(A)™ = A,



is called a social choice function (SCF). Historically SCFs were often called
rules.

Definition 1 Let F' be a SCF and let R = (Ry,...,R,) be a profile. We
say that the profile R is manipulable for F if there exists a linear order R;
such that for a profile R = (Ry,...,R;,..., R,), where R; replaces R;, we
have F(R')R;F(R). We also say that the profile R is unstable if there exists

a linear order R, such that F,,(R') # F,(R).
Every manipulable profile is unstable, but the reverse is not always true.

Let us define the following two indices as suggested in [8]. Given the rule
F', we define the index of manipulability

Kr(n,m) = 76[2(;!’)21) :

(1)
where dp(n, m) is the total number of all manipulable profiles, and the index
of instability

€r (na m)
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where ep(n,m) is the total number of all unstable profiles. We note that
under the assumption that Lr(A)™ is a discrete probability space with the
uniform distribution (the so-called “impartial-culture assumption”[8]), the
indices Ky (m,n) and Lg(m,n) become the probabilities of drawing at ran-
dom a manipulable or an unstable profile, respectively.

Clearly Kp(m,n) < Lg(m,n). Therefore any upper bound for Lg(n,m)
is an upper bound for Kr(m,n).

Lp(n,m) =

3. The Rules Based on the Majority Relation

Definition 2 Let R = (Ry,...,R,) be a profile. The majority relation
M(R) on A (which clearly depends on the given profile) is the binary re-
lation on A such that for any ay and ay in A we have apM(R)a, if and only
if card({i | axRiae} > card({i | aeR;ar} or card({i | axR;ar} = card({i |
agR;ar} and ay is earlier in A than ay, i.e., k < (. Of course, the second
case can occur only for even n.



Mathematically speaking, the majority relation is a tournament on A,
i.e., complete and asymmetric binary relation.

A great number of voting rules are based on computing the majority
relation. Using these rules, given a profile R, one computes M (R) first and
then implements one or another algorithm to determine the winner using
the information contained in M (R). Such rules are also called tournament
solutions (see the book [7] devoted to them).

Theorem 1 Let F' be a rule based on the majority relation. Then there is a
constant C,,, which depends only on m but not on n such that

Cm
NG

Proof: Let us consider two alternatives a,b € A. Suppose aM(R)b. A
participating agent will be able to change this to bM(R)a only in the case
when card({i | bR;a} = % for an even n or card({i | bR;a} = | %] for an odd

n. Since, as is well-known,
n < 2"
n/2 vn'
the probability of this happening will be not greater than
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Since we have $m(m — 1) pairs of alternatives, then

%m(m - 1)
Lp(n,m) < 7\/5 )

The theorem is proved.

4. The Scoring Rules

The following important class of SCFs was introduced by Géardenfors [5].
We follow [9] in defining them.



Definition 3 A representation function is a function f: L(A) X A — IR such
that

It 1s called faithful of
(aR;b and a #b) = f(R;,a) > f(R;,b).

Definition 4 A representation function f:L(A) x A — IR is called posi-
tionalist, if f(R,a) depends only on the cardinality of the lower contour set

L(R,a) ={b€ A | aRb and a # b} of a relative to R.

The simpliest positionalist representation function which defines the Borda
rule can be defined by f(R;,a) = card (L(R;,a)). It is easy to see that it is
faithful.

Let f be a representation function and R € L(A)™ be a profile. We define
the score function Scp: L(A)" x A — IR by

n

Scp(R,a) = f(Ri,a), a€ A (3)

=1

Definition 5 A SCF F is called (faithfully) representable if there exists a
(faithful) representation function f such that for every R € L(A)™ we have
F(R) = a; if and only if

j<i = Scf(R,a;) > Scs(R,a;), (4)
j>i = Scp(R,a;) > Scr(R,aj). (5)
When f is positionalist, the SCF F is also called a (faithful) scoring rule (or

point-voting scheme).

Every scoring rule F' with a representation function f is characterised by
the vector Wy = (wy, ..., wy,) of weights such that w; = f(R, a) if and only
if card(L(R,a)) = m — i. The weights must satisfy the condition

wlszZZwm:O

and it is clear that the scoring rule is faithful if w; # w;;; for all 1 =
1,2,...,m—1.



For a profile R € £(A)"™ ans an alternative a € A the score of a can be
now computed as follows. Let I, = (i,...,%,) be the vector such that the
number 7; shows how many times the alternative a was ranked kth. Then

m
SCf(R, a) = Wf : [a = Z’wﬂg.
=1
The most commonly used scores are the plurality score Scp(R,a), when
P is the plurality representation function, which is defined by the vector
of weights Wp = (1,0,...,0) and the Borda score Scg(a), where B is
the Borda representation function defined by the vector of weights Wg =
(m—1,m—2,...,1,0).
Let us consider a multiset
Lo=A{1,...,1,2,...,2,...,n,...,n} (6)
—_——— ——— ———
q q q
with its subsets partially ordered by inclusion. It is well-known that the
collection of all subsets of I,, , of middle size, |¢gn/2], is a maximal antichain
in I, , (see, for example, [1]); if n and ¢ are both odd, then the subsets of
size [qn/2] also form a maximal antichain.
In [2] Anderson proved that the length s(n) of a maximal antichain in
I, 41 satisfies the inequality
n—1 n—1
q q
— < <C
CQ\/ﬁ —S(n)— Q\/ﬁ7
for some constants ¢,, C,, which depend on ¢ but not on n. This result will
be used later.

Let R = (Ry,...,R,) beaprofileon A and A" = A\{a,,}. Then we define
the restrictions Q); = R;| 4 of the linear orders R; on A’ and the restricted
profile @ = (Q1, ..., Q,) on A'. We will also say that R is an extention of Q.

Let us now consider a profile @ on A" and let E(Q) be the set of all
possible extentions of ().

Definition 6 Let R and S belong to E(Q). We say that R < S if for all
t=1,2,...,n the following inclusion for the lower contour sets hold:

L(RZ, am) Q L(Sl, am).



Clearly this defines a partial order on E(Q).

Lemma 1 The poset (E(Q), <) is isomorphic to the poset (P(Ipm-1), <) of
all subsets of Iy, m—1.

Proof: Suppose that R is an extention of @ and card(L(R;,an)) = t;.
Then our isomorphism should assign to this particular extention the following
subset of I, ;—1:
{1,...,1,2,...,2,...,n,...,n}.
——— ——

—_———
t1 to tn

The proof of this isomorphism is obvious.

Lemma 2 Let F be a faithful scoring rule with a representation function f.
Let Q) be a profile on A'. Let us denote a,, = a and let b € A'. Then any two
distinct extentions R, S € E(Q) such that

Scr(R,a) — Scp(R,b) = Scs(S,a) — Scp(S,b) (7)

are not comparable relative to <.

Proof: Suppose R < S and R # S. Then Scf(R,a) < Scg(S, a) because the
rule is faithful. At the same time for every i there must be L(R;,b) O L(S;,b).
Hence Scp(R,b) > Scy(S,b) and the equation (7) cannot hold. This proves
the lemma.

Lemma 3 Let F be a faithful scoring rule with a representation function f.
Let a,b € A and k is an integer. Then, for some C,, > 0 depending on m
but not on n, there are no more than Cy,(m!)"/\/n profiles R € L(A)" such
that

Scr(R,a) — Scy(R,b) = k. (8)

Proof: We will show that the same constant C,,, as in Anderson’s theorem
works. Let A" = A\ {a}. There are (m — 1)! profiles on A" and we have
m™ extentions for each of them to a profile on A. Let us take an arbitrary
profile @ on A’. Then by Lemma 2 any two extentions with the property (8)
will not be comparable. Thus by Lemma 1 and by the aforementioned result



of Anderson we have no more than C;,,m™/\/n such extentions. In total we
cannot have more than

Crpm”™ . _ Cp(m!)"
NG l= ———

profiles for which (8) is satisfied. The lemma is proved.

Theorem 2 For any faithful scoring rule F' with a representation function
f there exists a constant D, depending on m but not on n such that

)
3

Lp(n,m) < —. (9)

S

Proof: Let a,b € A. Then by Lemma 3 the total number of profiles satisfying
Scr(R,a) — Scyp(R,b) = k. (10)
for k = —2m+2, —2m+3,...,0,...,2m—3,2m—2 will be not greater than

Cr(m!)™

Thus the total number of profiles where the difference between the scores of
some two alternatives is smaller than 2m — 1 will be not greater than

Since every manipulable and even every unstable profile is among those
counted, we see that (9) holds with D,, = (4m — 3) (’;) Chn.
This proves the theorem.

(4m — 3)

Corollary 1 All faithful scoring rules, including Borda, are asymptotically

strategy proof with the proportion of manipulable profiles being of order O(1/+/n),

when the number of agents n tends to infinity.
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