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This essay explores the possibility of constructing a structural realist interpretation of
spacetime theories that can resolve the ontological debate between substantivalists and
relationists. Drawing on various structuralist approaches in the philosophy of mathemat-
ics, as well as on the theoretical complexities of general relativity, our investigation will
reveal that a structuralist approach can be beneficial to the spacetime theorist as a means
of deflating some of the ontological disputes regarding similarly structured spacetimes.

1. Introduction

Although its origins can be traced back to the early twentieth century, structural real-
ism (SR) has only recently emerged as a serious contender in the debates on the status
of scientific entities. SR holds that what is preserved in successive theory change is the
abstract mathematical or structural content of a theory, rather than the existence of its
theoretical entities. Some of the benefits that can be gained from SR include a plausible
account of the progressive empirical success of scientific theorizing (thus avoiding the
‘no miracles’ argument), while also accommodating the fact that the specific entities
incorporated by these distinct, evolving theories often differ quite radically (and thus
SR evades the ‘pessimistic meta-induction’ that results from an ontological commit-
ment to the entities in specific theories). To take a well-known example, the similar
‘structure’ that underlies the progression in nineteenth-century optics from Fresnel’s
elastic solid ether theory to Maxwell’s electromagnetic field theory can be identified as
the mathematical structure exemplified in Maxwell’s field equations, since they give
Fresnel’s equations as a limiting case: ‘Fresnel’s equations are taken over completely
intact into the superseding theory [Maxwell’s]—reappearing there newly interpreted
but, as mathematical equations, entirely unchanged’ (Worrall 1996, 160). In short, the
mathematical structure of Fresnel’s theory carried over into the new theory, but his
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ontological commitment did not (since his mechanical elastic solid differs quite dras-
tically from the non-mechanical interpretation of the electromagnetic field often
favored at the end of the nineteenth century).

While quantum mechanics has been a central concern of contemporary SR theorists,
it is curious to note that one highly mathematical area of philosophical speculation that
has not been accorded the same degree of attention is the longstanding problem of the
ontological status of space or spacetime; in particular, whether space exists as a form of
entity independent of matter (substantivalism) or is reducible to the relations among
material existents (relationism). To rectify this neglect, the goal of our investigation
will be to examine the prospects for applying SR to the substantivalist/relationist prob-
lem, with special emphasis placed on how spacetime structure differs, if at all, from
structuralist approaches in the philosophy of mathematics. Although the structural
realist position itself may harbour various difficulties, it will be argued that an SR
account can prove beneficial in assessing the plethora of similarly structured, but onto-
logically divergent, spacetimes that have surfaced in the wake of Earman and Norton’s
hole argument. By stressing the central importance of the geometric structure of space-
time theories, as opposed to their ontological interpretations, SR is also more successful
in accounting for the non-causal role of mathematics in spacetime theories.

2. Structural Realism and Spacetime: Making the Case

2.1. The Hole Argument and Its Structuralist Aftermath

Many previous investigations of spacetime structure can be traced back to Earman’s
and Norton’s reworking of Einstein’s ‘hole’ argument into a negative critique of mani-
fold substantivalism. Put briefly, the hole argument concludes that substantivalism, in
its modern general relativistic setting, leads to an unacceptable form of indeterminism.
By shifting the metric and matter (stress-energy) fields, g, and, T, respectively, on the
spacetime manifold of points, M, with the latter representing the ‘substance’ of space-
time, one can obtain a new model 〈M, g*, T*〉 from the old model 〈M, g, T〉 that also
satisfies the field equations of the general theory of relativity or GTR (via a ‘hole diffeo-
morphism’, h: h(g) = g*). If the mapping is the identity transformation outside the
hole, but a non-identity mapping inside, then the substantivalist will not be able to
determine the trajectory of a particle within the hole (despite the observationally
identical nature of the two models; see Earman and Norton 1987).

One of the more influential structural-role solutions to the hole argument rejects a
straightforward realist interpretation of the individuality of the points that comprise
the manifold, M. ‘A preferable alternative [to manifold substantivalism] is to strip
primitive identity from space-time points: call this view metric field substantivalism.
The focus of this view is on the metric tensor [g] as the real representor of space-time
in GTR’ (Hoefer 1996, 24). Since the identity of the points of M is secured by the metric
g, any transformation of g, i.e., g*, does not result in the points of M possessing different
g-values; rather, g*, (in conjunction with T*) simply gives back the very same spacetime
points. (Similar structural role solutions are offered in Butterfield 1989, Mundy 1992,
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and Brighouse 1994 to name just a few.) In Belot and Earman (2001, 228), these struc-
tural role constructs are somewhat pejoratively labeled ‘sophisticated’ substantivalists,
and the charge is that the ‘substantivalists are helping themselves to a position most
naturally associated with relationism’ (Belot 2000, 588–589)—the reason being that the
identification of a host of observationally indistinguishable models with a single state-
of-affairs is the very heart of relationism. What is ironic about these allegations is that,
until recently, they have usually gone the other way, with the substantivalists accusing
many of the latest relational hypotheses of an illicit use of ‘absolute’ structure. In the
case of motion and its accompanying effects, for instance, it has long been recognized
that a physics limited to the mere relational motion of bodies, which (following
Earman 1989) we can define as (R1), faces serious difficulties in trying to capture the
full content of modern physical theories. In GTR, the formalism of the theory makes it
meaningful to determine if a lone body rotates in an otherwise empty universe (or
whether the whole universe rotates); and such possibilities are excluded on a strict (R1)
construal. A potential relationist rejoinder is to reject (R1), and simply hold that the
spatial structures needed to make sense of motion and its effects do not supervene on
some underlying, independent entity called ‘substantival space’. The rejection of
substantival space, which we can define as (R2), allows the relationist to freely adopt
any spatial structure required to explicate dynamical behavior, e.g. affine structure, ∇,
just as long as they acknowledge that these structures are (somehow) directly instanti-
ated by material bodies (or fields). Yet, by embracing the richer structures, the (R2)
relationist is open to the charge of being an ‘instrumentalist rip-off’ of substantivalism
(see section 2.2 below).

GTR likewise displays the inherent difficulties in clearly differentiating the relationist
and substantivalist interpretations of ontology. As revealed above, Hoefer views the
metric as representing substantival space, but Einstein judged the metric (or gravita-
tional) field as more closely resembling Descartes’s relational theory of space: 

If we imagine the gravitational field, i.e. the functions gik, to be removed, there does
not remain a space … but absolutely nothing…. There is no such thing as an empty
space, i.e. a space without field. Space-time does not claim existence on its own, but
only as a structural quality of the field. (Einstein 1961, 155–56)

By holding that all fields, including the metric field g, are physical fields, even the
vacuum solutions to GTR no longer correspond to empty spacetimes (thus eliminating
a large relationist obstacle; see Rovelli 1997, and Dorato 2000, for similar ‘metric field’
relationisms). This predicament has led some to question the very validity, or rele-
vance, of the substantival/relational debate in the context of GTR (Rynasiewicz 1996).

2.2. The Structural Realist Spacetime Solution

The foregoing analysis of the GTR substantival/relational debate nicely demonstrates
how two divergent ontological interpretations can nonetheless agree on the necessity
of a common structure: for both Einstein and Hoefer, the metric field g is the structure
identified or associated with spacetime, whether as its ‘real representor’ (Hoefer) or
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where spacetime is reckoned to be a ‘structural quality of the [g] field’ (Einstein). In
either case, if you remove g, then you remove spacetime. On a structural realist
construal of the debate, consequently, both Hoefer’s substantivalist and Einstein’s rela-
tionist versions of GTR would appear to constitute different ontological interpretations
of the very same underlying physical theory, since the key mathematical structure
equated with the nature of spacetime is identical in both cases. In other words, just as
the different theories of light proposed by Fresnel and Maxwell embody the same
formal structure, and so comprise different ontological perspectives of the same under-
lying (structural) reality, the substantivalist and relationist readings of GTR likewise
capture the same spacetime structure but from the standpoint of diverse ontological
assumptions. Moreover, a host of diverse philosophical evaluations of GTR (or Newto-
nian physics) would fall under the same SR category, since these allegedly distinct
hypotheses all accept the theory’s spacetime structure in a fairly straightforward
manner. For example, the (R2) relationists that posit spatiotemporal structure as a sort
of ‘property’ (Sklar 1974; Teller 1987), or the modal relationist renditions of (R2) (such
as Manders 1982; Teller 1991; Hinckfuss 1975), presumably do not differ on the math-
ematical structure and predictive scope of the relevant spacetime theory. Since they all
reject (R1), they all can agree on the meaningful possibility of, say, a lone rotating body
in an empty universe.1 Hence, if we group all of the sophisticated (R2) relationist
hypotheses according to their structure, an SR analysis has the decided advantage of
reducing a vast array of disparate ontological speculation into a single SR theory that,
rather conveniently, also includes most substantivalist readings of the spacetime. In
brief, the rationale for the SR approach is based on the apparently irresolvable ontolog-
ical dispute between the substantivalists and relationists: the SR theorist maintains that
all we can ever know about spacetime is its structure, and not the competing claims of
its substantival or material foundation.2

More carefully, any ontological interpretation of a spacetime theory that puts
forward the same mathematical structure constitutes the same SR spacetime theory. So,
given the fact that most (R2) relationists and sophisticated substantivalists (1) accept
the standard formalism of the relevant spacetime structure, such as M and g from the
set 〈M, g, T〉, for the relativistic spacetime of GTR, as well as (2) accept the implications
of these structures (e.g. our lone rotating body), it follows that SR must regard these
apparently different theories as identical.3 The essential criterion for an SR approach to
spacetime is the structure actually utilized in the theory, and neither the ontological
ranking of those structures nor the attempt to prove that some structures are more
privileged is relevant to the theory’s SR classification.4 Even those ontological interpre-
tations of GTR that strive to identify spacetime with M or g (and not M and g), will
consequently fall under the same SR category that endorses the joint M and g structure.
Since these interpretations do not eliminate, but rather still employ, the other struc-
tures, they fit the same SR spacetime category as those models less concerned with
embracing both M and g: e.g. Hoefer does not claim M can be dropped altogether, since
‘it represents the continuity of space-time and the global topology’ (Hoefer 1998, 24).5

SR can also be helpful in explicating our evolving understanding of the importance
of structure in spacetime theories considered historically. In the same manner that the
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success of both Fresnel’s and Maxwell’s theories can be explained as due to a common
structure, despite their different ontologies, so the evolution of spacetime theories
demonstrates how conflicting spacetime commitments may, or may not, incorporate
the same necessary structures; and, by this means, explain the strengths (and weak-
nesses) of the respective theories. For instance, whereas Newton’s conception of space
and time can be faulted for postulating an unnecessarily rigid structure (absolute posi-
tion and velocity), Descartes’s competing (R1) conception lacks the necessary structure
required to make sense of his own laws of motion. It was only much later that the space-
time structure mandated by Newtonian mechanics came to be fully recognized—and,
not coincidentally, the newly discovered structure can be seen as combining facets of
relationism (in the symmetry group that eliminate absolute position and velocity)
alongside the more ‘absolutist’ insights of the substantivalists (as in the affine struc-
ture). Likewise, the striking resemblance of many post-hole argument substantivalist
and current (R2) relationist hypotheses can be seen as a further manifestation of this
structuralist evolutionary tendency. As the analysis of spacetime theories progresses
(the insufficiency of (R1) relationism, the hole argument, etc.), the structures put
forward by the competing ontologies draw ever more closer, and may have reached a
point where there is no longer any significant difference. It is this capacity of SR to
reduce the seemingly irresolvable ontological conflicts, and focus on the crucial role of
structure, that marks its true advantage in the spacetime debates.

3. Assessing the SR Spacetime Hypothesis

In examining the potential stratagems for an SR interpretation of spacetime theories, it
will prove invaluable to review the parallel developments towards a structuralist
account of mathematics. As will be demonstrated, the structuralist standpoint in the
philosophy of mathematics bears a close resemblance to any SR spacetime philosophy,
and even suggests that there exists no real difference between the mathematical and
spacetime applications of a structuralist outlook.

3.1. Structuralism in Spacetime Theories and Mathematics

An obvious initial dilemma that faces the prospective SR theorist is the ontological
status of the spacetime structures themselves. Do they exist as a sort of Platonic univer-
sal, independent of all physical objects or events in spacetime, or are they dependent on
matter/events for their very existence or instantiation? This problem arises for the
mathematician in an analogous fashion, since they also need to explicate the origins of
mathematical structures (e.g. set theory, arithmetic). Consequently, a critic of the SR
spacetime project might seem justified in regarding this dispute in the philosophy of
mathematics as a re-emergence of the traditional substantivalist versus relationist
problem, for the foundation of all mathematical structures, including the geometric
spacetime structures, is once again either independent of, or dependent on, the physical.

Nevertheless, a survey of the various positions in the mathematical ontology dispute
may work to the advantage of the SR spacetime theory, especially when the relevant
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mathematical and spacetime options are paired together according to their analogous
role within the wider ontology debate. First, mathematical structuralism can be classi-
fied according to whether the structures are regarded as independent or dependent on
their instantiation in systems (ante rem and in re structuralism, respectively), where a
‘system’ is loosely defined as a collection of ‘objects’ and their interrelationships. Ante
rem structuralism, as favored by Resnik (1997) and Shapiro (1997, 2000), is thus closely
akin to the traditional ‘absolute’ conception of spacetime, for a structure is held to
‘exist independent of any systems that exemplify it’ (Shapiro 2000, 263). Yet, since
‘system’ (and ‘object’) must be given a broad reading, without any ontological assump-
tions associated with the basis of the proposed structure, it would seem that substanti-
valism would not fit ante rem structuralism, as well. The structure of substantivalism is
a structure in a substance, namely, a substance called ‘spacetime’, such that this unique
substance ‘exemplifies’ the structure (whereas ante rem structure exists in the Platonic
sense as apart from any and all systems that exemplify it). The substantivalist might try
to avoid this implication by declaring that their spacetime structures are actually closer
in spirit to a pure absolutism, without the need of any underlying entity (substance) to
house the structures (hence, ‘substantivalism’ is simply an unfortunate label). While
this tactic may be more plausible for interpreting Newtonian spacetimes, it is not very
convincing in the context of GTR, especially for the sophisticated substantivalist theo-
ries. Given the reciprocal relationship between the metric and matter fields, it becomes
quite mysterious how a non-substantival, ‘absolute’ structure, g, can be effected by, and
effect in turn, the matter field, T. For the ante rem structuralist, mathematical struc-
tures do not enter into these sorts of quasi-causal interrelationships with physical
things; rather, things ‘exemplify’ structures (see also note 8). Accordingly, one of the
initial advantages of examining spacetime structures from within a mathematical
ontology context is that it drives a much needed wedge between an absolutism about
quantitative structure and the metaphysics of substantivalism, although the two are
typically, and mistakenly, treated as identical.

In fact, as judged against the backdrop of the ontology debate in the philosophy of
mathematics, the mathematical structures contained in all spacetime theories would
seem to fall within a nominalist classification. If, as the nominalists insist, mathemati-
cal structures are grounded on the prior existence of some sort of ‘entity’, then both the
substantivalists and relationists would appear to sanction mathematical nominalism
(with in re structuralism included among nominalist theories, as argued below):
whether that entity is conceived as a unique non-material substance (substantivalism),
physical field (metric-field relationism), or actual physical objects/events (relationism,
of either the modal (R2) or strict (R1) type), a nominalist reading of mathematical
structure is upheld. This outcome may seem surprising, but given the fact that
traditional substantivalist and relationist theories have always based spatiotemporal
structure on a pre-existing or co-existing ontology—either on a substance (substanti-
valism) or physical bodies (relationism)—a nominalist reading of spacetime structure
has been implicitly sanctioned by both theories. Consequently, if both substantivalism
and relationism fall under the same nominalist category in the philosophy of mathe-
matics, then the deeper mathematical Platonist/nominalist issue does not give rise to a



International Studies in the Philosophy of Science 153

corresponding lower-level substantival/relational dichotomy as regards the basis of
those spacetime structures (e.g. with substantivalism favoring a Platonic realism about
mathematical structures, and relationism siding with a nominalist anti-realism). This
verdict could change, of course, if a non-substantival ‘absolute’ conception of space-
time becomes popular in GTR; but this seems unlikely, as argued above.

As there are a number of nominalist reconstructions of mathematics, a closer exam-
ination of their content reveals that the different versions can be paired to different
substantival and relational theories. For instance, a reductive (R1) spacetime relation-
ism can be linked to some strict nominalist reconstructions of mathematics, as in
Field’s (1980) attempt to treat mathematical objects and structures as entirely dispens-
able, or ‘fictional’. Field posits a continuum of spacetime points, conceived physically
in the manner of a manifold substantivalist, in his effort to rewrite Newtonian gravita-
tion theory along mathematically anti-realist lines. Modal (R2) relationists, like Teller
(1991), would not constitute the spacetime analogue of Field’s program, accordingly,
since (as discussed above) this form of relationism sanctions modal spacetime struc-
tures that can transcend the structures exhibited by the actually existing physical
objects, e.g. the affine structure ∇ instantiated by a lone rotating body. Whereas Field
requires an infinity of physical spacetime points (isomorphic to ℜ4) in order to capture
the full content of the mathematician’s real numbers, the (R2) relationist can allow
modal structures to serve this function, thus releasing the ontology of such extravagant
demands. More importantly, if Field’s nominalist program is committed to manifold
substantivalism, M, then it is susceptible to the hole argument. All spacetime theories
that utilize the metric in the identity of spacetime points, such as sophisticated substan-
tivalism and metric-field relationism, would thereby incorporate a divergent set of
structural scenarios (since they are not susceptible to the hole argument). Therefore,
Field’s nominalist mathematics entails a spacetime structure that comprises a different
SR theory than sophisticated substantivalism and metric-field relationism.

The mathematical equivalent of both sophisticated substantivalism and (R2) rela-
tionism is, rather, any of the less stringent nominalist theories that reject Field’s strict
nominalism, as in, e.g. Chihara (2004) or Azzouni (2004), or Hellman’s (1989) in re
structuralism. Much like the modal (R2) relationist theories surveyed above, the ‘mini-
mal nominalists’ (as we will dub them) do not allow structures to exist independently
of the systems they exemplify, yet they do not believe that these structures can be
dismissed as mere fictions, either. Contra Field, the minimal mathematical nominalists
deny a purely instrumentalist construal of mathematical structures (while simulta-
neously rejecting a Platonic absolutism): they all insist, for instance, that mathematical
structures cannot be excised from scientific theories without loss of valuable physical
content (e.g. Chihara 2004, 317–49). Hellman’s in re structuralism, moreover, employs
‘possible structures’ as a means of avoiding a commitment to an infinite background
ontology, a feature that helps to explain its common nominalist classification (see Hell-
man 1989, 47–52, and Chihara 2004, 107–115). The minimal nominalist theories often
differ on how the mathematical structures are constructed from their basic ontology,
as well as how to construe the truth-values of mathematical statements about mathe-
matical structures (see Azzouni 2004, 30–48). But these differences, such as in the kind
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of modality sanctioned, etc., can be quite subtle, and do not lend themselves to any
drastic distinctions in type or basic intent. Hence, any attempt to rekindle the substan-
tival/relational distinction among the competing minimal nominalist theories would
seem implausible. A firm reliance on some form of modality and a non-instrumental
construal of mathematical structures is the common, and crucial, similarity among
these theories; and it is these aspects that are most important for the spacetime
structuralist, whether of the sophisticated substantivalist or relationist variety.

These last observations are not meant to downplay the importance of the ongoing
research in the philosophy of mathematics on the origin of structures, for it is always
possible that substantial problems will arise for some of the minimal nominalist
theories, thus eliminating them from contention. From the SR standpoint, in fact, the
philosophy of mathematics would likely be considered a more proper arena for assess-
ing the structures employed by spacetime theories, at least as opposed to the apparently
unverifiable metaphysics of ‘substance versus body’. Not only has the traditional space-
time dichotomy failed to explain how these mathematical structures arise from their
basic ontology, but, as we have seen, the underlying structures advocated by the sophis-
ticated versions of both substantivalism and relationism are identical when judged
within the wider philosophy of mathematics framework. Whether that foundational
entity is called a substance or a physical object is irrelevant, and probably a conven-
tional stipulation, since the real work, as judged from the mathematical perspective,
concerns how the structures are constructed from the underlying entity—and the
competing claims of substance or physical existent do not effect this mathematical
construction. In essence, the only apparent difference between the sophisticated
substantivalists and (R2) relationists is where those mathematical structures are
located: either internal to the substance or field (for the substantivalists and metric-
field relationists, respectively) or external to bodies/events (for non-field formulations
of (R2) relationism, such as Teller’s). Needless to say, this internal/external distinction
does not provide any information on how the mathematical structures are built up;
rather, it reveals the pervasive influence of the age-old substance/property dichotomy
within the philosophy of science community, an unfortunate legacy that the SR theorist
regards as hindering the advancement of the debate on spacetime theories.6

Finally, since the competing minimal nominalist constructions are being judged not
solely from a mathematical perspective, but from a scientific and empirical standpoint
as well, a few words are in order on the relevance of empirical evidence in assessing
spacetime structure. This issue will be addressed further in the remaining sections, but
in brief, it is unlikely that any physical evidence could provide a strong confirmation of
any one of the competing nominalist theories. In effect, these nominalist constructions
are only being utilized to explain the origins of the spacetime structures, such as M or
g, that do appear in our best physical theories, with the important qualification that
these nominalist constructions do not commit the physical theory to any problematic
or meaningless physical outcomes (e.g. Field’s nominalism and the hole argument, as
noted above). As for the sophisticated brands of both substantivalism and relationism,
all of the minimal nominalist constructions are apparently identical as regards their
implications for possible spacetime scenarios and meaningful physical states. Unless
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other reasons are brought forward, the choice among the competing minimal nominal-
ist constructions could thus be viewed as conventional, since it is difficult to conceive
how empirical evidence could reach the deep mathematical levels where the differences
in nominalist constructions of spacetime structures come into play.

3.2. Geometric Structure, Causation, and ‘Instrumental Rip-Offs’

The benefit of the various structuralist approaches in the philosophy of mathematics
is that it allows both the mathematical realist and anti-realist to use mathematical
structures without obligating a Platonism about mathematical objects, such as
numbers—one can simply accept that, say, numbers exist as places in a larger struc-
ture, like the natural number system, rather than as some sort of independently
existing, transcendent entities (see Shapiro 2000, 258). Accordingly, a variation on a
well-known mathematical structure, such as exchanging the natural numbers ‘3’ and
‘7’, does not create a new structure, but merely gives the same structure ‘relabelled’
(with ‘7’ now playing the role of ‘3’, and vice versa). This structuralist tactic is famil-
iar to spacetime theorists, as mentioned previously, for not only has it been adopted
by substantivalists to undermine an ontological commitment to the independent
existence of the manifold points of M, but it is tacitly contained in all relational
theories, since they would count the initial embeddings of all material objects and
their relations in a spacetime as isomorphic.

A critical question remains, however: since spacetime structure is geometric struc-
ture, how does the SR approach to spacetime differ in general from mathematical
structuralism? Is the theory just mathematical structuralism as it pertains to geometry
(or, more accurately, differential geometry), rather than arithmetic or the natural
number series? While it may sound counter-intuitive, the SR theorist should answer
this question in the affirmative—the reason being, quite simply, that the puzzle of how
mathematical spacetime structures apply to reality, or are exemplified in the real world,
is identical to the problem of how all mathematical structures are exemplified in the
real world. Philosophical theories of mathematics, especially nominalist theories,
commonly take as their starting point the fact that certain mathematical structures are
exemplified in our common experience, while others are excluded. To take a simple
example, a large collection of coins can exemplify the standard algebraic structure that
includes commutative multiplication (e.g. 2 × 3 = 3 × 2) but not the more limited struc-
ture associated with, say, Hamilton’s quaternion algebra (where multiplication is non-
commutative; 2 × 3 ≠ 3 × 2). In short, not all mathematical structures find real-world
exemplars (although, for the minimal nominalists, these structures can be given a
modal construction). The same holds for spacetime theories: empirical evidence
currently favors the mathematical structures utilized in GTR, such that the physical
world exemplifies, say, g, but a host of other geometric structures, such as the flat
Newtonian metric, h, are not exemplified.

The critic will likely respond that there is a substantial difference between the math-
ematical structures that appear in physical theories and the mathematics relevant to
everyday experience. For the former, and not the latter, the mathematical structures will
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vary along with the postulated physical forces and laws; and this explains why there are
a number of competing spacetime theories, and thus different mathematical structures,
compatible with the same evidence: in Poincaré fashion, Newtonian rivals to GTR can
still employ h as long as special distorting forces are introduced (we will return to this
topic). Yet, underdetermination can plague even simple arithmetical experience, a fact
well known in the philosophy of mathematics and in measurement theory. For exam-
ple, in Chihara, an assessment of the empiricist interpretation of mathematics prompts
the following conclusion: ‘the fact that adding 5 gallons of alcohol to 2 gallons of water
does not yield 7 gallons of liquid does not refute any law of logic or arithmetic [“5 + 2
= 7”] but only a mistaken physical assumption about the conservation of liquids when
mixed’ (Chihara 2004, 237). While obviously true, Chihara could have also mentioned
that, in order to capture our common-sense intuitions about mathematics, the appli-
cation of the mathematical structure in such cases requires coordination with a physical
measuring convention that preserves the identity of each individual entity, or unit, both
before and after the mixing. In the mixing experiment, perhaps atoms should serve as
the objects coordinated to the natural number series, since the stability of individual
atoms would prevent the sort of blurring together of the individuals (‘gallon of liquid’)
that led to the arithmetically deviant results. By choosing a different coordination, the
mixing experiment can thus be judged to uphold, or exemplify, the statement ‘5 + 2 =
7’. What all of this helps to show is that mathematics, for both complex geometrical
spacetime structures and simple non-geometrical structures, cannot be empirically
applied without stipulating physical hypotheses and/or conventions about the objects
that model the mathematics. Consequently, as regards real-world applications, there is
no difference in kind between the mathematical structures that are exemplified in
spacetime physics and in everyday observation; rather, they differ only in their degree
of abstractness and the sophistication of the physical hypotheses or conventions
required for their application. Both in the simple mathematical case and in the space-
time case, moreover, the decision to adopt a particular convention or hypothesis is
normally based on a judgment of its overall viability and consistency with our total
scientific view (aka the scientific method): we do not countenance a world where
macroscopic objects can, against the known laws of physics, lose their identity by
blending into one another (as in the addition example), nor do we sanction otherwise
undetectable universal forces simply for the sake of saving a cherished metric.

Another significant shared feature of spacetime and mathematical structure is the
apparent absence of causal powers or effects, even though the relevant structures seem
to play some sort of ‘explanatory role’ in the physical phenomena. To be more precise,
consider the example of an ‘arithmetically challenged’ consumer who lacks an adequate
grasp of addition: if they were to ask for an explanation of the event of adding five coins
to another seven, and why it resulted in twelve, one could simply respond by stating, ‘5
+ 7 = 12’, which is an ‘explanation’ of sorts, although not in the scientific sense. On the
whole, philosophers since Plato have found it difficult to offer a satisfactory account of
the relationship between general mathematical structures (arithmetic/‘5 + 7 = 12’) and
the physical manifestations of those structures (the outcome of the coin adding). As
succinctly put by M. Liston: ‘Why should appeals to mathematical objects [numbers,
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etc.] whose very nature is non-physical make any contribution to sound inferences
whose conclusions apply to physical objects?’ (Liston 2000, 191). One response to the
question can be comfortably dismissed, nevertheless: mathematical structures did not
cause the outcome of the coin adding, for this would seem to imply that numbers (or
‘5 + 7 = 12’) somehow had a mysterious, platonic influence over the course of material
affairs.

In the context of the spacetime ontology debate, there has been a corresponding
reluctance on the part of both sophisticated substantivalists and (R2) relationists to
explain how space and time differentiate the inertial and non-inertial motions of
bodies; and, in particular, what role spacetime plays in the origins of non-inertial force
effects. Returning once more to our universe with a single rotating body, and assuming
no other forces or causes, it would be somewhat peculiar to claim that the causal agent
responsible for the observed force effects of the motion is either substantival spacetime
or the relative motions of bodies (or, more accurately, the motion of bodies relative to
a privileged reference frame, or possible trajectories, etc.).7 Yet, since it is the motion
of the body relative to either substantival space, other bodies/fields, privileged frames,
possible trajectories, etc., that explains (or identifies, defines) the presence of the non-
inertial force effects of the acceleration of the lone rotating body, both theories are
therefore in serious need of an explanation of the relationship between space and these
force effects.8 The strict (R1) relationists face a different, if not less daunting, task; for
they must reinterpret the standard formulations of, say, Newtonian theory in such a
way that the rotation of our lone body in empty space, or the rotation of the entire
universe, is not possible. To accomplish this goal, the (R1) relationist must draw upon
different mathematical resources and adopt various physical assumptions that may, or
may not, ultimately conflict with empirical evidence: for example, they must stipulate
that the angular momentum of the entire universe is 0.9

To sum up, all participants in the spacetime ontology debate are confronted with the
nagging puzzle of understanding the relationship between, on the one hand, the empir-
ical behavior of bodies, especially the non-inertial forces, and, on the other hand, the
apparently non-empirical, mathematical properties of the spacetime structure that are
somehow inextricably involved in any adequate explanation of those non-inertial
forces—namely, for the substantivalists and (R2) relationists, the affine structure, that
lays down the geodesic paths of inertially moving bodies. The task of explaining this
connection between the empirical and abstract mathematical or quantitative aspects of
spacetime theories is thus identical to elucidating the mathematical problem of how
numbers relate to experience (e.g. how ‘5 + 7 = 12’ figures in our experience of adding
coins). Likewise, there exists a parallel in the fact that most substantivalists and (R2)
relationists seem to shy away from positing a direct causal connection between material
bodies and space (or privileged frames, possible trajectories, etc.) in order to account
for non-inertial force effects, just as a mathematical realist would recoil from ascribing
causal powers to numbers so as to explain our common experience of adding and
subtracting.

An insight into the non-causal, mathematical role of spacetime structures can also
be of use to the (R2) relationist in defending against the charge of instrumentalism, as,



158 E. Slowik

for instance, in deflecting Earman’s criticisms of Sklar’s ‘absolute acceleration’ concept.
Conceived as a monadic property of bodies, Sklar’s absolute acceleration does not
accept the common understanding of acceleration as a species of relative motion,
whether that motion is relative to substantival space, other bodies, or privileged
reference frames (Sklar 1974, 225–34). Earman’s objection to this strategy centers upon
the utilization of spacetime structures in describing the primitive acceleration
property: ‘it remains magic that the representative [of Sklar’s absolute acceleration] is
neo-Newtonian acceleration 

 [i.e. the covariant derivative, or ∇ in coordi-
nate form]’ (Earman 1989, 127–28).10 Ultimately, Earman’s critique of Sklar’s (R2)
relationism would seem to cut against all sophisticated (R2) hypotheses, for he seems
to regard the exercise of these richer spacetime structures, like ∇, as tacitly endorsing
the absolute/substantivalist side of the dispute: ‘the Newtonian apparatus can be used
to make the predictions and afterwards discarded as a convenient fiction, but this ploy
is hardly distinguishable from instrumentalism, which, taken to its logical conclusion,
trivializes the absolute-relationist debate’ (Earman 1989, 128).

In the wake of our lengthy examination of the parallel function of mathematical and
spacetime structures, the weakness of Earman’s argument should be readily apparent,
since, to put it bluntly, does the equivalent use of mathematical statements, such as ‘5
+ 7 = 12’, likewise obligate the mathematician to accept a realist conception of numbers
(such that they exist independently of all exemplifying systems)? Yet, if the straightfor-
ward employment of mathematics does not entail either a realist or nominalist theory
of mathematics (as most mathematicians would likely agree), then why must the equiv-
alent use of the geometric structures of spacetime physics, e.g. ∇, require a substantival-
ist conception of ∇ as opposed to an (R2) relationist conception of ∇? Put differently,
does a substantivalist commitment to , whose
overall function is to determine the straight-line trajectories of, here, Neo-Newtonian
spacetime, also necessitate a substantivalist commitment to its components, such as the
vector, d/dt, along with its limiting process and mapping into ℜ? In short, how does a
physicist read off the physical ontology from the mathematical apparatus? A non-
instrumental interpretation of some component of a theory’s quantitative structure is
often justified if that component can be given a plausible causal role (as in subatomic
physics)—but, as noted above, ∇ does not appear to cause anything in spacetime theo-
ries.11 All told, Earman’s argument may prove too much, for if we accept his reasoning
at face value, then the introduction of any mathematical or quantitative device that is
useful in describing or measuring physical events would saddle the ontology with a
bizarre type of entity (e.g. gross national product, average household family, etc.). A
nice example of a geometric structure that provides a similarly useful explanatory func-
tion, but whose substantive existence we would be inclined to reject as well, is provided
by Dieks’s example of a three-dimensional colour solid: 

Different colours and their shades can be represented in various ways; one way is as
points on a 3-dimensional colour solid. But the proposal to regard this ‘colour space’
as something substantive, needed to ground the concept of colour, would be absurd.
(Dieks 2001, 230)
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3.3. Underdetermination Problems

In summary, it has been argued that the geometric structures of spacetime theories
should be regarded as a species of mathematical structure, and hence the ontological
and epistemological puzzle associated with the function of these geometric structures
is, in essence, a question about how mathematics relates to the physical world. If space-
time structures are simply mathematical structures, furthermore, then the proper
arena for disputes concerning the ontological foundations of these spacetime struc-
tures is not the substantival/relational dichotomy in the philosophy of physics, but the
realist/nominalist debate in the philosophy of mathematics. As discussed in section 2.1,
the advantage of translating the spacetime ontology debate into a mathematical context
is that it treats as identical the currently favored forms of both substantivalism and rela-
tionism that have emerged in the wake of the hole argument and in the context of
GTR—namely, sophisticated substantivalism and (R2) relationism—since both theo-
ries require the same minimal nominalist mathematical construction (i.e. as also noted
in section 2.1, GTR appears to be hostile to a non-substantival, absolutist spacetime
conception, which is the equivalent of a platonic realism concerning mathematics; and
a strict nominalism along the lines of Field requires a realist commitment to spacetime
points that runs afoul of the hole argument). Accordingly, with both the sophisticated
substantivalists and (R2) relationists embracing the same foundational conception of
the origin of geometric spacetime structure, namely, a minimal nominalism, the old
substantival versus relational dichotomy has been dissolved at the higher level of
mathematical ontology. The evidence for regarding spacetime structures as purely
mathematical structures, put forward in section 2.2, is the non-causal role that geomet-
ric spacetime structures play in our understanding of dynamical phenomena, which is
identical to the non-causal role that mathematical structures in general assume in our
understanding of everyday occurrences.

A further point raised in section 2.2, and which now needs to be discussed at greater
length, is the underdetermination that accompanies all real-world applications of
mathematical structures, whether simple arithmetic (‘adding 5 gallons of alcohol to 2
gallons of water does not yield 7 gallons of liquid’) or geometric spacetime structure (à
la Poincaré (1952): flat metric with distorting universal forces versus curved metric with
no distorting universal forces). If many different geometric–physical combinations are
consistent with the same empirical evidence, as Poincaré’s examples suggest, then a
troubling implication is that the geometric structure of spacetime is open to conflicting
interpretations. But, how can the geometry of spacetime be open to alternative
construction without undermining the ‘realism’ in ‘structural realism’? The structural
realist program was intended to overcome the pessimistic meta-induction by obtaining
some form of invariant mathematical quantity among competing scientific theories.
The realization that the evidence underdetermines the geometry of physical theories,
such that the geometry of a theory cannot be isolated against experience, might suggest
that there are no such invariants as regards geometric structure.12

The SR theorists could fall back upon one of two general strategies in responding to
the underdetermination problem. First, they might simply reject the possibility of a
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radical underdetermination of this sort, insisting that there remains a single, funda-
mental geometric structure underlying our best spacetime theories, presumably from
Aristotle all the way to GTR (and beyond), that underwrites their success. An
invariance of geometric structure across the development of Newtonian theories has
been documented in Friedman (1983) and may lend credence to the SR theorist’s belief
that the continuing evolution of spacetime theories will confirm a core geometric
structure. In moving from the classical type of Newtonian theory to the more complex
neo-Newtonian formulation (which eliminates both absolute place and absolute
velocity, besides incorporating a ‘geometrized’ gravitational potential), three geometric
structures are featured in all versions of the theory: an affine connection, ∇, which
provides the inertial trajectories (and may be either absolute or dynamic); a co-vector
field, dt, which represents absolute time; and the metric tensor, h, which secures a
Euclidean measure of distance (Friedman 1983, 71–124; a fourth structure, the point
manifold, M, should also be included). In all versions of the Newtonian theory, these
structures play an integral role in the spacetime structure, so they cannot be removed
without undermining the overall Newtonian theory and its various physical laws (such
as the laws of motion or, in the latter case, the gravitational law). In moving to the
spacetime of GTR, the geometric structures now shrink to just 〈M, g〉, since the affine
and temporal structures of the Newtonian theories, ∇ and dt, are now provided by the
semi-Riemannian metric tensor g (which replaces the Euclidean metric, h; Friedman
1983, 177–215).

The real test of this strategy, of course, will come if a successor theory to GTR is
formulated, and empirically confirmed. Even if the postulated successor theory coor-
dinates an entirely different set of geometric structures to its physical processes, the
combined ‘geometry + physics’ of this new theory, T = G + P, must at least approximate
the ‘geometry + physics’ of the older theory, T′ = G′ + P′, under the appropriate
circumstances. Of course, one never knows which geometric components of a space-
time theory will be retained, transformed, or dropped, altogether. For example, if the
proposal for an alternative (R1) construction of GTR mentioned in Barbour (1999,
349–50) were experimentally confirmed, then supposedly the conformal structure of
space (the geometry of shapes and angles) would form the core geometric component
of the overall theory (in conjunction with an action principle), since the metrical
notion of ‘distance’ would be purged from GTR. Barbour’s theory will allegedly show
how to eliminate this excess structure, while simultaneously explaining how distance
was (mistakenly) viewed as crucial to the geometric structure of all past theories.
Barbour’s project may ultimately fail; but, for our purposes, it does conform to this
structural realist strategy of countering the underdetermination problem.

The second strategy for dealing with a Poincaré-style underdetermination is to
invoke Laudan’s general distinction between its non-unique and egalitarian forms
(Laudan 1996). If, on the egalitarian option, all geometric structures are compatible
with same physical evidence, then a structural realist interpretation of spacetime is
indeed in trouble; but, if the underdetermination is limited to just ‘more than one’
coordination of geometry and physical theory, as the nonunique variety insists, then
underdetermination does not represent a serious problem. The SR theorist can
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contend that, given the complexity of physical phenomena and the latitude in the
construction of T = G + P, there can be no guarantee of a unique final spacetime
theory—rather, it is possible that several (but not all) different combinations of ‘geom-
etry plus physics’ (T = G + P) equally satisfy the protocols of the scientific method. This
interpretation upholds a realism about structure by admitting only a select number of
different geometric structures, implying that the vast majority of structures are not
exemplified in physical phenomena—a point made earlier, in section 2.2, about simple
non-geometric structures as well. In order to defeat the pessimistic meta-induction,
however, each of these different structures must, individually, be interpreted as an
invariant feature across all the other past and present spacetime theories: that is, as in
our first response to the underdetermination problem, all other successful T′ = G′ + P′
combinations must be approximately contained in each of the other T = G + P combi-
nations that makeup the nonunique class of successful spacetime theories. Returning
to Poincaré’s examples, the ‘flat space plus forces’ theory must approximate empirically
the ‘curved space without forces’ theory, and visa versa—as is indeed the case. What
this second response to the underdetermination problem contends is that, in the limit
of scientific theorizing, there may remain a select handful of geometry plus physics
combinations (and not just one) that save the phenomena. To take another example, it
is conceivable (albeit highly unlikely) that both the standard curved space (tensors on
manifold) version of GTR and Barbour’s Machian instantaneous 3-space formulation
(as above) might ultimately account for the empirical data equally well (such that both
theories are identically consistent with other well-confirmed physical laws, etc.). Given
this outcome, a nonunique response to the underdetermination problem seems
warranted. Yet, for those sympathetic to the first response to the underdetermination
problem (i.e. that there is a unique solution for each alleged underdeterminism case),
the possibility that two or more theories could account equally for the empirical data,
along with all of the other virtues of the scientific process (consistency, fruitfulness,
etc.), will appear far-fetched.

4. Conclusion

By way of conclusion, it would be helpful to examine the SR approach to spacetime
theories against the backdrop of the current debate on ontological and epistemological
implications of the structures themselves. Epistemic structural realism, as its name
implies, regards the mathematical structures of our best scientific theories as only
providing epistemological information, and not information on the ontology that
underlies the observed structural relationships. The ontic structural realists, in contrast,
claim that structures do reveal facts or truths about the underlying ontology and may,
in fact, be the underlying ontology (see, e.g. Chakravartty 2003).

Overall, the view of spacetime structure advocated in our investigation would seem
to favor the epistemic strand of SR, since the mathematical form of structuralism that
has served as the basis of our understanding of spacetime structure is a minimal nomi-
nalism (and includes the in re modal structuralists). As described in section 2.2, both
the sophisticated substantivalists and (R2) relationists predicate spacetime structure on



162 E. Slowik

some form of ‘entity’—whether that entity is a unique substance (spacetime), body, or
field, the structure is grounded upon that entity. Accordingly, in agreement with Psillos
(forthcoming), an SR spacetime cannot uphold the more radical ontic structuralist
conception that ‘all there is’ may be structure. On the other hand, the more mild forms
of ontic structuralism, which regards structure as just revealing facts or truths about the
underlying ontology, could also be judged as consistent with the general SR approach
to spacetime theories (although it remains unclear what type of ontological facts or
truths can be divulged). More work on the specific details of the ontic and epistemic
varieties of SR would be required to make a more informed decision on this matter.
However, there is one conclusion that can be confidently reached; namely, that the
ontic/epistemic dichotomy does not constitute a surrogate substantival/relational
distinction. The ontic/epistemic debate does not divide along the lines of attributing to
physical reality either the existence or non-existence of some alleged ontological
member (spacetime structure). Rather, the ontic/epistemic dispute turns on the type of
information, either epistemic or ontological, that scientific theories convey (e.g. one
could accept the epistemic SR theory, yet accept the arguments for sophisticated
substantivalism).

Finally, to recap the advantages of the SR approach to spacetime theories over the
traditional (substantival versus relationist) ontological dichotomy, it has been argued
above that: (1) the SR approach more successfully captures the importance of geometric
structure to spacetime theories; (2) by treating spacetime structure as mathematical
structure, one gains an insight into the non-causal relevance of spacetime structure for
understanding dynamical phenomena (i.e. all mathematical structures are non-causal);
and (3) the SR spacetime approach treats the top two contenders in the ontological
dispute (i.e. sophisticated substantivalism and (R2) relationism) as the very same type
of SR spacetime theory, thus eliminating a great deal of unproductive quarreling. All
told, spacetime physics may actually prove to be one of the more congenial environ-
ments for the application of SR.13

Notes

[1] An objection to grouping the similarly structured substantival and relationist theories might
draw on Maudlin (1993), whose classificational scheme attempts to formulate both relation-
ist and substantivalist versions of specific spacetime structures, e.g. Newtonian substantival-
ism, Newtonian relationism, etc. For many (R2) relationist theories, however, both the
structures advocated, and the physical implications of those structures (such as a lone
rotating body), seem identical to those espoused by the substantivalists. A case in point is
Teller’s (1991) ‘liberalized’ relationism, which not only employs the same inertial structure
as the substantivalist (381), but also may only require the existence of one object or event
(396) to ground these structures. The vacuum solutions to GTR need not be seen as
violating this ‘one object/event’ rule, moreover. Following Earman and Norton (1987, 519),
one can identify the gravity waves in these models as material objects/events (since they can
in principle be converted to other forms of energy); and, for the solutions without gravity
waves, one could either accept Harré’s suggestion that they have ‘no reasonable physical
interpretations’ (1986, 131), or simply side with Einstein’s hypothesis that the g field is a
physical field.
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[2] In the succeeding sections (Sections 3.2 and 4), the reason for not advocating the stronger
claim, ‘all that exists is structure’, will become apparent.

[3] This is a fairly informal presentation of the identity of structuralist theories. Formulating an
identity criterion for SR is a work in progress, as noted in Da Costa and French (2003, 122),
but one could utilize their method of (partial) isomorphisms among the sub-structures of
models (48–52). Shapiro (1997, 91–93) also describes several means of capturing ‘sameness of
(mathematical) structure’ across different systems through the use of a full, or partial, isomor-
phism of the objects and relations of the compared structures.

[4] Some of the different mathematical formulations of spacetime theories can be regarded in
this manner, i.e. they may employ the same structures, but simply disagree on which struc-
ture is more fundamental. For instance, in the twistor formalism of Penrose, conformal
structure is basic, with other structures as derivative, whereas the standard tensor formalism
would consider conformal structure as derivative of the manifold and metric structures. The
necessity of the mathematical structure to the function of the theory is the key point, here,
regardless of its primary or derived status. This point is reminiscent of Quine’s famous
critique of Carnap. Quine argued that the conventional element in Carnap’s treatment of
geometric truth arose, not in determining the truths of geometry (since ‘the truths were
there’), but in selecting from that interrelated set of pre-existing truths which ones would
serve as the fundamental Euclidean axioms, and which ones would serve as the derived
results (Quine 1966, 108–109). In section 2.3, we will return to this topic, with the compet-
ing mathematical formulations of a spacetime theory (such as GTR) subsumed under the
more general problem of underdeterminism, such that there are many different theoretical
combinations of ‘geometry coordinated to physical processes’ (T = G + P) that save the
phenomena.

[5] One of Hoefer’s reasons for singling out the g-field is that a metric field without a global topol-
ogy is possible ‘for at least small patches of space-time’, although a manifold M without a metric
cannot supply even a portion of spacetime (Hoefer 1998, 24). But, once again, the overall struc-
ture of GTR (i.e. for more than just small patches) mandates both M and g (in the standard
formalism).

[6] The view of structure advocated in Brading and Landry (forthcoming), called ‘minimal struc-
turalism’, would seem to be in accord with the ‘minimal nominalist’ structuralist position
advocated in this essay. ‘What we call minimal structuralism is committed only to the claim
that the kinds of objects that a theory talks about are presented through the shared structure
of its theoretical models and that the theory applies to the phenomena just in case the theoret-
ical models and the data models share the same kind of structure. No ontological commit-
ment—nothing about the nature, individuality or modality of particular objects—is entailed’
(Brading and Landry, forthcoming, 20). If one interprets ‘objects’ as including substantival
space, bodies, fields, etc., then this characterization of structure could apply to the minimal
nominalist approach to spacetime structure described above.

[7] It should be noted that the problem of incongruent counterparts (Kant’s ‘handed’ objects)
could stand as a counter-argument to the claims of the causally inert status of spacetime. On
the other hand, one could always invoke a maneuver similar to that advocated in Sklar (1985,
234–48), which accepts an ‘intrinsic’ property of handedness (i.e. a primitive property defined
via continuous rigid motions) to avoid the commitment to substantival space.

[8] See Teller (1991), Sklar (1990), Bricker (1990), and Azzouni (2004, 196–212), for similar
arguments about the causal irrelevance of spacetime structures for explaining accelerated
motions and effects. An important early critique is Einstein (1923, 112–13), which labels
absolute space as ‘a fictitious cause’ since rotation with respect to absolute space is not ‘an
observable fact of experience’. Furthermore, with respect to the interrelationship between the
metric and matter fields in GTR, (i) this relationship is not normally presented as ‘causal’, (ii)
nor does it explain the non-inertial forces associated with accelerated motion (rather, the
interrelationship is relevant to explaining the metric curvature).
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[9] See Barbour (1982). The attempt to explain non-inertial force effects as due to the relative
motion of matter through the Higgs field (in contemporary quantum field theories) would
thus constitute an exception to this line of reasoning, for a direct causal explanation is
intended. However, we are dealing with the classic GTR models in this essay.

[10] Earman’s text quoted above erroneously contains an extra 1/dt2 term in the left-hand side of
the equation for the covariant derivative in coordinate form, as verified through personal
correspondence with Earman.

[11] Since the minimal nominalists reject Platonism, they do not claim, of course, that mathemat-
ical entities and their relationship enter into spacetime theories. But, spacetime structures are
not just the physical relationships between the physical objects, either, since (as argued above)
causation is not a spacetime relationship (whereas causation is most definitely a physical
relationship among physical objects). Spacetime structures, like all other mathematical struc-
tures, are unique in this regard: systems can exemplify the structures, but the structures are
not identical to the systems, nor (for the nominalists) can they exist in the absence of
systems.

[12] A viewpoint remarkably similar to the SR thesis developed above can be found in the work of
Stein (1977) and DiSalle (1995). Not only do they reject the standard substantival versus rela-
tional classification, but they place special emphasis on denying a causal role to spacetime: ‘A
spacetime theory does not causally explain phenomena of motion, but uses them to construct
physical definitions of basic geometrical structures by coordinating them with dynamical laws’
(DiSalle 1995, 317). The underdetermination problem poses a threat to this conception,
nevertheless, since DiSalle leaves open the potential for a viable coordination of the physical
and geometrical aspects of theories alternative to general relativity: e.g. the Brans–Dicke
theory, but only if a physical process can be located for the needed coordination with the
long-range scalar field (geometrical component), which provides a (relational) Machian
conception of mass (DiSalle 1995, 334–35).

[13] I would like to thank Oliver Pooley for his invaluable help in the research for this essay, as well
as two anonymous referees for International Studies in the Philosophy of Science for their
instructive comments on an earlier draft.
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