
To appear in a book editedby Matthias Scheutz

TheIrrelevanceof Turing Machinesto AI

AaronSloman
Universityof Birmingham

http://www.cs.bham.ac.uk/˜axs/

Contents

1 Intr oduction 2

2 Two Strands of DevelopmentLeading to Computers 3

3 Combining the strands: energy and information 5
3.1 Towardsmoreflexible, moreautonomouscalculators . . . . . . . . . . . . . . . . . . . . . 8
3.2 Internalandexternalmanipulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Practicalandtheoreticalviewpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Computers in engineering,scienceand mathematics 11
4.1 Engineeringandscientificapplications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Relevanceto AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Relevanceto mathematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Informationprocessingrequirementsfor AI . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 DoesAI requiretheuseof workingmachines?. . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Eleven important featuresof computers(and brains) 15

6 Ar e there missingfeatures? 21

7 Someimplications 24

8 Two counterfactual historical conjectures 25

Abstract

Thecommonview thatthenotionof a Turing machineis directly relevant to AI is criticised.It is ar-
guedthatcomputersaretheresultof aconvergenceof two strandsof developmentwith alonghistory:
developmentof machinesfor automatingvariousphysicalprocessesandmachinesfor performing
abstractoperationson abstractentities,e.g. doing numericalcalculations.Variousaspectsof these
developmentsareanalysed,alongwith their relevanceto AI, andthesimilaritiesbetweencomputers
viewedin thiswayandanimalbrains.Thiscomparisondependsonanumberof distinctions:between
energy requirementsandinformationrequirementsof machines,betweenballisticandonlinecontrol,
betweeninternalandexternaloperations,andbetweenvariouskindsof autonomyandself-awareness.
The ideasareall intuitively familiar to softwareengineers,thoughrarely madefully explicit. Most



of this hasnothingto do with Turing machinesor mostof themathematicaltheoryof computation.
But it haseverythingto do with both the scientifictaskof understanding,modellingor replicating
humanor animalintelligenceandtheengineeringapplicationsof AI, aswell asotherapplicationsof
computers.

1 Intr oduction

Many peoplethink thatour everydaynotionof “computation”,asusedto referto whatcomputers
do, is inherently linked to or derived from the idea of a Turing machine,or a collection of
mathematicallyequivalentconcepts(e.g. the conceptof a recursive function, the conceptof a
logical system).It is alsooftenassumed,especiallyby peoplewho attackAI, thattheconceptsof
a Turing machineandTuring-machinecomputability(or mathematicallyequivalentnotions)are
crucialto theroleof computersin AI andCognitiveScience.1 For example,it is oftenthoughtthat
mathematicaltheoremsregardingthelimitationsof Turingmachinesdemonstratethatsomeof the
goalsof AI areunachievable.

I shallchallengetheseassumptions,arguingthatalthoughthereis atheoretical,mathematically
precise,notion of computationto which Turing machines,recursive functions and logic are
relevant, (1) this mathematicalnotion of computationand the associatednotion of a Turing
machinehave little or nothingto do with computersasthey arenormallyusedandthoughtof, (2)
thatalthoughcomputers(both in their presentform andin possiblefuture forms if they develop)
areextremelyrelevantto AI, asis computationdefinedas“what we make computersdo”, Turing
machinesare not relevant, and the developmentof AI did not even dependhistorically on the
notionof aTuringmachine.

In puttingforwardanalternativeview of therole of computersandtheideaof computationin
AI, I shalltry to clarify whatit is aboutcomputersthatmakesthememinentlysuitablein principle,
unlike previousman-mademachines,asa basisfor cognitivemodellingandfor building thinking
machines,and also as a catalystfor new theoreticalideasaboutwhat minds are and how they
work. Their relevancedependson a combinationof featuresthat resultedfrom two pre-existing
strands,or threads,in the history of technology, both of which startedhundreds,or thousands,
of yearsbeforethe work of Turing andmathematicallogicians. The merging of the two strands
and further developmentsin speed,memorysizeandflexibility wereenormouslyfacilitatedby
the productionof electronicversionsin mid 20th century, not by the mathematicaltheory of
computationdevelopedat thesametimeor earlier.

A corollary of all this is that thereare(at least)two very differentconceptsof computation:
oneof which is concernedentirelywith propertiesof certainclassesof formal structuresthatare
the subjectmatterof theoreticalcomputerscience(a branchof mathematics),while the other is
concernedwith a classof information-processingmachinesthat caninteractcausallywith other
physicalsystemsand within which complex causalinteractionscan occur. Only the secondis
importantfor AI (andphilosophyof mind).

Later I shall discussan objectionthat computersaswe know themall have memorylimits,
so that they cannotform partof anexplanationof theclaimedinfinite generative potentialof our
thoughtandlanguage,whereasa Turing machinewith its unboundedtapemight suffice for this
purpose.Rebutting this objectionrequiresus to explain how an infinite virtual machinecanbe
implementedin afinite physicalmachine.

1Turing machinesareoften takento beespeciallyrelevant to so-called“good old fashionedAI” or GOFAI. This
termcoinedby Haugeland(1985)is usedby many peoplewho have readonly incompleteandbiasedaccountsof the
historyof AI, andhaveno personalexperienceof workingon theproblems.
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2 Two Strandsof DevelopmentLeading to Computers

Two old strandsof engineeringdevelopmentcametogetherin theproductionof computersaswe
know them,namely(a) developmentof machinesfor controlling physicalmechanismsand (b)
developmentof machinesfor performingabstractoperations.e.g.on numbers.

The first strandincludedproductionof machinesfor controlling both internal and external
physicalprocesses.Physicalcontrolmechanismsgobackmany centuries,andincludemany kinds
of devices, including clocks, musical-boxes, piano-roll mechanisms,steamenginegovernors,
weaving machines,sortingmachines,printing machines,toysof variouskinds,andmany kindsof
machinesusedin automatedor semi-automatedassemblyplants.Theneedto controltheweaving
of cloth,especiallytheneedto produceamachinethatcouldweaveclothwith differentpatternsat
differenttimes,wasoneof themajordriving forcesfor thedevelopmentof suchmachines.Looms,
likecalculatorsandclocks,gobackthousandsof yearsandwereapparentlyinventedseveraltimes
over in differentcultures.2

Unlike the first strand, in which machineswere designedto perform physical tasks, the
secondstrand,startingwith mechanicalcalculatingaids,producedmachinesperformingabstract
operationson abstract entities,e.g. operationson or involving numbers,includingoperationson
setsof symbolsto be counted,sorted,translated,etc. The operationof machinesof the second
type dependedon the possibility of systematicallymappingthoseabstractentitiesand abstract
operationsonto entitiesandprocessesin physicalmachines.But alwaysthereweretwo sortsof
thingsgoingon: thephysicalprocessessuchascogsturningor leversmoving, andtheprocesses
thatwewouldnow describeasoccurringin avirtual machine, suchasadditionandmultiplication
of numbers. As the subtletyand complexity of the mappingfrom virtual machineto physical
machineincreasedit allowedtheabstractoperationsto belessandlesslikephysicaloperations.

Although the two strandswerevery differentin their objectives,they hadmuchin common.
For instanceeachstrandinvolvedbothdiscreteandcontinuousmachines.In thefirst strandspeed
governorsandotherhomeostaticdevicesusedcontinuouslychangingvaluesin asensorto produce
continuouschangesin somephysicaloutput,whereasdevices like loomsandsortingmachines
wereinvolvedin makingselectionsbetweendiscreteoptions(e.g.usethiscolourthreador thatone,
gooveror underacross-thread).Likewisesomecalculatorsusedcontinuousdevicessuchasslide-
rules and electronicanalogcomputerswhereasothersuseddiscretedevices involving ratchets,
holesthatarepresentor absentin cards,or electronicswitches.3

Also relevant to both strandsis the distinctionbetweenmachineswherea humanoperatoris
constantlyinvolved(turningwheels,pushingrodsor levers,slidingbeads)andmachineswhereall
the processesaredrivenby motorsthat arepart of themachine.Wherea humanis involvedwe
candistinguishcaseswherethehumanis takingdecisionsandfeedingcontrol informationandthe
caseswherethehumanmerelyprovidestheenergy oncethemachineis setup for a task,asin a
musicbox or somemechanicalcalculators.If thehumanprovidesonly energy it is mucheasierto
replacethehumanwith a motorthatis partof themachineandneedsonly fuel.

In short we can distinguishtwo kinds of autonomyin machinesin both strands: energy
autonomyand information or control autonomy. Both sorts of autonomydevelopedin both
physical control systems(e.g. in factory automation)and in machinesmanipulatingabstract

2Informationaboutlooms(including Jacquardloomscontrolledby punchedcards),Hollerith machinesusedfor
processingcensusdata,Babbage’sandLovelace’sideasaboutBabbage’s‘analyticalengine,andcalculatorsof various
kindscanbefoundin EncyclopaediaBrittanica. Internetsearchenginesprovidepointersto many moresources.See
also(Hodges1983)

3(Pain 2000)describesa particularlyinterestinganalogcomputer, the “Financephalograph”built by Bill Phillips
in 1949usedhydraulicmechanismsto modeleconomicprocesses,with considerablesuccess.
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information(e.g.calculators).
At first, mechanicalcalculatorsperformedfixed operationson small collectionsof numbers

(e.g. to computethevalueof somearithmeticalexpressioncontaininga few numericalconstants,
eachspecifiedmanuallyby a humanoperator).Later, Hollerith machinesweredesignedto deal
with largecollectionsof numbersandotheritemssuchasnames,job categories,namesof towns,
etc. This madeit possibleto usemachinesfor computingstatisticsfrom censusdata. Such
developmentsrequiredmechanismsfor automaticallyfeedingin large setsof data,for instance
on punchedcards. Greaterflexibility was achieved by allowing someof the cardsto specify
the operationsto be performedon others,just aspreviously cardshadbeenusedto specify the
operationsto beperformedby a loom in weaving.

This, in combinationwith the parallel developmentof techniquesfor feedingdifferent sets
of instructionsto the samemachineat different times (e.g. changinga weaving patternin a
loom), madeit possibleto think of machinesthatmodifiedtheir own instructionswhile running.
This facility extendedcontrol autonomyin machines,a point that wasapparentlyunderstoodby
BabbageandLovelacelongbeforeTuringmachinesor electroniccomputershadbeenthoughtof.

A naturaldevelopmentof numericalcalculatorswasproductionof machinesfor doingboolean
logic, inspiredby ideasof George Boole in the 19th century(and Leibniz even earlier). This
defineda new classof operationson abstractentities(truth valuesandtruth tables)thatcouldbe
mappedon to physicalstructuresandprocesses.Later it wasshown how numericaloperations
could be implementedusing only componentsperforming booleanoperations,leading to the
productionof fast,general-purpose,electroniccalculatingdevices. The speedandflexibility of
thesemachinesmadeit possibleto extend them to manipulatenot only numbersand boolean
valuesbut alsootherkinds of abstractinformation,for instancecensusdata,verbalinformation,
maps,pictorial informationand,of course,setsof instructions,i.e. programs.

Thesechangesin the designand functionality of calculatingmachinesoriginally happened
independentlyof developmentsin meta-mathematics.They weredriven by practicalgoalssuch
as the goal of reducingthe amountof humanlabour requiredin factoriesand in government
censusoffices, or the goal of performing taskswith greaterspeedor greaterreliability than
humanscould manage.Humanengineeringingenuitydid not have to wait for the development
of mathematicalconceptsand resultsinvolving Turing machines,predicatelogic or the theory
of recursive functions,althoughtheseideasdid feedinto thedesignof a subsetof programming
languages(includingLisp).

Thosepurelymathematicalinvestigationswerethemainconcernsof peoplelikeFrege,Peano,
Russell,Whitehead,Church,Kleene,Post,Hilbert, Tarski,Gödel,Turing, andmany otherswho
contributed to the mathematicalunderstandingof the purely formal conceptof computationas
somesortof philosophicalfoundationfor mathematics.Their work did not requiretheexistence
of physicalcomputers.In factsomeof themeta-mathematicalinvestigationsinvolvedtheoretical
abstractmachineswhichcouldnotexist physicallybecausethey wereinfinite in size,or performed
infinite sequencesof operations.4

Thefactthatoneof theimportantmeta-mathematicians,Alan Turing,wasalsooneof theearly
designersof workingelectroniccomputerssimply reflectedthebreadthof hisabilities: hewasnot
only a mathematicallogician but alsoa gifted engineer, in additionto beingoneof the early AI

4I conjecture that this mathematicalapproachto foundations of mathematicsdelayed philosophical and
psychologicalunderstandingof mathematicsasit is learntandusedby humans.It alsoimpedesthedevelopmentof
machinesthatunderstandnumbersashumansdo. Ourgraspof numbersandoperationsonnumbersis not justagrasp
of acollectionof formalstructuresbut dependson acontrolarchitecturecapableof performingabstractoperationson
abstractentities.
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theorists(Turing1950;Hodges1983).

3 Combining the strands: energy and information

It wasalwaysinevitablethat thetwo strandswould merge,sinceoftenthebehavioursrequiredof
controlsystemsincludenumericalcalculations,sincewhatto donext is oftenafunctionof internal
or externalmeasuredvalues,so thatactionhasto be precededby a sensingprocessfollowedby
a calculation.Whathadbeenlearnedaboutmechanicalcalculatorsandaboutmechanicalcontrol
systemswasthereforecombinedin new extremelyversatileinformation-basedcontrol systems,
drawing thetwo strandstogether.

It is perhapsworth mentioningthatthereis a trade-off betweenthetypeof internalcalculation
requiredand the physicaldesignof the system. If the physicaldesignconstrainsbehaviour to
conformto certainlimits thenthereis no needfor control signalsto bederived in sucha way as
to ensureconformity, for example. Engineershave known for a long time that gooddesignof
mechanicalcomponentsof a complex systemcansimplify the taskof the control mechanisms:
it is not a discovery uniqueto so-called“situated” AI, but a well known generalprinciple of
engineeringthatoneneedsto considerthetotalsystem,includingtheenvironment,whendesigning
a component.Anotherway of putting this is to saythatsomeaspectsof a controlsystemcanbe
compiledinto thephysicaldesign.

Following that strategy leadsto the developmentof specialpurposecontrol mechanisms,
tailoredto particulartasksin particularenvironments.Therearemany exquisiteexamplesof such
specialpurposeintegrateddesignsto befoundin living organisms.Evolution developedmillions
of varietieslongbeforehumanengineersexisted.

However, humanengineershave also learnt that therearebenefitsto the designof general-
purpose,applicationneutral,computers,sincethesecanbeproducedmoreefficiently andcheaply
if numbersrequiredarelarger, and,moreimportantly, they canbe usedafter their productionin
applicationsnot anticipatedby the designers.Evolution appearsto have “discovered” a similar
principlewhenit produceddeliberativemechanisms,albeitonly in a tiny subsetof animalspecies.
This biological developmentalso precededthe existenceof humanengineers. In fact it was a
preconditionfor theirexistence!

Understandingall this requiresunpackingin moredetaildifferentstagesin thedevelopmentof
machinesin bothhistoricalstrands.Thisshowsdistinctionsbetweendifferentvarietiesof machines
thathelpusto understandthesignificanceof computersfor AI andcognitivescience.

Throughoutthehistoryof technologywe cansee(at least)two requirementsfor theoperation
of machines:energy andinformation. Whena machineoperates,it needsenergy to enableit to
create,changeor preserve motion,or to produce,changeor preserve otherphysicalstatesof the
objectson which it operates.It alsoneedsinformationto determinewhich changesto produce,or
whichstatesto maintain.Major stepsin thedevelopmentof machinesconcerneddifferentwaysof
providing eitherenergy or information.

The idea of an energy requirementis very old and very well understood. The idea of an
information requirementis more subtle and lesswell understood. I am herenot referring to
information in the mathematicalsense(of ShannonandWeaver) but to an older more intuitive
notion of informationwhich could be calledcontrol informationsinceinformation is generally
potentiallyusefulin constrainingwhatis done.I shallnotattemptto define“information” because
like“energy” it is acomplex andsubtlenotion,manifestedin verymany forms,applicableto many
differentkindsof tasks,andlikely to befoundin new formsin future,aspreviouslyhappenedwith
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energy. Sotheconceptis implicitly definedby thecollectionof facts,theoriesandapplicationsin
which weuseit: andthereforetheconceptis still developing.5

Therearemany subtletiesinvolved in specifyingwhat information is acquired,manipulated
or usedby a machine(or anorganism),especiallyasthis cannotbederivedunambiguouslyfrom
the behaviour of the organismor the natureof its sensors.For presentpurposes,however, we
do not needto explain in moredetail how to analysepreciselywhat control informationis used
by a machine.It sufficesto acknowledgethat someinformationis required,andthat sometimes
designersof amachinecanexplainwhatis happening.In thepresentcontext wenotethefactthat
onedifferencebetweenmachinesis concernedwith wherethe energy comesfrom, andanother
concernswheretheinformationcomesfrom, discussedfurtherbelow.

Whenahumanusesamachine,thedegreeto whicheithertheenergy or theinformationcomes
from thehumanor from someothersourcecanvary. Othertypesof variationdependon whether
theenergy or theinformationis providedballistically or online,or in somecombinationof both.

Thedevelopmentof waterwheels,windmills, springdrivenor weightdrivenmachines,steam
engines,electricmotors,andmany moreareconcernedwith waysof providing energy thatdoes
notcomefrom theuser. Sometimesmostof thecontrolinformationcomesfrom theuserevenif the
energy doesnot. In many machines,suchascars,mechanicaldiggers,cranes,etc. theonly energy
requiredfrom the humanuseris that neededto convey the control information,e.g. by turning
wheelsor knobs,pressingbuttons,or pedals,pulling or pushinglevers,etc.Developmentssuchas
power-assistedsteeringor brakes,micro-switchesandotherdevicesreducetheenergy requiredfor
supplyingcontrolinformation.

Sometimesthe informationdeterminingwhata machineshoulddo is implicit in thephysical
structureof the machineandthe constraintsof the situationin which it operates.For instancea
waterwheelis built sothatall it cando is rotate,thoughthespeedof rotationis in partdetermined
by theflow of water. In contrast,many machinesaredesignedfor useby humanswho determine
preciselywhathappens.Thecontrolinformationthencomesfrom theuser.

However, in general,someof theinformationwill beinherentin thedesignof themachineand
somewill comefrom the environment. For instance,a windmill thatautomaticallyturnsto face
thewind getsits informationaboutwhichway to turn from theenvironment.

Similar considerationsapply to machinesin the secondstrand:calculatingmachines.In the
caseof an abacusthe energy to move the beadscomesfrom the user, andmost of the control
informationdeterminingwhich beadsmovewhenandwherealsocomesfrom theuser. However,
someof the informationcomesfrom thechangingstateof theabacuswhich functionsin part as
anextensionof theuser’s memory. This wouldnot bethecaseif at eachsteptheabacushadto be
disassembledandreconstructedwith thenew configurationof beads.

By contrast,in a primitive musicbox, a humanmay continuouslyprovide energy by turning
a handlewhile all thecontrol informationdeterminingwhich soundsto producenext comefrom
somethingin themusicbox,e.g.arotatingcylinderor discwith protrudingspokesthatpluckor or
strike resonatingbarsof differentlengths.Theonly control thehumanhasis whetherto continue
or to stop,or perhapswhetherto speedup themusicor slow down, dependingon theconstruction
of themusicbox. Somemusicboxesmayalsohave a volumeor tonecontrolthatcanbechanged
while themusicis playing.

Both theenergy andtheinformationrequiredto driveamachinemaybeprovidedby a userin
eitheranonlineor a ballistic fashion.If a musicbox acceptschangeablecylinderswith different
tunes,the userwill have control, but only ballistic control: by settingthe total behaviour at the

5For moreon theparallelbetweenenergy andinformationseetheslidesin thisdirectory:
http://www.cs.bham.ac.uk/˜axs/misc/talks/
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beginning. Likewiseenergy maybeprovidedin a ballistic fashion,if themusicbox is woundup
andthenturnedon andleft to play. At theoppositeextreme,playinga violin or wind instrument
requiresexquisiteonlineprovisionof bothenergy andinformation.

Thecombinedonlineprovisionof bothenergy andcontrolinformationis characteristicof tools
or instrumentswhich allow humansto performactionsthataredifficult or impossiblefor themto
dounaided,becauseof limitationsof strength,or height,or reach,or perceptualability, or because
bodypartsarethewrongsizeor shape(e.g. tweezersareoftenusedwherefingersaretoo big or
thewrongshape)or becausewe cannotmake thesamesoundastheinstrument.In suchcasesthe
useris constantlyin controlduringtheoperationof suchamachine,providing bothenergybut also
the informationrequiredto guideor manipulatethetool. In othermachinesmachinesmostof the
energy maycomefrom someothersource,while thehumanprovidesonly theenergy requiredto
operatecontrol devices,for instancewhenpower-assistedsteeringreducestheamountof energy
requiredfrom theuserwithout reducingtheamountof informationprovided. I.e. theuseris still
constantlyspecifyingwhatto donext.

Ballistic informationprovision canvary in kind anddegree. In the caseof the musicbox or
machinedrivenby punchedcardsthesequenceof behavioursis totally determinedin advance,and
then the machineis allowed to run throughthe steps. However, in a moderncomputer, and in
machineswith feedbackcontrolmechanisms,someor all of thebehaviour is selectedon thebasis
of sometestsperformedby themachineevenif it is runninga programthatwasfully specifiedin
advance.If thetestsandtheresponsesto thetestsarenot pre-determined,but ratherproducedby
somekind of learningprogram,or by ruleswhich causethe initial programto bemodifiedin the
light of which eventsoccurwhile it is running(like an incrementalcompilerusedinteractively),
thentheballistic control informationprovidedinitially is lessdeterminateaboutthebehaviour. It
may rigidly constrainsetsof possibleoptions,but not which particularoptionswill be selected
when.

If theinitial informationprovidedto themachinemakesa largecollectionof possibleactions
possible,but is not specificaboutthepreciseorderin which they shouldbeperformed,leaving the
machineto makeselectionsonthebasisof informationacquiredwhile behaving, thenthemachine
is to someextentautonomous.Thedegreeandkind of autonomywill vary.6

For many typesof applicationsthecontrolfunctionsof themachinecouldbebuilt directly into
its architecture,becauseit repeatedlyperformedexactly thesamesortof task,e.g.telling thetime,
playinga tune.Thiswasrigid ballistic control.

For otherapplications,e.g. weaving cloth with differentpatterns,it wasdesirablenot to have
to assemblea new machinefor eachtask.This requireda separationof a fixedre-usablephysical
architecturefor performinga classof tasksand a variablebehavioural specificationthat could
somehow harnessthecausalpowersof thearchitectureto performaparticulartaskin thatclass.

For some of the earlier machines, the variable behaviour required continuous human
intervention (e.g. playing a piano, operatinga loom, or manipulatingan abacus),i.e. only
online control could producevariable results. Later it was possible,in somecases,to have
various physical devices that could be set manually at the start of some task to producea
requiredbehavioural sequence,andthenre-setfor anothertask,requiringa differentsequenceof
behaviours. This wasvariableballistic control. This might requiresettingleversor cog-wheelsto
somestartingposition,andthenrunningthemachine.In thecaseof theearliestelectroniccontrol
systemsthismeantsettingswitches,or alteringelectricconnectionsbeforestartingtheprocess.

6Thereis a “theological” notion of autonomy, often referredto as“free will”, which requiresactionsto be non-
randomyet not determinedby the ballistic or online informationavailableto the agent. This wasshown by David
Humeto beanincoherentnotion.
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At the beginning of the 19th Century, Jacquardrealisedthat the useof punchedcardscould
make it mucheasierto switch quickly betweendifferentbehavioural sequencesfor looms. The
cardscould be storedandre-usedasrequired. A similar techniqueusedpunchedrolls of paper,
as in playerpianos. Thesemechanismsprovided easily and rapidly specifiedvariableballistic
control.

Later, thesamegeneralideawasemployedin Hollerith card-controlledmachinesfor analysing
censusdata,andpaper-tapecontrolleddata-processingmachines.In thesecases,unlike looms,
someof theballistic controlwasconcernedwith selectionof internalactionsequences.

The alteration of such physically encodedinstructionsrequired human intervention, e.g.
feedingin punchedcards,or pianorolls, or in thecaseof somemusicboxesreplacinga rotating
discor cylinderwith metalprojections.

In Babbage’s designfor his ‘analytical engine’, the useof conditionalsand loops allowed
the machineto decidefor itself which collection of instructionsto obey, permitting very great
flexibility . However, it was not until the developmentof electroniccomputersthat it became
feasibleto producecomputerswhich, while running,could createnew programsfor themselves
andthenobey them.7

Machinesprogrammedby meansof punchedcardshad reachedconsiderablesophistication
by the late nineteenthand early twentiethcentury, long beforeelectroniccomputers,and long
beforeanyonehadthoughtof Turing machines,recursive function theory, or their mathematical
equivalents.

The electronictechnologydevelopedduring the 20th centuryallowed faster, more general,
moreflexible, morereliable,machinesto beproduced,especiallyaftertheinventionof transistors
allowed electromechanicalrelaysand vacuumtubesto be replaced. The advent of randomly
addressablememory facilitateddevelopmentof machineswhich could not only rapidly select
arbitraryinstructionsto follow, but couldalsochangetheir own programseasilyat run time.

The processof developmentof increasinglysophisticatedinformation processingsystems
wasacceleratedduring the1970sonwards,both by advancesin materialsscienceandelectronic
engineering,andalsoby the rapid evolution of new computer-assistedtechniquesfor designing
new machinesandcomputer-controlledfabricationtechniques.

In otherwords,the productionof new improvedmachinesfor controlling physicalprocesses
acceleratedthe productionof even better machinesfor that purpose. Someof this depended
cruciallyonthesecondstrandof development:machinesfor operatingonabstractentities,suchas
numbers.Theability to operateon abstractentitieswasparticularlyimportantfor machinesto be
ableto changetheir own instructions,asdiscussedbelow. Developmentsin electronictechnology
in thesecondhalf of the20thcenturyfacilitatedconstructionof machineswhich couldalter their
internalcontrolinformationwhile runningHowever theimportanceof thishadat leastpartlybeen
understoodearlier:it did notdependontheideaof Turingmachines,whichhadthiscapability, but
in aparticularlyclumsyform.

3.1 Towards moreflexible, moreautonomouscalculators

Numericalcalculators,like machinesfor controlling physicalprocesses,go backmany centuries
andevolvedtowardsmoreandmoresophisticatedandflexible machines.

7However, many designersof electroniccomputersdid not appreciatethe importanceof this andseparatedthe
memoryinto codeanddata,makingit difficult to treatprograminstructionsasdata,whichincrementalcompilersneed
to do. Thiscausedproblemsfor a numberof AI languagedevelopers.

8



Only recentlyhave they achieveda degreeof autonomy. Theearliestdevices,like theabacus,
requiredhumansto performall the intermediateoperationsto derive a result from someinitial
state,whereaslatercalculatorsusedincreasinglysophisticatedmachineryto controltheoperations
which transformedthe initial staterepresentinga problem,to a statewherethesolutioncouldbe
readoff themachine(or in latersystemsprintedon paper, or punchedontocards).

In theearliestmachines,humanshadto provide boththeenergy for makingphysicalchanges
to physicalcomponents(e.g. rotatingcogs),andalsothe informationaboutwhat to do next. At
a laterdateit sufficed for a humanto initialise themachinewith a problemandthenprovide the
energy (e.g.by turninga handle)in a mannerthatwasneutralbetweenproblemsanddid not feed
additionalinformationinto themachine.Eventuallyeventheenergy for operationdid not needto
besuppliedby ahumanasthemachinesusedelectricalpower from mainsor batteries.

3.2 Inter nal and external manipulations

In all thesemachineswe can, to a first approximation,divide the processesproducedby the
machineinto two main categories: internal and external. Internal physicalprocessesinclude
manipulationof cogs,levers,pulleys, strings,etc. Theexternalprocessesincludemovementsor
rearrangementsof variouskindsof physicalobjects,e.g.strandsof wool or cottonusedin weaving,
cardswith informationon them,lumpsof coal to be sortedaccordingto size,partsof a musical
instrumentproducingtunes,objectsbeingassembledonaproductionline,printingpresses,cutters,
grinders,thethingscutor ground,etc.

If the internalmanipulationsaremerelypartof theprocessof selectingwhich externalaction
to performor partof theprocessof performingtheaction,thenwe cansaythat they aredirectly
subservientto externalactions.

However internalactionsthatarepartof a calculationarea speciallyimportanttypeof action
for they involve abstractprocesses,as discussedpreviously. Other abstractinternal processes
involve operationson non-numericsymbolsandstructuressuchaswords,sentences,encrypted
messages,arrays, lists, trees,networks, etc. A particularly important type of internal action
involves changingor extending the initially provided information store. This gives machines
considerableadditionalflexibility andautonomy. For instance,they mayendupperformingactions
thatwereneitherforeseennor providedby thedesigner.

3.3 Practical and theoretical viewpoints

The requirementthat a machinebe ableto performabstractoperationscanbe studiedfrom two
viewpoints. The first is the practical viewpoint concernedwith producingmachinesthat can
performusefulspecifictasks,subjectto variousconstraintsof time, memoryrequirements,cost,
reliability, etc. Fromthis viewpoint it maybesensibleto designdifferentmachinesfor different
tasks,andto givemachinesthepowersthey needfor theclassof tasksto whichthey will beapplied.
For thisreasontherearespecialisedmachinesfor doingintegeroperations,for doingfloatingpoint
operations,for doingoperationsrelevant to graphicalor acousticapplications,for runningneural
nets,etc. It is to beexpectedthatthevarietyof differentmachinesthatareavailableto becombined
within computersandotherkindsof machinerywill continueto grow.

Thesecond,moretheoreticalviewpoint is concernedwith questionslike:
� Whatis thesimplestmachinethatcanperformacertainclassof tasks?
� For agiventypeof machinewhatis theclassof tasksthatit canperform?
� Giventwo machinesM1 andM2 is oneof themmoregeneral,e.g.ableto performall thetasks
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of theotherandmorebesides?
� Giventwo machinesM1 andM2 arethey equivalentin their capabilities:e.g.caneachprovide
thebasisfor animplementationof theother?
� Is therea machinefor performingabstractasks(e.g. mathematicalcalculations,or logical
inferences)that is mostgeneral in the sensethat it is at leastas generalas any other machine
thatcanperformabstracttasks?

From the theoreticalviewpoint Turing machinesare clearly of great interestbecausethey
provide a framework for investigatingsomeof thesequestions,thoughnot the only framework.
If AI wereconcernedwith findingasinglemostgeneralkind of informationprocessingcapability,
thenTuring machinesmight berelevant to this becauseof their generality. However, no practical
applicationof AI requirestotal generality, and no scientific modelling task of AI (or cognitive
science)requirestotal generalityfor thereis no humanor organismthat hascompletelygeneral
capabilities.Therearethingschimps,or evenbees,cando thathumanscannotandviceversa.

The mathematicalapplicationsof the ideaof a Turing machinedid not dependon the actual
existenceof suchmachines:they wereconcernedwith a purely formal conceptof computation.
However it is possiblein principleto build aTuringmachinealthoughany actualphysicalinstance
musthaveafinite tapeif thephysicaluniverseis finite.

We can now seeTuring machinesas just one of a classof machinesthat are capableof
performingeitherthe taskof controlling a physicalsystemor of performingabstractoperations,
or of usingoneto do the other. Their most importantsinglecharacteristicis the presenceof an
unboundedtape,but thatis possibleonly if they aretreatedasmathematicalconstructs,for physical
machineswill alwayshaveaboundedtape.

However, thatuniquefeaturecannotberelevantto understandinghumanor animalbrainssince
they areall finite in any case.No humanbeinghasa memorythathasunlimitedcapacitylike a
Turing machine’s tape. Even if we include the externalenvironment,which canbe usedasan
extensionof an individual’s memory, anyonewho haswritten or boughtmany booksor who has
createdmany computerfiles knows thatasthetotal amountof informationonerecordsgrows the
harderit becomesto manageit all, to find itemsthatarerelevant,andevento rememberthatyou
have someinformationthat is relevantto a task,let alonerememberwhereyou have put it. There
is no reasonto believe that humanscould manageunlimitedamountsof informationif provided
with anexternalstoreof unlimitedcapacity, quiteapartfrom thefact thatwe liveonly for a finite
time.

In alatersection,we’ll considertheargumentthattheselimitationsof humanbeingsaremerely
performancelimitations, and that we really do have a type of infinite, or at leastunbounded,
competence. It will beshown thatanalogouscommentscanbemadeaboutconventionalcomputers
which donothave theunboundedmemorymechanismof aTuringmachine.

Having previously shown that the developmentof computersowed nothing to the idea of
a Turing machineor the mathematicaltheory of computation,we have now given a negative
answerto thequestionwhetherTuringmachines,viewedassimplyaspecialtypeof computer, are
requiredfor modellinghuman(or animal)mindsbecausetheunboundedtapeof a turing machine
overcomeslimitationsof moreconventionalcomputers.

Turingmachines,then,areirrelevantto thetaskof explaining,modellingor replicatinghuman
or animal intelligence,thoughthey may be relevant to the mathematicaltask of characterising
certainsortsof esotericunboundedcompetence.Howevercomputershavefeaturesthatmakethem
relevantwhichdo notdependonany connectionwith Turingmachines,aswill now beshown.
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4 Computers in engineering,scienceand mathematics

Thefeaturesof computersthatgrew outof thetwostrandsof developmentmadethempowerfuland
versatiletools for a wide varietyof taskswhich canbe looselyclassifiedasengineering,science
andmathematics.The notionof a Turing machineandrelatedlogical andmathematicalnotions
of computationareonly indirectly relevant to mostof these. In fact, asexplainedabove, many
of theapplicationswerebeingdevelopedbeforethetime of Turing. AI overlapswith all of these
applicationareasin differentways. I shallmake a few commentson the relevanceof computers
to all theseareasbeforegoingon to a moredetailedanalysisof therelevanceof computersto AI
andcognitive science.However it will help to startwith ananalysisof their generalrelevanceto
engineeringandscience.

4.1 Engineeringand scientificapplications

Most of the featuresof the new calculatingand controlling engines(manipulationof physical
objectsandmanipulationof abstractentitiessuchasnumbersor symbols)areequallyrelevant to
a varietyof differentapplicationdomains:industrialcontrol, automatedmanufacturingsystems,
data-analysisandprediction,working out propertiesof complex physicalsystemsbeforebuilding
them,informationmanagementin commercial,governmentandmilitary domains,many varieties
of text processing,machineinterfacesto diversesystems,decisionsupportsystemsandnew forms
of communication. Theseapplicationsuse different aspectsof the information manipulating
capabilitiesdescribedabove, thoughwith varying proportionsand typesof ballistic and online
control, andvarying proportionsof physicalmanipulationandmanipulationof abstractentities.
Noneof this hadanything to dowith Turingmachines.

In addition to practicalapplications,computershave beenenormouslyrelevant in different
waysto scienceconstruedastheattemptto understandvariousaspectsof reality. For instancethey
areused:
� to processnumericalandotherdatacollectedby scientists,
� to controlapparatususedin conductingexperimentsor acquiringdata,
� to build workingmodelscapableof beingusedasexplanations,
� to makepredictionsthatcanbeusedto testscientifictheories.
For someof theseusesthe ability of computersto control devices which manipulatephysical
objectsare particularly relevant, and for othersthe ability to manipulateabstractionssuch as
numbers,laws,hypothesesaremorerelevant.

4.2 Relevanceto AI

Theveryfeaturesthatmadecomputersrelevantto all theseengineeringapplications,andto science
in general,alsomake themrelevantto boththescientificaimsof AI andtheengineeringaims.

Thescientificaimsof AI includeunderstandinggeneralfeaturesof bothnaturalandartificial
behaving systems,aswell asmodellingandexplaining a wide variety of very specificnaturally
occurring systems,for instance,different kinds of animal vision, different kinds of animal
locomotion,differentkindsof animallearning,etc.

Sincethe key featuresof suchnaturalsystemsincludeboth beingableto manipulateentities
in theenvironmentandbeingableto manipulateabstractentities,suchasthoughts,desires,plans,
intentions,theories,explanations,etc,thecombinedcapabilitiesof computersmadethemthefirst
machinessuitablefor building realisticmodelsof animals.
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Moreover, the tasksof designing,extendingand using thesecapabilitiesof computersled
to developmentof a hostof new formalismsandconceptsrelevant to describing,designingand
implementinginformationprocessingmechanisms.Many of thesearerelevantto thegoalsof AI,
andwill bedescribedbelow.

The engineeringaimsof AI includeusingcomputersto provide new sortsof machinesthat
can be usedfor practical purposes,whetheror not they are accuratemodelsof any form of
natural intelligence. Theseengineeringaims of AI are not sharply distinguishedfrom other
typesof applicationsfor which computersareusedwhich arenot describedasAI. Almost any
typeof applicationcanbeenhancedby giving computersmoreinformationandmoreabilities to
processsuchinformationsensibly, includinglearningfrom experience.In otherwordsalmostany
computerapplicationcanbeextendedusingAI techniques.

It shouldnow be clear why computersare relevant to all the different sub-domainsof AI
dealingwith specificaspectsof naturalandartificial intelligence,suchasvision,naturallanguage
processing,learning,planning,diagrammaticreasoning,robotcontrol,expertsystems,intelligent
internetagents,distributedintelligence,etc. – they all somecombinationof control of physical
processesandabstractinformationmanipulationprocesses,tasksfor which computersarebetter
thanany pre-existing typeof machine.

It is noteworthythatcomputersareusedby supportersof all therival “f actions”of AI adopting
differentsortsof designs,suchasrule-basedsystems,logicist systems,neuralnets,evolutionary
computation,behaviour-basedAI, dynamicalsystems,etc.

Thus there is no particular branch of AI or approachto AI that has special links with
computation: they all do, although they may make different use of conceptsdeveloped in
connectionwith computersandprogramminglanguages.In almostall cases,thenotionof aTuring
machineis completelyirrelevant,exceptasa specialcaseof thegeneralclassof computers.

Moreover, Turing machinesare not so relevant intrinsically as machinesthat are designed
from the start to have interfacesto external sensorsand motors with which they can interact
online, unlike Turing machineswhich at leastin their main form aretotally self contained,and
aredesignedprimarily to run in ballistic modeoncesetup with an initial machinetableandtape
configuration.

4.3 Relevanceto mathematics

Therelevanceof computersto mathematicsis somewhatmoresubtlethanthe relevanceto other
scientific and engineeringdisciplines. Thereare at least three typesof developmentthat link
mathematicsandcomputing:

(a) More mathematics:usingabstractspecificationsof variouskindsof (abstract)machines
and the processesthey can support, in order to define one or more new branchesof
mathematics,e.g.thestudyof complexity, computability, compressibility, variousproperties
of algorithms,etc.This is whata lot of theoreticalcomputerscienceis about.(Someof this
investigatesmachinesthatcouldnot bebuilt physically, e.g. infinite machines,andtypesof
machinesthatmightbebuilt but havenot,e.g.inherentlyprobabilisticmachines.)

(b) Metamathematics:usinganabstractspecificationof a typeof machineasanalternative
to other abstractspecificationsof typesof mathematicalobjectsand processes(recursive
functions,Postproductions,axiomaticsystems,etc.),andthenexploring their relationships
(e.g.equivalence),possiblyto clarify questionsin thephilosophyof mathematics.

(c) Automatictheoremprovingor checking: usingcomputersastoolsto helpin thediscovery
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or proof of theorems,or the searchfor counter-examples. This processcan be more or
lessautomated.At oneextreme,computersareprogrammedto do large numbersof well
definedbut tediousoperations,e.g. examining very large sets. At anotherextreme, the
computermay be fairly autonomous,taking many decisionsaboutwhich stepsto try in a
context sensitivemannerandpossiblyasaresultof learningfrom previoustasks.AI work on
theoremproving tendstowardsthelatterextreme.It mayalsoallow humaninteraction,such
asthecommunicationthathappensbetweenhumanmathematicianswhenthey collaborate,
or whenoneteachesanother. This sortof mathematicalapplicationcouldbuild on general
AI researchon intelligentcommunication.

Although mathematicalexplorationsof types(a) and(b) involve ideasaboutcomputation,it
often doesnot matterwhetherphysicalcomputersexist or not, for they arenot neededin those
explorations. Many of the important results, for instanceGödel’s undecidabilityresult, were
achievedbeforeworking computerswereavailable. (Quantumcomputersmight alsobe relevant
to mathematicalinvestigationsof types(a) and(b) evenif they turn out to be impossibleto build
aspracticallyusefulphysicaldevices.)By contrastwork of type(c) dependsontheuseof working
computers.

Thedistinctionbetween(a) and(b) is not yet veryclearor precise,especiallyas(a) subsumes
(b)! Neither is therea very sharpdivision betweenthe meta-mathematicaluseof the notion of
computationin (b) andtheAI usesin connectionwith designingtheoremprovers,reasoners,etc.

Ideas about Turing machinesand related theoretical “limit” results on computability,
decidability, definability, provability, etc. arerelevant to all thesekindsof mathematicalresearch
but are marginal or irrelevant in relation to most aspectsof the scientific AI goal of trying to
understandhow biologicalmindsandbrainswork, andalsoto theengineeringAI goalsof trying
to designnew usefulmachineswith similar (or greater)capabilities.The main relevanceof the
limit resultsariseswhenresearcherssetthemselvesgoalswhichareknown to beunachievablee.g.
trying to designa programthatwill detectinfinite loopsin any arbitraryprogram.

The metamathematicalideasdevelopedin (b) arerelevant to the small subsetof AI which is
concernedwith general (logical) reasoningcapabilitiesor modellingmathematicalreasoning.

By contrast,thenew mathematicaltechniquesof type(a) which weredevelopedfor analysing
propertiesof computationalprocessessuch as spaceand time complexity and for analysing
relationshipsbetweenspecifications,designsand implementations,areall equally relevant both
to AI andto otherapplicationsof computers.

Oneimportantfeatureof Turingmachinesfor mathematicalor meta-mathematicalresearchof
types(a) and(b) is their universality, mentionedpreviously. By showing how othernotionsof
mathematicalreasoning,logical derivation,or computationasan abstractmathematicalprocess,
could all be mappedinto Turing machinesit was possibleto demonstratethat resultsabout
mathematicallimitations of Turing machinescould not be overcomeby switching to any of a
wide rangeof alternative formalisation. It also meantthat analysesof complexity and other
propertiesof processesbasedon Turing machinescouldbecarriedover to othertypesof process
by demonstratinghow they wereimplementableasTuringmachineprocesses.8

This kind of mathematicaluniversalitymayhave led somepeopleto thefalseconclusionthat
any kind of computeris asgoodasany otherprovidedthat it is capableof modellinga universal
Turing machine.This is true asa mathematicalabstraction,but misleading,or even falsewhen
consideringproblemsof controllingmachinesembeddedin aphysicalworld.

8It is possiblethat someformalismsthat cannotbe manipulatedby Turing machines,e.g. formalismsbasedon
continuouslyvaryinggeometricshapes,will turnout to berelevantto goalsof AI, refutingtheclaimeduniversalityof
Turingmachines,but thatwill notbediscussedhere.
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The universality of Turing machineswas mentionedby Turing in his 1950 article as a
reasonfor not discussingalternative digital mechanisms. In part that was becausehe was
consideringaquestion-answeringtaskfor which therewerenotimeconstraints,andwhereadding
time constraintswould produceno interestingdifferences,sinceonly qualitative featuresof the
behaviour wereof interest.

Human intelligence,however, is often preciselyconcernedwith finding good solutionsto
problemsquickly, andspeedis centralto thesuccessof controlsystemsmanagingphysicalsystems
embeddedin physicalenvironments. Aptnessfor their biological purpose,and not theoretical
universality, is theimportantcharacteristicof animalbrains,includinghumanbrains.Whatthose
purposesare, and what sortsof machinearchitecturescan serve thosepurposes,are still open
researchproblems(which I havediscussedelsewhere),but it is clearthattimeconstraintsarevery
relevantto biologicaldesigns:speedis morebiologically importantthantheoreticaluniversality.

This sectionon themathematicalapplicationsof ideasof computationwasintroducedonly in
orderto getthemoutof theway, andin orderto provideapossibleexplanationfor thewide-spread
but mistakenassumptionthatnotionssuchasTuringmachines,or Turingcomputabilityarecentral
to AI. (This is not to deny thatTuring wasimportantto AI asanoutstandingengineerwho made
major contributionsto thedevelopmentof practicalcomputers.He wasalsoimportantasoneof
theearliestAI theorists.)

4.4 Inf ormation processingrequirementsfor AI

For themathematicalandmeta-mathematicalinvestigationsmentionedabove, theformal notions
of computationswerecentral. By contrast,for the non-mathematical,scientificandengineering
goalsof AI, the importantpoint that wasalreadyclearby aboutthe 1950swas that computers
provideda new typeof physicallyimplementablemachinewith a collectionof importantfeatures
discussedin previoussectionsandanalysedin moredetailbelow.

Thesefeatureswere not definedin relation to recursive functions, logic, rule-formalisms,
Turingmachines,etc.but hada lot to dowith usingmachinesto produceandcontrolsophisticated
and flexible internal and external behaviour with a speedand flexibility that was previously
impossiblefor man-mademachines,althoughvarious combinationsof theseabilities were to
be found in precursorsto moderncomputers.Moreover someof the mathematicallyimportant
featuresof Turingmachinesareirrelevantto animalbrains.

However, I shall identify two related featuresthat are relevant, namely (i) the ability to
chunkbehaviours of varying complexity into re-usablepackets,and(ii) the ability to createand
manipulateinformationstructuresthatvary in sizeandtopology.

A Turing machineprovides both featuresto an unlimited degree,but dependson a linear,
indefinitely extendabletape, whose speedof use is inherently decreasedas the amount of
informationthereonincreases.However for ananimalor robotmind it is not clearthatunlimited
sizeof chunksor variability of structureis useful,andthecostof providing it maybeexcessive.
By contrastcomputerswith randomaccessmemoryprovide uniform speedof accessto a limited
memory. Brains probablydo somethingsimilar, thoughthey differ in the detailsof how they
managethetrade-off.

Although humansdo not have the samegeneralityasTuring machinesin their mathematical
andsymbolicreasoningpowers,neverthelesswedohavecertainkindsof generalityandflexibility ,
andI shalltry to explainbelow how computers,andalsobrains,canprovidethem.Turingmachines
providemuchmoregeneralitybut dosoin afashionthatinvolvessuchaheavy speedpenaltyin any
working physicalimplementation,becauseof the needfor repeatedsequentialtraversalof linear
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tapes,thatthey seemto beworthlessfor practicalpurposes.It appearsthatbrains,likecomputers,
sacrificetotal generalityin favour of speedin a largeclassof behaviours.

4.5 DoesAI require the useof working machines?

A possiblesourceof confusionis the fact that for someof the theoretical/scientificpurposesof
AI (cognitive science)the actualconstructionof computersdid not matterexcept as a catalyst
andtest-bedfor ideas:themostimportanteffect of developmentof computersfor advancesin AI
andcognitivesciencewasin thegenerationof ideasabouthow informationmanipulatingengines
might be implementedin physicalmechanisms.This makesscientificAI superficiallylike meta-
mathematics,but thesimilarity is deceptive,sincethegoalsaredifferent.

For the engineeringpurposesof AI, working physical machinesare, of course,required.
They arealso neededasan aid to AI theorists,sincethe modelsbeingconsideredhave grown
increasinglycomplex, andtoodifficult to runin ourheadsor onpaper. But thatis liketherelevance
of computersto theoreticalchemistry, astronomy, etc.Computersaretoolsfor managingcomplex
theories.Thishasnothingspecificto do with cognitivescienceor AI.

5 Eleven important featuresof computers(and brains)

More importantthantheuseof computersascognitiveaidsto analysingcomplex theorieswasthe
way we cameto understandthe featuresneededin computersif they were to be useful. Those
featuresgaveusnew ideasfor thinkingaboutminds.

However, thosefeaturesarenot specificto what we now call computers:animalbrainshad
mostof thesefeatures,or similar features,millions of yearsearlier, andprobablylots morethat
wehavenotyet thoughtof, andwill laterlearnto emulate,usingeithercomputersor new kindsof
machines.

Thereare(dependinghow we separatethemout) about11 major features,which I shall list
below. FeaturesF1 to F6, which I have labelled “primary features”,are typically built in to
the digital circuitry and/ormicrocodeof computersandhave beencommonto low-level virtual
machinearchitecturessincethe1960s(or earlier),thoughdetailshavechanged.

The remaining features, labelled as “secondary” below, dependvery much on software
changingthehigherlevel virtual machineimplementedin thebasiclower level machine.Theneed
for thoseextra featuresto be addedwasdriven both by AI requirementsandby othersoftware
engineeringrequirements.9

Besidestheprimaryandsecondaryfeaturesof computersascontrolsystemslistedbelow, there
areadditionalfeaturesthatareaddedthroughthedesignandimplementationof varioushigh level
languages,alongwith compilers,interpreters,andsoftwaredevelopmenttools. Theseextendthe
varietyof virtual machinesavailable.However, thesesplit into severaldifferentfamiliessuitedto
differentapplicationdomains,andwill not bediscussedhere.

F1. Statevariability: having very large numbers of possibleinternal states,and even larger
numbersof possiblestatetransitions.
Both of theseareconsequencesof the fact that computershave large numbersof independently

9I have producedfragmentsof thefollowing list of featurespreviously, e.g. chapter5 of (Sloman1978),but have
never really put themall togetherproperly. The list is still provisionalhowever. I amnot awareof any otherexplicit
attemptto assemblesucha list, thoughI believethatall thepointsareat leastintuitively familiar to mostpractisingAI
researchersandsoftwareengineers.
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switchablecomponents,likebrains.N 2-valuedcomponentscanbein
���

possiblestates,andcan
supportthesquareof thatnumberof possibleone-stepstatetransitions:this giveshugeflexibility
in copingwith variedenvironments,goalsandformsof learning.

Of course,it is not enoughthat therearelarge numbersof componentsthat canchangetheir
state. That is equally true of thunderclouds. It is important that the switchablecomponents
are controlled in a principled way, dependingon the system’s current tasksand the available
information. It is alsoimportantthat thosesub-statescanbe causallyconnectedin a principled
way to variouseffects,both within the machineandin externalbehaviour. This dependson the
next threefeatures.below.

F2. Lawsof behaviourencodedin sub-states:havinglaws of behaviourdeterminedby parts of
theinternal state.
Thebehaviour of any physicalobjectis to someextentcontrolledby its sub-states:e.g.how arock
or a bean-bagrotatesif thrown into theair will dependon its shapeandthedistribution of matter
within it, which may changein the bean-bag.However computershave far moreindependently
switchablepersistentsub-statesandtheireffectscanbemademoreglobal: aCPUis aninfluence-
amplifier. All this dependson thefactthata storedprogramtypically includescomponentswhich
have proceduralsemanticsand whoseexecutiongeneratesstatetransitionsin accordancewith
theprogram,e.g. usingsequencing,conditionals,jumps,procedureinvocation(if supported;see
secondaryfeatureF7below), etc.Theeffectscanpropagateto any partof thesystem.

It is important, however, that not all storedinformation statesare concurrentlyactive, as
occurswhen a large numberof different forcesare simultaneouslyaction on a physicalobject
whosebehaviour is thendeterminedby the resultantof thoseforces. In computers,asin brains,
different storedinformation can becomeactive at different times. This is relatedto the point
aboutconditionalinstructionsbelow. It is alsoconnectedwith Ryle’s emphasis(Ryle 1949)on
thedispositionalpropertiesof minds.Minds,likecomputers,havemany dormantdispositionsthat
will beactivatedwhenconditionsareappropriate.Thisfine-grainedcontrolof avery largenumber
of distinctcapabilitiesis essentialfor mostbiologicalorganisms.

F3. Conditionaltransitionsbasedonbooleantests:
For many physical systems,behaviour changescontinuously through additive influencesof
multiplecontinuouslyvaryingforces.Thebehavioursof suchsystemscantypically berepresented
by systemsof differential equations. In contrast,there is a small subsetof physicalsystems,
including someorganismsand somemachines,in which behaviours switch betweendiscrete
alternativeson the basisof boolean(or moregenerallydiscrete-valued)tests. The laws of such
asystemmayincludeconditionalelements,with formslike

“if X thendo A elsedo B”
possiblyimplementedin chemical,mechanicalor electronicdevices.Systemscontrolledby such
conditionalelementscaneasilybe usedto approximatethe continuousdynamicalsystemsasis
doneevery day in many computerprogramssimulatingphysicalsystems.However it is hardto
make the lattersimulatethe former— it requireshugenumbersof carefullycontrolledbasinsof
attractionin the phasespace. Oneway to achieve that is to build a machinewith lots of local
dynamicalsystemswhich canbeseparatelycontrolled:i.e. acomputer!

F4. Referential “r ead” and“write” semantics:
If thebehaviour of asystemis to becontrolledin afine-grainedwayby its internalstate,theactive
elementsof thesystemneedsomeway of accessingor interrogatingrelevantpartsof theinternal
state,for instancein testingconditionsor selectingcontrolsignals(instructions)to becomeactive.
Likewiseif asystemis to beableto modify its internalstatein acontrolledwaysoasto influence
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futurebehaviours,it needsto beableto modify partsof itself sothatthey canbeinterrogatedlater.
In principle,therearemany waysthis ability to interrogateor changespecificcomponentscan

beimplemented.In computersit involvesallowing bit patternsin memoryandin addressregisters
to be interpreted,by the machine,asreferringto otherpartsof the machine:a primitive kind of
“referentialsemantics”— discussedfurther in (Sloman1985;1987),whereit is arguedthat this
canform thebasisfor many otherkindsof semanticcapabilities.In earlycomputersthereference
wasto specificphysicalpartsof thesystem.Laterit wasfoundmoreusefulto supportreferenceto
virtual machinelocations,whosephysicalimplementationcouldvaryover time.

F5. Self-modifyinglawsof behaviour:
In somemachinesandorganisms,the featureslisted previously canbe combinedin sucha way
thatthemachine’s laws of behaviour (i.e. thestoredprograms)canbechangedwhile themachine
is runningby changingthe internalstate(e.g. extendingor modifying a storedprogram). Such
changesinvolve internalbehavioursbasedon featuresF2,F3 andF4). Suchself modificationcan
beusefulin many differentwaysincludelong termchangesof thesortwe call learningandshort
termchangeswherewhatis sensedor perceivedatapoint in timecanbestoredlongenoughto be
usedto modify subsequentactions.I suspectthatthefull varietyof self-modificationsin animals,
alsorequiredfor sophisticatedrobots,hasnot yet beenappreciated,for instancechangeswhich
alterthevirtual machinearchitectureof ahumanduringdevelopmentfrom infancy to adulthood.

F6. Couplingto environmentvia physicaltransducers:
We have implicitly beenassumingthat somepartsof a systemcan be connectedto physical
transducerssothatbothsensorsandmotorscanbecausallylinkedto internalstatechanges.

If externalsensorsasynchronouslychangethe contentsof memorylocations,that allows the
above “read” capabilitiesto be the basisfor perceptualprocessesthat control or modify actions.
Likewise if somelocationsare linked throughtransducersto motors, then “write” instructions
changingthoselocationscan causesignalsto be transmittedto motors,which is how internal
informationmanipulationoften leadsto externalbehaviour. Thussensorscanwrite information
into certainmemorylocationswhich canthenchangesubsequentinternalbehaviour, andsomeof
thememorylocationswritten to by the internalprocessescancausesignalsto besentto external
motors. This implies that the total systemhasmultiple physicalpartsoperatingasynchronously
andconcurrently.10 Perceptionandactionneednotberestrictedto “peephole”interactionsthrough
verynarrow channels(e.g.transmittingor receiving a few bits ata time). Wherelargenumbersof
inputtransducersoperatein parallel,it is possiblefor differentperceptualpatternsatdifferentlevels
of abstractionto be detectedand interpreted: multi-window perception. Likewise, concurrent
multi-window actionscanoccuratdifferentlevelsof abstraction.

Interestingnew possibilitiesariseif someof thetransducersasynchronouslyrecordnot states
of the external environmentbut internal statesand processes,including thosein physicaland
virtual machines.In computersthis playsan importantrole in variouskinds of error checking,
memorymanagement,detectionof access-violations,tracing,anddebugging.Seealsothesection
on self-monitoring,below.

I believe all of the above featuresof computerswere understoodat least intuitively and
implementedat leastin simpleforms by the late1950sandcertainlyin the 1960s.Noneof this
dependedonknowledgeof Turingmachines.

We now turn to “secondaryfeatures”of computers. Theseare usually not inherentin the
hardware designs,but can be addedas virtual machinesimplementedon the basisof the core

10In (Sloman1985; 1987) I discusshow the systemcan interpretthesesensorychangesasdue to eventsin an
externalenvironmentwhoseontologyis quitedifferentfrom themachine’s internalontology.
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featuresF1 to F6. (In somecomputersthey aregivenhardwaresupport.)
Someof thesefeatureswere neededfor generalprogrammingconvenience,e.g. enabling

chunksof codeto besharedbetweendifferentpartsof thesameprogram,andsomewereneeded
becausecomputerswere interactingwith an unpredictableenvironment(e.g. a humanor some
othermachine).Noneof thesefeatureswasrequiredonlyfor AI purposes.In otherwordsthey were
all partof thecontinuinggeneraldevelopmentof thetwo mainhistoricalstrands:producingmore
sophisticated,flexible,andautonomoussystemsfor controllingphysicalmachinery, andproducing
moresophisticatedmechanismsfor manipulatingabstractstructures.

F7. Procedure control stack: theability to interrupt a process,suspendits state, run someother
behaviour, thenlater resumetheoriginal suspendedprocess.
This featurefacilitatedprogramswith re-usablemodulesthatcouldbeinvokedby othermodules
to which they would automaticallyreturnwhencomplete. Later versionsallowed the re-usable
modulesto be parametrised,i.e. to have different “local” dataon different invocations(unlike
GOSUBandRETURNin BASIC).Thisallowedrecursiveproceduresto performslightly different
tasksoneachrecursiveactivation.Thisfeature,alongwith featureF10below (supportfor variable-
length informationstructures)wasparticularly importantin supportingsomeof the descriptive,
non-numeric,AI techniquesdiscussedin (Minsky 1963).

Eventuallyall this wasfacilitatedin electroniccomputersby hardwareor microcodesupport
for a “control stack”, i.e. specialmemoryoperationsfor suspendedprocessdescriptors,plus
mechanismsfor pushingandpoppingsuchprocessdescriptors.Thisdependsonthesavedprocess
statesbeing specifiableby relatively small statedescriptorswhich can be rapidly saved and
restored.It would be hardto do that for a neuralnet, or a mechanicalloom. It canbe doneby
mechanicaldevices,but is far easierto implementin electronicmechanisms.

It might be doneby a collectionof neuralnets,eachimplementingoneprocess,whereonly
onecanbein controlata time. Thispresupposesafixedprocesstopology, unlessthereis asupply
of sparenetsthatcanbegivennew functions.The“contentionscheduling”architecture(Cooper
andShallice2000)is somethinglike this.

F8. Interrupthandling:
Theability to suspendandresumeprocessesalsoallowedasystemto respondto externalinterrupts
(new sensoryinput) without losing track of what it had beendoing previously. This kind of
asynchronousinterrupt is unlike the previous casewherecontrol is transferredby an explicit
(synchronous)instruction in the programwhich is to be suspended.Asynchronousinterrupts
can be supportedby software polling in an interpreter. Faster, lower level, supportbuilt in to
the computer’s hardware mechanismsreducesthe risk of losing dataand sometimessimplifies
softwaredesign,but thekey ideais thesame.

F9. Multi-processing:
On thebasisof extensionsof thepreviousmechanismsit becamefairly easyto implementmulti-
processingsystemswhich couldrun many processesin parallelon a singleCPUin a time-shared
fashion,with interruptsproducedatregularintervalsby aninternalclock, insteadof (or in addition
to) interruptsgeneratedby externalevents.This requireslargercontexts to besavedandrestored,
asprocesseseachwith their own controlstacksareswitchedin anout.

Suchmulti-processingallows the developmentof virtual machinearchitecturesthat permit
variablenumbersof concurrent,persistent,asynchronouslyinteractingprocesses,someof them
sharingmemoryor sub-routineswith others. It providesmoreflexibility thancould be achieved
by wiring togethera collectionof computerseachrunningoneprocess,sincethenthemaximum
numberof processeswouldbefixedby thenumberof computers.
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Multi-processingvirtual machinesallow new kinds of experimentswith mentalarchitectures
containingvariablenumbersof interactingvirtual machines,includingvarioussortsof perceptual,
motivational, learning,reactive, deliberative, planning,plan execution,motor-control, andself-
monitoringprocesses.This is a far cry from thenotionof AI asthesearchfor “an algorithm” (as
discussedby Searle(Searle1980)andPenrose(Penrose1989),andcriticisedin (Sloman1992)).

In the early daysof AI researchfocusedon algorithmsand representations,whereasin the
last decadeor so, therehasbeena growing emphasison completesystemswith architectures
that include many sub-mechanismsrunning concurrently. One consequenceis that different
algorithmscaninteractin unexpectedways.This is importantfor thedesignof a fully functioning
intelligent robot (or animal) with multiple sensors,multiple motors, in a changingand partly
unpredictableenvironment,with avarietyof moreor lessindependentmotivegeneratorsoperating
asynchronouslyunder the influenceof both internal processesand external events (Beaudoin
1994).

However, I don’t think thatmany seriousexperimentsof thissortweredoneby AI researchers
beforethe 1980s. Suchexperimentsweredrasticallyimpededby speedandmemorylimitations
at that time. (Examplesweresomeof theblackboardarchitectures.My POPEYEsystemin the
late70s(Sloman1978)wasanattemptat a visualarchitecturewith differentconcurrentmutually
interactinglayersof processing,but it wasagainstthespirit of thetime,sincetheinfluenceof Marr
wasdominant.(Marr 1982))

F10. Larger virtual datachunks:
Another feature of computerswhich becameimportant both for AI and for other purposes
(e.g. databases,graphic design)was the ability to treat arbitrarily large chunksof memory
as “units”. There were variousways this could be done, including reservinga collection of
contiguous(physical or virtual machine)locationsas a single “record” or “array” with some
explicit informationspecifyingthebeginningandthe lengthso thatall thememorymanagement
andmemoryaccessmechanismsrespectedthatallocation.

Moresubtleandflexible mechanismsusedlist-processingtechniquesimplementedin software
(thoughtherehave beenattemptsto provide hardwaresupportto speedthis up). This allowedthe
creationof larger structurescomposedof “chained” pairsof memorylocations,eachcontaining
somedataandtheaddressof thenext link in thechain,until a “null” item indicatedthat theend
hadbeenreached.This allowed new links to be splicedinto the middle of a chain,or old ones
deleted,andalsopermittedcircularchains(of infinite length!).

The full power of this sort of mechanismwas first appreciatedby McCarthy and others
interestedin logic andrecursivefunctions.But it is agenerallyusefultechniquefor many purposes
thathavenothingto dowith AI or cognitivescience,andwasboundto bere-inventedmany times.11

Thus,while machinehardwareusually treatsa fixed sizebit-patternasa chunk(e.g. 8, 16,
32, or 64 bits nowadays),software-enabledvariable-sizevirtual structuresallow arbitrarily large
chunks,andalsoallow chunksto grow after creation,or to have complex non-lineartopologies.
Theability of humansto memorisewords,phrases,poems,or formulaeof varyinglengthmaybe
basedon similar capabilitiesin brains.Similar considerationsapply to theability to perceive and
recognizecomplex objectswith differentsortsof structures,suchaswheels,cars,lorries,railway
trains,etc.

As notedin Minsky’s 1961 paper(Minsky 1963) variousprocessesinvolved in perception,
useof language,planning,problemsolving,andlearning,requiredtheability to createstructures

11However, the usefulnessof general purposelist-processingutilities will usually be severely restricted in
programminglanguagesthatarestronglystaticallytyped,like mostconventionallanguages.
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thatwereaslargeasneeded.It alsoallowedstructuralunits to becomplex treesor networks,as
opposedto simplybeingabit or bit pattern,or a lineararrayof items.

Supportfor variablesize,variabletopologydatachunksis not a requirementfor ALL kinds
of minds. E.g. it seemsunlikely that insectsneedit. Even if bees,for instance,areableto learn
routesor topographicmapswith variablelengthandtopology, thiscanbeimplementedin chained
associations,which have many of the propertiesof list structuresmentionedabove. (This was
discussedin Chapter8 of Sloman1978,in connectionwith how childrenlearnaboutnumbers.).

Variable size and variable structure chunking appear to be required for many animal
capabilities,including: learningaboutterrain, learningaboutsocial relationshipsandacquiring
new complex behaviours,e.g. thekindsof problemsolving“tricks” thatcanbelearntby various
mammalsandbirds. It seemsto be essentialfor many aspectsof humanintelligence,including
mathematicalproblemsolving, planning,and linguistic communication(thoughit hasrecently
becomefashionablein somecirclesto deny this.)

Of course,it is clearthat in humans(andotheranimals)the sizesof the manageableunitary
informationchunkscannotbearbitrarily large,andlikewisethedata-structuresin computersare
limited by the addressingmechanismand the physicalmemory. The infinite tapeof a Turing
machineis anidealisationintendedto overcomethis,thoughtypically unusablein practicebecause
of performancelimitationsof a memorythatis not randomlyaddressable.For anorganismwith a
finite life-spanoperatingin real time,however, thereis no needto have spaceto storeunbounded
structures.

A single animal brain can use different sorts of chunking strategies for different sub-
mechanisms.In particulartherearevariousbuffersusedfor attentiveplanningor problemsolving
or reflective thinking, or for real-time processingof sensorydata. Theseall have dedicated
mechanismsandlimited capacity. Sotherearelimits onthesizesof chunksthatcanbecreatedand
directly manipulatedin thoseshortterm memories,someof which (e.g. low level visualarrays)
maybemuchlargerthanothers.

Similarsizelimits neednotholdfor chunksstoredin alongertermmemorywhosechunksmay
betoo largefor instantaneousattention(e.g.amemorisedpoem,or pianosonata,or route,or one’s
knowledgeof a familiar town or building).

F11. Selfmonitoringandselfcontrol
Previously, whendiscussingsensorytransducersin featureF6, above, I mentionedthepossibility
of computershaving sensorytransducersasynchronouslydetectingandcheckinginternal states
andprocessesin additionto external ones. The needfor this sort of thing hasbeengrowing as
moreandmorerobust,reliable,securesystemshavebeendeveloped.

To someextent this self-monitoringcanbe implementedin software,thoughit is clumsyand
slowsthingsdown. E.g. it couldusethefollowing design:

(i) everyinstruction(in a classof “monitorableinstructions”)savesa descriptionof whatit
hasjustdonein somedata-structure.
(ii) a processwhich examinesthesaveddescriptionsis time-sharedwith theotherprocesses.
Notethat this processmayalsosavedescriptionsof whatit hasdone.12

It may turn out that one of the most important directionsfor future developmentswill be to
extend thesemechanisms.Requirementsof advancedAI systemswith variouskinds of self-
awarenessmay include hardware (firmware?) architecturesthat provide somekind of general-
purposeself-monitoringcapability. This might useone or more additionalCPUsrunning the
reflective andmeta-managementprocessesrequiredto enablesuchself-perceptsto be analysed,

12A distributedarchitecturefor self-monitoringusingmutualmeta-managementis outlinedin (Kennedy1999).
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parsed,interpreted,evaluated,quickly enoughto be of usein helpingto make the wholesystem
moreintelligent.13

Simply recordingtheflow of machineinstructionsandregistercontentsasacollectionof state
vectorsmaynot begoodenough:it is too low level, thoughI presumethat couldbedoneeasily
with currenttechnology, at a price. It would bebetterto have directsupportfor language-specific
or VM-specific records,recordinglargerchunks.I.e. theself-monitoringmechanismsmayhave
to beparametrisable,like theprocedureinvocationrecordsin aprocedurecall stack.

FeatureF11 is probably implementedin a very different way in neuralsystemsin brains:
e.g. asa neuronfires andsendssignalsto variousotherneuronsaspart of doing its job, there
will not be much interferencewith its performanceif an additional connectionis madeto a
monitoring network getting information from many other parts of the system. Comparethe
“Alarm” mechanismsdepictedin our recentpaperson the CogAff architecture(Sloman2000a;
SlomanandLogan2000;Sloman2000b;to appear).

Thefeaturesof moderncomputingsystemslistedabovecanall beseenascontinuationsof the
two trendsof developmentthat startedin previous centuriesandwereacceleratedby the advent
of electronicmechanismsthat replacedmechanicalandhydraulicstoragemechanisms,sensors,
switchesandconnections.They do not owe anything to the ideaof a Turing machine.But they
suffice for all thecomputer-basedwork thathasbeendonein AI andcognitive scienceso far, in
additionto all theothertypesof applicationsof computers.

Even if computersaswe know themdo not suffice for futuredevelopmentsit seemsunlikely
thatwhatwill beneededis somethinglike a Turing machine.It is morelikely thatspeed,power
andsizerequirementsmay have to be met by specialpurposehardwareto simulateneuralnets,
or perhapschemicalcomputersthat perform huge numbersof computationsin parallel using
interactingmolecules,e.g.DNA. Turingmachinesdonotappearoffer anything thatis missing.

6 Ar e theremissingfeatures?

SomeAI researchersmay think the list of featuresof computerspresentedabove leaves out
important featuresneededfor AI, e.g. unification, patternmatching,rule-interpreters,support
for logical deduction. However I believe theseadditional featuresare requiredonly for more
specialisedAI modelsand applications. RatherI have tried to identify what the mostgeneral
featuresof the physicalmechanismsandthe virtual machinesfound in computersarethat make
them important for AI and Cognitive science. This has little or nothing to do with logic,
mathematics,or Turing machines,all of which are concernedwith ratherspecialisedtypesof
informationprocessing.I shallalsotry to show, below, thatthesegeneralfeaturesareverysimilar
to featuresof brainmechanisms,asif evolutiondiscoveredtheneedfor thesefeatureslongbefore
wedid.

I havenotexplicitly includedarithmeticalcapabilitiesin the11mainfeatures,thoughin current
computersthey are part of the infrastructurefor many of the capabilitiesdescribedabove, e.g.
calculationof offsetsin data-structures,handlingrelativejumpsin instructioncounters,scheduling
andoptimisingprocesses,etc.

A possibleobjectionto theabovelist of featuresis thatit omitsanimportanthumancapability,
namelythe ability to copewith infinity. This ability wasnotedby Kant (Kant 1781),who tried
to explain our graspof infinite setsof numbersandinfinite spaceandtime in termsof our grasp

13For discussionsof the role of a meta-managementlayer in humanminds see(Beaudoin1994; Sloman1997;
Wright et al. 1996;Sloman1999;1998;2000a;to appear;A.Sloman2001)
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of a rules which can be appliedindefinitely. Frege’s analysisof sentencesand their meanings
as“compositional”(Frege1960),pointedto ourability to graspindefinitelycomplex grammatical
andsemanticstructures.Thiswasstressedby Chomsky (Chomsky 1965),whoclaimedthathuman
beingshave a kind of infinite competencein their ability to understandor generatesentencesof
unboundedcomplexity, e.g.arithmeticalsentencesandsentenceslike:

thecatsaton themat
thebrown catsaton themat,
thebig brown catsaton themat
thebig brown catsaton thematin thecorner, . . .etc.

The obvious objectionis that humanlife is finite andthat the brain is finite, andany individual
will produceonly a finite numberof sentencesbeforedying, andwould in any casebe unable
to understandsentencesabove a certainlength. To this Chomsky repliedthat even thoughthere
areperformancelimitations thatget in theway of applyinginfinite competence,the competence
exists nevertheless– an answerthat left many unconvinced. Questionsaboutthe capabilitiesof
computersgeneratea similar disagreement,as we shall see. One of the important tasksfor a
theoryof mind andcomputationis to resolve the apparentconflict betweeninfinite competence
andboundedphysicalresources.Both sidesaresayingsomethingcorrect,but they talk pasteach
other.

Theinfinite (or indefinitelyextendable)tapeof a Turingmachinewasdesignedto supportthis
kind of infinite,or unbounded,competence:thatwaspartof Turing’smotivationfor theunbounded
tape, sincehe was trying to accountfor humanmathematicalabilities. Humanmathematical
abilities appearto be unboundedin variousways. For instancethereis no largestnumberthat
we canthink of – if therewerewecouldthink of its square.Likewisethereis no largestalgebraic
expressionwhosemeaningyoucangrasp.It seemsthatif therewereyoucouldappend“ + 1” and
still understandit, at leastwith abit of help,e.g.introduceanew namefor thecomplex expression,
suchas“BigExp”, thenthink aboutBigExpwith “ + 1” appended.

Must this infinite capabilitybe built in to the underlyingphysicalhardwareof computersif
they areto beadequateto representhumanminds?If so,moderncomputerswould fail, sincethey
have finite memories,andalthoughit is oftenpossibleto addmemoryto a computer, it will have
boundedaddressingcapabilitieswhich limit thesizeof addressablememory. E.g. amachinewith
only � -bit addressingmechanismscanmakeuseof only

� �
distinctlocations.

The situation is more complex than this suggests,for two reasons. One is that additional
addressingcapabilitiescanbebuilt ontopof thehardwareaddressingmechanisms,ashappens,for
instance,whena computerusesa segmentedmemory, whereoneaddressselectsa segmentand
anotherselectsthe locationin thesegment,or whenit usesa largebackingstore,or usesinternet
addressesto refer to a largerspaceof possibilitiesthanit canaddressdirectly in RAM. However,
eventhosetechniquesmerelyenlarge theaddressspace:it remainsfinite.

Thereis a moresubtlepoint which doesnot dependon extendingthe underlyingaddressing
limits. We know that existing computers,despitetheir finitenessas physicalmechanisms,can
provide implementationsfor infinite virtual machines,even thoughthe implementations,if fully
tested,turn out to be incomplete.That is becausethey canstore,andapply, algorithmsthathave
no bounds.

For instance,in many programminglanguagesit is possibleto give a recursive definition of
the factorialfunctionwhich expressesno limit to thesizeof the input or outputnumbers.When
sucha functionrunson acomputer, eitherin compiledor interpretedmode,it accuratelyexecutes
the algorithm for computingthe factorial of the given number, up to a point. However, the
implementationis usuallyincompletein thatbeyondacertainrangeof integerstheprocesswould
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abortwith somesortof errorinsteadof computingthecorrectanswer.
This doesnot stopus(correctly)thinking of this asan implementation(albeitonly partial)of

an infinite virtual machine.That is becauseevery processcanbe describedat differentlevelsof
abstraction,and thereis a level of abstractionat which the processcan be describedperfectly
correctly as running the recursive algorithm, which doesnot include any size limits. That is
exactly what the computeris doing at that level of description,even thoughhow it is doing it
raisesproblemsif too largeanumberis givenasinput.

The point canbeexpressedby consideringwhich generalisationsaretrue descriptionsof the
process.For examplethe virtual machinethat is runningon the computerhasthe featurethat if
it is given the task of computingthe result of dividing the factorial of any positive numberN,
by the factorial of N-1, the result will be N. Similarly, we can say of a sorting algorithm that
the resultof applying it to any list L will be a new list the samelengthasL. In both casesthe
actualphysicalimplementationwould breakdown if the input was too large. If that happened
only becausetherewasnotenoughRAM it might bepossible,onsomemoderncomputers,to add
anotherbankof memorywhile themachinewasrunningsoasto allow theprocessto continue,or
alternatively it might bepossibleto kill someotherlessimportantprocessessoasto make more
memoryavailable. In that casewe canseethat the memorylimit is a contingent or inessential
featureof theimplementation.

We cannow seethat the fact that a processmight run out memoryis analogousto the fact
that a stray alpha-particlemight corrupt the memory, or the power supply might fail, or the
building containingit mightbestruckby a largemeteoriteetc.Therearevastnumbersof possible
occurrencesthat would prevent normalcompletionof the calculation. We don’t feel we have to
mentionall of thosewhenaskingwhatresultthecomputerwould produceif givena certaintask.
Thereis a perfectlynaturalway of thinking aboutprocessesrunningon a computerwhich treats
running out of memoryasbeing analogousto being bombed. If the machinewere adequately
defended,radarmightdetectthebombanddivertanddestroy it beforeit hit thebuilding. Likewise
additionalmechanismsmightprotecttheprocessfrom runningoutof memory.

It is noteasyto extendtheaddressinglimits of amachineatruntime! However, it is notbeyond
theboundsof possibility to have a machinethatgeneraliseswhatexisting pagedvirtual memory
systemsdo,namelydetectthatthereis not enoughspacein themainfastmemoryandthenmove
someunusedpagesout andthereafterkeepchangingthe “working set”. A moregeneralvirtual
memorymechanismfor a computerthatcouldextendits usablephysicalstoreindefinitelywould
needsomeaddressingschemethatdid not useany fixedlengthstructurefor specifyinglocations.
In fact, it could,in principleuseoneor moreTuring machineswith indefinitelyextendabletapes.
Whatever methodis used,theprocessof specifyingthenext locationto accessandtheprocessof
fetchingor storingsomethingtheremight getslowerandslower, ashappensin aTuringmachine.

Thepointof all this is thatwhensomethinglike thestandardrecursive factorialalgorithmruns
on a computerthe fact that thereis a limit to the sizeof input it cancopewith is an inessential
featureof the current implementation,which might be changedwhile the machineis running.
Thuswe canaskcounterfactualquestionsaboutwhat the resultwould be if the input were the
number2,000,000while assumingthat implementationobstaclesarecircumventedas they turn
up, including suchobstaclesasthe limited sizeof the physicaluniverse. Of course,if someone
intendedthe questionto be interpreteddifferently, e.g. so that the answertakesaccountof the
currentmechanismsin themachine,or therun time modificationsthatarecurrentlyfeasible,then
this constraintcouldbe explicitly includedin the question,anda differentanswermight thenbe
relevant,e.g.“the computerwould runout of memorybeforefinding theresult”.

In exactly the samesense,humanbrains,not leastthe brainsof expert mathematicians,can
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includeimplementationsof infinite machines,albeitpartialandbuggyimplementationsinsofar as
themachineswill falteror fail if giveninputsthataretoo complex, or, for thatmatter, if tiredness,
adistraction,alcoholor someotherdruginterfereswith performance.

In short,then,althoughno humanmindcanactuallydoanything infinite becauseof its current
implementation,neverthelesshumans(andpossiblysomeotheranimals?)haveunboundedvirtual
machinesaspartof their informationprocessingarchitecture.

Wealreadyknow thatsuchvirtual machinescanbeimplementedusefullyin physicalmachines
that do not support the full theoreticalrangeof functions like factorial which they partially
implement. Thus neither human minds nor robots with human-like intelligence need have
somethingwith the infinite capacityof a Turing machinein thephysicalimplementationin order
to berunningavirtual machinewith unboundedcompetence.

What is more,insofar asthe humanarchitectureincludesa meta-managementlayer that can
(to someextent) inspecttheoperationsof thesystem,it is ableto discoversuchfactsaboutitself.
This is the sourceof muchof the philosophyof mathematicswhich is concernedwith, among
other things,the ability of humansto think aboutinfinite sets. Likewise a robot whosemind is
implementedon a computerandincludesa meta-managementlayer could discover that it hada
kind of infinite competence,andmight thenbecomepuzzledabouthow thatcouldbeimplemented
in afinite brain.

All this leavesopenthequestionwhatpreciselyis goingon whenwe think aboutinfinite sets,
e.g. the setof positive integers,or the transfiniteordinal consistingof the set of all powersof
two followedby the setof all powersof three,followedby the all powersof five, andso on for
all primenumbers.I have discussedthis inconclusively in (Sloman2001)andwill not pursuethe
matterhere.

7 Someimplications

Theimportantfeaturesof computerswhich I have listed(aswe know themnow, andasthey may
developin thenearfuture)havenothingto dowith logic, recursive functions,or Turingmachines,
thoughsystemswith the featuresthatareimportantin computerscan(subjectto memorylimits)
modelTuring machinesandcanalsobemodelledby Turing machines,albeit excessively slowly
(assumingthatpartof arequirementfor afunctioningmindis to reactin timeto seizeopportunities
andavoid dangers).

Turingmachinesandmoderncomputerscanbothalsomodelneuralnets,chemicalsoupsusing
DNA moleculesto performcomputations,andothertypesof informationprocessingengines,

Givenall that,theview of computersassomehow essentiallya form of Turing machine,or as
essentiallyconcernedwith logic, or recursive functions,is simply mistaken. As indicatedabove,
there is sucha mathematicalnotion of computation,which is the subjectof much theoretical
computerscience,but it is not the primary motivation for the constructionor useof computers,
nor particularlyhelpful in understandinghow computerswork or how to usethem. A physically
implementedturing machine(with a finite tape)would simply be a specialcaseof the general
classof computersdiscussedhere,thoughlinking it to sensoryor motor transducersmight cause
problems.

Neitheris theideaof aTuringmachinerelevantto mostof thecapabilitiesof humanandanimal
minds,although,asexplainedabove,thereis a looseanalogybetweenaTuringmachineandsome
of theformal capabilitiesof humanminds,includingtheability to think andreasonaboutinfinite
structures.This musthave evolvedrelatively lateanddoesnot play an importantrole in thevast
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majority of everydaymentalprocesses.It doesnot appearto be relevant to mostanimalsor to
veryyoungchildrenif, asseemslikely theseabstractreasoningabilitiesdevelopduringchildhood
ratherthanbeingtherefrom birth.

8 Two counterfactual historical conjectures

Theprecedingremarksarecloselyconnectedwith two conjectures:
1. The developmentof computerswas an inevitable consequenceof availability of new

electronictechnologyproviding the potentialto overcomethe limitations of previously existing
machinesfor controllingothermachines,andmachinesfor managingandanalysinginformation
(e.g. commercialdatabases,airline reservation systems,etc.). Considerwhat happenedduring
theWorld War II: theneedto decipherencryptedmessagesaccelerateddevelopmentof electronic
calculators.

Most of this would havehappenedanyway, evenif Turingandothershadnot donetheir meta-
mathematicalwork on computation,computability, derivability, completeness,etc.

2. If Turing hadnever existed,or hadnever thoughtof Turing machines,and if computers
with thesortsof featureslistedabove hadbeendevelopedunderthepressureof requirementsfor
increasinglysophisticated(andfast)control of physicalmachinesandprocessingof information
for practicalpurposes,thenmuchof AI andCognitive Sciencewould have developedexactly as
weknow themnow. AI wouldnotmisstheconceptof aTuringmachine.

Somepeopleinterestedin logic, theoremproving, etc.mighthavenoticedthatsuchcomputers
couldbeusedto implementlogic machinesof variouskinds.But therewouldhavebeennonotion
thatcomputersweresomehow inherently logical, or inherently relatedto mathematicaltheorems
andtheirproofs.

Thosetwo conjecturesfollow from the argumentthat computerswere, and are, above all,
enginesfor acquiring,storing,analysing,transforming,andusinginformation,partly to control
physicalmachinesand partly in order to control their own processingof information. In this
they arejust like biologicalorganisms— andthat includesusingthe informationboth to control
complex physical and chemical systems,and also to control internal processingwithin the
controller, includingprocessingin virtual machines.

If wethink of computerslikethis, thenit is anempiricalquestionwhetheraparticularphysical
objectdoesor doesnothave thekindsof capabilitieslistedabove. It is not truethateveryphysical
objecthasthecollectionof featuresF1 to F11,or eventhesimplersetF1 to F6. However, finding
outwhichfeaturesaverycomplex machineactuallyhascanbeaverydifficult reverse-engineering
problem.Thebestavailabletoolsataparticulartime(e.g.brainscanners)maynotbeadequatefor
thejob.
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