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Introductory Note

This fourteenth volume of Collected Papers is an eclectic tome of 87 papers in Neutrosophics and other fields,
such as mathematics, fuzzy sets, intuitionistic fuzzy sets, picture fuzzy sets, information fusion, robotics, statistics,
or extenics, comprising 930 pages, published between 2008-2022 in different scientific journals or currently in
press, by the author alone or in collaboration with the following 99 co-authors (alphabetically ordered) from 26
countries: Ahmed B. Al-Nafee, Adesina Abdul Akeem Agboola, Akbar Rezaei, Shariful Alam, Marina Alonso,
Fran Andujar, Toshinori Asai, Assia Bakali, Azmat Hussain, Daniela Baran, Bijan Davvaz, Bilal Hadjadji, Carlos
Diaz Bohorquez, Robert N. Boyd, M. Caldas, Cenap Ozel, Pankaj Chauhan, Victor Christianto, Salvador Coll,
Shyamal Dalapati, Irfan Deli, Balasubramanian Elavarasan, Fahad Alsharari, Yonfei Feng, Danicla Gifu, Rafael
Rojas Gualdréon, Haipeng Wang, Hemant Kumar Gianey, Noel Batista Hernandez, Abdel-Nasser Hussein,
Ibrahim M. Hezam, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Muthusamy Karthika, Nour Eldeen M.
Khalifa, Madad Khan, Kifayat Ullah, Valeri Kroumov, Tapan Kumar Roy, Deepesh Kunwar, Le Thi Nhung, Pedro
Loépez, Mai Mohamed, Manh Van Vu, Miguel A. Quiroz-Martinez, Marcel Migdalovici, Kritika Mishra,
Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohammed Alshumrani, Mohamed Loey,
Muhammad Akram, Muhammad Shabir, Mumtaz Ali, Nassim Abbas, Munazza Naz, Ngan Thi Roan, Nguyen Xuan
Thao, Rishwanth Mani Parimala, Ion Patrascu, Surapati Pramanik, Quek Shio Gai, Qiang Guo, Rajab Ali Borzooei,
Nimitha Rajesh, Jesus Estupifian Ricardo, Juan Miguel Martinez Rubio, Saced Mirvakili, Arsham Borumand Saeid,
Saeid Jafari, Said Broumi, Ahmed A. Salama, Nirmala Sawan, Gheorghe Savoiu, Ganeshsree Selvachandran, Seok-
Zun Song, Shahzaib Ashraf, Jayant Singh, Rajesh Singh, Son Hoang Le, Tahir Mahmood, Kenta Takaya, Mirela
Teodorescu, Ramalingam Udhayakumar, Maikel Y. Leyva Vazquez, V. Venkateswara Rao, Luige Vlidareanu,
Victor Vladareanu, Gabriela Vlddeanu, Michael Voskoglou, Yaser Saber, Yong Deng, You He, Youcef Chibani,
Young Bae Jun, Wadei F. Al-Omeri, Hongbo Wang, Zayen Azzouz Omar.

Keywords
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Plithogeny; Plithogenic Set; Plithogenic Logic; Plithogenic Probability; Plithogenic Statistics; COVID-19; Dezert-
Smarandache Theory; Single Valued Neutrosophic Set; Interval Neutrosophic Sets; Set-Theoretic Operator;
Neutrosophic-Tendential Fuzzy Logic; Neutrosophic Index; Index Statistical Method; Price Index; Interpreter Index;
Neutrosophic Interpreter Index; Neutrosophic Soft Expert Set; Neutrosophic Soft Expert Images; Neutrosophic Soft
Expert Inverse Images; Mapping On Neutrosophic Soft Expert Set; Single Valued Neutrosophic Graph; Strong Single
Valued Neutrosophic Graph; Constant Single Valued Neutrosophic Graph; Complete Single Valued Neutrosophic
Graph; Dijkstra Algorithm; Interval Valued Neutrosophic Number; Shortest Path Problem; Network; Triangular Fuzzy
Neutrosophic Sets; Score Function; Bipolar Neutrosophic Graph; Generalized Bipolar Neutrosophic Graphs; Matrix
Representation; Adjacency Matrix; Neutrosophic Optimization; Goal Programming Problem; Project Management;
Score And Accuracy Functions; Generalized Neutrosophic Set; Generalized Neutrosophic Subalgebra; Generalized
Neutrosophic Ideal; Spanning Tree Problem; Entropy Measure; Intuitionistic Fuzzy Set; Inconsistent Intuitionistic
Fuzzy Set; Picture Fuzzy Set; Ternary Fuzzy Set; Pythagorean Fuzzy Set; Atanassov’s Intuitionistic Fuzzy Set of
second type; Spherical Fuzzy Set; n-HyperSpherical Neutrosophic Set; g-Rung Orthopair Fuzzy Set; truth-
membership; indeterminacy-membership; falsehood-nonmembership; Regret Theory; Grey System Theory; Three-
Ways Decision; n-Ways Decision; Neutrosophication; Refined Neutrosophy; Refined Neutrosophication; Sentiment
Analysis; Speech Analysis; Clustering Algorithm; K-means; Hierarchical Agglomerative Clustering; Neutrosophic
Minimal Structure.
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Single Valued Neutrosophic Sets

Haibin Wang, Florentin Smarandache, Yanqing Zhang, Rajshekhar Sunderraman

Haibin Wang, Florentin Smarandache, Yanqing Zhang, Rajshekhar Sunderraman (2012). Single Valued
Neutrosophic Sets. Technical Sciences and Applied Mathematics, 10-14

Abstract: Neutrosophic set is a part of neutrosophy which studies the origin, nature, and scope
of neutralities, as well as their interactions with different ideational spectra. Neutrosophic set is a
powerful general formal framework that has been recently proposed. However, neutrosophic set
needs to be specified from a technical point of view. To this effect, we define the set-theoretic
operators on an instance of mneutrosophic set, we call it single valued neutrosophic set (SVNS).
We provide various properties of SVNS, which are connected to the operations and relations over

SVNS.

Keywords: neutrosophic set, single valued neutrosophic set, set-theoretic operator.

1. INTRODUCTION

The concept of fuzzy sets was introduced
by Zadeh in 1965 [1]. Since then fuzzy sets
and fuzzy logic have been applied in many
real applications to handle uncertainty. The
traditional fuzzy set uses one real value
pA(x)€[0,1] to represent the grade of
membership of fuzzy set A defined on
universe X. Sometimes pA(x) itself is
uncertain and hard to be defined by a crisp
value. So the concept of interval valued fuzzy
sets was proposed [2] to capture the
uncertainty of grade of membership. Interval
valued fuzzy set uses an interval value
[1A" (%), 1a”(x)] with 0 < pa"(x) < pa’(x) < 1
to represent the grade of membership of fuzzy
set A. In some applications such as expert
system, belief system and information fusion,
we should consider not only the truth-
membership supported by the evident but also
the falsity-membership against by the evident.
That is beyond the scope of fuzzy sets and
interval valued fuzzy sets. In 1986, Atanassov
introduced the intuitionistic fuzzy sets [3]
which is a generalization of fuzzy sets and
provably equivalent to interval valued fuzzy
sets. The intuitionistic fuzzy sets consider
both truth-membership ta(x) and falsity-

membership fa(x), with ta(x), fa(x)€[0,1] and
0 < ta(x) + fa(x) < 1. Intuitionistic fuzzy sets
can only handle incomplete information not
the indeterminate information and inconsistent
information which exists commonly in
belief system. In intuitionistic fuzzy sets,
indeterminacy is 1 — ta(x) — fa(x) by default.
For example, when we ask the opinion of an
expert about certain statement, he or she may
that the possibility that the statement is true is
0.5 and the statement is false is 0.6 and the
degree that he or she is not sure is 0.2.

In neutrosophic set, indeterminacy is
quantified explicitly and truth-membership,
indeterminacy-membership and  falsity-
membership are independent. This assumption
is very important in a lot of situations such as
information fusion when we try to combine
the data from different sensors. Neutrosophy
was introduced by Smarandache in 1995. “It is
a branch of philosophy which studies the
origin, nature and scope of neutralities, as well
as their interactions with different ideational
spectra” [4]. Neutrosophic set is a power
general formal framework which generalizes
the concept of the classic set, fuzzy set [1],
interval valued fuzzy set [2], intuitionistic
fuzzy set [3] etc. A neutrosophic set A defined
on universe U. x =x(T, I, F) € A with T, I and

32



Florentin Smarandache (author and editor)

F being the real standard or non-standard
subsets of ]07,1'[. T is the degree of truth-
membership function in the set A, I is the
indeterminacy-membership function in the set
A and F is the falsity-membership function in
the set A.

The neutrosophic set generalizes the above
mentioned sets from philosophical point of
view. From scientific or engineering point of
view, the neutrosophic set and set-theoretic
operators need to be specified. Otherwise, it
will be difficult to apply in the real
applications. In this paper, we define the
settheoretic operators on an instance of
neutrosophic  set called single valued
neutrosophic set (svns).

2. NEUTROSOPHIC SET

This section gives a brief overview of
concepts of neutrosophic set defined in [2].
Here, we use different notations to express the
same meaning. Let S; and S, be two real
standard or non-standard subsets, then S; + S,
={xX[x=s;+s2,8 € S;and s; € Sy}, {1+} +S,
= {X|X= 1"+ S2, S7 € Sz} Si—-§5,= {X|X= S| —
S2, S1 € S] and Sy € Sz }, {1+} — Sz = {X|X = 1+
—S2, §2 € Sz}.S] XSZ= {X|X=S1 X 82, 81 € S]
and s; € S,}.

Definition 1 (Neutrosophic Set). Let X be
a space of points (objects), with a generic
element in X denoted by x. A neutrosophic set
A in X is characterized by a truth-membership
function Ta, an indeterminacy-membership
function I, and a falsity-membership function
Fa. Ta(x), Ia(x) and Fa(x) are real standard or
non-standard subsets of ]0",17[. That is

T, : X101 (1)
I : X101 )
F, 1 X101 3)

There is no restriction on the sum of Ta(x),
[A(x) and Fa(x), so 0" < sup Ta(x) + sup Ia(x)
+ supFa(x) < 37

Definition 2. The complement of a
neutrosophic set A is denoted by c(A) and is
defined by

Ty () =1 }= T, (%) )
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)
(6)

IC(A) (x)= {1+ }_ I, (%)

Fon (0 ={" |=F, (%)
for all x in X.

Definition 3 (Containment). A
neutrosophic set A is contained in the other
neutrosophic set B, A < B, if and only if

infT, (x) < infTy (x), supT, (x) < supTy (x) (7)

infF, (x) > infF; (x), supF, (x) > supF; (x) (8)

Definition 4 (Union). The union of two
neutrosophic sets A and B is a neutrosophic
set C, written as C = A U B, whose truth-
membership, indeterminacy-membership and
falsity-membership functions are related to
those of A and B by

Tex)=T,(x)+Ty(x)-T,x)xT(x)  (9)

[e®)=1,(x)+15(x)-I, (x)xI[5(x) (10)

Fe(X)=F,(x)+F3(x)-F,(x)xFy(x)  (11)
for all x in X.

Definition 5  (Intersection).  The

intersection of two neutrosophic sets A and B
is a neutrosophic set C, written as C=A N B,
whose  truth-membership, indeterminacy-
membership and falsity-membership functions
are related to those of A and B by

Te(x) =T, (x)x Tg(x) (12)
[c(x)=1,(x)xI5(x) (13)
F.(x)=F, (x) xFz(x) (14)

for all x in X.

3. SINGLE VALUED NEUTROSOPHIC
SET

In this section, we present the notion of
single valued neutrosophic set (SVNS). SVNS
is an instance of neutrosophic set which can be
used in real scientific and engineering
applications.

Definition 6 (Single Valued
Neutrosophic Set). Let X be a space of points
(objects), with a generic element in X denoted
by x. A single valued neutrosophic set (SVNS)
A in X is characterized by truth-membership
function T,, indeterminacy-membership
function In and falsity-membership function
Fa. For each point x in X, Ta(x), [a(x),
Fa(x) € [0,1].
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When X is continuous, a SVNS A can be
written as

A = [(T(x),1(x), F(x))/x,x € X (15)

When X is discrete, a SVNS A can be
written as

A= i(T(xi), I(xi), F(xi))/xi,xie X (16)

Consider parameters such as capability,
trustworthiness and price of semantic Web
services. These parameters are commonly used
to define quality of service of semantic Web
services. In this section, we will use the
evaluation of quality of service of semantic
Web services [8] as running example to
illustrate every set-theoretic operation on
single valued neutrosophic sets.

Example 1. Assume that X = [x;, X2, X3].
X is capability, x, is trustworthiness and xj is
price. The values of x;, X, and x3 are in [0,1].
They are obtained from the questionnaire of
some domain experts, their option could be a
degree of “good service”, a degree of
indeterminacy and a degree of “poor service”.
A is a single valued neutrosophic set of X
defined by

A =(0.3,0.4,0.5)/x, +(0.5,0.2,0.3)/x, +

(0.7,0.2,0.2)/ x,

B is a single valued neutrosophic set of X
defined by

B =(0.6,0.1,0.2)/x, +(0.3,0.2,0.6)/x, +
(0.4,0.1,0.5)/x,
Definition 7  (Complement). The

complement of a single valued neutrosophic
set A is denoted by c(A) and is defined by

TC(A) (x) =F, (x) (17)
L) =1-1,(x) (13)
F,(x)=T, () (19)

for all x in X.

Example 2. Let A be the single valued
neutrosophic set defined in Example 1. Then,

c(A)=(0.5,0.6,0.3)/x, +(0.3,0.8,0.5)/x, +
(0.2,0.8,0.7)/x,

Definition 8 (Containment). A single
valued neutrosophic set A is contained in

Collected Papers, XIV

the other single valued neutrosophic set B,
A c B, ifand only if

T, (%) < T, (%) (20)
1,60 <15 (%) 21)
Fo(0) 2 Fy (v) (22)

for all x in X.

Note that by the definition of containment,
X is partial order not linear order. For
example, let A and B be the single valued
neutrosophic sets defined in Example 1. Then,
A is not contained in B and B is not contained
in A.

Definition 9. Two single valued
neutrosophic sets A and B are equal, written as
A=B,ifandonlyif A ¢ Band B ¢ A.

Theorem 3. A < B & ¢(B) = c(A)
Proof: AcB< T, <T4,I, <I;,F; <F,
1-1; <1-1,, Ty 2T, < c(B)cc(A)

Definition 10 (Union). The union of two
single valued neutrosophic sets A and B is a
single valued neutrosophic set C, written
as C = A U B, whose truthmembership,
indeterminacy-membership and  falsity-
membership functions are related to those of A
and B by

Te () = max(T, (), Ty (x)) (23)
Lo () =max(l, (x), I (x)) (24)
Fe (x) = max(E, (), F, (x)) (25)

for all x in X.

Example 3. Let A and B be the single
valued neutrosophic sets defined in Example
1. Then,

AUB=(0.6,0.4,0.2)/x, +(0.5,0.2,0.3)/x, +

(0.7,0.2,0.2)/ x,

Theorem 2. A U B is the smallest single
valued neutrosophic set containing both A and
B.

Proof: It is straightforward from the
definition of the union operator.

Definition 11  (Intersection). The
intersection of two single valued neutrosophic
sets A and B is a single valued neutrosophic
set C, written as C = A N B, whose truth-
membership, indeterminacy-membership and
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falsity-membership functions are related to
those of A and B by

Te (x) =min(T, (x), Ty (x)) (26)
Io (%) = min(T, (x), I (x)) (27)
Fe (x) = min(F, (x), F (X)) (28)

for all x in X.

Example 4. Let A and B be the single
valued neutrosophic sets defined in Example
1. Then,

ANB=(03,04,0.5)/x, +(0.3,0.2,0.6)/x, +

(0.4,0.1,0.5)/x,

Theorem 3. A N B is the largest single
valued neutrosophic set contained in both A
and B.

Proof: It is direct from the definition of
intersection operator.

Definition 12 (Difference). The difference
of two single valued neutrosophic set C,
written as C = A \ B, whose truth-membership,
indeterminacy-membership and  falsity-
membership functions are related to those of A
and B by

Te (%) = min(T, (x), Fy (x)) (29)
I (x) = min(l,, (x),1- 15 (x)) (30)
Fe (x) = min(F, (x), T, (x)) (31)

for all x in X.

Example 5. Let A and B be the single
valued neutrosophic sets defined in Example
1. Then,

A/B=(0.2,0.4,0.6)/x, +(0.5,0.2,0.3)/x, +

(0.5,0.2,0.4)/x,

Now we will define two operators: truth-
favorite (A) and falsity-favorite (V) to
remove the indeterminacy in the single valued
neutrosophic sets and transform it into
intuitionistic fuzzy sets or paraconsistent sets.
These two operators are unique on single
valued neutrosophic sets.

Definition 13 (Truth-favorite). The truth-
favorite of a single valued neutrosophic set A
is a single valued neutrosophic set B, written
as B = AA, whose truthmembership and
falsity-membership functions are related to
those of A by

Ty (x) = min(T, (x) + 1, (x).1) (32)
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I,(x)=0

F (x) =F, (x)
for all x in X.

(33)
(34)

Example 6. Let A be the single valued
neutrosophic set defined in Example 1. Then,
AA =(0.7,0,0.5)/x, +(0.7,0,0.3)/x, +

(0.9,0,0.2)/ x4

Definition 14 (Falsity-favorite). The
falsity-favorite of a single valued neutrosophic
set B, written as B = V A, whose truth-
membership and falsity-membership functions
are related to those of A by

Ta () =T, () (35)
I,(x)=0 (36)
Fy (x) = min(F, (x) + 1, (), 1) (37)

for all x in X.

Example 8. Let A be the single valued
neutrosophic set defined in Example 1. Then

VA =(0.3,0,0.9)/x, +(0.5,0,0.5)/x, +
(0.7,0,0.4)/x,

4. PROPERTIES OF SET- THEORETIC
OPERATORS

In this section, we will give some
properties of set-theoretic operators defined on
single valued neutrosophic sets as in Section 3.

Property 1 (Commutativity). A U B=B
UALANB=BNnA AxB=BxA.

Property 2 (Associativity). A U (B UC)
=(AuUB)UCCANBNOCO=(AnNnBn
C,Ax BxC)=(A xB) x C.

Property 3 (Distributivity). A U (B n C)
=(AUB)Nn(AUVO,AnNnBuUC=(A
N B) U (A nC).

Property 4 (Idempotency). A U A = A,
AUA=A AAA=AA VVA=VA.

Property 5. A n ¢ = ¢, A u X=X,
where T¢g =1¢p =0,F¢p =1 and Tx=1Ix =1,
FX =0.

Property 6. A U ¢=A, A N X=A, where
Té=1¢=0,F¢=1and Tx=1x=1, Fx=0.

Property 7 (Absorption). A U (A N B) =
A,A N (AUuB)=A.
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Property 8 (De Morgan’s Laws). c(A N
B)=c(A) N c(B), c(A n B)=c(A) U c(B).

Property 9 (Involution). c(c(A)) = A.

Here, we notice that by the definition of
complement, union and intersection of single
valued neutrosophic sets, single valued
neutrosophic sets satisfy the most properties of
classic set, fuzzy set and intuitionistic fuzzy
set. Same as fuzzy set and intuitionistic fuzzy
set, it does not satisfy the principle of middle
exclude.

5. CONCLUSIONS

In this paper, we have presented an
instance of neutrosophic set called single
valued neutrosophic set (SVNS). The single
valued neutrosophic set is a generalization of
classic set, fuzzy set, interval valued fuzzy set,
intuitionistic fuzzy set and paraconsistent set.
The notion of inclusion, complement, union,
intersection, have been defined on single
valued neutrosophic sets. Various properties of
set-theoretic operators have been provided. In
the future, we will create the logic inference
system based on single valued neutrosophic

Collected Papers, XIV

sets and apply the theory to solve practical
applications in areas such as expert system,
information fusion system, question-answering
system,  bioinformatics and  medical
informatics, etc.
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Neutrosophic Transdisciplinarity
— Multi-Space & Multi-Structure

Florentin Smarandache

Florentin Smarandache (2013). Neutrosophic Transdisciplinarity - Multi-Space & Multi-Structure.
Proceedings of Conference on Multispace & Multistructure, Beijing, 22-24

§81. Definitions

Neutrosophic Transdisciplinarity means to find common features to uncommon entities, i.e., for

vague, imprecise, not-clear-boundary entity <A> one has:

< A > () <nonA ># (), or even more < A > (| < antiA ># (. Similarly, < A >
< neutA >= 0 and < antiA > [ < neutA >= 0, up to < A > () < neutA > [ < antiA >= (),
where < nonA > means what is not A, and < antiA > means the opposite of < A >.

There exists a principle of attraction not only between the opposites < A > and < antiA >
(as in dialectics), but also between them and their neutralities < neut A > related to them, since
< neutA > contributes to the Completeness of knowledge. < neutA > means neither < A >
nor < antiA >, but in between; < neutA > is included in < nonA >.

As part of Neutrosophic Transdisciplinarity we have the following important conceptions.

§2. Multi-Structure and Multi-Space

2.1 Multi-Concentric-Structure

Let S; and S5 be two distinct structures, induced by the ensemble of laws L, which verify the
ensembles of axioms A; and A, respectively, such that A; is strictly included in As. One says
that the set M, endowed with the properties:

a) M has an S;-structure;

b) there is a proper subset P (different from the empty set @, from the unitary element,
from the idempotent element if any with respect to Sz, and from the whole set M) of the initial
set M, which has an Sy-structure;

¢) M doesn’t have an Sa-structure,

is called a 2-concentric-structure. We can generalize it to an n-concentric-structure, for n > 2
(even infinite-concentric-structure).
(By default, 1-concentric structure on a set M means only one structure on M and on its

proper subsets.)
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An n-concentric-structure on a set S means a weak structure {w(0)} on S such that there

exists a chain of proper subsets
Pn—1)<Pn—-2)<---<P(2)<P(l) <8,
where < means included in, whose corresponding structures verify the inverse chain

{wn =1} >{wn =2)} > > {w(2)} > {w()} > {w(0)},

where > signifies strictly stronger (i.e., structure satisfying more axioms).

For example, say a groupoid D, which contains a proper subset S which is a semigroup,
which in its turn contains a proper subset M which is a monoid, which contains a proper
subset NG which is a non-commutative group, which contains a proper subset CG which is a
commutative group, where D includes S, which includes M, which includes NG, which includes

CG. In fact, this is a 5-concentric-structure.

2.2 Multi-Space

Let S1,S2,---,S, be n structures on respectively the sets My, Ma, -+, M,,, where n > 2 (n
may even be infinite). The structures S;, i = 1,2,--- ,n, may not necessarily be distinct two by
two; each structure S; may be or not n;-concentric, for n; > 1. And the sets M;, i =1,2,--- . n,
may not necessarily be disjoint, also some sets M; may be equal to or included in other sets

M;, j=1,2,---,n. We define the multi-space M as a union of the previous sets:

M =M | M| - M,

hence we have n (different or not, overlapping or not) structures on M. A multi-space is a
space with many structures that may overlap, or some structures may include others or may
be equal, or the structures may interact and influence each other as in our everyday life.

Therefore, a region (in particular a point) which belong to the intersection of 1 < k < n
sets M; may have k different structures in the same time. And here it is the difficulty and
beauty of the a multi-space and its overlapping multi-structures.

(We thus may have < R >#< R >, i.e. a region R different from itself, since R could be
endowed with different structures simultaneously.)

For example, we can construct a geometric multi-space formed by the union of three distinct
subspaces: an Euclidean subspace, a hyperbolic subspace and an elliptic subspace.

As particular cases when all M; sets have the same type of structure, we can define the
Multi-Group (or n-group; for example; bigroup, tri-group, etc., when all sets M; are groups),
Multi- Ring (or n-ring, for example biring, tri-ring, etc. when all sets M; are rings), Multi-Field
(n-field), Multi-Lattice (n-lattice), Multi-Algebra (n-algebra), Multi-Module (n-module), and
so on - which may be generalized to infinite-structure-space (when all sets have the same type

of structure), etc.

83. Conclusion

The multi-space comes from reality, it is not artificial, because our reality is not homogeneous,

but has many spaces with different structures. A multi-space means a combination of any
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spaces (may be all of the same dimensions, or of different dimensions - it doesn't matter). For
example, a Smarandache geometry (SG) is a combination of geometrical (manifold or pseudo-
manifold, etc.) spaces, while the multi-space is a combination of any (algebraic, geometric,
analytical, physics, chemistry, etc.) space. So, the multi-space can be interdisciplinary, i.e.
math and physics spaces, or math and biology and chemistry spaces, etc. Therefore, an SG
is a particular case of a multi-space. Similarly, a Smarandache algebraic structure is also a
particular case of a multi-space.

This multi-space is a combination of spaces on the horizontal way, but also on the vertical
way (if needed for certain applications). On the horizontal way means a simple union of spaces
(that may overlap or not, may have the same dimension or not, may have metrics or not, the
metrics if any may be the same or different, etc.). On the vertical way means more spaces
overlapping in the same time, every one different or not. The multi-space is really very general
because it tries to model our reality. The parallel universes are particular cases of the multi-
space too. So, they are multi-dimensional (they can have some dimensions on the horizontal
way, and other dimensions on the vertical way, etc.).

The multi-space with its multi-structure is a Theory of Everything. It can be used, for
example, in the Unified Field Theory that tries to unite the gravitational, electromagnetic,

weak, and strong interactions (in physics).
Reference

[1] F.Smarandache, Mized Non-Euclidean geometries, Arhivele Statului, Filiala Valcea, Rm.
Valcea, 1969.
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Abstract

Discourse analysis is a synergy of social science disciplines, including linguistics,
education, sociology, anthropology, social work, cognitive psychology, social psychology,
area studies, cultural studies, international relations, human geography, communication
studies, and translation studies, subject to its own assumptions, dimensions of analysis,
and methodologies. The aim of this paper is to present the applicability of (¢, i, f)-
Neutrosophic Social Structures, introduced for the first time as new type of structures,
called (t, i, f)-Neutrosophic Structures, and presented from a neutrosophic logic.

Neutrosophy theory can be assimilated to interpret and evaluate the individual
opinion of social structures. This type of analyse already tested and applied in
mathematics, artificial inteligence as well can be applied in social sciences by reseachers in
social sciences, communication, sociology, psycology.

Keywords: discourse, neutrosophy, truth, false, uncertainty
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1 Introduction

The specifics of indeterminacy, of the hesitation between truth and false
in social space is given by the fact that the uncertainty is not just a status of
variables, but a status of the epistemic subject. Related to subject the status can be
accordingly, ecquivalent of truth, diagreement, equivalent of false, or neutral. Any
uncertainty is an uncertainty of creativity. In this context, neutrosophy considers
a propositon, theory, event, concept, or entity, “A” in relation to its opposite,
“Anti-A” and that which is not A, “Non-A”, and that which is neither “A” nor
“Anti-A”, denoted by “Neut-A”. Neutrosophy is the basis of netrosophic logic,
netrosophic set, netrosophic probability and netrosophic statistic.

When we are talking about neutrosophic social structures, we have to take
into account that the social structure is not a homogeneous and uniform
construction. Its uni-plan appearance is the result of a correct conjecture on
horizontal dimension. On the other hand, on the vertical dimension of social
structure are identified three levels of the social mechanism of interaction-
communication presented as network. The first level is the individual one, of the
actor and the relationships he has with other actors individually. The second level
is that of structure / structures of which the actor belongs (family, group, clique,
clan etc.) and the third level is the social network as an integer, as whole. The
social structure is configured as a whole it comprises and crosses the individuals
relational (Smarandache, 2005; Teodorescu, Opran, Voinea, 2014).

In his writes, Immanuel Kant postulated intelligence as the ability to bear
the uncertainty: the more ability to bear the uncertainty is greater, the higher the
intelligence is. The superior minds have uncertainties, the mediocre one have
indecision. Uncertainty is inextricably bound by a decision: there is not
uncertainty without a thinking direction of estimation, prediction, forecasting,
alternative future type (Vladutescu et al, 2010; Voinea, 2014). The novelty of this
neutrosophic structure is that the uncertainty is the object of discussing, how can
it to modify the structure, to which of truth or false status is going,

2 Previous work . The discourse between true and false

Neutrosophy Theory is a new science, it is applied in algebraic structures,
geometry, physics, artificial inteligenge, robotics, philosophy, aestetics,
communication, arts, literature. For example in communication, professor
Smarandache together professor Vladutescu asserts: “Some communicational

relationships are contradictory, others are neutral, since within the manifestations
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of life there are found conflicting meanings and/or neutral meanings. In case of
arts, M. Teodorescu and M. G. Paun shows: “what is beautiful coincides with
what is good, and indeed in different historical epochs were set very close
connections between beautiful and good. But if we judge by our daily experience,
we tend to define as good not only what we like, but what we would like to have
for us” (Teodorescu & Piun, 2014). In hermeneutics, also we have neutrosophical
interpretation. Hermeneutists agree that there is an irrepressible tendency to
project modern meanings of words on the texts that represent a neutrosophic
approach. The hermeneutist cannot entirely escape from the condition of present
time being. The interpreter’s limit is the author quality. Once written, the work
refuses whoever produced it, and it isolates and wrongs him. The author will
never provide the best interpretation of his own work, if such an interpretation is
there somehow. The author does not have a right of interpretation derived from
the right he has previously had to write (de Figueiredo, 2014). In the same
context, looking in arts, we can assert that an evaluation of Ugliness has some
traits in common with an assessment of Beauty. First, we can only assume that the
ordinary people’s taste would correspond to some extent with the artistic taste of
their times. "If a visitor came from outer space would enter into a contemporary
art gallery, and would see female faces painted by Picasso and would hear that
visitors consider them beautiful, would make the mistaken belief that the
everyday reality men of our times considere beautiful and enticing that female
creatures whose face resembles to that represented by the painter” (Eco, 2007).
The same visitor from space could change opinions if they attend a fashion show
or a Miss Universe contest, which will see that are agreed other Beauty models.

We should like to investigate the neutrosophy structures on discourse.
Every discourse is the work of formatting techniques, enunciating of a message.
The discourse is the original way in which the message is sent.The engaged
authors in discourse study started from the finding that “the success in
communication depends not only on interlocutor’s linguistic competence, but the
general competence of communication comprehending;: a referential dimension
(of the field); a situational dimension (interpersonal norms and types of
discourse), a textual dimension, micro and macro-structural” (Roventa-
Frumusani, 2000).

Finally, "producing discourse is both controlled, selected, organized
and redistributed through a number of procedures that were meant to conjure
powers and dangers, to dominate the random event, to avoid overwhelming, her
redoubtable materiality" (Foucault, 1998).
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Truth and false are a seemingly indestructible syncretism. Cogitations
effort must focus on veridic processing of the "credible” material. For this, as for
any other substantial undertake, and not thorough ceremonial, is required an
impulse, a triggering internal necessity, a set of tools, a set of rules and principles
work (Stan, 2008; Voinea, 2011; Vlidutescu, 2013). The veridic procedure works
as the result of procedural engagement of relationships and veridic forces. The
most used tools for opinion influence, all of time, are conviction and persuasion.
Conviction corresponds to a communicational act aiming to alter the mental state
of an individual in a context where he retains or believes that retains a certain
freedom. Conviction is an effective method to influence, in that it allows to
achieve the objective, but it is not always effective, i.c. it is limited in time and is
uneconomical. Persuasion is more subtle, seemingly more mobile, it is directly
insidious. Its objectives are the same: to change finally an opinion, an attitude or
behavior, but with the agreement and through pseudo-convictive internalization
from the target. Persuation, a verbal method par excellence, it has become
definitive in the current acceptance in our century, reaching the postmodern era
to be theorized and widely used in complex strategies such as political techniques
(Negrea, 2014). In this vast space of individual opinions, group or entire network,
they can be classified in three states (truth, uncertainty, false), in part or entirely.
Persuasion is a method of influencing the mind to truth or false depending on the

aim of the discourse.

3 Work methodology. Arguments for Neutrosophical Social
Structures

In any field of knowledge, each structure is composed of two parts: a
space, and a set of axioms (or laws) acting (governing) on it. If the space, or at
least one of its axioms (laws), has some indeterminacy of the form (% 4, f) = (1, 0,
0), that structure is a (2 4, f) - Neutrosophic Structure. If the structure is applied
to social area, we have (%, i, f) - Neutrosophic Social Structures. The (1, i, f) -
Neutrosophic Social Structures [based on the components ¢ = truth, 7 = numerical
indeterminacy, f = falschood] are exponential remodeled in social space from the
perspective of social actor (Smarandache, 2005).

3.1. Numerical Indeterminacy (or Degree of Indeterminacy), which has the
form (2, 4, f) # (1, 0, 0), where ¢, i, f'are numbers, intervals, or subsets included in
the unit interval /0, 1], and it is the base for the (% 7, f)-Neutrosophic Social

Structures.
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Given the set M = {3, 4, 9(0.7, 0.1, 0.3)}, we have two elements 3 and 4
which surely belong to A, and one writes them neutrosophically as 3(1, 0, 0) and
4(1, 0, 0), while the third element 9 belongs only partially (70%) to M, its
appurtenance to M is indeterminate (10%), and does not belong to M (in a

percentage of 30%).

Example

Let suppose we have 2 candidates in final confronting of election, each

one having own voting pool. After voting, we evaluate data from point of view

neutrosophic.

Neutrosophic analysis looks like:

Figure 1. Analysis of votings

The neutrosophic space M = {c1(tl, il, f1), c2(t2, i2, £2)} where the law
of neutrosophic social structure is: winning the election.

Data obtained of two candidates are:

In values, representing the votes:

Candidate T

Cl1 tl 5.264.384
C2 t2 6.288.769
Percentage

Cl1 tl 45,57%1i1
C2 t2 54,43% 12
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i2166.111

1,44%
1,44%
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2

f1
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F
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5.264.384
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This analysis is for the votings.

We have also the analysis of whole situation of all possible votants.

120% 20,000,000
,280,994

-

Neutrosophic Social Structure 18,000,000
100% 100%
16,000,000
14,000,000
80%
\ 12,000,000
60% \

10,000,000 ™= Numerical
analysis
8,000,000 —fl—Percentage

6,727,842 6,288,769 6,288,760 6,727,842

6,000,000

.80%
4,000,000

2,000,000

0% 0

Total votants  Candidate 1T Candidate 11 Candidate 1F Candidate 2T Candidate 2| Candidate 2F

Figure 2 Analysis of possible votants

In Valucs, rcprescnting thC votes:

Candidate T I F

Cl1 tl1 5.264.384 il 6.727.842 f1 6.288.769
C2 12 6.288.769 i2 6.727.842 2 5.264.384
Percentage

Cl1 tl1 28,8% il il 36,8% f1 34,4%
C2 2 34,4% 12 i2 36,8% f2 28.8%

The result is relevant, indeterminacy has a very high rate, 36,8%, this
evaluation can be interesting for sociologist, how to decrease indeterminacy and
increase both truth and false. Important decision is how to decrease this
iincertaity percentage in favor of candidates. Anyway this is interpretation from
Neutrosophic Social Structures point of view (Waiyaki & Brits, 2015).

4 Conclusion

As a whole, the social structure appears as the panel of nodes and
connections that represent abstract actors and relevant relations between them.
The main elements of a social structure are the actor and his relationships. The
actors’s opinions of a structure are of infinite variety in relation to a relationship /

law, with total or partial agreement, total rejection. Through this new theory of
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neutrosopfy can make a qualitative and quantitative assessment and analysis of
opinions, evaluation that can be used for analyze of the evaluated actors’s space
taken as part and then evaluated as part analysis in whole.
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Abstract

In this paper a new concept is called n-valued interval neutrosophic sets is given.
The basic operations are introduced on n-valued interval neutrosophic sets such as;
union, intersection, addition, multiplication, scalar multiplication, scalar division,
truth-favorite and false-favorite. Then, some distances between n-valued
interval neutrosophic sets (NVINS) are proposed. Also, we propose an efficient
approach for group multi-criteria decision making based on n-valued interval

neutrosophic sets. An application of n-valued interval neutrosophic sets in medical
diagnosis problem is given.

Keywords

Neutrosophic sets, n-valued neutrosophic set, interval neutrosophic sets, n-valued
interval neutrosophic sets.

1 Introduction

In 1999, Smarandache [37] proposed the concept of neutrosophic set (NS for
short) by adding an independent indeterminacy-membership function which
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is a generalization of classic set, fuzzy set [45], intuitionistic fuzzy set [3] and
so on. In NS, the indeterminacy is quantified explicitly and truth-membership
(T), indeterminacy (I) membership, and false-membership (F) are completely
independent and from scientific or engineering point of view, the NS operators
need to be specified. Therefore, Wang et al [39] defined a single valued
neutrosophic set (SVNS) and then provided the set theoretic operations and
various properties of single valued neutrosophic sets and Wang et al. [40]
proposed the set theoretic operations on an instance of neutrosophic set is
called interval valued neutrosophic set (IVNS) which is more flexible and
practical than NS. The works on single valued neutrosophic set (SVNS) and
interval valued neutrosophic sets (IVNS) and their hybrid structure in theories
and application have been progressing rapidly (e.g., [1,2,4-19,21,22,24-26,28-
30,36,41,43]). Also, neutrosophic sets extended neutrosophic modelsin [13,16]
both theory and application by using [27,31].

The concept of intuitionistic fuzzy multiset and some propositions with
applications is originaly presented by Rajarajeswari and Uma [32-35]. After
Rajarajeswari and Uma, Smarandache [38] presented n-Valued neutrosophic
sets with applications. Recently, Chatterjee et al. [20], Deli et al. [18, 23], Ye et
al. [42] and Ye and Ye [44] initiated definition of neutrosophic multisets with
some operations. Also, the authors gave some distance and similarity
measures on neutrosophic multisets. In this paper, our objective is to
generalize the concept of n-valued neutrosophic sets (or neutrosophic multi
sets; or neutrosophic refined sets) to the case of n-valued interval
neutrosophic sets.

The paper is structured as follows; in Section 2, we first recall the necessary
background on neutrosophic sets, single valued neutrosophic sets, interval
valued neutrosophic sets and n-valued neutrosophic sets (or neutrosophic
multi sets). Section 3 presents the concept of n-valued interval neutrosophic
sets and derive their respective properties with examples. Section 4 presents
the distance between two n-valued interval neutrosophic sets. Section 5
presents an application of this concept in solving a decision making problem.
Section 6 concludes the paper.

2 Preliminaries

This section gives a brief overview of concepts of neutrosophic set theory [37],
n-valued neutrosophic set theory [42,44] and interval valued neutrosophic set
theory [40]. More detailed explanations related to this subsection may be
found in [18,20,23,37,40,42,44].
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Definition 2.1. [37,39] Let X be an universe of discourse, with a generic element
in X denoted by x, then a neutrosophic (NS) set A is an object having the form

A={<x: To(x), [4(x), FA(x)>x € X}

where the functions T, I, F : X— ]-0, 1*[ define respectively the degree of
membership (or Truth), the degree of indeterminacy, and the degree of non-
membership (or Falsehood) of the element x € X to the set A with the
condition.

0<Ta(x) + [4(x)+ Fa(x)< 3%

From philosophical point of view, the neutrosophic set takes the value from
real standard or non-standard subsets of ]-0, 1*[. So instead of ] -0, 1*[ we need
to take the interval [0, 1] for technical applications, because ]-0, 1*[will be
difficult to apply in the real applications such as in scientific and engineering
problems.

For two NS, Ays ={ <x, TA(X), [o(%), FA(X)> | x € X}

andBys ={ <x , Tg(x) , Iz(x), Fg(x)> | x € X} the two relations are defined as
follows:

(1)Ans © Bysif and only if Ta(x) < Tg(x) ,Ia(x) = [g(x) ,Fa(x) =
Fg(x)

(2) Ays = Bys ifand only if , Ta(x) =Tg(x) ,[4(x) =1g(x) , Fa(x)
=Fg(x)

Definition 2.2. [40] Let X be a space of points (objects) with generic elements
in X denoted by x. An interval valued neutrosophic set (for short IVNS) A in X
is characterized by truth-membership function T,(x) , indeteminacy-
membership function I,(x) and falsity-membership function F4(x). For each
point x in X, we have that T, (x), [4(x), Fao(x) € [0, 1].

For two IVNS

Ayns={<x, [iInf T} (x),sup T2 (x)],
[infI}(x),sup I} (x)], [inf F{(x),sup Fi(x)] >x € X}

and
Biyns= {<x,
inf T2 (x), sup T2 (x)],[inf I} (x), sup I3 (x)], [inf F3 (x) , sup F3 (x)]> :
x € X}

Then,

1. AIVNS c BIVNS if and Only if
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inf T} (x) < infT3(x), sup T} (x) < sup T3 (x),
infI}(x) = infI}(x), sup I} (x) = sup I3 (x),
inf F} (x) = inf F3(x), sup F1(x) = sup FA(x),

for all x € X.

2.

Ayns = Byns if and only if,

inf T} (x) = infT3(x), sup T2 (x) = sup T2 (x),
infI}(x) = infI}(x), sup I} (x) = sup I3 (x),
inf F} (x) = inf F3(x), sup F1(x) = sup F2(x),

for any x € X.

3.

e

Ayns = {x,[inf Ff (x), sup Ff (0)], [1 — sup I;(x), 1 —inf I;(x)],
[inf TH(x),sup TH(x)]:x € X}

Awyns N Bryns={<x, [inf T (x) A infT5(x), sup T4 (x) A sup Tg(x)],
[infI}(x) VinfIi(x),sup I} (x) vV sup IE(x)],
[inf F{(x) vVinf FA(x),sup Fi(x) V sup Fz(x)]>: x € X}

Ans U Bryns={<x, [inf T4 (x) v inf T (x), sup T; (x) V sup T (x)],
[infI}(x) A infI}(x),sup I} (x) AsupIi(x)],

[inf F{(x) Ainf F2(x),sup Fi(x) Asup Fi(x)]>: x € X}

Apyns\

Biyns={<x,[min{inf T} (x), inf F3 (x)}, min{sup T4 (x), sup F3 (x)}],
[max(inf I} (x),1-sup I%(x)), max(sup I3 (x),1-inf I} (x))],
[max(infF} (x),inf T2 (x)), max(sup Fj (x), sup T3 (x))]>: x € X}
Aynst Bryns ={<x[min(inf T} (x) + inf T2 (x), 1) , min(sup T2 (x) +
sup Tz (x), 1) ],

[min(infI}(x) + infI}(x),1), min(sup I}(x) + supl3(x),1)],
[min(inf F{ (x) + inf F3(x), 1), min(sup F{ (x) + sup F3(x),1)] >
:X € X},

Apyns-a={<x,[min(inf T} (x).a,1) , min(sup T4 (x).a,1)],
[min(inf1(x).a,1), min(sup I} (x).a,1)],
[min(inf F(x).a,1), min(sup Fi(x).a,1)],
[min(inf1}(x).a,1), min(sup I} (x).a,1)] >:x € X},

Aryns/a={<x,[min(inf T} (x) /a,1), min(sup T (x)/a,1)],
[min(infI}(x)/a,1), min(sup Ii(x)/a,1)],
[min(inf F{ (x)/ a,1), min(sup Fi(x).a,1)] > : x € X},

10. A Apyns ={<x,[min(inf T} (x) + inf I} (x), 1), min(sup T} (x) +

sup I3(x),1) 1,[0,0],
[inf Fi(x),sup F{(x)] >:x € X},

11. V Apyns ={<x [inf T4 (x), sup T4 (x)],[0,0],
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[min(inf F{ (x) + infI}(x), 1), min(sup Fj(x) +
supli(x),1)] > :x € X}

Definition 2.3. [20,42] Let E be a universe. A n-valued neutrosophic sets on E
can be defined as follows:

A = {<x,(TA (), TZ (%), T (), (13 (3,15 (X),...15 (%)),
(FA(X),FA(X),...FR (x))>: x € X}

where

T (%), T2 (%), Th (%), 15 (3),13 (%), 15 (%), Fi(%),FZ(X),...F5(x): E>
[0,1] such that

0< Ti(x) +I4(x) +Fi (x) <3 fori=1, 2,..,p for anyx€ X,

Here, (Ta (%), T2 (X),... Ty (X)), (1A (),I4(X),.,15 (x)) and (F3 (x),F4 (%), ..F& (x))

is the truth-membership sequence, indeterminacy-membership sequence and
falsity-membership sequence of the element x, respectively. Also, P is called
the dimension of n-valued neutrosophic sets (NVNS) A.

3 N-Valued Interval Neutrosophic Sets

Following the n-valued neutrosophic sets (multiset or refined set) and interval
neutrosophic sets defined in [20,38,42,44] and Wang et al. in [40], respectively.
In this section, we extend these sets to n-valued interval valued neutrosophic
sets.

Definition 3.1. Let X be a universe, a n-valued interval neutrosophic sets (NVINS)
on X can be defined as follows:

A= x [infT1(x),sup T (x)], [infTZ(x),sup TZ(x)], ...,
S [inf T (x), sup T (x)] ’

[infI}(x),sup I} (x)], [infIZ(x),sup IZ(x)], ....,
< [infI} (x), sup I] (x)] )'
[inf 3 (x), sup F3 ()], ([inf Ff(x), sup FZ(x)], ...,
([inf EF (x), sup F} (x)]):x € X}
where

inf Tz (x),inf TZ(X),..., inf Tx (x),inf I3 (x),inf I4(x),....inf 1§ (x),inf
FA(x),inf F4(x),...,inf FA(x), sup TA(x), sup TZ(x),..., sup Ty (x),
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sup I3(x), sup I£(x),...sup I3 (),
sup F3(x), sup F4(%),...,sup FA(x)€[0, 1]

such that 0< supT}(x) +suplh(x) +supFh(x) <3,V i=1, 2,.., p.

In our study, we focus only on the case where p=q=r is the interval truth-
membership sequence, interval indeterminacy-membership sequence and
interval falsity-membership sequence of the element x, respectively. Also, p is
called the dimension of n-valued interval (NVINS) A. Obviously, when the
upper and lower ends of the interval values of T} (x), I} (x), Fi (x) in a NVINS
are equal, the NVINS reduces to n-valued neutrosophic set (or neutrosophic
multiset proposed in [17,20]).

The set of all n-valued interval neutrosophic set on X is denoted by NVINS(X).

Example 3.2. Let X={x;, x,} be the universe and A is an n- valued interval
neutrosophic sets

A= {<x{[.1,.2], [.2, 31}{[.3, 4].[.1, .5]}4[.3, -4], [.2, .5]}>,
<x,,{[.3, 4], [.2,4]1}{[.3, .5.[.2, 4]}.{[.1, .2], [.3, -4]}>}

Definition 3.3. The complement of A is denoted by A® and is defined by

A= {x, ([infF1(x),sup F1(x)], ([inf F?(x), sup FZ(x)], ...,
([inf Ef (o), sup Ef ()],
[1— sup}(x),1—infI}(x)],[1 —supIi(x),1—infI}(x)],...,
( [1- sup ¥ (x), 1 —inf I} (x)] ) ’
(linf TX(x), sup T ()], [inf T?(x), sup TZ(x)], ...,

[inf TP (x), sup TP (x)] ): x € X}

Example 3.4. Let us consider the Example 3.5. Then we have,
A= {<x,{[.3,4],[.2,-5]1},{[.6,.7],[.5,:91},{[.1,-2],[.2,-3]}>,

<x5,{[.1,.2],[.3,-41},{[.5,-71,[.6,-8]},{[.3,-4],[.2,-4] }>}

Definition 3.5. For V i=1, 2,..,p if infTi(x) = supTi(x) =0 and infI}(x)
=sup I} (%) =inf F} (x) =sup F4(x) =1, then A is called null n-valued interval
neutrosophic set denoted by @, for all x € X.

Example 3.6. Let X={x4, X, } be the universe and A is an n-valued interval
neutrosophic sets

= { <x1,{[0, 0], [ 0, O1},{[1, 1], [1, 1] },{[1, 1], [1, 1]}>,
<x2,{[ 0, 0], [ 0, OT},{[1, 1], [1, 1]},{[1, 1, [1, 1]}>}.
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Definition 3.7. For V i=12,..p if infTi(x) = supTi(x) =1 and
inf I}, (x)=sup I} (x)=inf F} (x) =sup F}, (x)=0, then A is called universal n-valued
interval neutrosophic set denoted by E, for all x € X.

Example 3.8. Let X={x;, x5} be the universe and A is an n-valued interval
neutrosophic sets

E={<x,{[L, 1], [1, 1] },{[0, 0], [0, 0] },{[0, 0], [0, O]}>,
<x2{[1, 1], [1, 1] 1,{[0, 0], [0, 0] },{[0, O], [0, 01}>}.

Definition 3.9. A n-valued interval neutrosophic set A is contained in the other
n-valued interval neutrosophic set B, denoted by ACB, if and only if

inf T} (x) < infT3 (%), infTZ(x) < infTZ(x),... infT (x) <
inf TF (x),

sup T3 (x) < sup T3 (x), sup TZ(x) < sup TZ(x),..., sup T} (x) <
sup Ty (x),

inf I} (x) > infI}(x), infIZ(x) = infI%(x),.., infI} (x) > infI} (x),
sup I3 (x) = sup I%(x), sup I (x) = sup [3(x),.., sup I} (x) =
sup I% (x),

inf F} (x) = inf F} (%), inf F?(x) = inf F3(x),..., infEF (x) >

inf FF (x),

sup F; (x) = sup Fi(x), sup FZ(x) = sup F2(x),.., sup EF (x) >
sup F3 (x)

for all x € X.

Example 3.10. Let X={x4, X,} be the universe and A and B are two n-valued
interval neutrosophic sets

A= {<x,{[.1,.2], [.2, 31.{[4, 5], [.6, .71}4[.5, .6],[.7, .8]}>,
<%, {[.1, 41,[.1, 346, .81, [.4, .61}4[.5, .6], [.6, .7]}>)

and

B={ <x,,{[.5,.7], [.4, .5]}4[.3,41,[. 1,.5]},4[.3,.41,[.2,.5]}>,
<x,{[.2, .51.[.3, .613.{[.3, .5L.[.2.41}.{[.1, 2], [.3, 4]}>}

Then, we have A € B.

Definition 3.11. Let A and B be two n-valued interval neutrosophic sets. Then,
A and B are equal, denoted by A= B if and only if A € B and BC A.

Proposition 3.12. Let A, B, C ENVINS(X).Then,

1.9c A
2.AcCA
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3.ACE

4. AcBandBc C—-ACC
5.K=Land L=M& K =M
6. KEL and LEKe K = L.

Definition 3.13. Let A and B be two n-valued interval neutrosophic sets. Then,
intersection of A and B, denoted by ANB, is defined by

AnB={<x,([inf T} (x) A inf T3 (x), sup T} (x) A
sup Ta (x)], [inf TZ (x) A infT2(x),sup TZ(x) A
sup T2 (x)], ..., [Inf T} (x) A infTF (x), sup T (x) A
sup T (x)]),([infI; (x) v inf I3 (x) , sup I} (x) v
sup IE(x)], [inf12(x) v infI%(x),sup I#(x) v
sup I3(x)], ..., [infI¥ (x) v inf 1% (x) , sup I (x) V sup I£ (x)]),
([infF}(x) Vv inf FZ(x), sup F4(x) V sup FA(x)], [inf FZ (x) v
inf F2(x),sup FZ(x) v sup F2(x)], ..., [infEf (x) v
inf £} (x), sup Ff (x) V sup Ff (x)])>: x € X}

Example 3.14. Let U={x4, X,} be the universe and A and B are two n-valued
interval neutrosophic sets

A= {<x,{[1,.2], [2, 31.4[.4, .51, [.6, .7IM4L5, 6], [.7, .81}>,
<%,{[1, 4], [.1-3D34[.6, .81, [.4, 611413, 4], [.2,.7]}>)

and

B={ <x,,{[.3,.7], [.3, 51L{[.2, .41, [.3, 5143, 6], [.2, . 7]}>,
<%,{[3,.5], [4-61}{[.3,.5], [.4, 51,413, 4], [.1, .2]}>)

Then,

ANB={<x1{[.1,.2],[.2,.31},{[-4,.5].[.6,-71}{[.5,-6],[.7,-8]}>,
<x,,{[.1,-4],[.1,.31},{[.6,-8],[.4,-61}{[.3,-4],[.2,7]}>}

Proposition 3.15. Let A, B, CENVINS(X). Then,

1. AnA=A

2.An 0 = .

3. ANE=A

4. ANB=BNA
5.(ANB)NC =An (BNC).

Proof: The proof is straightforward.

Definition 3.16. Let A and B be two n-valued interval neutrosophic sets. Then,
union of A and B, denoted by AUB, is defined by
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AUB = {x,<([inf T} (x) V inf T3 (x),sup T} (x) v
sup Ta (x)], [inf TZ(x) v infT2(x),sup TZ(x) v
sup T2 (x)], ..., [Inf T} (x) Vv inf T} (x) , sup T (x) v
sup T (x)]),([infI; (x) A inf I3 (x) , sup I3 (x) A
sup I3(x)], [inf 12 (x) A inf13(x),sup 12 (x) A
sup I3(x)], ..., [infI§ (x) A infIE(x),sup If (x) A sup I (x)]),
([infF1(x) AinfF2(x),sup Fi(x) A sup FA(x)], [inf FZ (x) A
inf F2(x),sup FZ(x) A sup F2(x)], ..., [InfE (x) A
inf F} (x), sup Ff (x) A sup FE (x)])>:x € X}

Proposition 3.17. Let A, B, C € NVINS(X).Then,

1. AUA=A.

2.AU @ =A.

3. AUE=E.

4. AUB= BUA.

5 (AUuB)UC =AU (BUUO).

Proof: The proof is straightforward.

Definition 3.18. Let A and B be two n-valued interval neutrosophic sets. Then,
difference of A and B, denoted by A \B, is defined by

A\B={x,([min{inf T} (x), inf F2 (x)} ,min{sup T (x), sup F3 (x)}],
[min{inf T2 (x),inf FZ(x)} , min{sup T2 (x), sup FZ(x)} ],...

[min{inf T} (x), inf £} (x)} , min{sup T} (x), sup F} (x)} ]),([max(inf

13 (x),1-sup 13 (x)),max(supl}(x),1-

infl} (x))],[max(infI3 (x),1-supl3 (x)),max(suplZ (x),1-inf
1)1, [max(infl¥ (x),1-supl} (x)),max(supl} (x),1-

infI® (x))]),([max(inf Fi(x),infT3 (x)), max(sup Fj (x),

supT3 (x))], [max(inf F2(x),infTZ (x)),

max(supFy (x),SupTZ (x))],.., [max(inf EF (x),infT} (x)), max(sup

E} (x), supTF (x))]): x € X}

Example 3.19. Let X= {x4, X,} be the universe and A and B are two n-valued
interval neutrosophic sets

A= {<x,{[1,.2], [2, 3D.{[4, 5], [.6, .7IL4L5, .61, [.7, -81}>,
<x,{[1, 4], [.1, .31 {[.6,.8], [4, 61143, 4], [.2, .7]}>)

and

B={ <x,{[.3,.7], [.3, .51},{[.2, 4], [.3, SDAL3, .61, [2,.7]}>,
<%,{[.3,.5], [4, .613.4[.3..5], [.4, 5143, 4], [.1, .2]}>)

Then,
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A\B={ <x; {[.1, .2], [.2, .3]}{[.6 ,.8], [.6, .71}{[.5 .71, [.7, .8]}>,
<x,,{[.1, 4], [.1,.2]},{[.6,.8], [.5, .61}.{[.3,.5], [.4, 7]}>}

Definition 3.20. Let A and B be two n-valued interval neutrosophic sets. Then,
addition of A and B, denoted by A ¥B, is defined by

AT = {<x,([min(inf T} (x) + inf T2 (x), 1), min(sup T} (x) +

sup Tz (x), 1) ],

[min(infT2(x) + infTZ(x),1), min(sup TZ(x) +

sup T2 (x), 1) 1,...[min(inf T} (x) + infF} (x),1), min(sup T} (x) +
sup T (x), 1) |)

([min(infI}(x) + infI3(x),1), min(sup I (x) +

sup I£(x),1) ], [min(inf1?(x) + infI3(x), 1), min(sup I?(x) +
sup I3(x), 1) 1,...[min(inf T} (x) + infT7 (x), 1), min(sup T} (x) +
sup TF (x), 1) ]),(Imin(inf F{ (x) + infF2(x), 1), min(sup Fj (x) +

sup F3(x),1) ], [min(inf F? (x) + infFZ(x),1), min(sup F#(x) +
sup FZ(x),1) 1,...[min(inf £} (x) + inf £} (x), 1), min(sup Ff (x) +
sup FY (x),1) [>:x € X}.

Example 3.21. Let X={x4, X, } be the universe and A and B are two n-valued
interval neutrosophic sets

A= {<x{[.1,.2], [.2, .3]1}{[.4, .5], [.6, .71}.{[.5, .6], [.7, .8]}>,
<x,,{[.1, 4], [.1, .3]},{[.6, .8], [.4, .6]}.{[.3, 4], [.2, .7]}>}

and

B={ <x,,{[.3,.7], [.3, 51}4[.2, .41, [.3, 5143, 6], [.2, . 7]}>,
<x,{[.3,.5], [4, 613.4[.3, .5], [.4, 51403, 4], [.1, .2]}>)

then,

A¥B={<x4,{[4,.9],[.5,-81},{[.6,-91,[.9,11},{[.8,1],[.9,1]}>,
<x,{[-4,.9],[.5,.91},{[.9,1],[.8,1]},{[.6,.8],[.3,9]}>}.

Proposition 3.22. Let A, B, C € NVINS(X).Then,

1. AFB=B¥A.
2.(A¥B)¥C = A¥(BF0).

Proof: The proof is straightforward.

Definition 3.23. Let A and B be two n-valued interval neutrosophic sets. Then,
scalar multiplication of A, denoted by A 73, is defined by

min(infT?(x).a,1),

ATa = {x, ([min(infT{ ().a,1), min(supTi().-a, DL | ooy )
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jeo|min(inf T (x).a,1), min(sup T (x).a,1)]),
([min(inf1(x).a,1), min(sup I} (x).a,1)],
[min(inf/?(x).a,1), min(sup I (x).a,1)],..,
[min(infI} (x).a,1), min(sup I} (x).a,1)]),
([min(inf F}(x).a,1), min(sup F}(x).a,1)],
[min(inf1}(x).a,1), min(sup I} (x).a,D],...,
[min(inf 1} (x).a,1), min(sup I} (x).a,1)]): x € X }.

Example 3.24. Let X={x4, X, } be the universe and A and B are two n-valued
interval neutrosophic sets

and

then,

A= {<x,{[1,.2], [.2, 313.4[-4, .51, [.6, . 71L4L5, 6], [.7, -8]}>,
<x,{[.1, 4], [.1, 3}4[.6,-8], [.4, 61143, 4], [.2,.7]}>)

B={<x{[.3,.7], [.3, .51}{[.2, .4], [.3, .5]1}{[.3, .6], [.2, .7]}>,
<x,,{[.3,.5], [.4, .6]},{[.3,-5], [.4, .51}{[.3, 4], [.1, .2]}>},

AT2 ={<x,{[.2, 4] ,[.4,.6]}{[.8 1],[1, 1]}{[1, 1],[1, 1]}>,
<x,,{[.2,.8],[.2, .6]}{[1, 1],[.8, 1]},{[.6, .8],[.4, 1]}>}

Proposition 3.25. Let A, B, C € NVINS(X). Then,

1. ATB=BTA
2. (ATB)~C = AT (B™C)

Proof: The proof is straightforward.

Definition 3.26. Let A and B be two n-valued interval neutrosophic sets. Then,
scalar division of A, denoted by A /~ a, is defined by

A/ a={x,[min(infT}(x)/a,1), min(sup T} (x)/a,1)],
[min(infT2(x)/a,1), min(sup T?(x)/ a,1)]

seo[min(infT7 (x)/ a,1), min(sup T (x)/ a,1)]),([min(inf 1} (x)/
a,1),min(sup}(x)/a,1)], [min(inf12(x)/ a,1), min(sup I3 (x)/
a,1)],..[min(inf 1} (x)/a,1), min(sup I} (x)/ a,1)]),

[[min(inf F; (x)/ a,1), min(sup Fj (x).a,1)]], [min(inf £Z (x)/
a,1), min(sup FZ(x)/ a,1)], ...[min(inf I} (x)/

a,1), min(sup I} (x)/ a,D]): x € X}.

Example 3.27. Let X={x4, X,} be the universe and A and B are two n-valued
interval neutrosophic sets
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A= {<x{[.1,.2], [.2, .3]1},{[.4, .5], [.6, .71}.{[.5, .6], [.7, .8]}>,
<x,,{[.1, 4], [.1, .3]},{[.6, .8], [.4, .6]}.{[.3, 4], [.2, .7]}>}

and

B={ <x{[.3,.7], .3, .51}{[.2, .4], [.3, .5]1}{[.3, .6], [.2, .7]}>,
<x,,{[.3,.5], [.4, .6]},{[.3,.5], [.4, .51}.{[.3, 4], [.1, .2]}>},

then,

A/72={<x,,{[.05,.1], [.1, .151}.{[.2, .25], .3, -35]}.{[.25, .31.[.35, -4]}>,
<x,,{[.05,:2], [.05, .15]L,4[.3, 41.[.2, .31L.{[.15, .2], [.1,.35]}>}

Definition 3.28. Let A and B be two n-valued interval neutrosophic sets. Then,
truth-Favorite of A, denoted by AA, is defined by

AA ={x,([min(inf T} (x) + infI}(x), 1), min(sup T4 (x) +

sup I£(x),1) ], [min(infT? (x) + infI2(x),1), min(sup T (x) +
sup I2(x), 1) 1,..[min(inf T} (x) + inf I} (x), 1) , min(sup T} (x) +
sup Iy (x), 1) ]),([0,01, [0,0]....[0,0]),

([inf F1(x),sup Fi(x)], [inf FZ(x) , sup FZ(x)],...,

[inf EP (x), sup E (x)]): x € X}

Example 3.29. Let X={x4, X, } be the universe and A and B are two n-valued
interval neutrosophic sets

A= {<x{[.1,.2], [.2, .3]1},{[.4, .5], [.6, .71}.{[.5, .6], [.7, .8]}>,
<x,,{[.1, 4], [.1, .3]}{[.6, .8], [-4, .6]}.{[.3, 4], [.2, .7]}>}

and

B={<x{[.3,.7], [.3, .51}{[.2, .4], [.3, .5]1}{[.3, .6], [.2, .7]}>,
<x,,{[.3,.5], [-4, .6]},{[.3,-5], [.4, .51}{[.3, -4], [.1, .2]}>}

Then,

AA={ <x.,{[.5,.7],[.8, 11},{[0, 0],[0, 0O1},{[. 5, .61, [.7, .8]}>, <x,,{[.7, 1],
[. 5,.91},{[0, 0],[0, O1} . 3, .4].[.2, .7]}>}

Proposition 3.30. Let A, B, C € NVINS(X).Then,

AAXA=VA.

A (AUB)SA AUAB.

A(ANB)SAANAB

A (A¥B)SA AT A B.

s w N e

Proof: The proof is straightforward.

Definition 3.31. Let A and B be two n-valued interval neutrosophic sets. Then,
false-Favorite of A, denoted by VA, is defined by
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VA=

{x([inf T} (x),sup T2 (x)], [inf T2 (x),sup TZ (x)],-..,

[inf T} (x), sup T (x)]),([0,0], [0,0],...[0,0]), [min(inf F} (x) +
inf1}(x), 1), min(sup F{ (x) + supI%(x),1) ], [min(inf FZ(x) +
infI#(x), 1), min(sup F#(x) + supIZ(x),1) ],...[min(inf FP (x) +
inf1} (x), 1), min(sup FF (x) + sup I (x),1) ]): x € X}

Example 3.32. Let X={x4, X, } be the universe and A and B are two n-valued
interval neutrosophic sets

A= {<x,{[1,.2], [.2, 313.4[.4, .51, [.6, .7IMAL5, 6], [.7, .81}>,
<x,{[.1, 4], [.1, 3}4[.6,-8], [.4, .61}4[.3, 4], [.2,.7]}>)

and

B={ <x1,{[.3,.7], [.3, 5]}{[.2, 4], [.3, 51343, .6], [.2, .7]}>,
<x,[:3,.5], [-4, .613{[-3,-5], [.4, .5]}.{[.3, .4], [.1, .2]}>}

Then,
VA = { <x, {[.1, .21.[.2, .3]},{[0, 01,[0, O1}4[. 9, 1], [1, 1]}>,
<x,,{[.1, .4], [- 1, .3]}.{[0, 0], [0, O]} {[- 9, 1], [.6, 1]}>}
Proposition 3.33. Let A, B, C € NVINS(X). Then,
1.VVA = VA.
2.V(AuB)cVAUVB.

3.V(ANnB)S VAN VB.
4.V(A¥B) c VAFVB.

Proof: The proof is straightforward.

Here V, A, +,., /,7,/ denotes maximum, minimum, addition, multiplication,
scalar multiplication, scalar division of real numbers respectively.

Definition 3.34. Let E is a real Euclidean space E™. Then, a NVINS A is convex if
and only if

inf T} (x) (Ax; +(1- A) x,)= min(inf T (x,), inf T} (x,)),
sup T; (x) (Axy +(1- A) x2)= min(sup T; (xy), sup T4 (x2)),
inf I} (x) (Ax; +(1- A) x2)< min(inf I} (x,), inf I} (x,)),
sup I5 (x) (Ax; +(1- A) x,)< min(sup &4 (x,), sup I (x2)),
inf F(x)(Ax; +(1- A) x,)< min(inf F(x,), inf F(x,)),
sup Ff(x)(Axy +(1- 2) x)< min(sup F4 (x;), sup F;(x3)),

forallx;,x, € Eandall1 € [0,1] and i=1, 2,.., p.

Theorem 3.35. If A and B are convey, so is their intersection.
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Proof: LetC=ANB

Hence,

InfT) (Ax; +(1- A)x,) = min (Inf T} (Ax; +(1- )x,), Inf T (Ax,
+(1- 2)x3)) ,supT{ (Ax; +(1- A)x,) = min (sup T (Axy +(1- A)xy)
sup T (Ax; +(1- D)x,)),, Inf I} (Ax; +(1- 2)x;)< max (Inf I} (Ax,
+(1- D)x3), Inf I (Axy +(1- 2)x3)), supll (Ax; +(1- A)x,) < max
(sup I] (Ax; +(1- 2)x3) , sup i, (Ax; +(1- D)x,)) , Inf FJ (Ax; +(1-
Nx,)< max (Inf E/ (Ax; +(1- )x;), Inf EJ (Ax; +(1- 1)x,)),

supF/ (Ax; +(1- N)x,) < max (inf F/ (Ax; +(1- A)x,) ,inf F} (Ax,
+(1- A)x,)) since A and are convex: Inf TX (Axq +(1- A)x3) = min
(Inf TAj (x1 )+ Inf TAj (x2)), sup TAj (Ax1 +(1- A)x3) = min (sup TAj
(%, )+ sup T/ (x2)),InfI] (Ax; +(1- A)x,) < max (Inf I] (x; )+ Inf
I/{ (x3)),sup If{ (Ax; +(1- A)x,)<max (sup If{ (x4 )+ sup If{
(x2)),inf F} (Ax; +(1- )x,)<max (inf F (x, )+ inf E/ (x,)),

sup F} (x; +(1- A)xz)<max (sup F; (x; )+sup F} (x)),

inf TJ (Ax; +(1- A)x,)=max (inf T (x, )+ inf TJ (x,)), sup T}
(Ax; +(1- A)xp)=min (sup TJ (x, )+ sup T} (x,)),inf I} (Ax; +(1-
A)x;)<max (inf Ié (x1 )+ inf If{ (x2)),sup Ié (Axq +(1- A)x, <max
(sup Ié (x1)+sup Ij (x2)), ianBf (Axq +(1- A)x,)<max (ianBf
(x;,)+infE/ (x,)) , sup FJ (Ax;+(1- )x,)<max (sup FJ (x; )+
sup F} (x)).

infT/ (Ax; +(1- A)x,)=min(min (inf T} (x, )+ inf T} (x,)), min
(infTJ (x; )+infT] (x,)))= min (inf T/ (x; )+ infTJ (x;)), min
(infT) (x,)+infT) (x,))=min (inf T (x; )+ inf T (x,)),

sup TCj (Ax1 +(1- A)x,)=min(min (supTAj (x1 )+ sup TAj (x3)), min
(sup T3 (x; )+ sup T3 (xz)))= min (supT; (x; )+sup T) (x1)),
min (sup TAj (x5 )+ sup Tg (x5 ))=min (sup Tg (x4 )+ sup Tg
(x2)) | |

infl (Ax; +(1- D)x;)<max(max (infI] (x; )+ inf [} (x;)), max(inf
I} (x,)+inf I} ( x,)))= max(infl} (x; )+infI} (x; )),max (inf I]

(x; )+ inf I} (x,))= max (inf I} (x, )+ inf I (x,)).

Definition 3.36. An n-valued interval neutrosophic set is strongly convex if for

any two points x; and x,and any A in the open interval (0.1).

inf T} (x) (Ax; +(1- A) x,)> min(inf T (x,), inf T} (x,)),
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sup T4 (x)(Ax; +(1- 1) x,)> min(sup T4 (x,), sup T4(x,)),

inf I} (x) (Ax; +(1- 1) x,)< min(inf I} (x;), inf I} (x,)),

sup I; (x) (Ax; +(1- 4) x3) < min(sup iy (x;), sup I (x2)),

inf F(x)(Ax; +(1- A) x,) < min(inf Fi(x,), inf Fi(x,)),

sup Ff(x)(Axy +(1- 4) xz) < min(sup Fj(xy), sup F£(x)),
for allx; ,x, inXand all Ain [0,1] and i=1, 2,...p.

Theorem 3.37. If A and B are strongly convex, so is their intersection.

Proof: The proof is similar to Theorem 3.25

4 Distances between n-valued interval neutrosophic sets

In this section, we present the definitions of the Hamming, Euclidean distances
between n-valued interval neutrosophic sets, generalized weighted distance
and the similarity measures between n-valued interval neutrosophic sets
based on the distances, which can be used in real scientific and engineering
applications.

On the basis of the Hamming distance and Euclidean distance between two
interval neutrosophic set defined by Ye in [43], we give the following Hamming
distance and Euclidean distance between NVINSs as follows:

Definition 4.1 Let A and B two n-valued interval neutrosophic sets, Then, the
Hamming distance is defined by:

1- dHD:% 7=16l ?=1[|infTL(xi) - infT]jB(xi)| + |suij\(xi) —
supT]j3 (xi)| + |infli\(xi) — inﬂ]g(xi)| + |supl£(xi) —
supI}'3 (x| + |iani\(xi) - iani'g(x)| + |supFi\(xi) -
supFL(x)”

The normalized Hamming distance is defined by:

1 1 o o om j
2- dypp= ;2?:15 ?:1[|me1];(Xi) - lnfT]J3(Xi)| + |SUpT,J;(Xi) -
supT]j3 (xi)| + |infli\(xi) — inﬂ]g(xi)| + |supl£(xi) —

supl’B (xi)| + |ianL(xi) — ianfg(x)| + |suprA(xi) —

j
supFg (x)|]
However, the difference of importance is considered in the elements in the
universe. Therefore, we need to consider the weights of the elements x; (i=1,

2,..., n) into account. In the following, we defined the weighted Hamming
distance with w={w; ,w,,...w,}
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3- eighted normalized Hamming distance is defined by:

deD iz 16n2” 1Wl[|1nfT (x;) — infT) (Xi)l + |suij\(xi) —
supT), (x1)| + |infl (%) — infl},(x;)| + |supl, (%) —
supll (x)| + |inf F, (x;) — infFL (x)| + |supF, (x;) —
sung(x)”

If w;= (i,l ,...,l), then (3) reduces to the Normalized Hamming distance.
nn n

Example 4.2. Let X={x4, X,} be the universe and A and B are two n- valued
interval neutrosophic sets

A={<x.{[.1,.2], [.2, .31}{[.4, .5], [.6, .71} {[.5, .6], [.7, .8]}>,
<x,,{[.1, 4], [.1, .3]},{[.6,.8], [.4, .6]1}{[.3, 4], [.2, .7]}>}

and

B={ <x1,{[.3,.7], [.3, 5I}{[.2, 4], [.3, .513.{[.3,.6], [.2, .7]}>,
<x,{[:3,.5], [4, .613.{[.3,-5], [.4, .51}.{[.3, 4], [.1, .2]}>}

Then, we have dyp= 0.4.
Definition 4.3. Let A, B two n-valued interval neutrosophic sets. Thus,

1. The Euclidean distance d, is defined by:

dgp= {p e 1; [(me] (x;) — infT} (xl)) (supTi(xi) -

supT];(Xi)) (mfI] (x;) — infl (Xl)) (supl (%) —

suij (Xi)) + (Lan (x;) — infF (x)) + (supF (x;) —

supF (x)) ]}
2. The normalized Euclidean distance dyp is defined by:
1 . om 2 '
dnep= {p 5) 1o, ) [(lnfTA(Xi) - 1nfT]’3(xi)) + (supTA(xi) _
i) + (infD il ()
supTg (xi)) (mﬂA(xi) — mﬂB(xi)) (supl (%) —
suijB(Xi)) + (mfF (x;) — 1anf3(xl)) + (supF (x;) —
. 21)7
supF5(x)) ]}2
However, the difference of importance is considered in the elements in the
universe. Therefore, we need to consider the weights of the elements x; (i=1,

2,.., n) into account. In the following, we defined the weighted Euclidean
distance with w={w; ,wy,...w,}
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3. The weighted Euclidean distance dy,p is defined by:

1 1 . o . o 2
dWEDz{; Z?:la 'Y [(lnsz\(Xi) - me1]3 (Xi)) +

. . 2 . . 2
(suij\(Xi) — supT]]3 (Xi)) + (inflk(xi) — inﬂ}3 (Xi)) +

i . 2 i . 2
(suprA(xi) - suplg(xi)) + (infFy(x;) — infFL(x)) +

j i (1) :
(supF)\ (x;) — supFL(x)) ]}

If wi= (i, £ yener l), then (3) reduces to the Normalized Euclidean distance.
n n n

Example 4.4. Let X={x4, X,} be the universe and A and B are two n- valued
interval neutrosophic sets

A={<x.{[.1,.2], [.2, .31}{[.4, .5], [.6, .71}{[.5, .6], [.7, .8]}>,
<x,,{[.1, 4], [.1, .3]},{[.6,-8], [.4, .6]}{[.3, 4], [.2, .7]}>}
and
B={<x,{[.3,.7], [.3, .51}{[.2, .4], .3, .5]}{[.3, -6], [.2, .7]}>,
<x,,{[.3,.5], [.4, .6]},{[.3,-5], [.4, .5]}{[.3, 4], [.1, .2]}>},
then, we have dgp=0.125.

Definition 4.5. Let A, B two n-valued interval neutrosophic sets. Then based on
Broumi et al.[11] we proposed a generalized interval valued neutrosophic
weighted distance measure between A and B as follows:

1vp 1yn - om - N

dA(A,B):; j=1g, &i=1 Wi |1nfTA(Xi) —lnfTB(Xi)l +
. . 2 . - 1

|supT (x;) — supTy(x;)| + [infT}(x;) — infI5(x)| +

. . A . .2
|sup I, (x;) — sup I4(x;)| + |[inf F}(x;) — inf Fy(x)| +

|sup F,(xj) — sup FB(X)|

11 : .
If 2=1 and w;= (%, — ,...,;), then the above equation reduces to the normalized
Hamming distance.

11 1

If A=2 and wi:(;, — ,...,;),then the above equation reduces to the normalized

Euclidean distance.

Theorem 4.6. The defined distance dg(A, B) between NVINSs A and B satisfies
the following properties (1-4), for (k=HD, NHD, ED, NED);

1. dy(A,B) =0,
2. dx(A,B) =0ifand only if A = B; for all A,B € NVINSs,
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3. dg(A,B) =dg(B, A),
4. If ACBCC, forA, B, Ce NVINSs, then di(A, C) = dy(A, B) and
di (A, C) = di(B, 0).

Proof: it is easy to see that dy (A, B) satisfies the properties (D1)-(D3).
Therefore, we only prove (D4). Let A € BC C, then,

inf T);(xi) < inf Té(xi) < inf Té(xi) ,supf Tj\(xi) < sup Té(xi) <
sup TL(x;),inf I (x;) = inf I;(x;) = inf IL(x;) ,supf I} (x;) =
sup Ig(xi) > sup I]C(Xi),

and
inf FL(xi) > inf Fg(xi) > inf ch(xi),supf FL(Xi) > sup FL(xi) >
sup F](;(Xi);

for k= (HD, NHD, ED, NED), we have
|infT11(xi) — infTé(xi)|k < |infTi(xi) — infTé(xi)|k,|supTL(xi) —
supT];(xi)|k < |suij\(xi) — supT(j:(Xi)|k,
linfT) (x) — infT% (x| < [infT (x;) — infTi(xp)| | supT (x;) —
supT, (x| < [supT)(x) — supTi (x|
linf I, (x;) — infIL,(x)|" < [inf D, (x) — inf B (x| [sup Ty (x;) —
sup IL(xi)|k < |sup Ii\(xi) — sup ch(xi)|k,
|ianjB(xi) — infli:(xi)|k < |inf IL(xi) — ianjC(xi)|k,|sup IL(xi) —
sup IjB(xi)|k < |sup IL(xi) — sup Ié(xi)|k
|inf IL(xi) — ianjB(Xi)|k < |inf IL(xi) — infljc(xi)|k,|sup IL(Xi) —
sup IL(xi)|k < |sup Ii\(xi) — sup ch(xi)|k,
|ian;3(Xi) - inflz:(xi)|k < |inf IL(Xi) — ianjC(xi)|k,|sup IL(Xi) —
sup (x| < [sup 1 (x) — sup 1 (xp)[
|inf FL(xi) — inf FjB(Xi)|k < |inf Fi\(xi) — inf ch (xi)|k,|sup FL(xi) —
sup Fg (xi)|k < |sup FL(xi) — sup ch (xi)|k,
|inf FL (x;) — inf ch(xi)|k < |inf F),(x;) — inf ch(xi)|k,
|sup FL (x;) — sup FL (Xi)lk < |sup FL(xi) — sup ch (xi)|k

Hence
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. . k )
|infT] (x;) — infT} (X1)| +|supT] (x;) — supTJ (X1)| +|1nfl (x;) —
infl! (X1)| +|supl (x;) — sup I (X1)| +|1an (x;) —
inf F! (x1)| +|sup F A(Xi) —sup Fl (X1)| < |1nfT] (x;) —
infT) e (xy)| +|sup (xl) — supT] (x| +|1an (x;) —
inf 1 L) +|supI (x;) —sup I L) +|1an (x;) —
inf F/ (x1)| +|sup F) A(Xi) — sup F/ (X1)|
P
EZ—Zhnij (x;) — infT! (X-)'k + |su T (x;) —su T! (x-)|k
6 A\Xi B\Xi P Ia X pIg\Xj
pj=1 i=1
- k
+ |1nfl (x;) — inflg(xi)|
- k
+ |sup ) A(xi) —sup I]B(Xi)|
: k
+ |1an (xi) — inf Fy(xy)|

+ |sup F (xl) —sup F! (xl)|
p

- - k
;z gZhnij\(xi) — infT) (x,)|
i=1

j=1
+ |suij\(Xi) - SupT(j; (Xi)|k
+ |1nfl (x;) — inf D (X1)|k
+ |sup I, (x;) — sup I (X1)|
+ |1an (x;) —inf F (X1)|
+ |sup F (xp) — sup FL(x)|

Then dy (A, B) < d (A, C)

|ian‘]j3 (x;) — infT(j: (xi)|k+|supT]j3 (x;) — supTé (xi)|k+|inf IL (%) —
infljc(xi)|k+|sup I]]'3 (x;) — sup ch (Xi)|k+|inf FL (x;) —

inf ch(xi)|k+|sup FL(XI) — sup F (x1)|k < |inij (x;) —

infT (x1)|k+|supTA(xl) supT] (x| +|1an (%) —

inf 1 L(xp)| +|sup I L (x{) — sup ) L(xp)] +|1an (%) —

inf F]C(Xl)l +|sup F A(xi) —sup F (x1)|
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n
. . k : : k
Z|infT]]3(xi) — infTé(xi)| + |supT113(xi) — supTé(xi)|

=1

| =

14
=1

S| -

j
, , k , , k
+ |infl}3(xi) - infllc(xi)| + |sup IL(x;) — sup IJC(Xi)|
: , k : : k
+ |inf F}B (x;) —inf F’C(xi)| + |sup F}a (x;) — sup F]C (xi)|

11, TN
< - E — E |1nfTA(Xi)—1nch(xi)|

P46 ¢

j=1 =1

+ |suij\(xi) — supTé(xi)|k + |inf IL(Xi) — ianjC(Xi)|k
+ |sup Ii\(xi) — sup ch(xi)|k + |inf Fi\(xi) —inf ch(xi)|k
+ [sup P (xp) — sup ()|

Then dy (B, C) < di (A, C).

Combining the above inequalities with the above defined distance formulas
(1)-(4), we can obtain that dy (A, B) < di (A, C) and dy (B, C) < dk (A, C) for k=
(HD, NHD, ED, NED).

Thus the property (D4) is obtained.

It is well known that similarity measure can be generated from distance
measure. Therefore we may use the proposed distance measure to define
similarity measures.

Based on the relationship of similarity measure and distance we can define
some similarity measures between NVINSs A and B as follows:

Definition 4.7. The similarity measure based on syyins(A, B)= 1-di (A, B),

snvins (AB) is said to be the similarity measure between A and B, where A, B
€ NVINS.

Theorem 4.8. The defined similarity measure syyins(A, B) between NVINSs
A and B satisfies the following properties (1-4),

1. snvins(A, B) = snvins(B, A).

2. syvins(A, B) = (1, 0, 0)=1 .if A=B for all A, B € NVINSs.

3. snvins(A, B) €[0,1]

4. If ACBCcC for all A, B, C € NVNSs then syyins(A, B)=>
snvins (A, €) and syvins(B, €) = snvins(A, €).

From now on, we use

A= [infT1(x),sup T (x)], [infI}(x),sup I} (x)],)
e [inf Fi(x), sup Fi(x)] "
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([info (x),supTF (x)], [infI} (x),sup I¥ (x)],>)_X cE)
[inf Fg (x), sup Ff (x)]), .

instead of

(x, ([FTA G sup THCIL linf T} (), sup TE (AL, -,
' [inf T (x), sup T} ()] '

[infI}(x),sup I} (x)], [inf I (x),sup I2(x)], ...,
< [inf I} (x), sup I] (x)] >'

([inf F(x),sup Fi(x)], ([inf FZ(x), sup FZ(x)], ...,

([inf EP (x), sup Ff (x)]):x € E}.

5 Medical Diagnosis using NVINS

In what follows, let us consider an illustrative example adopted from
Rajarajeswari and Uma [32] with minor changes and typically considered in
[17,20,37]. Obviously, the application is an extension of intuitionistic fuzzy
multi sets [17,20,32,33,34].

"As Medical diagnosis contains lots of uncertainties and increased volume of
information available to physicians from new medical technologies, the
process of classifying different set of symptoms under a single name of disease
becomes difficult. In some practical situations, there is the possibility of each
element having different truth membership, indeterminate and false
membership functions. The proposed similarity measure among the patients
Vs symptoms and symptoms Vs diseases gives the proper medical diagnosis.
The unique feature of this proposed method is that it considers multi truth
membership, indeterminate and false membership. By taking one time
inspection, there may be error in diagnosis. Hence, this multi time inspection,
by taking the samples of the same patient at different times gives best
diagnosis" [32].

Now, an example of a medical diagnosis will be presented.

Example 5.1. Let P={P1,P2,P3} be a set of patients, D={Viral Fever, Tuberculosis,

Typhoid, Throat disease} be a set of diseases and S={Temperature, cough,
throat pain, headache, body pain} be a set of symptoms. Our solution is to
examine the patient at different time intervals (three times a day), which in
turn give arise to different truth membership, indeterminate and false
membership function for each patient.
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Table I: Q (the relation Between Patient and Symptoms)

Q | Temperature Cough Throat pain Headache Body Pain

Py | [3. 404510371 | [L.2].13.61.1.6.8] | [0.51.12.61.00.4] | [.2.31.[3.51.00.7] | [0.41.[6..71.[.2.5]
[0.3LL1.3L[0.5] | [0.5LL4.TLL4.5] | [3.41.[2.3.0.3.4] | [4.5).[4..70.[3..6] | [.2.4].[4..5].[.1..2]
[0.6].[.4.51.[3.4] | [2.3100.5].[4.6] | [0.7103.7.03..5] | [2.61.00..61.03.4] | [1.3].[.1.3].[.2.3]

P2 | [2.31.[4 510121 | [5.7000.41.07.8] | [.5.61.00.6).12.3] | [2.5.[5..6L.[.1.5] | [.2.4.[4.6][.1.4]
[4.5]1[2.5100.3] | [6.7100..51.[4.5] | [4.7].[4..61[3.4] | [2.3].0.2..51.[.5..6] | [0..5].[.2.41.[.5..6]
[6.7.04.5104.5] | [4.61.[2.71.[0.3] | [1.31.[2.30.05.7] | [1.3].03.41.[4..5] | [.5..70.00..70.[.2.4]

P3 | [L.3L[0.5L[4.6] | [2.3).[0.7L[L4] | [2.4].03.6][0.6] | [2.3).[5..6).[4.5) | [0..6].[4..7].[2.3]
[1 21[3.4102.5] | [5.6100.3].03..5] | [4.51.00.31.03.4] | [2.41.00.41.02.7] | [.2.31.[.2.3].[.1.2]
[2.4].04.5.03.7] | [3.51.02.50.04..6] | [5.70.04..61.03..7] | [4..51.0.2..31.[.3..5] | [.0..6].[.2..41.[4..6]

Let the samples be taken at three different timings in a day (in
08:00,16:00,24:00).

Table II: R (the relation among Symptoms and Diseases)
R Viral Fever Tuberculosis Typhoid Throat diseas
Temerature [.2.4].[3..51.[.3.7] | [.L.4].[2..6].[.6..7] | [0..3].[.4..6].[0..2] [.3..4].[.2..5].[0..6]

Cough [2.4]).[2..3].[0.5] | [.3.4].[2..5].[.7..8] | [.3.4].[.2.3].[.1..2] | [4..5].[.1..3].[0..5]

Throat Pain [0..4].[.2.4].[.2.4] [0..2.[.3..6].[.6..7]

L2L451[3.4 | [2.41[2.5.03.7]

Headache [4.7000.3).[3.5] | [L.2100.50.00.6] | [3.41.[2.31.[.2.5] | [0.3].[3.6].[2.5]

Body Pain [.1.4].[2..5].[.3..4] | [.5.7].[4..5].[.2.5] [2.3).[2.4].[.2.3] | [0.4].[.1.2].[.1.3]

Table III: The Hamming distance between NVINS Q and R

Hamming Viral Fever Tuberculosis Typhoid Throat diseas
Distance

P, 0.1511 0.1911 0.1678 0.1689

P, 0.1911 0.2089 0.1789 0.1644

P; 0.1433 0.1967 0.1533 0.1456

Table IV: The similarity Measure between NVINS Q and R

Similarity Viral Fever Tuberculosis Typhoid Throat diseas
measure

Py 0.8489 0.8089 0.8322 0.8311

P, 0.8089 0.7911 0.8211 0.8356

P, 0.8567 0.8033 0.8467 0.8544

The highest similarity measure from the Table IV gives the proper medical
diagnosis. Therefore, patient P1 suffers from Viral Fever, P2 suffers from Throat
disease and P3 suffers from Viral Fever.

6 Conclusion

In this paper, we give n-valued interval neutrosophic sets and desired
operations such as; union, intersection, addition, multiplication, scalar
multiplication, scalar division, truth-favorite and false-favorite. The concept of
n-valued interval neutrosophic set is a generalization of interval valued
neutrosophic set, single valued neutrosophic sets and single valued
neutrosophic multi sets. Then, we introduce some distances between n-valued
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interval neutrosophic sets (NVINS) and propose an efficient approach for
group multi-criteria decision making based on n-valued interval neutrosophic
sets. The distances have natural applications in the field of pattern recognition,
feature extraction, region extraction, image processing, coding theory etc.
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Abstract

Neutrosophic numbers easily allow modeling uncertainties of prices universe,
thus justifying the growing interest for theoretical and practical aspects of
arithmetic generated by some special numbers in our work. At the beginning of this
paper, we reconsider the importance in applied research of instrumental
discernment, viewed as the main support of the final measurement validity.
Theoretically, the need for discernment is revealed by decision logic, and more
recently by the new neutrosophic logic and by constructing neutrosophic-type
index numbers, exemplified in the context and applied to the world of prices,
and, from a practical standpoint, by the possibility to use index numbers in
characterization of some cyclical phenomena and economic processes, e.g.
inflation rate. The neutrosophic index numbers or neutrosophic indexes are
the key topic of this article. The next step is an interrogative and applicative one,
drawing the coordinates of an optimized discernment centered on neutrosophic-
type index numbers. The inevitable conclusions are optimistic in relation to the
common future of the index method and neutrosophic logic, with statistical and
economic meaning and utility.

Keyword

neutrosophic-tendential fuzzy logic, neutrosophic logic, neutrosophic index, index
statistical method, price index, interpreter index, neutrosophic interpreter index.

1 Introduction

Any decision, including the statistical evaluation in the economy, requires
three major aspects, distinct but interdependent to a large extent, starting with
providing the needed knowledge to a certain level of credibility (reducing
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uncertainty, available knowledge being incomplete and unreliable in different
proportions, and the condition of certainty rarely being encountered in
practice, the determinism essentially characterizing only the theory), then by
the discernment of chosing the decision option, and, finally, by obtaining the
instrumental and quantified consensus. In the hierarchy of measurement
results qualities, the discernment of instrumental choice - by selection of the
tool, of the technics, or of the method from the alternative options that
characterizes all available solutions - should be declared the fundamental
property of applied research. Moreover, the discernment can be placed on a
scale intensity, from experimental discernment or decison discernment,
selected according to the experience acquired in time, then ascending a “ladder”
revealed by perpetual change of the continuous informational discernment or
by the discernment obtained through knowledge from new results of research
in specific activity, until the final stage of intuitional discernment (apparently
rational, but mostly based on intuition), in fact the expression of a researcher's
personal reasoning.

In summary, the process of making a measurement decision, based on a
spontaneous and intuitive personal judgment, contains a referential system
that experiences, more or less by chance, different quantifying actions
satisfying to varying degrees the needs of which the system is aware in a fairly
nuanced manner. The actions, the tools, the techniques and the measurement
methods that are experienced as satisfactory will be accepted, resumed, fixed
and amplified as accurate, and those that are experienced as unsatisfactory
will be remove from the beginning. A modern discernment involves
completing all the steps of the described “ladder”, continuously exploiting the
solutions or the alternatives enabling the best interpretation, ensuring the
highest degree of differentiation, offering the best diagnostic, leading to the
best treatment, with the most effective impact in real time. However, some
modern measurement theories argue that human social systems, in conditions
of uncertainity, resort to a simplified decision-making strategy, respectively
the adoption of the first satisfactory solution, coherentely formulated,
accepted by relative consensus (the Dow Jones index example is a perennial
proof in this respect).

Neutrosophic logic facilitates the discernment in relation to natural language,
and especially with some of its terms, often having arbitrary values. An
example in this regard is the formulation of common market economies:
“inflation is low and a slight increase in prices is reported,” a mathematical
imprecise formulation since it is not exactly known which is the percentage of
price increase; still, if it comes about a short period of time and a well defined
market of a product, one can make the assumption that a change to the current
price is between 0% and 100% compared to the last (basic) price.
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A statement like - “if one identifies a general increase in prices close to zero”
(or an overall increase situated between three and five percent, or a general
increase around up to five percent), “then the relevant market enjoys a low
inflation” - has a corresponding degree of truth according to its interpretation
in the context it was issued. However, the information must be interpreted
accordingly to a certain linguistic value, because it can have different
contextual meanings (for Romania, an amount of 5% may be a low value, but
for the EU even an amount of five percent is certainly a very high one).

Neutrosophic logic, by employing neutrosophic-type sets and corresponding
membership functions, could allow detailing the arrangement of values
covering the area of representation of a neutrosophic set, as well as the
correspondence between these values and their degree of belonging to the
related neutrosophic set, or by employing neutrosophic numbers, especially
the neutrosophic indexes explained in this paper; and could open new applied
horizons, e.g. price indexes that are, in fact, nothing else than interpreters, but
more special - on the strength of their special relationship with the reality of
price universe.

2 Neutrosophic Logic

First of all, we should define what the Logic is in general, and then the
Neutrosophic Logic in particular.

Although considered elliptical by Nae Ilonescu, the most succinct and
expressive metaphorical definition of the Logic remains that - Logic is “the
thinking that thinks itself.”

The Logic has indisputable historical primacy as science. The science of Logic
seeks a finite number of consequences, operating with sets of sentences and
the relationship between them. The consequence’s or relationship’s substance
is exclusively predicative, modal, or propositional, such generating Predicative
Logic, Modal Logic, or Propositional Logic.

A logic calculation can be syntactic (based on evidence) and semantic (based
on facts). The Classical Logic, or the Aristotelian excluded middle logic,
operates only with the notions of truth and false, which makes it inappropriate
to the vast majority of real situations, which are unclear or imprecise.
According to the same traditional approach, an object could either belong or
not belong to a set.

The essence of the new Neutrosophic Logic is based on the notion of vagueness:
a neutrosophic sentence may be only true to a certain extent; the notion of
belonging benefits from a more flexible interpretation, as more items may
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belong to a set in varying degrees. The first imprecision based logic (early
neutrosophic) has existed since 1920, as proposed by the Polish
mathematician and logician Jan Lukasiewicz, which expanded the truth of a
proposition to all real numbers in the range [0; 1], thus generating the
possibility theory, as reasoning method in conditions of inaccuracy and
incompleteness [1].

In early fuzzy logic, a neutrosophic-tendential logic of Lukasiewicz type, this
paradox disappears, since if ¢ has the value of 0.5, its own negation will have
the same value, equivalent to . This is already a first step of a potentially
approachable gradation, by denying the true statement (1) by the false
statement (¢) and by the new arithmetic result of this logic, namely the new
value 1- .

In 1965, Lotfi A. Zadeh extended the possibility theory in a formal system of
fuzzy mathematical logic, focused on methods of working using nuanced terms
of natural language. Zadeh introduced the degree of membership/truth (t) in
1965 and defined the fuzzy set.

Atanassov introduced the degree of nonmembership/falsehood (f) in 1986
and defined the intuitionistic fuzzy set.

Smarandache introduced the degree of indeterminacy/neutrality (i) as
independent component in 1995 (published in 1998), and defined the
neutrosophic set. In 2013, he refined the neutrosophic set to n components:

tl! tZthr ill iz,...,ik; fl,fz,...,fz,
wherej+k+1=n>3.

The words “neutrosophy” and “neutrosophic” were coined/invented by F.
Smarandache in his 1998 book. Etymologically, “neutro-sophy” (noun)
[French neutre <Latin neuter, neutral, and Greek sophia, skill/wisdom] means
“knowledge of neutral thought”, while “neutrosophic” (adjective), means
“having the nature of, or having the characteristic of Neutrosophy”.

Going over, in fuzzy set, there is only a degree (percentage) of belonging of an
element to a set (Zadeh, 1965). Atanassov introduced in 1986 the degree
(percentage) of non-belonging of an element to a set, and developed the
intuitionistic fuzzy set. Smarandache introduced in 1995 the degree
(percentage) of indeterminacy of belonging, that is: we do not know if an
element belongs, or does not belong to a set), defining the neutrosophic set.

The neutrosophy, in general, is based on the neutral part, neither membership
nor non-membership, and in neutrosophic logic, in particular: neither true, nor
false, but in between them. Therefore, an element x(t,i, f) belongs to a
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neutrosophic set M in the following way: x is t% in M, i% indeterminate
belonging, and f% does not belong. Or we can look at this issue in probabilistic
terms as such: the chance for the element x to belong to the set M is t%, the
indeterminate chance to belong is i%, and the chance not to belong is f%.

In normalized cases,t + i+ f = 1 (100%), but in general, if the information
about the possibility of membership of the element x in the set M is
independently sourced (not communicating with one another, so not
influencing each other), thenitmay bethat0 <t +i+ f < 3.

In more general or approximated cases, t, i, f can be included intervals in [0,
1], or even certain subsets included in [0, 1], i.e. when working with inaccurate,
wrong, contradictory, vague data.

In 1972, S.S.L. Chang and L. A. Zadeh sketched the use of fuzzy logic (also of
tendential-neutrosophic logic) in conducting technological processes by
introducing the concept of linguistic variables defined not by numbers, but as
a variable in linguistic terms, clearly structured by letters of words. The
linguistic variables can be decomposed into a multitude of terms, covering the
full range of the considered parameter.

On the other hand, unlike the classical logic (Aristotelian, mathematic and
boolean), which work exclusively with two exact numerical values (0 for false
and 1 for true), the fuzzy early-neutrosophic logic was able to use a wide
continuous spectrum of logical values in the range [0, 1], where 0 indicates
complete falsity, and 1 indicates complete truth. However, if an object, in
classical logic, could belong to a set (1) or not belong to a set (0), the
neutrosophic logic redefines the object's degree of membership to the set,
taking any value between 0 and 1. The linguistic refinement could be fuzzy
tendential-neutrosophically redefined, both logically and mathematically, by
inaccuracy, by indistinctness, by vagueness. The mathematical clarification of
imprecision and vagueness, the more elastic formal interpretation of
membership, the representation and the manipulation of nuanced terms of
natural language, all these characterize today, after almost half a century, the
neutrosophic logic.

The first major application of the neutrosophic logical system has been carried
out by L.P. Holmblad and ].J. Ostergaard on a cement kiln automation [2], in
1982, followed by more practical various uses, as in high traffic intersections
or water treatment plants. The first chip capable of performing the inference
in a decision based on neutrosophic logic was conducted in 1986 by Masaki
Togai and Hiroyuki Watanabe at AT&T Bell Laboratories, using the digital
implementation of min-max type logics, expressing elementary union and
intersection operations [3].
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A neutrosophic-tendential fuzzy set, e.g. denoted by F, defined in a field of
existence U, is characterized by a membership function uF(x) which has
values in the range [0, 1] and is a generalization of the concise set [4], where
the belonging function takes only one of two values, zero and one. The
membership function provides a measure of the degree of similarity of an
element U of neutrosophic-tendential fuzzy subset F. Unlike the concise sets
and subsets, characterized by net frontiers, the frontiers of the neutrosophic-
tendential fuzzy sets and subsets are made from regions where membership
function values gradually fade out until they disappear, and the areas of
frontiers of these nuanced subsets may overlap, meaning that the elements
from these areas may belong to two neighboring subsets at the same time.

As a result of the neutrosophic-tendential fuzzy subset being characterized by
frontiers, which are not net, the classic inference reasoning, expressed by a
Modus Ponens in the traditional logic, of form:

(p— (p—q))—q,ie:  premise:if p, then q

fact: p
consequence: q,

becomes a generalized Modus Ponens, according to the neutrosophic-
tendential fuzzy logic and under the new rules of inference suggested from the
very beginning by Lotfi A. Zadeh [5], respectively in the following expression:

premise: ifxis A, then y is B
fact: xis A’
consequence: y is B, where B'= A’0o(A— B).

(Modus ponens from classical logic could have the rule max-min as
correspondent in neutrosophic-tendential fuzzy logic).

This inference reasoning, which is essentially the basis of the neutrosophic-
tendential fuzzy logic, generated the use of expression “approximate
reasoning”, with a nuanced meaning. Neutrosophic-tendential fuzzy logic can
be considered a first extension of meanings of the incompleteness theory to
date, offering the possibility of representing and reasoning with common
knowledge, ordinary formulated, therefore having found applicability in many
areas.

The advantage of the neutrosophic-tendential fuzzy logic was the existence of
a huge number of possibilities that must be validated at first. It could use
linguistic modifiers of the language to appropriate the degree of imprecision
represented by a neutrosophic-tendential fuzzy set, just having the natural
language as example, where people alter the degree of ambiguity of a sentence
using adverbs as incredibly, extremely, very, etc. An adverb can modify a verb,
an adjective, another adverb, or the entire sentence.
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After designing and analyzing a logic system with neutrosophic-tendential
fuzzy sets [6], one develops its algorithm and, finally, its program
incorporating specific applications, denoted as neutrosophic-tendential fuzzy
controller. Any neutrosophic-tendential fuzzy logic consists of four blocks: the
fuzzyfication (transcribing by the membership functions in neutrosophic input
sets), the basic rules block (which contains rules, mostly described in a
conditional manner, drawn from concise numerical data in a single collection
of specific judgments, expressed in linguistic terms, having neutrosophic sets
associated in the process of inference or decision), the inference block
(transposing by neutrosophic inferential procedures nuanced input sets into
nuanced output sets), and the defuzzyfication (transposing nuanced output
sets in the form of concise numbers).

The last few decades are increasingly dominated by artificial intelligence,
especially by the computerized intelligence of experts and the expert-systems;
alongside, the tendential-neutrosophic fuzzy logic has gradually imposed itself,
being more and more commonly used in tendential-neutrosophic fuzzy control
of subways and elevators systems, in tendential-neutrosophic fuzzy-
controlled household appliances (washing machines, microwave ovens, air
conditioning, so on), in voice commands of tendential-neutrosophic fuzzy
types, like up, land, hover, used to drive helicopters without men onboard, in
tendential-neutrosophic fuzzy cameras that maps imaging data in medical lens
settings etc.

In that respect, a bibliography of theoretical and applied works related to the
tendential-neutrosophic fuzzy logic, certainly counting thousands of articles
and books, and increasing at a fast pace, proves the importance of the
discipline.

3 Construction of Sets and Numbers of Neutrosophic Type

in the Universe of Prices heading

As it can be seen from almost all fields of science and human communication,
natural language is structured and prioritized through logical nuances of terms.
Valorisation of linguistic nuances through neutrosophic-tendential fuzzy logic,
contrary to traditional logic, after which an object may belong to a set or may
not belong to a set, allow the use with a wide flexibility of the concept of
belonging [7].

Neutrosophic-tendential fuzzy numbers are used in practice to represent more
precisely defined approximate values. For example, creating a budget of a
business focused on selling a new technology, characterized by uncertainty in
relation to the number of firms that have the opportunity to purchase it for a
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prices ensuring a certain profit of the producer, a price situated between 50
and 100 million lei, with the highest possible range in the interval situated
somewhere between 70 and 75, provides, among other things, a variant to
define concretely a neutrosophic-tendential fuzzy number Z, using the set of
pairs (offered contractual price, possibility, or real degree of membership),
that may lead to a steady price: Z = [(50, 0), (60, 0.5), (70, 1), (75, 1), (85; 0.5)
(100, 0)].

Given that X represents a universe of discourse, with a linguistic variable
referring to the typical inflation or to a slight normal-upward shift of the price
of a product, in a short period of time and in a well-defined market, specified

by the elements x, it can be noted Ap, where Ap=(p1-po)/po. In the following
exemplification, the values of Ap are simultaneously considered positive for

the beginning and also below 1 (it is not hypothetically allowed, in a short
period of time, a price increase more than double the original price,

respectively the values of Ap are situated in the interval between 0 and 1). A

neutrosophic-tendential fuzzy set A of a universe of discourse X is defined or it
is characterized by a function of belonging pA(x) or pA(Ap), associating to each

item x or Ap a degree of membership in the set 4, as described by the equation:

HA(x): X —[0,1] or pA(Ap): X —[0,1]. (D

To graphically represent a neutrosophic-tendential fuzzy set, we must first
define the function of belonging, and thus the solution of spacial unambiguous

definition is conferred by the coordinates x and p A (x) or Apand p A (Ap):
A={[x,nA (x)] | x< [0,1]}
or A={[ap,nA(2p)] | 2p € [0,1]} (2)
A finite universe of discourse X={x1,x2,....Xn} or X={Ap1,Ap2,...,Apn} can redeem,
for simplicity, a notation of type:
A = {u1/x1+u2/X2 + ... +in/Xn},
respectively A ={ui/Ap1+ p1/Apz+ ... +Un/Apn}.

For example, in the situation of linguistic variable “a slight increase in price,”
one can detail multiple universes of discourse, be it a summary one X = {0, 10,
20, 100}, be it an excessive one X = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100},
the breakdowns being completed by membership functions for percentage

values of variable Ap, resorting either to a reduced notation:
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A=[0/1+10/0,9+20/0,8+100/0],

or to an extended one:

A=[0/1+10/0,9 +20/0,8 + 30/0,7 + 40/0,6 + 50/0,5 + 60/0,4 +
70/0,3 +80/0,2 + 90/0,1 + 100/0].

The meaning of this notations starts with inclusion in the slight increase of a
both unchanged price, where the difference between the old price of 20 lei and
the new price of a certain product is nil, thus the unchanged price belonging
100% to the set of “slight increase of price”, and of a changed price of 22 lei,

where Ap = (p1- po) / po = 0,1 or 10%, therefore belonging 90% to the set of

“slight increase of price”, ..., and, finally, even the price of 40 lei, in proportion
of 0% (its degree of belonging to the analyzed set being 0).

Let us represent graphically, in a situation of a summary inflationary
discourse:

0,9 -
0,8 -
0,7 -
0,6 -
0,5 -
04 -
0,3 -
0,2 -
0,1 -

0 -

10 |

100

Graphic 2. Neutrosophic-tendential excesively described fuzzy set.

To define a neutrosophic number, some other important concepts are required
from the theory of neutrosophic set:

= the support of A or the strict subset of X, whose elements have
nonzero degrees of belonging in A:

supp(4) = {x€ X| nA (x) > 0}

or supp (4) ={Ape X|pA (ap) >0}, (3)
the height of A or the highest value of membership function [8]:
h(A4) = sup pA(x),where xe X

or h(4) = sup pA(Ap), where Ape X, (4)

the nucleus of A or the strict subset of X, whose elements have
unitary degrees of belonging in A:

n(4) = {xe X|nA(x)=1}
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or  n(4)={Ape X|pA(ap)=1}, (5)

= the subset A of subset B of neutrosophic-tendential fuzzy type:
for A and B neutrosophic subsets of X, A becomes a subset of B if

nA (X) < p B (X), in the general case of any x€ X, (6)

= neutrosophic-tendential fuzzy subsets equalto Xor A=B < p A
(X)=pB(X),ifACBsiBCA. (7)

The first three operations with neutrosophic-tendential fuzzy set according to
their importance are broadly the same as those of classical logic (reunion,
intersection, complementarity etc.), being defined in the neutrosophic-
tendential fuzzy logic by characteristic membership functions. If A and B are
two fuzzy or nuanced neutrosophic-tendential subsets, described by their
membership functions pA(x) or uB(x), one gets the following results:

a. The neutrosophic-tendential fuzzy reunion is defined by the
membership function: pAUB(x) = max[pA(x), uB(x)];

b. The neutrosophic-tendential fuzzy intersection is rendered
by the expression: uJANB(X) = min[pA(x), uB(x)];

C. The neutrosophic-tendential fuzzy complementarity is
theor-etically identic with the belonging function: uB(x) = 1-
uB(x).

The neutrosophic-tendential fuzzy logic does not respect the classical
principles of excluded middle and noncontradiction. For the topic of this
article, a greater importance presents the arithmetic of neutrosophic-
tendential fuzzy numbers useful in building the neutrosophic indexes and
mostly the interpret indexes.

The neutrosophic-tendential fuzzy numbers, by their nuanced logic, allow a
more rigorous approach of indexes in general and, especially, of interpreter
indexes and price indexes, mathematically solving a relatively arbitrary
linguistic approach of inflation level.

The arguments leading to the neutrosophic-type indexes solution are:

1. The inflation can be corectly defined as the rate of price growth (Ap),
in relation to either the past price, when Ap = (p1-po) / po, or an

average price, and then Ap = (p1-pm) / pm (the index from which this

rate will be extracted, just as inflation is extracted from IPCG as soon
as it was quantified, will be a neutrosophic-type index number purely
expressing a mathematical coefficient).
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2. The denominator or the reference base of statistical index, from which
the rate defining the inflation is extracted, is the most important value;
the optimal choice acquires a special significance, while the
numerator reported level of statistical index is the signal of variation
or stationarity of the studied phenomenon. Similarly, in the nuanced
logic of neutrosophic-tendential fuzzy numbers, the denominator

value of Ap (either po, or pm) still remains essential, keeping the

validity of the index paradox, as a sign of evolution or variation, to be
fundamentally dependent on denominator, although apparently it
seems to be signified by the nominator.

3. The prices of any economy can be represented as a universe of
discourse X, with a linguistic variable related to typical inflation or to
a slight normal-upward shift of a product price, in a short period of
time and in a well-defined market, specified by the elements x, the

variable being denoted by Ap, where Ap = (p1-po) / po or Ap = (p1-pm)
/ Pm.

4. The values of Ap can be initially considered both positive and

negative, but still smaller than 1. This is normal and in fact a price
increase more than double the original price can not even be admitted
in a short interval of time (usually a decade or a month), respectively

the values of Ap are initially placed in the interval between -1 and 1,

so that in the end XAp/n, where n represents the number of

registered prices, the overwhelming majority of real cases to belong
to the interval [0;1].

5. All operations generated by the specific arithmetic of constructing a
neutrosophic number or a neutrosophic-type index are possible in
the nuanced logic of neutrosophic numbers, finally being accepted
even negative values or deflation processes (examples 1 and 2).

6. The equations with neutrosophic-tendential fuzzy numbers and the
functions specified by neutrosophic-tendential fuzzy numbers offer a
much better use in constructing the hedonic functions - that were the
relative computing solution of price dynamics of new products
replacing in the market the technologically obsolete products, a
solution often challenged in contemporary statistics of inflation.
Example 3 resolves more clearly the problem of products substitution
due to new technologies, but placing the divergences in the plane of
correctness of the functions specified by neutrosophic numbers,
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regarding the measurement of price increases or of inflationary
developments.

7. Some current calculation procedures capitalize the simplified
notation

A= {u1/x1+p2/x2+...+1n/Xn},
respectively A={p1/Ap1+p1/Apz+...+un/ Apn}.

Even the calculation formula of IPCG of Laspeyres type constitutes a
way to build an anticipation method of constructing neutrosophic-

tendential fuzzy numbers. Thus IPCG = ZIp(quO) , where
Z(Poqo)
(Ppdgp)
Z(Poq())
average price and Cp = weighting coefficient, finally becomes IPCG =

=C_where IP =the index of month ¢t compared to the

>: IpxCp, for each item or group of expenditures being required the

values Ap and Cp.

4 Index Numbers or Statistical Indexes

In Greek, deixis means “to indicate”, which makes the indicator to be that which
indicates (etymologically). An indicator linguistically defines the situation, the
time and the subject of an assertion. The concept of linguistic indicator
becomes indicial exclusively in practical terms, respectively the pragmatism
turns an indicator into an index as soon as the addressee and the recipient are
clarified. The indicial character is conferred by specifying the addressee, but
especially the recipient, and by determining the goals that created the
indicator. The indicial is somehow similar to the symptom or to the syndrome
in an illness metaphor of a process, phenomenon or system, be it political,
economic or social.

The symptom or the factor analysis of illness coincides with its explanatory
fundamental factor, and a preventive approach of the health of a process, a
phenomenon or a system obliges to the preliminary construction of indexes.
The index is also a specific and graphic sign which reveals its character as
iconic or reflected sign. The iconicity degree or the coverage depth in specific
signs increases in figures, tables, or charts, and reaches a statistical peak with
indexes. The statistical index reflects more promptly the information needed
for a correct diagnosis, in relation to the flow chart and the table. The systemic
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approach becomes salutary. The indexes, gathered in systems, generates the
systematic indicial significance, characterized by:

* in-depth approach of complex phenomena,

* temporal and spatial ongoing investigation,

» diversification of recipients,

» extending intension (of sense) and increasing the extension
coverage (of described reality),

» gradual appreciation of development,

* motivating the liasons with described reality,

* ensuring practical conditions that are necessary for clustering
of temporal primary indexes or globalization of regional
indexes,

» diversification of addressees (sources) and recipients
(beneficiaries),

* limiting restrictions of processing,

» continued expansion of the range of phenomena and processes
etc.

The complexity and the promptness of the indicial overpass any other type of
complexity and even promptness.

After three centuries of existing, the index method is still the method providing
the best statistical information, and the advanced importance of indexes is
becoming more evident in the expediency of statistical information. The
assessments made by means of indexes offer qualitatively the pattern
elements defining national economies, regional or community and, ultimately,
international aggregates. Thinking and practice of the statistical work
emphasize the relevance of factorial analysis by the method of index,
embodied in the interpreter (price) indexes of inflation, in the efficient use of
labor indexes etc. Because the favorite field of indexes is the economic field,
they gradually became key economic indicators. The indexes are used in most
comparisons, confrontations, territorial and temporal analysis - as measuring
instruments. [9]

Originating etymologically in Greek deixis, which became in latin index, the
index concept has multiple meanings, e.g. index, indicator, title, list, inscription.
These meanings have maintained and even have enriched with new one, like
hint, indication, sign. The statistical index is accepted as method, system, report
or reference, size or relative indicator, average value of relative sizes or
relative average change, instrument or measurement of relative change, pure
number or adimensional numerical expression, simplified representation by
substituting raw data, mathematical function or distinctive value of the
axiomatic index theory etc.
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Defined as pure number or adimensional numerical expression, the index is a
particular form of “numerical purity”, namely of independence in relation to
the measurement unit of comparable size. The term “index” was first applied
to dynamic data series and is expressed as a relative number. Even today, it is
considered statistically an adimensional number, achieved in relation either to
two values of the same simple variable corresponding to two different periods
of time or space, or to two sizes of a complex indicator, whose simple sizes are
heterogeneous and can not be directly added together. The first category is
that of individual (particular or elementary) indexes, and the second, known
as synthetic or group indexes category, which is indeed the most important.
Considered as a variation scheme of a single or of multiple sizes or phenomena,
the index is a simplified representation by substituting raw data by their
report, aimed at rebuilding the evolution of temporal and spatial observed
quantities. Whenever a variable changes its level in time or space, a statistical
index is born (Henri Guitton). Approached as statistical and mathematical
function, the index generated a whole axiomatic theory which defines it as an
economic measure, a function F: D> R, which projects a set or a set D of
economic interest goals (information and data) into a set or a set of real
numbers R, which satisfies a system of relevant economic conditions - for
example, the properties of monotony, homogeneity or homothety or relative
identity (Wolfgang Eichhorn).

Thus, the concept of “index” is shown by a general method of decomposition
and factorial analysis; it is used in practice mainly as system. The index is
defined either as a report or a reference which provides a characteristic
number, or as synthetic relative size, either as relative indicator (numerical
adimensional indicator), or as pure number, either in the condensed version
as the weighted average of relative sizes or the measure of the average relative
change of variables at their different time moments, different spaces or
different categories, and, last but not least, as a simplified mathematical
representation, by substituting the raw data by their report through a function
with the same name - index function - respectively F: D >R, where F (z1, z2,
... Zk ) = 71/ 72, with z representing a specific variable and D the set of goals,
information and data of (economic) interest, and R is the set of real numbers.
[10; 11; 12; 13; 14]

The above mentioned properties means the following:

— MONOTONY (A)

An index is greater than the index of whose variables resultative
vector is less than the initial index vector, all other conditions being
constant:
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z1/z2>x1/ x2 => F(z) > F(x)

or:

z1 /A > F(z) is strictly increasing

z2 N > F(z) is strictly decreasing

zi = ct > F(z) is constant, where i = 3k

(where z is the vector of objective economic phenomenon, and z a
correspondent real number).

— HOMOGENEITY (A)

“«_n

If all variables “z” have a common factor A, the resulting index F (A
z) is equal to the product of the common factor A and the calculated
index, if a multiplication factor A is absent.

- of 1st degree (cu referire la z1)
F(Az1,22, ..,2k)=A F(z) foranyz>0and A >0
- of “zero” degree
F(Az)=F(z)foranyi > 0.
— IDENTITY (A) (“STATIONARY?”)

If there is no change of variables (z1 = z2), the index is uniform or
stationary regardless of other conditions.

F(1, 1, z3,...,zx) = 1 for any z3,...,zk (for description simplification of
F, we considered z1 = 72 =1).

— ADDITIVITY (T)

If the variable z is expressed in terms of its original value through
an algebraic sum (z1 =z2 + Z), the new index F (z2 + Z) is equal to
the algebraic sum of generated indexes F (z2) + F (Z)

F(z2+Z)=F(z2) +F (Z).

—> MULTIPLICATION (T)

If the variable z is multiplied by the values (A1, ... ,Ax) € R+, than
the resulting index F (A1z1, A2z2, ... ,Akzk ) is equal to the product
between the differentially multiplied variable z (A1, ... ,Ak) and the
initial index F(z)
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F (Aza, ... AkzZk ) = Z (A1, ... ,Ak) F(2),
where Ai € R+andi= 1k.
— QUASILINEARITY (T)

If a1, a2, .., ak and b are real constant, and ay, az, ..., ak# 0, and given
the continuous and strictly monotone function f: R+ 2 R, having
the inverse function f -1, it verifies the relation:

F (z) = f1[a1f(z1) + axf(z2) + .... + akf(zx) + b].

— DIMENSIONALITY (A)

If all variables z1 and z2 are multiplied by a certain factor A, the
resulting index is equal to the initial index, as the case of the
multiplying by A would not have been existed.

A
F (Az1, Az2, ... ,Azk ) = n F(z) =F(z), foranyz>0and A>0.

— INTERIORITY (T) (“AVERAGE VALUE”)

The index F(z) should behave as an average value of individual
indicices, being inside the interval of minimum and maximum value

miny— ¢ < F(z) < maxy—.
ZZi Zzi

—> MEASURABILITY (A)

The index F(z) is independent, respectively it is unaffected by the
measurement units in which the variables are denominated

F[—Zl 2 Az Az j F( ) = F(z)
ey ; e = F(z1,22,...,2x) = F(z).
ﬂ’l AK 1= k k

— PROPORTIONALITY (T)

(Homogeneity of 1st degree of a stationary initial index)

If an index is in the state of identity, respectively F(1, 1, z3,...,zk) = 1
for any zs,...,zk , the proportional increase of variable z1 by turning
it from to A lead to a similar valure of the obtained index F(2, 1,
Z3,..,Zk) = A (where Ae R+)
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— REVERSIBILITY (T) (ANTISYMMETRY AND SYMMETRY)

Considered as an axiom, the reversibility implies a double
interpretation:

- the reversibility temporal or territorial approach generates an
antisymmetry of Fisher type, respectively the index calculated as a
report between the current period level or the compared space and
the period level or reference space must be an inverse amount of
the calculated index as report between the period level or reference
space and the current period level or the compared space:
F(z1, z2, ..., Zk).; -1
F(z,.z,....Z,)

- the factorial approach generates a symmetry of Fisher type,
respectively, if the phenomenon was split into qualitative and
quantitative factors (z1 = £n161 and z2 = Xno6o), changing index
factors does not modify the product of new indexes (symmetry of
“crossed” indexes)
(ane, _aneo ~ Zn,elJ_

aneo Znoe0 - Znoe0

— CIRCULARITY (T) (TRANZITIVITY OR CONCATENATION)

The product of successive indexes represents a closed circle,
respectively an index of the first level reported to the top level of
the variable.

F(z1, z2, ..., 2x ) - F (22, 23, ..., 2x ) - F (2Zi-1, Zi, ..., Zx ) = F (21, Zi, ..., Zk ).

—> DETERMINATION (T) (CONTINUITY)

If any scalar argument in F (z1, z2, ..., Zk) tends to zero, then F(z)
tends as well to a unique positive value of a real number (all other
variable-dependent values).

—> AGGREGATION (A) (INDEX OF INDEXES)

The index of a set of variables is equal to an aggregated index when
it is derived from indexes of each group sizes. Let all sizes: zn =
F(z1,z2,....zn) be partial indexes; the index F is aggregative if Fu(z) =
F[F(z1,22,...,Zn)].

— EXPANSIBILITY (A) (- specific to aggregate indexes)

Fn(Z) < Fn+1 (Z,O)
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— PRESERVING THE VALUE INDEX (Theorem)

The aggregated index, written in the form of average index, which
corresponds to a value index equal to the real value index,
preserves the value index.

— UNICITY (Theorem)

An index F is not accepted as unique index if there exists two
indices F1#Fz such that:

F for keK,,where K,,K,eN i k=1K

F(z1, 22, .., Zk) =
F, forkek,

where zis the variable, k the variables set, K1 and Kz are two subsets
of the set N, such that KU K2=N and KinKz= O . This property
requires the index calculation algorithm to be the same for all
analyzed variables.

— The USE OF INDEXES

This is a property resulting from data promptitude and data
availability, easiness and rapidity of calculation, from simplicity of
formula and of weighting system, from truthfulness of base and
practical construction of indexes.

As shown, the axiomatic theory of economy is in fact a sum of properties-
conditions mostly expressed by axioms (A) defining indexes, and by theorems
and corollaries thereof derived from axioms and from tests (T) whose role is
also important in the construction of indexes. Depending on the system of
indexes they belong to, and on the specific use, the required properties are
layered by Helmut Diehl in:

— basic requirements - imposed by specific circumstances of the
project;

— required properties - ensuring fundamental qualities and
operational consistency;

— desirable properties - providing some technical facilities and
even some theoretical elegance;

— special properties - generated by construction and method.

Gathering specific characteristics in a definition as general as possible, the
index is considered an indicator, a statistical category, expressed through a
synthetic size that renders the relative variation between two states - one
“actual” (or territoriality of interest), another “baseline” - of a phenomenon,
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or a relative number resulted by the comparison of a statistical indicator values,
a measure of the relative change of variables at different time points and in
different spaces, or in different categories, set in relation to a certain
characteristic feature.

The evolution in time of indexes required for over three centuries solving all
sort of theoretical and methodological problems regarding the method
calculation, including formula, the base choice, the weighting system and,
especially, the practical construction. [10; 11; 12; 13; 14]

Process optimization of this issue is not definitively over even though its
history is quite eventful, as summarized in Box No. 1, below. Moreover, even
this paper is only trying to propose a new type of neutrosophic index or a
neutrosophic-type index number.

Box No. 1

The index - appeared, as the modern statistics, in the school of political
aritmetics - has as father an Anglican Bishop, named William Fleetwood. The birth
year of the firstinterpreter index is 1707; it was recorded by studying the evolution
of prices in England between 1440 and 1707, a work known under the title “Chicon
Preciosum”. The value of this first index was 30/5, respectively 600,0%, and it was
built on the simple arithmetical mean of eight products: wheat, oats, beans,
clothing, beer, beef, sheepmeat and ham. Moreover, the world prices - a world
hardly approachable because of specific amplitude, sui generis heterogeneity and
apparently infinite trend - was transformed into a homogeneous population
through interpreter indexes. In 1738, Dutot C. examines the declining purchasing
power of the French currency between 1515 and 1735, through a broader
interpreter index, using the following formula:

n

Zpi

(1.1) Dutot Index: APt Dy S , where: p;and P;
P, +P,+..+P i
n Pi
i=1

= prices of current period vs. basic period.
If you multiply the numerator and denominator index by (1/n), the
calculation formula of Dutot index becomes a mean report, respectively:

(32, /MR, /)

To quantify the effect of the flow of precious metals in Europe after the
discovery of the Americas, the Italian historian, astronomer and economist Gian
Rinaldo Carli, in 1764, used the simple arithmetic mean for three products, i.e.
wheat, wine and oil, in constructing the interpreter index determined for 1500 and
1750:

1 1 & p.

(1.2) CarliIndex: — &+&+...+& :—Z&

n\ P, 5 P, n‘= P,
As William Fleetwood has the merit of being the first to homogenize the
heterogeneous variables through their ratio, using the results to ensure the
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necessary comparisons, the same way Dutot and Carli are praiseworthy for
generating the “adimensionality” issue, namely the transformation of absolute
values into relative values, generally incomparable or not reducible to a central
(essential or typical) value (a value possessing an admissible coefficient of
variation in statistical terms). But the most important improvement in index
construction, streamlining its processing, belongs to Englishman Arthur Young, by
introducing the weight (ponderation), i.e. coefficients meant to point the relative
importance of the various items that are part of the index.

Young employed two weighting formulas, having as a starting point either
Dutot:

(1.3) Young Index (1):

k.
bk + p.k, +... 4+ pk Zl’z i

n_ _ _i=l

PK, +P,K,+..+P K, iPiKi
i=l1

where ki= coefficient of importance of product i,
or Carli:
(1.4) Young Index (2):
)4 Py P 1 D ~p, o G,
—C+—=+C,..+2C, |= —+xC, = E = !
[Pl 1 Pz 2 PI] 1’1] n XZ X 1 P x n

;Ci i=1 Pj i=1 1 zci

i=1

e

i=1
where C,  weighting coefficient and i(c_ P);= 1.
>,

i=1
After Young solution from 1812, the new problem of designing indexes has
become the effect of weight variations. Sir George Shuckburgh Evelyn introduced,
in 1798, the concept of “basic year”, thus anticipating the dilemma of base selection
and of construction of the weighting system. In 1863, by the index calculated as
geometric mean of individual indexes, Stanley Jevons extended the issue to the

formula:
(1.5) JevonsIndex:

/”&

Jevons does not distinguish between individual indexes, giving them the
same importance.

Two indexes imposed by the German school of statistics remain today, like
the two terrestrial poles, structural limits of weighting systems. The firstis the index
of Etienne Laspeyres, produced in 1864, using basic period weighting, and the
second is the index of Hermann Paasche, drafted in 1874, using the current period
as weighting criterion:

i=1

2P o 2 Pio9i; and
ZPiodo  2Pio%io
Z‘4pilqil or Zpilqil
2Pip% 2P
pio, pi1 = basic period prices (0) and current period prices (1)

gio, qi1 = basic period quantities (0) and current period quantities (1).

(1.6) Laspeyres Index:

(1.7) Paasche Index: , where:

92



Florentin Smarandache (author and editor) Collected Papers, XIV

X
Although the provided indexes only checks the identity condition (]1/1

=X1/X1=1) from Fischer’s tests for elementary indexes, however they are the most
commonly used in practice due to the economic content of each construction.
Several “theoretical” indexes were placed close to the Laspeyres and Paasche
indexes, but with the loss of specific business content, and different of Ladislaus
von Bortkiewicz relationship. They can be called unreservedly indexes of
"mesonic"-type, based on authors’ wishes to situate the values within the difference
(P - L), to provide a solution of equilibrium between the two limit values in terms
of choosing of base. Along with the two weighting systems, other issues are born,
like weighting constancy and inconsistency, or connecting the bases on the extent
of aging or disuse. Of the most popular "mesonic"-type index formulas [5], there are
the constructions using common, ordinary statistics. The simple arithmetic mean
of Laspeyres and Paasche indexes is known as Sidgwik - Drobisch index.

(1.8) Sidgwig -Drobisch Index: LerP

The arithmetic mean of the quantities of the two periods (thus becoming
weight) generates the Marshall - Edgeworth index or Bowley - Edgeworth index
(1885 - 1887).

>p; (907 )
> Py (di*y)

The geometric mean of quantities in the two periods converted in weights
fully describes the Walsh index (1901).

(1.10) Walsh Index: 2Pi1y( 91 o)
ZpiO\/(qil x o)

The simple geometric mean of Laspeyres and Paasche indexes is none other
than the well-known Fisher index (1922).

(1.11) Fisher Index: \[(LxP)

The index checks three of the four tests of its author, Irving Fisher: the
identity test, the symmetry test, or the reversibility-in-time test and the
completeness test, or the factors reversibility test. The only test that is not entirely
satisfied is the chaining (circularity) test. The advantage obtained by the
reversibility of Fisher index:

(1.9) Marshall - Edgeworth Index:

1
(1.12) Fop= (Li0*Pio) = \/(Ll/OXPI/O):Fl/O’

is unfortunately offset by the disadvantage caused by the lack of real economic
content. A construction with real practical valences is that of R H.I. Palgrave (1886),
which proposed a calculation formula of an arithmetic average index weighted by
the total value of goods for the current period (vii = p1i- qui) :

2Py 2y x vy
(1.13) Palgrave Index: == =,
g 2P 2 Vi

The series of purely theoretical or generalized indexes is unpredictable and
full of originality.
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Cobb - Douglas solution (1928) is a generalization of Jevons index, using
unequal weights and fulfilling three of Fisher's tests (less the completeness or the
reversibility of factors):

P. i=1

=1\ T

o n
n 1
(1.14) Cobb - Douglas Index: H(&J , where a; > 0 and Zai =1.

Stuvel version, an index combining the Laspeyres index ,of price factor” (LF)
and the Laspeyres index ,of quantity factor” (L), proposed in 1957, exclusively
satisfies the condition of identity as its source:

(-0

(1.15) Stuvel Index: °-P9 4 +1(P<a)

2

(where I(rxa) = total variation index)

Another construction, inspired this time from the ,experimental” design
method, based on the factorial conception, but economically ineffective, lacking
such a meaning, is R.S. Banerjee index (1961), a combination of indexes as well, but
of Laspeyres type and Paasche type:

L+1 P(L—l—l)

i =

—+ P+1
s+ (P+1)
A true turning point of classical theorizing in index theory is the

autoregressive index.

(1.16) Banerjee Index:

> (pPa?)

Tii
2 )
Z(P ) X a?
1 1
Therefore, a; means the quantities of products or weights (importance)

coefficients. This only verifies the provided identity, although conditionally
constructed, respectively:

(1.17) Autoregressive Index:

2
Z[pi - Pi x IAUTOREGRESSIVEi| = minimum.

Torngvist (1936) and Divisia (1925) indexes are results of generalizations
of mathematical type, defining the following relationships:

sinte e L L G ]t
(1.18) In (Torngvist Index) = 5 Zpiqi ZPZ'QZ'

)

1
Piq; PiQi
where: and <=5, are weights of specific transactions values
2.7 > RO
piqi and PiQi .
The usual shape under which one meets the Divisia index is:

(1.19) Poc Qot = 2Py as averaged value in a relationship determined

1010
by individual prices indexes, respectively:
Plipy +ipy +etipy)=ip;.

Contemporary multiplication processes of indexes calculation formulas
have two trends, one already visible of extrem axiomatization and mathematization,
based on Torngvist and Divisia indexes models, which culminated with the school
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of axiomatic indexes, and another, of resumption of the logic stream of economic
significance of index construction, specific for the latest international constructions
at the end of the twentieth century, respectively the integration variants of additive
construction patterns or additive-multiplicative mixed models, close to the
significance of real phenomena. In this regard, one could summary present the
comparative advantage index or David Neven index (1895).

(1.20) David Neven Index:

[—XL ——mL]x 100, where x and m are values of exports and imports in
22X 2Xmy

the industry k. The index belongs to the range of values (-100%; 100%), but rarely
achieves in practice higher values than 10% or lower than - 10%. etc.

In the theory and practice of index numbers construction, to quantify and
interpret the degree and the direction of the weights influence, use is made of
Bortkiewicz relationship [15]. This specific relationship is based on factorial
indexes and yields to the following equality:

Y -8 k’

'l.:_.r . e Jna 0 .

Sal el TS Sl I PR R T L
i i 1 L1 .'I.I-_,I'I. _'I.I. _.I'I.

(1.21)
where:

g X; fl is a simple linear correlation coefficient between individual indexes

of the qualitative factor x; and individual indexes of the weights (respectively,
individual indexes of the qualitative factor f;),

Cvxl. is the coefficient of variation of individual indexes of variable x to

their environmental index,

Cv f; s the coefficient of variation of individual indexes of weights
towards their environment index,
f/(()ﬁ) _ZA and le/(ofo) 290

Zxgf Zxpfy

The interpretation of that relationship shows that the weighting system does
not influence the index of a numerically expressed group variable, if the product of the

while I

three factors is null, respectively ”xl, I x Cvxi x Cv f; = 0.

This is possible in three distinct situations:

a) rxifi =0 = x;and f; are independent to each other (there is no connection
between individual indexes ix and if),

b) ¢ X; =0 = the absence of any variation on the part of x or f

) G /; =0 (individual indexes are equal to the average index).
Product sign of factors r_, x cv_x cv, Is positive or negative depending on
e the sign of the latter being decisive.
The interpretation of the influence of the weighting systems on the value of
a synthetic index is based on the following three cases:
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e The synthetic index calculated using current period weights is equal with
the same index calculated with the weights of the basic period when at least
one of the factors is equal to ,,0".

e The synthetic index calculated using current period weights is bigger in
value than the index calculated with the weights of the basic period when
the three factors are different from ,0” and the simple linear correlation
coefficient is positive.

e The synthetic index calculated using current period weights is lower in
value than the index calculated with the weights of the basic period when
the three factors are different from ,0” and the simple linear correlation
coefficient is negative.

Applying Bortkiewicz's relationship to the interpretation of statistical
indexes offers the opportunity to check the extent and direction to which the
weighting system that is employed influence the value of the indexes.

The conclusive instauration of a sign in language, be it gradually, is a lengthy
process, where the sign (the representative or the signifier) replaces at a
certain moment the representative (the signifier). The sign substitutes an
object and can express either a quality (qualisign), or a current existence
(synsign), or a general law (legisign). Thus, the index appears as sign together
with an icon (e.g.: a chart, a graphic), a symbol (e.g.: currency), a rhema (e.g.:
the mere posibility), a dicent (e.g.: a fact), an argument (e.g.: a syllogism) etc.
The semiotic index can be defined as a sign that loses its sign once the object
disappears or it is destroyed, but it does not lose this status if there is no
interpreter. The index can therefore easily become its own interpreter sign.
Currency as sign takes nearly all detailed semiotic forms, e.g. qualisign or hard
currency, symbol of a broad range of sciences, or legisign specific to monetary
and banking world. As the world's history is marked by inflation, and currency
implicitly, as briefly described in Box nr. 2 below, likewise the favorite index
of the inflationary phenomenon remains the interpreter index.

Box No. 2

The inflation - an evolution perceived as diminishing the value or purchasing
power of the domestic currency, defined either as an imbalance between a stronger
domestic price growth and an international price growth, or as a major
macroeconomic imbalance of material-monetary kind and practically grasped as a
general and steady increase in prices - appeared long before economics. Inflationary
peak periods or “critical moments” occurred in the third century, at the beginning of
sixteenth century, during the entire eighteenth and the twentieth centuries. The end
of the third century is marked by inflation through currency, namely excessive
uncovered currency issuance in the Roman Empire, unduely and in vain
approached by the Emperor Diocletian in 301 by a “famous” edict of maximum
prices which sanctioned the “crime” of price increase by death penalty. The
Western Roman Empire collapsed and the reformer of the Eastern Roman Empire,
Constantine the Great, imposed an imperial currency, called “solidus” or
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“nomisma”, after 306, for almost 1000 years. The beginning of the sixteenth
century, due to the great geographical discoveries, brings, together with gold and
silver from the “new world”, over four times price increases, creating problems
throughout Europe by precious metal excess of Spain and Portugal, reducing the
purchasing power of their currencies and, finally, of all European money. If the
seventeenth century is a century of inflationary "princes"”, which were maintaining
wars by issuing calp fluctuating currency, the twentieth century distinguishes itself
by waves of inflation, e.g. the inflation named "Great Depression began in Black
Thursday"”, or the economic crisis in 1930, the inflation hidden in controlled and
artificial imposed prices of “The Great Planning”, the inflation caused by price
evolutions of oil barrel, or sometimes galloping inflation of Eastern European
countries' transition to market economy. Neither the “edicts” or the “assignats” of
Catherine II, as financial guarantees of currency, nor the imposed or controlled prices
were perennial solutions against inflation.

Inflation is driven, par excellence, by the term “excess”: excessive monetary
emission or inflation through currency, excessive solvable demand or inflation by
demand, excessive nominal demand, respectively by loan or loan inflation,
excessive cost or cost-push inflation; but rarely by the term “insufficiency”, e.g.
insufficient production, or supply inflation. Measurement of overall and sustained
price growth - operation initiated by Bishop William Fleetwood in 1707 by
estimating at about 500% the inflation present in the English economy between
1440 and 1707 - lies on the statistical science and it materializes into multiple
specific assessment tools, all bearing the name of price indexes, which originated
in interpreter indexes. Modern issues impose new techniques, e.g. econophysics
modeling, or modeling based on neutrosophic numbers resulted from nuanced
logic.

5 Neutrosofic Index Numbers

or Neutrosophic-Type Interpreter Indexes

Created in the full-of-diversity world of prices, the first index was one of
interpreter type. The term “interpreter” must be understood here by the
originary meaning of its Latin component, respectively inter = between
(middle, implicit mediation) and pretium = price. [16]

The distinct national or communautaire definitions, assigned to various types
of price indexes, validate, by synthesizing, the statement that the interpreter
index has, as constant identical components, the following features:

= measuring tool that provides an estimate of price trends
(consumer goods in PCI, industrial goods in IPPI or
import/export, rent prices, building cost etc.);

= alienation of goods and services (respectively, actual charged
prices and tariffs);

= price change between a fixed period (called basic period or
reference period) and a variable period (called current period).
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The most used interpreter indexes are the following:

» PCI - Prices of Consumer (goods and services) Index measures
the overall evolution of prices for bought goods and tariffs of
services, considered the main tool for assessing inflation;

» IPPI - Industrial Producers’ Price Index of summarizes
developments and changes in average prices of products
manufactured and supplied by domestic producers, actually
charged in the first stage of commercialization, used both for
deflating industrial production valued at current prices, and for
determining inflation within “producer prices”. This index is
one of the few indexes endowed with power of “premonition”,
a true Cassandra of instruments in the so-populated world of
instruments measuring inflation. Thus, IIPP anticipates the
developments of IPCG. The analysis of the last 17 years shows a
parallel dynamics of evolution of the two statistical tools for
assessing inflation, revealing the predictive ability of IPCG
dynamics, starting from the development of IIPP;

» UVI - Unit Value Index of export / import contracts
characterizes the price dynamics of export / import, expanding
representative goods price changes ultimately providing for
products a coverage rate of maximum 92%, allowing deflation
through indicators characterizing the foreign trade, and even
calculating the exchange ratio;

» CLI- Cost of Living Index shows which is the cost at market prices
in the current period, in order to maintain the standard of living
achieved in the basic period, being calculated as a ratio between
this hypothetical cost and the actual cost (consumption) of the
basic period; the need for this type of interpreter index is obvious
above all in the determination of real wages and real income;

» IRP - Index of Retail Price sets the price change for all goods
sold through the retail network, its importance as a tool to
measure inflation within “retail prices” being easily noticed;

» BCI - Building Cost Index assesses price changes in housing
construction, serving for numerous rental indexation, being
used independently or within IPCG, regardless of the chosen
calculation method;

» FPPI-F - food products price index measures changes in prices
of food products on the farm market (individual or associated
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farmers market), providing important information about
inflation on this special market;

» GDP deflator index or the implicit deflator of GDP - GDP price
index that is not calculated directly by measuring price changes,
but as a result of the ratio between nominal GDP or in current
prices and GDP expressed in comparable prices (after separately
deflating the individual components of this macroeconomic
indicator); GDP deflator has a larger coverage as all other price
indexes.

The main elements of the construction of an interpreter index refer to official
name, construction aims, official computing base, weighting coefficients,
sources, structure, their coverage and limits, choosing of the weighting system,
of the calculation formula, method of collection, price type and description of
varieties, product quality, seasonality and specific adjustments, processing
and analysis of comparable sources, presentation, representation and
publication. The instrumental and applied description of consumer goods
price index has as guidelines: definition, the use advantages and the use
disadvantages, the scope, data sources, samples used in construction, the
weighting system, the actual calculation, the inflation calculated as the rate of
IPCG, specific indicators of inflation, uses of IPCG and index of purchasing
power of the national currency.

As there seems natural, there is a statistical correlation and a gap between two
typical constructions of price index and interpreter index, IPPI and PCI. Any
chart, a chronogram or a historiogram, shows the evolution of both the prices
of goods purchased, and of paid services that benefited common people
(according to the consumer goods price index), and of the industrial goods
prices that went out of the enterprises’ gate (according to the producers’ price
index) and are temporarily at intermediaries, following to reach the consumers
in a time period from two weeks to six months, depending on the length of
“commercial channel”.

The interpreter indexes are statistical tools — absolutely necessary in market
economies - allowing substitution of adjectival-type characterizations of
inflation within an ordinal scale. As the variable measured on an ordinal scale
is equipped with a relationship of order, the following ordering becomes
possible:

» the level of subnormal inflation (between 0 and 3%);

= the level of (infra)normal inflation (Friedman model with
yearly inflation between 3 and 5%);

» the level of moderate inflation (between 5 and 10% yearly);

= the level of maintained inflation (between 10 and 20% yearly);
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» the level of persistent inflation (between 20 and 100% yearly);
* the level of enforced inflation (between 100 and 200% yearly);
= the level of accelerated inflation (between 200 and 300%

yearly);
= the level of excessive inflation (over 300% yearly).

Knowing the correct level of inflation, the dynamics and the estimates of short-
term price increase allow development appreciation of value indicators in real
terms. The consumer goods price index, an interpreter index that can inflate
or deflate all nominal value indicators, remains a prompt measurement tool of
inflation at the micro and macroeconomic level.

Any of the formulas or of the classical and modern weighting systems used in
price indexes’ construction can be achieved by neutrosophic-tendential fuzzy
numbers following operations that can be performed in neutrosophic
arithmetics. A random example [17, 18, 19] relative to historical formulas and
classical computing systems (maintaining the traditional name of “Index
Number”) is detailed for the main indexes used to measure inflation, according
to the data summarized in Table 1.

The statistical data about the price trends and the quantities of milk and cheese
group are presented below for two separate periods:

Table 1.
Basic | Current Total Total Total Total Weighting | Quantities [ Quantities
Product | price price expenses | expenses | expenses expenses coefficients |of products| of
Po jol in the in the in in the (Cpo) bought in | products
basic basic current current Podo/EPolo the basic | bought in
period period period period period (qo) [the current
(Podo) with with (Peqe) period
current basic (qv)
prices prices
(P:90) (Pody)
Milk 1,20 1,70 12,0 17,0 10,8 15,3 15,6 10 9
Butter 1,90 1,70 15,2 13,6 13,3 11,9 19,8 8 7
Yogurt | 0,85 0,90 3.4 3,6 5,1 5,4 44 4 6
Sour 1,25 3,00 1,25 3,0 1,25 3,0 1,6 1 1
cream
Cheese | 7,50 8,00 45,0 48,0 52,5 56,0 58,6 6 7
Total
group 12,70 | 15,30 76,85 85,2 82,95 91,6 100,0 - -

A. Historical solutions (unorthodox) focused on calculating formula for the
simple aggregate and unweighted index (quantities are not taken into account,
although there have been changes as a result of price developments)

I. Index Number = 2P; = 15,30 ~ 9 205.
12,70
2.po

The inflation rate extracted from index = 0,205 or 20,5%.
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B. Contemporary solutions focused on formula for calculating the aggregate
weighted index in classical system

[. Index Number by classical Laspeyres formula =
>(ptqo) = _7865’825 - 1,100.
¥(pogo) "

The inflation rate extracted from index = 0,109 or 10,9%.

II. Index Number expressed by relative prices or individual
prices indexes by Laspeyres formula =

pt
Zpo(poqo) _ 85,2

> (poqo) 76,85

t
=1,109 or lejoxcp0 =1,100.

The inflation rate extracted from index = 0,109 or 10,9%.

[II. Index Number by Paasche formula =

> (ptqt) = 216 = 1,104.
ST 95
¥ (poqt)

The inflation rate extracted from index = 0,104 or 10,4%.

[V. Index Number by Fisher formula =

\/ Laspeyres Index Number x Paasche Index Number =

= J1,109% 1,104 =1,106.

The inflation rate extracted from index = 0,106 or 10,6%.

V. Index Number by Marshall-Edgeworth formula =

Y[ pt(ao+at)] 1768
>[po(qo +qt)] 159,8

= 1,106.

The inflation rate extracted from index = 0,106 or 10,6%.

VI. Index Number by Tornqvist formula =

A%
H[szj Where w= poqo + ptqt =
2> P9 22D,

= (17 016165 (51016395 05 00516 (30 0,0245 ., 80 05985_ 1 106.
1,2 1,9 [@j 1,25 7,5

The inflation rate extracted from index = 0,106 or 10,6%.
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As one can see, three Index Numbers or price indexes in Fisher, Marshall-
Edgeworth and Torngqvist formulas lead to the same result of inflation of 10.6%,
which is placed in median position in relation to the Laspeyres and Paasche
indexes.

However, the practice imposed Laspeyres index because of obtaining a high costs
and a relatively greater difficulty of weighting coefficients in the current period

(). [17]

C. Neutrosophic index-based computing solutions

Starting from the definition of “a slight increase in price” variable, denoted by
Ap, where Ap=(p1-po)/po, data from Table 1 are recalculated in Table 2, below

and defines the same unorthodox but classic solutions (especially in the last
two columns).

Table 2.
Basic | Current | Quantities | Quantities Total Total Classic Ap= APG= (Pi1qi-
Product | price | price | of products | of products | expenses in | expenses in Index @-po)/po | Podo)/podo
Po pt bought in | bought in the basic the current| Number
the basic | the current period period (pt/ po)
period (qo) | period (o) (Prqy)
(9
Milk 1.20 1.70 10 9 12.0 15.3 1.4167 0.4167 0.2750
Butter 1.90 1.70 8 7 15.2 11.9 0.8947 -0.1053 -0.2171
Yogurt | 0.85 [ 0.90 4 6 3.4 5.4 1.0588 0.0588 0.5882
Sour 1.25 [ 3.00 1 1 1.25 3.0 2.4000 1.4000 1.4000
cream
Cheese | 7.50 | 8.00 6 7 45.0 56.0 1.0667 0.0667 0.2444
Total
group 12.70 [ 15.30 - - 76.85 91.6 1.2047 0.2047 0.1919

The identical values of Fisher, Marshall-Edgeworth and Torngqvist indices offer a
hypothesis similar with the neutrosophic statistics and especially with
neutrosophic frequencies. The highest similarity with the idea of neutrosophic
statistics consists of the Tornqvist formula’s solution. The calculus of the absolute
and relative values for necessary neutrosophic frequencies is described in the

Table 3.
Table 3.
Total Weighting Total Weighting Total Weighting Total Weighting
Product fexpenses in | coefficients | expenses | coefficients | expenses | coefficients [expensesin | coefficients
the basic (Cpo) = in the (Cpw) in current (Cpo) = the current|  (Cp,) =
period Pogo/Epodo baglc Po/Epao perlod ) Poq/Spods period PA/EPG
(Poqo) period with basic (Pt )
with prices
current (Poq)
prices (pt
do)
Milk 12.0 15.62 17.0 20.0 10.8 13.0 15.3 16.70
Butter 15.2 19.78 13.6 16.0 13.3 16.0 11.9 12.99
Yogurt 3.4 4.42 3.6 4.2 5.1 6.2 5.4 5.90
Sour 1.25 1.63 3.0 3.5 1.25 1.5 3.0 3.28
cream
Cheese 45.0 58.55 48.0 56.3 52.5 63.3 56.0 61.13
Total
group 76.85 100.00 85.2 100.0 82.95 100.0 91.6 100.00
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In this situation, the construction of major modern indexes is the same as the
practical application of statistical frequencies of neutrosophic type generating
neutrosophic indexes in the seemingly infinite universe of prices specific to
inflation phenomena, as a necessary combination between classical indexes and

thinking and logic of frequencial neutrosophic statistics [20; 21; 22; 2. 3].

Table 4.
Classic Relative Relative Relative Relative
Product Index Neutrosophic | Neutrosophic | Neutrosophic | Neutrosophic
Number Frequency Frequency Frequency Frequency W = [RNF + RNF]:2
(pt/ po) RNF(0) RNF(t.0) RNF(0.1) RNF(t)
(unorthodox) | Weighting Weighting Weighting Weighting
coefticients coefticients coefticients coefficients
(Cpo) = (Cpo) (Cpa) = (Cpy=
Podo/XPodo Pdo/Zpqo Pod/Zpo PA/Epqe
Milk 1.4167 15.62 20.0 13.0 16.70 16.16 % or 0.1616
Butter 0.8947 19.78 16.0 16.0 12.99 16.39 % or 0.1639
Yogurt 1.0588 4.42 4.2 6.2 5.90 5.16 % or 0.0516
Sour 2.4000 1.63 3.5 15 3.28 2.45 % or 0.0245
cream
Cheese 1.0667 58.55 56.3 63.3 61.13 59.84 % or 0.5984
Total
group 1.2047 100.0 100.0 100.0 100.00 100.00 or 1.0000

In this case, index of Tornqvist type is determined exploiting the relative
statistical frequencies of neutrosophic type consisting of column values (Cpo)
and (Cpt) according to the new relations:

t w
]‘[(p] where w =
po

Podo + pq, =[RNF@© +RNF]:2

22 Po4o 22 P«q;

w
Finally, applying the values in Table 4 shows that the result ]‘[(ptj is
po

identical.

w
H(l’tj = 1.4167 01616 X (,8947 01639 x 1,05880.0516 X 2.40.0245 % 1.0667
po

05985= 1,106

5) Conclusion

Over time, the index became potentially-neutrosophic, through the weighting
systems of the classical indexes, especially after Laspeyres and Paasche. This
journey into the world of indexes method merely proves that, with Tornqvist,
we are witnessing the birth of neutrosophic index, resulting from applying
predictive statistical neutrosophic frequencies, still theoretically not exposed
by the author of this kind of thinking, actually the first author of the present
article.
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Future intention of the authors is to exceed, by neutrosophic indexes, the level
of convergence or even emergence of unorthodox classical indexes,
delineating excessive prices (high or low) by transforming into probabilities
the classical interval [0 ; 1], either by the limiting values of Paasche and
Laspeyres indexes, redefined as reporting base, or by detailed application of
the neutrosophic thinking into statistical space of effective prices, covered by
the standard interpreter index calculation (the example of PCI index is
eloquent through its dual reference to time and space as determination of ten-
years average index type, by arithmetic mean, and as determination of local
average index type, by geometric mean of a large number of territories
according to EU methodology, EUROSTAT).
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Abstract - In this paper we introduced mapping on neutrosophic soft expert sets through
which we can study the images and inverse images of neutrosophic soft expert sets. Further,
we investigated the basic operations and other related properties of mapping on
neutrosophic soft expert sets in this paper.

Keywords - Neutrosophic soft expert set, neutrosophic soft expert images, neutrosophic
soft expert inverse images, mapping on neutrosophic soft expert set.

1. Introduction

Neutrosophy has been introduced by Smarandache [14, 15, 16] as a new branch of
philosophy. Smarandache using this philosophy of neutrosophy to initiate neutrosophic sets
and logics which is the generalization of fuzzy logic, intuitionistic fuzzy logic,
paraconsistent logic etc. Fuzzy sets [42] and intuitionistic fuzzy sets [36] are characterized
by membership functions, membership and non-membership functions, respectively. In
some real life problems for proper description of an object in uncertain and ambiguous
environment, we need to handle the indeterminate and incomplete information. Fuzzy sets
and intuitionistic fuzzy sets are not able to handle the indeterminate and inconsistent
information. Thus neutrosophic set (NS in short) is defined by Smarandache [15], as a new
mathematical tool for dealing with problems involving incomplete, indeterminacy,
inconsistent knowledge. In NS, the indeterminacy is quantified explicitly and truth-
membership, indeterminacy membership, and false-membership are completely
independent. From scientific or engineering point of view, the neutrosophic set and set-
theoretic view, operators need to be defined. Otherwise, it will be difficult to apply in the
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real applications. Therefore, H. Wang et al [19] defined a single valued neutrosophic set
(SVNS) and then provided the set theoretic operations and various properties of single
valued neutrosophic sets. Recent research works on neutrosophic set theory and its
applications in various fields are progressing rapidly. A lot of literature can be found in this
regard in [3, 6, 7, 8,9, 10, 11, 12, 13, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 61, 62,70,
73, 76, 80, 83,84, 85, 86].

In other hand, Molodtsov [12] initiated the theory of soft set as a general mathematical
tool for dealing with uncertainty and vagueness and how soft set theory is free from the
parameterization inadequacy syndrome of fuzzy set theory, rough set theory, probability
theory. A soft set is a collection of approximate descriptions of an object. Later Maji et
al.[58] defined several operations on soft set. Many authors [37, 41, 44, 47, 49, 50, 51, 52,
53, 54, 55, 56, 57, 60] have combined soft sets with other sets to generate hybrid structures
like fuzzy soft sets, generalized fuzzy soft sets, rough soft sets, intuitionistic fuzzy soft sets,
possibility fuzzy soft sets, generalized intuitionistic fuzzy softs, possibility vague soft sets
and so on. All these research aim to solve most of our real life problems in medical
sciences, engineering, management, environment and social sciences which involve data
that are not crisp and precise. But most of these models deal with only one opinion (or)
with only one expert. This causes a problem with the user when questionnaires are used for
the data collection. Alkhazaleh and Salleh in 2011 [65] defined the concept of soft expert
set and created a model in which the user can know the opinion of the experts in the model
without any operations and give an application of this concept in decision making
problem. Also, they introduced the concept of the fuzzy soft expert set [64] as a
combination between the soft expert set and the fuzzy set. Based on [15], Maji [53]
introduced the concept of neutrosophic soft set a more generalized concept, which is a
combination of neutrosophic set and soft set and studied its properties. Various kinds of
extended neutrosophic soft sets such as intuitionistic neutrosophic soft set [68, 70, 79],
generalized neutrosophic soft set [61, 62], interval valued neutrosophic soft set [23],
neutrosophic parameterized fuzzy soft set [72], Generalized interval valued neutrosophic
soft sets [75], neutrosophic soft relation [20, 21], neutrosophic soft multiset theory [24] and
cyclic fuzzy neutrosophic soft group [61] were studied. The combination of neutrosophic
soft sets and rough sets [77, 81, 82] is another interesting topic.

Recently, Broumi and Smaranadache [88] introduced, a more generalized concept, the
concept of the intuitionistic fuzzy soft expert set as a combination between the soft expert
set and the intuitionistic fuzzy set. The same authors defined the concept of single valued
neutrosophic soft expert set [87] and gave the application in decision making problem. The
concept of single valued neutrosophic soft expert set deals with indeterminate and
inconsistent data. Also, Sahin et al. [91] presented the concept of neutrosophic soft expert
sets. The soft expert models are richer than soft set models since the soft set models are
created with the help of one expert where as the soft expert models are made with the
opinions of all experts. Later on, many researchers have worked with the concept of soft
expert sets and their hybrid structures [1, 2, 17, 18, 24, 38, 39, 46, 48, 87, 91, 92].

The notion of mapping on soft classes are introduced by Kharal and Ahmad [4]. The same
authors presented the concept of a mapping on classes of fuzzy soft sets [5] and studied the
properties of fuzzy soft images and fuzzy soft inverse images of fuzzy soft sets, and
supported them with examples and counter inconsistency in examples. In neutrosophic
environment, Alkazaleh et al [67] studied the notion of mapping on neutrosophic soft
classes.
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Until now, there is no study on mapping on the classes of neutrosophic soft expert sets, so
there is a need to develop a new mathematical tool called “Mapping on neutrosophic soft
expert set”.

In this paper, we introduce the notion of mapping on neutrosophic soft expert classes and
study the properties of neutrosophic soft expert images and neutrosophic soft expert inverse

images of neutrosophic soft expert sets. Finally, we give some illustrative examples of
mapping on neutrosophic soft expert for intuition.

2. Preliminaries

In this section, we will briefly recall the basic concepts of neutrosophic sets, soft sets,
neutrosophic soft sets, soft expert sets, fuzzy soft expert sets, intutionistic fuzzy soft expert
sets and neutrosophic soft expert sets.

Let U be an mitial umverse set of objects and E 15 the set of parameters in relation to

objects in U. Parameters are often attributes, characteristics or properties of objects. Let
P (U) denote the powersetof Uand AC E.

2.1. Neutrosophic Set

Definition 2.1 [15] Let U be an umiverse of discourse, Then the neutrosophic set A 1s an
object having the form A = {< x: Tg(x), [a(%), Fa(x)>. x € U} where the functions T, (x),
[5,(x%), Fa(x) : U—=] 017 define respectively the degree of membership, the degree of
indeterminacy, and the degree of non-membership of the element x € X to the set A with
the condition.

"0 <supTa(x)+ suply (x)+ supFa(x), <3

From philosophical point of view, the neutrosophic set takes the value from real standard
or non-standard subsets of ]70,17[. So instead of ]70.1°[ we need to take the interval [0,1]
for technical applications, because 170,17 will be difficult to apply in the real applications

such as 1n scientific and engineering problems.
For two NS,

Ans= (<X, Ty (%), 14 (%), Fp (x)>|x €X}
And

Bns= {<x, Tg (x),I5 (x) ,Fg (x)> [x €X}
We have,

1. ANS c BNS if and Gﬂl}" if

Ty (x) = Tg (x),I5 (x) 2 15 (%), Fy (x) = Fg (%) -
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Each parameter is a neutrosophic word or sentence involving neutrosophic words. Consider
E ={beautiful, wooden, costly, very costly, moderate, green surroundings, in good repair, in
bad repair, cheap, expensive}. In this case, to define a neutrosophic soft set means to point
out beautiful houses, wooden houses, houses in the green surroundings and so on. Suppose
that, there are five houses in the universe Ugiven byU = {hy, h,,..., hs} and the set of
parameters

A = {e,, e e3,e4},Where e; stands for the parameter "beautiful', e, stands for the parameter
‘wooden', e stands for the parameter "costly’ and the parameter e,stands for ‘moderate’.
Then the neutrosophic set (F, A) is defined as follows:

(0.5, 0 6,0.3)” (0.4,0.7,0.6)" (0.6,0.2,0.3)’ (0.7,0.3,0.2)" (0.8,0.2,0.3)

)
h, hs hs hs )
)
)

i (060305) (0.7,0.4,0.3)° (0.8,0.1,0.2)’ (0.7,0.1,0.3)” (0.8,0.3,0.6)

(e:{
(63 { hy hs hy hs
(esf

(F,A) = 5

(070403) (0.6,0.7,0.2)° (0.7,0.2,0.5)’ (0.5,0.2,0.6) (0.7,0.3,0.4)
h; h3 hy hs
(080604) (0.7,0.9,0.6) (0.7,0.6,0.4)’ (0.7,0.8,0.6)  (0.9,0.5,0.7)

(=4
. 4

Definition 2.7 [59] Let (H, A) and (G, B) be two NSs over the common universe U. Then
the union of (H, A) and (G, B), is denoted by ” (H, A)U(G, B)” and is defined by(H,
A)U (G, B= (K, C), where C= AUB and the truth-membership, indeterminacy-
membership and falsity-membership of (K, C) are as follows:

TH(e)(m) ifee A—-B

Tx(ey(m)= Teey(m) ife € B — A
max (TH(e)' TG(e) (m)) lfe EANB

Fyey(m) ife€ A— B

Fy(ey(m)= Foey(m) ife€e B— A

min (Fi(ey Facep(m) )ife € AN B

Definition 2.8 [59] Let (H, A) and (G, B) be two NSs over the common universe U. Then
the intersectionof (H, A) and (G, B), is denoted by ” (H, A)N(G, B)” and is defined by(H,
AN (G, B= (K, C), where C= ANB and the truth-membership, indeterminacy-
membership and falsity-membership of (K, C) are as follows:
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TH(Q)(m) ifee A—B

Ty ey (m)= Tee)(m) ife € B— A
min (TH(e)’TG(e)(m)) ife€e ANB
Iyey(m)ife€e A—B
Iecoy(m)ife € B — A
Icey(m)= ‘ ?(e)) (I )(f))
M)+ gee)(m
H(e) 2(;() ife € ANB
Fyey(m) ife€e A—B
Fy(ey(m)= Fgey(m) ife€e B — A

max (FH(e)J FG(Q)(m)) ife'EA tuB

2.4. Soft expert sets

Definition 2.9 [65] Let U be a universe set, E be a set of parameters and X be a set of
experts (agents). Let O={1=agree, O=disagree} be a set of opinions. Let Z= E X X x O and
ACZ

A pair (F, E) is called a soft expert set over U, where F is a mapping given by F: A — P(U)
and P(U) denote the power set of U.

Definition 2.10 [65] An agree-soft expert set (F,A); over U, is a soft expert subset of
(F,A) defined as :

(F,A) 1 = {F(a):a € E x X x{1}}.

Definition 2.11 [65] A disagree- soft expert set (F, A) o over U, is a soft expert subset of
(F,A) defined as :

(F,A) o= {F(a):a € E x X x{0}}.

2.5. Fuzzy Soft expert sets

Definition 2.12 [64] A pair (F, A) is called a fuzzy soft expert set over U, where F is a
mapping given by

F: A— IV, and IYdenote the set of all fuzzy subsets of U.

2.6. Intuitionitistic Fuzzy Soft Expert sets

Definition 2.13 [88] Let U={ u,,u,,u,,...,u,} be a universal set of elements, E={e,,
e,,e,,...,e, } be auniversal set of parameters, X={ x,,x,,x;,...,x;} be a set of
experts (agents) and O= {l=agree, 0 = disagree} be a set of opinions. Let Z={ E X
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XxQ} and A < Z Then the pair (U, Z) is called a soft universe. Let F:Z = (I %

DV where (I x I)Vdenotes the collection of all intuitionistic fuzzy subsets of U. Suppose
F:Z = (I x )Ube a function defined as:

F (z )=F(@z)u,), forall u, eU.

Then F (z) is called an intuitionistic fuzzy soft expert set (IFSES in short ) over the soft

universe (U, 7)

For each z e€Z. FF(z) = F(z ) u, ) where F( z; ) represents the degree of
belongingnessand non-belongingness of the elements of U in F(z). Hence F'(z,)

can be written as:

where F(z )(u,) = < gy, (1, ), gy, (1, )> with s, (%, ) and @y, (#,) representing the

membership function and non-membership function of each of the elements u, € U
respectively.

Sometimes we write F as (F, Z). If A € Z. we can also have IFSES (F, A).

2.7 Neutrosophic Soft Expert Sets

Definition 2.14 [89] A pair (F, A) is called a neutrosophic soft expert set over U, where F
is a mapping given by

F:A— P(U)

where P(U) denotes the power neutrosophic set of U.

3. Mapping on Neutrosophic Soft Expert Set
In this paper, we introduce the mapping on neutrosophic soft expert classes. Neutrosophic
soft expert classes are collections of neutrosophic soft expert sets. We also define and study

the properties of neutrosophic soft expert images and neutrosophic soft expert inverse
images of neutrosophic soft expert sets, and support them with examples and theorems.

Definition 3.1 Let (U, 2) and (Y,Z’) be neutrosophic soft expert classes. Let r: U=Y and
s: Z— Z' be mappings.

Then a mapping f:(U,Z) = (Y,Z") is defined as follows :
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For a neutrosophic soft expert set (F, A) in (U, Z), f(F, A)is a neutrosophic soft expert set
in (Y, Z"), where

fEA) () Y :{\(/)xET‘1<y>(VaF (@)if r"'(y)ands™ ()N A # 9,

otherwise

for f €s(Z)S Z',y€ Y and Va € s71(B) n 4, AF, A) is called a neutrosophic soft expert
image of the neutrosophic soft expert set (F, A).

Definition 3.2 Let (U, Z) and (Y,Z’) be the neutrosophic soft expert classes. Let r: U>Y
and s: Z— Z' be mappings. Then a mapping f~*:(Y,Z’) = (U, Z) is defined as follows :
For a neutrosophic soft expert set (G, B) in (Y,Z"), f~Y(G, B) is a neutrosophic soft
expert setin (U, Z),

16, B) (@) @) ={OG(5(“))(““)) AU 8 3

otherwise

Fora € s71(f) € Z and u € U. f~1(G, B) is called a neutrosophic soft expert inverse
image of the neutrosophic soft expert set ( F, A).

Example 3.3. Let U={uq,u, , U3}, Y={y1.¥2,y3} and let A S Z = {(e;, p, 1), (e, p, 0),
(e3, p,1)}, and A" € Z'={(e1, p".1). (e3, p'.0), (e1, q',1)}.

Suppose that (U, A) and (Y, A”) are neutrosophic soft expert classes. Define r: U = Y and
s: A = A’ as follows :

s (e1,p> 1) = (e, 0",0), s (e2, p, 0) = (e1, p'.1), s (e3, p. 1) = (eq, q',1),

Let (F, A) and (G, A") be two neutrosophic soft experts over U and Y respectively such
that.

(F, A) =

Uz
<(el’p’ 1) (0.4,0.3,0.6) ’(0.3,0.6,0.4)° (0.3,0.5,0.5)})

(e uq Uz
3P 1 (0.3,0.3,0.2) (0.5,0.4,0.4)° (0.6,0.4,0.3)
Uq Uz
((ez,p, (0.5,0.6,0.3) (0.5,0.3,0.6)° (0.6,0.4,0.7) )}

(G, A') =
{((el,p b, {(0.3,0.2,0.1) (0.5,(}),.26,0.4) (0.3,(})1.35,0.1)})
E(el’q 1), {(0.5,0.7,0.4) (0.5,3,;_,0.3) (0.6,3’.35,0.1) })

(e5, 7', 0) { Y1 Y2 Y3 })}
2 £2721(0.3,0.2,0.4) ’(0.1,0.7,0.5)° (0.1,0.4,0.2)’
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Then we define the mapping from f> (U, Z) = (Y, Z’) as follows :

For a neutrosophic soft expert set ( F, A)in ( U, Z), (f (F, A), K) 1s neutrosophic soft
expert set in (Y, Z") where

K=s(A)={(e1, p".1), (€5, p’,0), (e1, q',1)} and is obtained as follows:

f(Fa A) (eia plal) (yl) = VxEr—l(yl)(VaF(a)) = Vxe{u1}(Vae{(ez,p,o),(eg,p,l) } F((Z))
= (0.5,0.6,0.3) U (0.3,0.3,0.2)
=(0.5, 0.45, 0.2)

f(Fa A) (Q{, plal) (3’2) = VxEr‘l(yz)(Va F((Z)) - Vxe{u3}(VaE{(ez,p,O),(e3,p,1) } F(O{))
=(0.6,0.4,0.7) U (0.6,0.4,0.3)
=(0.6,0.4, 0.3)

F(EA) (e{, plal) v3)= Vxer—l(yg)(va. F(a)) = Vxe{uz}(Vae{(ez,p,o),(eg,p,l) } F(“))
=(0.5,0.3,0.6) U (0.5,0.4,0.4)
=(0.5, 0.35, 0.4)

Then,

’ ' - Vi Yz V3
fE. Ay (e, po.1) = {(0.5,0.45,0.2) ’ (0.6,0.4,0.3)" (0.5,0.35,0.4)}

f(Fa A) (eéa p’,O) (yl) = VxEr—1(y1)(Va F(a)) = Vxe{ul}(vaze{(el,p,l)}F(a))
= (0.4,0.3,0.6)

f(Fo A) (eé, plso) (}’2) = VxErfl(yz)(VaF(a)) = Vxe{us}(Vae{(el,p,l)} F(C())
=(0.3,0.5,0.5)

f(Fa A) (eéa p',O) (}’3) = VxEr—10)3)(VaF(a)) = VxE{uz}(Vae{(el,p,l)} F(a))
=(0.3,0.6,0.4)

Next,

' AN Vi V2 V3
fF, A)(e2, p,0)= {(0.4,0.3,0.6) ’(0.3,0.5,0.5)’ (0.3,0.6,0.4)}

f(Fa A) (e{, qlal) (yl) = Vxer“l(yl)(VaF(a)) = VxE{ul}(VaE{(e3,p,l)} F((Z))
= (0.3,0.3,0.2)

f(Fa A) (e{, qlal) (yZ) - VxEr‘1(y2)(VaF(a)) = Vxe{u3}(vae{(e3,p,1)} F(C())
= (0.6,0.4,0.3)

FE A (er, q',1) (y3) = VxEr—l(yg)(VaF(a)) = VXE{uz}(VQE{(eg,p,l)} F(C{))
=(0.5,0.4, 0.4)

Also.
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fE, A) (e, q',1):{ Vi vz va }

(0.3,0.3,0.2) ’(0.6,0.4,0.3) (0.5,0.4,0.4)

Hence,

| 7 o Vi Y2 V3
f &, A)’K)_{((el’ P, {(0.5,0.45,0.2) ! (0.6,0.4,0.3)’(0.5,0.35,0.4)})’

((eé, p’.0), {(0.4,[}),.;,0.6) : (0.3,(311.25,0.5)’ (0.3,(}),.36,0.4)} )’

((e’ 1) { Y1 Y2 Y3 })}
14 2)1003,03,0.2) '(0.6,0.4,03) (0.5,0.4,0.4)

Next, for the neutrosophic soft expert set inverse images, we have the following:
For a neutrosophic soft expert set (G, A")in (Y, Z"), (f 1 (G, A’), D) is a neutrosophic
soft expert set in (U, Z), where

D=5"1A4")= {(e1. p, 1), (e2, p, 0), (e3, p,1)}, and is obtained as follows:

f_l (G9 B) (elo p? 1) (ul) i G(S(elJ p: 1) )(r(ul)) = G((Eé, pll 0))()’1) ;(0-31 02' 04)
71 (G B) (er, p, 1) (u2) = G(s(eq, p, 1) )(r(u2) ) = G((e3, p", 0))(¥3) =(0.1,0.4,0.2)
f_l (Gv B) (ela p; 1) (u3) = G(s(el, p, 1) )(r(u3)) . G((eé' p,; 0))()’2):(019 079 05)

Then

-1 - Ui Uz Ujz
F7(G: By (er, D, 1) {(0.3,0.2,0.4) ’(0.1,0.4,0.2)° (0.1,0.7,0.5)}

f71 (G, B) (€2, p, 0) (u1) = G(s(ez, p, 0)) (r(u)) = G (e, p', 1))(31) =(0.3,0.2,0.1)
f_1G> B) (22, p? 0) (u2) — G(S(QZJ pl 0) )(T(HZ)) . G((ei, pII 1))(}’3) :(0'31 051 01)
f71(G. B) (e2. p, 0) (uz) = G(s(ez, p, 0) )(r(uz)) = G((ef, p', 1)) (y2)=(0.5, 0.6, 0.4)

Then,

f_l (G, B) (e2,p, 0)= {(0.3,;.;,0.1) A (0.3,3.25,0.1)’ (0.5,(1)1.2,0.4)}

f71(G. B) (3, p.1) (ug) = G(s(ez, p, D)) (r(w1)) = G((e1, 0", 1)) (1) =(0.5,0.7,0.4)
f71(G. B) (e3, p,1) (u2) = G (s(e3, p, 1)) (r(uz)) = G ((e1, 9", 1)) (y3) =(0.6,0.5,0.1)
f71(G. B) (e3. p.1) (u3) = G(s(e3, p, ) (7 (u3)) = G ((e5, @, 1)) (¥2)=(0.5, 0.2, 0.3)

Then

-1 . Uy Uz Uz
f7 (G, B)(es, p.1)= {(0.5,0.7,0.4) ’ (0.6,0.5,0.1)’ (0.5,0.2,0.4)}
Hence

-1 ’ _ Uy Uz Us
(f (G, 4), D) {((el’ p. 1), {(0.3,0.2,0.4) ’(0.1,0.4,0.2)’ (0.1,0.7,0.5)})’
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Uy Up Uz
((ez, p.0), {(0.3,0.2,0.1) ’(0.3,0.5,0.1)° (0.5,0.6,0.4)})’
Uy Up U3
((63’ p1), {(0.5,0.7,0.4) ’ (0.6,0.5,0.1) (0.5,0.2,0.4)})}
Definition 3.4 1et f: (U,Z) = (Y,Z’) be a mapping and (F, A) and (G, B) a neutrosophic

soft expert sets in (U, E). Then for f € Z’, y € Y the union and intersection of neutrosophic
soft expert images (F, A) and (G, B) are defined as follows :

(£ mVF (G, B))BYY) =f (B, AYBYHV £ (G, BYB)Y)
(£ (& RS G, B) )B)y) = (F, AYBYIAS (G, BYBY).

Definition 3.5 Let f: (U, Z) = (Y, Z’) be amapping and (F, A) and (G, B) a neutrosophic
soft expert sets in (U, E). Then fora € Z,u € U, the union and intersection of neutrosophic
soft expert inverse images (F, A) and (G, B) are defined as follows :

(£ V6, B) ) (@)w) =f 2 (F, A) @V £7(G, B)(@)u).
(/71 ARF (G, B) )(ew) =f 1 (F, A)(@)()ASf ~1(G, B)(a(w).

Theorem 3.6 Let 72 (U, Z) = (Y,Z’) be a mapping. Then for neutrosophic soft expert sets
(F, A) and (G, B) in the neutrosophic soft expert class (U, Z).

fD)=0
RT)CY.

f (B AV(G B))=f (F, A)Vf (G, B)

f((F,A)A (G, B))=f(F,A)A f(G,B)
If (F,A) € (G, B), then f(F,A) < f(G, B).

SN ol Sl S

Proof: For (1) ,(2) and (5) the proof is trivial, so we just give the proof of (3) and (4).
(3). ForB € Z' and y € Y, we want to prove that

(£ MVF(G B) B = (F,ABXY) Vf (G, BYBXY)

For left hand side, consider f ((F, AV(G, B))(B)(y) = f(H,A U B)(B)(Yy). Then

eo—1 -1
f(H,A U B)(B)(y):{vxer—l(y)(vuH(a)) if r (.Y)and S (B) n (A U B) # 9, (1,1)
0 otherwise
such that H(a) =F(a) U G(a) where U denotes neutrosophic union.
Considering only the non-trivial case, Then equation 1.1 becomes:
f(H,AUB)BXY) = Vxer-1y)(V(F(a) T G(a))) (1,2)

For right hand side and by using definition 3.4, we have

117



Florentin Smarandache (author and editor) Collected Papers, XIV

(F(F,AVF (G, B) )BYy)= (B A)BYXY) VS (G BYBYY)

:(VxErfl(y)(vocEs*l B)nA F(OL)) (X) )V (vxEr‘l(y)(VVaEs‘l(B)nB F(O()) (X))
& Vxer—l(y) vOLES_l(ﬁ)ﬂ(AUB)(F(a)VG(a))
:VxEr‘l(y)(V(F(a) U G(a))) 1,3)

From equation (1.1) and (1.3) we get (3)
(4). For B € Z' and y € Y, and using definition 3.4, we have

f((F,A) K (G BB

=f(H,A U B)(BXY)

:V;‘:Er—l(y)(v(xEs‘1 (B)N(AUB) H(O())(X)
:VxEr_l(y)(vths_l(B)O(AUB) F(a) A G(a))(x)
=Vx er-10p)(Vaes—1@yncaus) F(@) (x) N G(a) (x))

c \/ F(o) | | A \/ \/ G(a)
x er~1(y) \aes—1(B)nA xer-1(y) \aes—1(B)nB

= F(F.RPBW A G BBY))

=(f(F,A) R f(G,B))(B)(y)

This gives (4).

Theorem 3.7 Let f~1: (U,Z) = (Y,Z’) be a an inverse mapping. Then for neutrosophic
soft expertsets (F, A) and (G, B) in the neutrosophic soft expert class (U, Z).

71 (00
EeEX
71 ((FMV(G, B))=f ~'(F, A)Vf (G, B)

fTHE ARG B)=f""(F,A)A f'(G,B)
If (F,A) € (G,B), Then f~1(F,A) € (G, B).

o B R

Proof. The proof is straightforward.

4. Conclusion

In this paper, we studied mappings on neutrosophic soft expert classes and their basic
properties. We also give some illustrative examples of mapping on neutrosophic soft expert
set. We hope these fundamental results will help the researchers to enhance and promote
the research on neutrosophic soft set theory.
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Abstract

The notion of single valued neutrosophic sets is a generalization of fuzzy sets,
intuitionistic fuzzy sets. We apply the concept of single valued neutrosophic sets, an instance of
neutrosophic sets, to graphs. We introduce certain types of single valued neutrosophic graphs
(SVNG) and investigate some of their properties with proofs and examples.

Keywords

Single valued neutrosophic set, single valued neutrosophic graph, strong single
valued neutrosophic graph, constant single valued neutrosophic graph, complete single
valued neutrosophic graph.

1. Introduction
Neutrosophic sets (NSs) proposed by Smarandache [12, 13] is a powerful mathematical tool for

dealing with incomplete, indeterminate and inconsistent information in real world. they are a
generalization of the theory of fuzzy sets [24], intuitionistic fuzzy sets [21, 23] and interval valued
intuitionistic fuzzy sets [22]. The neutrosophic sets are characterized by a truth-membership
function (t), an indeterminacy-membership function (i) and a falsity-membership function (f)
independently, which are within the real standard or nonstandard unit interval 70, 17[. In order to
practice NS in real life applications conveniently, Wang et al. [16] introduced the concept of a
single-valued neutrosophic sets (SVNS), a subclass of the neutrosophic sets. The SVNS is a
generalization of intuitionistic fuzzy sets, in which three membership functions are independent
and their value belong to the unit interval [0, 1]. Some more work on single valued neutrosophic
sets and their extensions may be found on [2, 3, 4, 5,15, 17, 19, 20, 27, 28, 29, 30].

Graph theory has now become a major branch of applied mathematics and it is generally
regarded as a branch of combinatorics. Graph is a widely used tool for solving a combinatorial
problem in different areas such as geometry, algebra, number theory, topology, optimization, and
computer science. Most important thing which is to be noted is that, when we have uncertainty
regarding either the set of vertices or edges or both, the model becomes a fuzzy graph.
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Lots of works on fuzzy graphs and intuitionistic fuzzy graphs [6, 7, 8, 25, 27] have been carried
out and all of them have considered the vertex sets and edge sets as fuzzy and /or intuitionistic
fuzzy sets. But, when the relations between nodes (or vertices) in problems are indeterminate, the
fuzzy graphs and intuitionistic fuzzy graphs are failed. For this purpose, Samarandache [9, 10, 11,
14, 34] have defined four main categories of neutrosophic graphs, two based on literal
indeterminacy (1), which called them; I-edge neutrosophic graph and I-vertex neutrosophic graph,
these concepts are studied deeply and has gained popularity among the researchers due to its
applications via real world problems [1, 33, 35]. The two others graphs are based on (t, i, )
components and called them; The (t, i, f)-Edge neutrosophic graph and the (t, i, f)-vertex
neutrosophic graph, these concepts are not developed at all. In the literature the study of single
valued neutrosophic graphs (SVN-graph) is still blank, we shall focus on the study of single valued
neutrosophic graphs in this paper.

In this paper, some certain types of single valued neutrosophic graphs are developed and some
interesting properties are explored.

2. Preliminaries

In this section, we mainly recall some notions related to neutrosophic sets, single valued
neutrosophic sets, fuzzy graph and intuitionistic fuzzy graph relevant to the present work. See
especially [6, 7, 12, 13, 16] for further details and background.

Definition 2.1 [12]. Let X be a space of points (objects) with generic elements in X denoted by
X; then the neutrosophic set A (NS A) is an object having the form A = {< x: T (x), [5(X), Fa(x)>,
x € X}, where the functions T, I, F: X—]70,17 define respectively the a truth-membership
function, an indeterminacy-membership function, and a falsity-membership function of the
element x € X to the set A with the condition:

0 < TA(X)+ IA(X)+ FA(X)S 3+. (1)
The functions T, (x), [5(xX) and F () are real standard or nonstandard subsets of ]°0,17].

Since it is difficult to apply NSs to practical problems, Wang et al. [16] introduced the concept
of a SVNS, which is an instance of a NS and can be used in real scientific and engineering
applications.

Definition 2.2 [16]. Let X be a space of points (objects) with generic elements in X denoted by
X. A single valued neutrosophic set A (SVNS A) is characterized by truth-membership function
Ta(x), an indeterminacy-membership function I5(x), and a falsity-membership function Fp (x).
For each point x in X Ta (%), [4(x), Fao(x) € [0, 1]. A SVNS A can be written as

A= {<x: Ta(), [s (), Fa(®)>, x €X} 2)

Definition 2.3[6]. A fuzzy graph is a pair of functions G = (o, 1) where o is a fuzzy subset of a
non empty set V and p is a symmetric fuzzy relation on 6. i.e 6: V— [ 0,1] and

w: VxV—[0,1] such that p(uv) <o(u) A o(v) for all u, v € V where uv denotes the edge between
u and v and o(u) A o(v) denotes the minimum of 6(u) and o(v). o is called the fuzzy vertex set of
V and p is called the fuzzy edge set of E.
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v,(0.1) ©-1) ,(0.3)
g (0.3) 5
4(0.4) v3(02)
0.1)

Figure 1: Fuzzy Graph

Definition 2.4 [6]. The fuzzy subgraph H = (, p) is called a fuzzy subgraph of G = (o, p)

If t(u) <o(u) forallu € Vand p (u,v) < u(u,v) forallu,veV.
Definition 2.5 [7]. An Intuitionistic fuzzy graph is of the form G = (V, E) where

1.  V={vq,Vq,...., vy} such that yu;: V- [0,1] and y;: V — [0,1] denote the degree of
membership and nonmembership of the element v; € V, respectively, and 0 < p4(v;) +
y1(vi)) <1 forevery v; EV,(i=1,2,....... n),
1. E € VxVwhere u,: VxV-[0,1]and y,: VxV— [0,1] are such that
to2(Vi, vj) < min [py(v), p1(vj)] and y,(vi, vj) = max [y1(v;), y1(vj)]

and 0 < u,(vi, vj) +y2(vi, vj) < 1 forevery (vi, vj) € E, (1,j = 1,2, ....... n)
v,(0.1, 0.4) 0.1,0.4) ,5(0.3,0.3)
e S
= (0.3, 0.6) S
= e
1404, 06) (0.2, 0.4)
(0.1, 0.6)

Figure 2: Intuitionistic Fuzzy Graph

Definition 2.6 [31]. Let A = (T4, 14, F4) and B = (T, Ig, Fg) be single valued neutrosophic
sets on a set X. If 4 = (Ty, 1, Fy) is a single valued neutrosophic relation on a set X, then 4 = (T,

I, F,) is called a single valued neutrosophic relation on B = (T, Ig, Fg) if

Tp(X, y) < min(T,(x), Ta(y))
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[g(x, y) 2 max(I5(x), Ia(y)) and
Fg(x, y) > max(Fxx), Fo(y)) for all x, y € X.

A single valued neutrosophic relation 4 on X is called symmetric if Ty(x, y) = T4(y, x), I4(x, y)

=14, x), Fa(x, y) = F4(y, x) and Tg(x, y) = Tg(y, x), Ip(x, y) = Ig(y, x) and Fg(x, y) = Fg(y, x), for
all x, y € X.

3. Single Valued Neutrosophic Graphs

Throught this paper, we denote G* = (V, E) a crisp graph, and G = (A, B) a single valued
neutrosophic graph

Definition 3.1. A single valued neutrosophic graph (SVN-graph) with underlying set V is
defined to be a pair G= (A, B) where

1.The functions T,:V—[0, 1], I,:V—[0, 1] and F,:V—[0, 1] denote the degree of truth-
membership, degree of indeterminacy-membership and falsity-membership of the element v; € V,
respectively, and

0 Ty(v;) + 1y (v;) +F4(v;) <3 forall v; €V (i=1,2,...,n)

2. The functions Tg: EC VXV =[0,1], [i:ES VXV ->[0,1]and Fz: ECV xV [0, 1]
are defined by

Tg({vy, vj}) < min [Ty (vy), Ta(v))],
Ig({v;, v;}) = max [I,(v;), 14(v;)] and
Fg({vi, vj}) = max [F4(v;), Fa(v))]

Denotes the degree of truth-membership, indeterminacy-membership and falsity-membership
of the edge (v;, v;) € E respectively, where

0< Tp({vi, v;}) + Ip({vi, v+ Fe({vy, v;}) <3 forall {v;, v;} €E(1,j=1,2,...,n)

We call A the single valued neutrosophic vertex set of V, B the single valued neutrosophic edge
set of E, respectively, Note that B is a symmetric single valued neutrosophic relation on A. We use
the notation (v;, v;) for an element of E Thus, G = (A, B) is a single valued neutrosophic graph of
G*=(V,E)if

Tg(vi, vj) < min [Ty(v;), Ta(v))],
Ig(v;, v;) = max [I4(v;), 14(v;)] and

FB (Ul’, Uj) = max [FA(vi)a FA (Uj)] for all (Ul’, U]) eE

Example 3.2. Consider a graph G* such that V= {v,, v,, v3, v4}, E={v,V,, V03, U3V,, V,V1}.
Let A be a single valued neutrosophic subset of V and let B a single valued neutrosophic subset of
E denoted by
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(2 2 V3 Uy V15 VyUs V3V, VaVq
Ta 0.5 0.6 0.2 0.4 Tg 0.2 0.3 0.2 0.1
Ia 0.1 0.3 0.3 0.2 Ig 0.3 0.3 0.3 0.2

Fa 0.4 0.2 0.4 0.5 Fg 0.4 0.4 0.4 0.5

(0.5, 0.1,0.4) 06.03.02)
(V1V3, 0.2, 0.3 ,0.4)
Vi Va
VA_ Vq

V3Vy, 0.2,0.3,0.4
(0.4,0.2 ,0.5) (V3V4, 0.2,0.3.0.9) 02,03 ,0.4)

Figure 3: G: Single valued neutrosophic graph

In figure 3, (i) (v1,0.5, 0.1,0.4) is a single valued neutrosophic vertex or SVN-vertex
(1) (v1vy, 0.2, 0.3, 0.4) is a single valued neutrosophic edge or SVN-edge
(ii1) (v, 0.5, 0.1, 0.4) and (v, 0.6, 0.3, 0.2) are single valued neutrosophic adjacent vertices.

(1v) (vqvy, 0.2, 0.3, 0.4) and (v1vy, 0.1, 0.2, 0.5) are a single valued neutrosophic adjacent
edge.

Note 1. (i) When Tgj; = Igjj = Fpjj for some i and j, then there is no edge between v; and v; .
Otherwise there exists an edge between v; and v; .
(11)If one of the inequalities is not satisfied in (1) and (2), then G is not an SVNG

The single valued neutrosophic graph G depicted in figure 3 is represented by the following
adjacency matrix Mg

(0.5,0.1,0.4) (0.2,0.3,0.4) (0, 0,0) (0.1,0.2,0.5)
(0.2,0.3,0.4) (0.6,0.3,0.2) (0.3,0.3,0.4) (0,0, 0)

Mg = (0,0, 0) (0.3,0.3,0.4) (0.2,0.3,0.4) (0.2,0.3,0.4)
(0.1,0.2,0.5) (0,0, 0) (0.2,0.3,0.4) (0.4,0.2,0.5)
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Definition 3.3. A partial SVN-subgraph of SVN-graph G= (A, B) is a SVN-graph H =
(V', E') such that

() V'SV, whereTy; <Ty Iy =1y, Fy; = Fyforall v, €V,

(i) E' € E, whereTp;; < Tgyj, lp;j = lpy, Fpyj = Fpyforall (v; v;) €E.

Definition 3.4. A SVN-subgraph of SVN-graph G= (V, E) is a SVN-graph HIZ,(E")
such that

(i) V' =V,whereT,; =T Iy; =14, Fy; = Fy4 forall v; in the vertex
set of V'.

(i) E' = E, where Tp;; = Tpyj, lp;j = lpy, Fpij = Fpy; forevery ; v)) €E
in the edgeet of E'.

Example 3.5. G, in Figure 4 is a SVN-grapH, in Figure 5 is a partial SVN-subgraph and

H, in Figure 6 is a SVN-subgraph G{

v4(0.1, 0.2,0.1)

(0.1’ 0.3 ’0.2) (0.1, 0.3 ,0.5)

1,(0.1,0.2,0.2) 14(0.5,0.2,0.4)
(0.2,0.2,0.5)

Figure4: G, asingle valued neutrosophic graph

,(0.1,0.3,0.4)
(0.1,0.4,0.5) (0.1,0.4,0.6)
Fi v,00.1,03,04) rtial & v,(0.2,0.2,0.5) 1%
v,(0.1,0.2,0.1)

(0.1.0.3.0.2)

1,(0.1,0.2,0.2)
Figure6: H,, a SVN-subgraph ofG; .

Definition 3.6. The two verticesare saidto be adjacentin a single valued neutrosophic
graph G= (A, B) if £(42;,42;) = min [T,(42;), Ty(42))], 15(42;, 42;) = max [,(42;), I,
(42;)] and
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Fg(v;,vj) = max [F4(v;), Fa(vj)]. In this casey; andv; aresaid to be neighbours and,(
v;) is incident at; andv; also.

Definition 3.7. A path P in a single valued neutrosophic graph/&3-B] is a sequence of
distinct verticesy,, vy, vs3,... v, such that Tg(v;_,v;) >0, Izg(v;_1,v;) > 0 and
Fg(v;_1,v;) >0 for 0<i < 1. Heren> 1 is called the length of the path P. A single node

or vertexv; may also be considered as a path. In this case the path is of the length (0, 0, 0).
The consedive pairs(v;_,,v;) are called edges of the path. We call P a cycigsfy,

and n>3.

Definition 3.8. A single valued neutrosophic graph G= (A, B) is said to be connected if
every pair of vertices has at least one single valued neutrosophic path between them,
otherwise it is disconnected.

Definition 3.9. A vertexv; € V of single valued neutrosophic graph G B) is sad to be
an isolated vertex if there is no effective edge incident at

v,(0.1,0.2,0.1) 1,(0.1,0.3,0.5)

(0.1’ 0.3 ’0.2) (0.1, 0.3 ,0.5)

1,(0.1,0.2,0.2) 14(0.5,0.2,0.4)
(0.2,0.2,0.5)

Figure 7: Example of single valued neutr osophic graph

In figure 7, the single valued neutrosophic vertexis an isolated vertex.

Definition 3.10. A vertex in a single valued neutrosophic G% B) having exactly one
neighbor is calle@ pendent vertex. Otherwise, it is calledon-pendent vertex. An edge in

a single valued neutrosophic graph incident with a pendent vertex is cattadeat edge.
Otherwise it is callechon-pendent edge. A vertex in a single valued neutrosophic graph
adjacent to the pendent vertex is cakestipport of the pendent edge

Definition 3.11. A single valued neutrosophic gra@* (A, B) that has neither self loops
nor parallel edge is callesiimple single valued neutr osophic graph.

Definition 3.12. When a vertex; is end vertex of some edgag, ;) of any SVN-graph
G = (A, B). Thenv; and §;, v;) are said to bencident to each other.

(0.5,0.1,0.4) enes
(0.2,0.3,0.4) (©6,03.02) (0.2,0.2,0.3)
o <
3 S
N o
A o
3 o3
S s
=3
(0.2,0.4,0.5)
(0.2,0.3,0.5)
(0.4,0.2,0.5) (0.2,0.3,0.4)

Figure8: Incident SVN-graph.
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In this graph v,v3, v3v, and v3vg are incident on vs.

Definition 3.13. Let G= (A, B) be a single valued neutrosophic graph. Then the degree of
any vertex v is sum of degreeof truth-membershipsum of degreeof indeterminacy-
membership and sum of degree of falsity-membership of all those edges which are incident

on vertexv denoted by d(v)=d;(v), d;(v), dr(v)) where

dr(v)=X.+v T (u, v) denotes degree of truth-membership vertex.
d;(v)=Xu+v» Ig (u, v) denotes degree of indeterminacy-membership vertex.
dr(v)=Yu+» Fg(u, v) denotes degree of falsity-membership vertex.

Example 3.14. Let us consider a single valued neutrosophic graph G= (A, B)cf (V,
E)where V = {w, v,, v3, vy} and E= {v,v,, v,v3, V3V, , V4vy }.

(0.5,0.1,0.4)
(0.6.0.3.0.2)
(0.2.0.3.0.4)
) <
o S
o o
o (=}
- o3
S e
(0.2,0.3.,0.5)
(0.4,0.2,0.5) (0.2,0.3,0.4)

Figure 9: Degree of vertex of singlevalued neutrosophic graph

We have, the egree of each vertex as follows:
d(v;)=(0.3, 0.5, 0.9)d(v,)= (0.5, 06, 0.8),d(v5)= (0.5, 06, 0.9),d(v,)= (0.3, 05, 1)

Definition 3.15. A single valued neutrosophic graph G= (A, B) is called constant if degree
of each vertex is k =(, k,, k3). That is, d ¢) = (kq, k5, k3) foral v € V.

Example 3.16. Consider a single valued neutrosophic graph G such that Y, w{wv;,
vy} and E={vyvy, v,v3, V3V, , Vuvy )

(0.5.0.1.0.4)

(0.6.0.3.0.2)
(0.2.0.3.0.4)
= s
S e
@ @
(=} o
o o
S e
(0.2.0.3.0.4)
(0.4.0.2.0.5) (0.2.0.3.0.4)

Figure 10: Corstant SVN-graph.

Clearly, G is constant SVN-graph since the degree;o%,, v andv, is (0.4, 0.6,
0.8).
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Definition 3.17. A single valued neutrosophic graph G = (A, B)G6E (V, E) is called
strong sinée valued neutrosophic graph if

Tg(vi, vj) = min [Ty (v;), Ta(v))]
Ig(vi, vj) = max [I4(v;), 14(v))]
Fg(v;,v;) = maX [Fy(vy), F4(v))]
For dl (v;, v;) € E.

Example 3.18. Consider a grapfi* such that V= {,, v,, v3, 14}, E= {v,v,, Vo053, V31,
.} Let A be a single valued neutrosophic subset of V and let B a single valued
neutrosoplt subset of E denoted by

G*.

(0.4,0.2,0.5)

(0.4,0.2,0.5)

%1 %) U3 | Vs

Ta | 0.5] 0.6 0.2 04

Io 10.1/0.3 0.3| 0.2

Fpo 10.4|0.2 04| 0.5
(0.5,0.1,0.4)

(27 VoV V34 Uy

T 0.5 Q2 0.2 0.4

I 0.3 Q3 0.3 0.2

F 0.4 Q4 0.5 0.5

(0.6,0.3,0.2)
(0.5,0.3,0.4)

\F)
\

(0.2,0.3,0.5)

-
(0.2,0.3,0.4)

(0.2,0.3,0.4)

Figure 11: Strong SVN-graph
By routing computations, it is easy to see that G is a strong single valued neutrosophic of

Proposition 3.19. A single valued neutrosophic graph is the generalization of fuzzy graph

132



Florentin Smarandache (author and editor) Collected Papers, XIV

Proof: Suppose G= (V, E) be a single valued neutrosophic graph. Then by setting the
indeterminacy- membership and falsity- membership values of vertex set and edge set
equals to zero reduces the single valued neutrosophic graph to fuzzy graph.

Proposition 3.20. A single valued neutrosophic graph is the generalization of intuitionistic
fuzzy graph.

Proof: SupposeG = (V, E) be a single valued neutrosophiagraph. Then by settingthe
indeterminacy-membershipvalue of vertex setand edge set equalsto zero reducesthe
single valued neutrosophic graph to intuitionistic fuzzy graph.

Definition 3.21. The complement of a single valued neutrosophic graph G (A, Bj“as
a single valued neutrosophic graplon G* where:

1.A=A

2.Ta(v)=Ta(vy), La(vy)=1L4(vy), F4(vy) = Fa(vy), for allv; € V.

3.Tp(vi, v))=min [Ty(v), Ta(v})] -Ts (vi, v})

Iz(v;, v))=max [I,(v), 14(v;)] -Iz(v;, v;) and

Fp(v;, vj)=max [F4(v;), F4(v;)] -Fs(vi, v;), Forall (v;,v;) € E

Remark 3.22. if G= (V, E) is a single valued neutrosophic graph®h Then from above
definition, it follow thatG is given by the single valued neutrosophic grapt=(V , E') on
G* whereV =V andT(v;, v;)=min [Ty (v;), Ta(v;)]-Ts (vi, v)),

ITg(vi,vj)= min [IA(vl-),IA(vj)]-IB(vi,vj),and

F=B(vl-,vj) =min [FA(U-),FA(vj)]—FB(vi,vj) Fordl (v;,v;) € E.

Thus T andF, =Fz onV, whereE =(Tg, Iz, Fg) is the singlevalued
neutrosophlc reﬁanon on V. For 2 any single valued neutrosophlc gra@hsGtrong single

valued neutrosophic graph and=3;.
Proposition 3.23. G= G ifand only if G is a strong single valued neutrosophic graph.
Proof. it is obvious.

Definition 3.24. A strong single valued neutrosophic graph G is called self complementary
if G= G. WhereG is the complement of single valued neutrosophic graph G.

Example 3.25. Consider a grapf* = (V, E) such that V = {y, v,, v3, v}, E= {vyv,,
V,V3, V3Vy, V1V,}. Consider a single valued neutrosophic graph G.

133



Florentin Smarandache (author and editor) Collected Papers, XIV

(0.5.0.1.0.4) (0.6.0.3 .0.2) (0.5,0.1,0.4) (0.6, 0.3,0.2)
(0.5.0.3.0.4)
o s
S S
N 0
(=] o
< o
s e
(0.2.0.3.0.5) (0.4,0.2,0.5) 0-2,0.3.0.4)
(0.4.0.2.0.5) (0.2.0.3.0.4)
Figure 12: G: Stong SVN- graph Figure 13: G Strong SVN- graph
(0.5.0.1.0.4)
(0.6.0.3.0.2)
(0.5.0.3.0.4)

5} <

o S

N o

(=) (=)

< o

< e

(0.2.0.3.0.5)
(0.4.0.2.0.5) (0.2.0.3.0.4)

Figure 14: G Strong SVN- graph
Clearly, G= G . Hence G is self complementary.
Proposition 3.26. Let G = (A, B) be &trong single valued neutrosophic graph. If
T (v, v5) = min [T4(v;), Ta(vj)],
Ig(vi, vj) = max [l (v), I, (v;)] and
Fg(v;, vj) = max([F,(v;), Fy(v;)] for al v, v; € V. Then G is self complementary.
Proof. Let G= (A, B) be a strong single valued neutrosophic graph such that
Tg(vi, v;) = min [Ty (vy), Ta(v))]
Ig (v, vj) = maX [I,(vy), 1o (v))]
Fg(vi, vj) = maX [Fy(v;), Fa(v))]

For dl v;,v; € V. Then G~ G under theidentity mapl: V -V. Hence G is self
complementay.
Proposition 3.27. Let G be a self complementary single valued neutrosophic graph. Then

1 .

Zviivj TB (vil v]) = E Zviivj min [TA (vi)' TA (v])]
1

Zvi:tv]- IB (vil v]) = E Zviivj max [IA (vi)' IA (v])]

1
Zvﬁtvj FB (vil U]) = EZvﬁtvj max [FA (Ui)' FA (U])]
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Pr oof

If G be a self complementary single valued neutrosophic graph. Then there exist an
isomorphisnt: V; — V, satisfying

Ty, (f W) = Ty, (f W) = Ty, (v)

Iy, (F W) = I, F W) = L, ()

Fr, (f(v)) = Fy,(f(v)) = Fy,(v;) forally; € V;. And

T, (f (o), f () =Tg, (f ), f (v))) =Tg, (v, 1))

Iy, (f ), f () =I5, (f W2), f v))) =lg, (v;, v))

Fg, (f W), f(v))) =Fg,(f w0, f (v))) =Fg, (v, vj) forall (v, v)) € E;
We have

Tg, (f (v0), f (vp)) =min [Ty, (f v), Ty, (F W) — Te, (F (D), f (v)))
i.e, Tg, (vi, v;) =min [Ty, (v;), Ty, (V)] — Tg,(f (Vo) f (v)))

Tg, (vi, v;) = min [Ty, (vy), Ty, )] — Te, (vi, vy)

hat is )
Vi#Vj TE]_ (vi' v]) +Z‘Ui-'#‘l7j TE]_ (vi' vj): Zviivj min [TV]_ (vi)’ TV1 (v])]

Zvi:tv]- IE1 (Ul" U]) +Zvi¢vj IEl (vi' Uj): Zvi:tvj max [IVl (vi)' IV1 (U])]
Yvzv; Fe, Vi V) +Xp0; Fp, (Vi V)= Xy, max [Fy, (v2), Fy, (v))]
2 Zviivj TE]_ (vil v]) = Zviivj min [TV]_ (vi)’ TV]_ (v])]

2 Zviivj IEl (vi! v]) = Zviivj max [IVl (Ui)' IV1 (v])]
ZZvi:tvj FE1 (vi' v]) = Zviivj max [FV1 (vi)' FV1 (v])]

Fromthese quations, Proposition 3.27 holds

Proposition 3.28. Let G; andG, be strong single valued neutrosophic graphr G,
(isomorphism)

Proof. Assume that;; andG, are isomorphic, there exist a bijective mapy; - V,
satisfyirg

Ty, (vi) =Ty, (f (),

Iy, (v;) =ly,(f (1)),

Fy, (v;) =Fy,(f (v;)) forallv; € V;. And

Tg, (vi, vy) =T, (f (), £ (v))),

I, (0o, vy) =lg, (F @), £ (0),

Fg,(vi, vj) = Fg,(f (v0), f (vy)) forall (v, v)) € Ey
By definition 3.21, we have

Tg, (42, 42))= min [Ty, (42)), Ty, (42))] —T,
(42;, 4'2j)
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=min [Ty, (f (vy)), Tv,(f W] —T&,(f (v0), f (v))),
=Te,(f (D), f(v))),
Ig, (v, v))= max Iy, (), Iy, (v;))] —Ig,(v;, v;)
= max [Iy, (f (v), Iy, (f (W))] —Ie, (f (v0), f (v))),
=Ig, (f vy), f(v))),
Fg, (v, v)= min [Fy, (v;), Fy, (v;)] =Fg, (v, 1))
= min[Fy, (f (v;)), Fy,(f W)l —Fg,(f (v), f (v))),
=Fg,(f (D), f(v))),
For all(v;, v;) € E;. HenceG, = G,. The converse is straightforward.
4. COMPLETE SINGLE VALUED NEUTROSOPHIC GRAPHS

For the sa& of simplicity we denot&,(v;) by Ty; , [4(v;) by ly;, andly(v;) byl,;. Also
Tg(v;, vj) bY Tgyj , Ig(vi, vj) bY I;; andFg (vy, vj) by Fg;;.

Definition 4.1. A single valued neutrosophic graph G= (A, B) is called complete if
TBij: min (TAi! TAj)v IBij: max in, IA]) and FBij: max G:Ai! FA]) for all Ul','U]' e V.
Example 4.2. Consider a grapt* = (V, E) such that V =¥, v, v3, v4}, E={v;v,, v v

, VaVs, V1V, V3V, , VoV, 1. Then G= (A, B) is a complete single valued neutrosophic graph
of G*.

(0.7,0.3,0.2)
(0.6, 0.2,0.3)

(0.6, 0.3,0.3)
KVZ

(0.5,0.3, 0.3)

(0.7,0.3,0.2)
(0.5, 0.2,0.3)

(0.6,0.2,0.3)

(0.5,0.1,0.3)
(0.8,0.1,0.2) (0.5,0.1,0.3)

Figure 13: Conplete single valued neutrosophic graph

Definition 4.3. The complement of a complete single valued neutrosophic  graph G = (A,
B) of G*=(V, E) is a single valued neutrosophic complete g@plt4, B) onG*= (V, E)
where

1.V =V

2. Ty(v)=Ty(vy), ()= I14(vy), F4(v)=F4(v;), forallv; € V.
3.Tp(vy, vp)=min [T, (v), Ta(v})] — Ts(vi, v))

I3 (v, v))=max [L,(v), 14(v;)] — Iz(v;, v;) and

F3(v;, ;)= max [FA(vl-),FA(vj)] - FB(vi,vj) for all (v;,v;) €E
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Proposition 4.4:

The complement of complete SVN-graph is a SVN-graph with no edge. Orif G is a
complete then iir the edge is empty.

Pr oof

Let G= (A, B) be a complete SVN-graph.

So TBij: min (TAi! TAj)v IBij: max in, IA]) andFBi]-: max GAi! FA]) for all vy, Vj eV

Hence inG,

Tpij=min [Ty;, Tyj| — Tay; foralli, j, ..., n
=min [Ty;, Ty;| — min [Ty, T,;] for alli, j,.....,n
=0 foralli, j,..... n

and

Igij=max [Ly;, Iy;] — Ig;j for all i, j,.....,n
=max [IAi,IAj] — max [IAi,IAj] foralli, j,.....,n

=0 foralli,j,.....,n
Also

FBij:maX [FAi'FAj] _FBij for all i,j, ..... N
=max [FAL-,FAj] — max [FAi,FAj] foralli, j,.....,n
=0 foralli,j,.....,n
Thus (g, 18, Fgij) = (0, 0, 0)
Hence, the edge set 6fis empty if G is a complete SVN-graph.

4. CONCLUSION

Neutrosophicsetsis a generalizatiorof the notion of fuzzy setsand intuitionistic fuzzy

sets. Neutrosophicmodels gives more precisions, flexibility and compatibility to the

system as compared to the classical, fuzzy and/or intuitionistic fuzzy models. In this paper,
we have introducedcertain types of single valued neutrosophicgraphs,such as strong

single valued neutrosophgraph, constant single valued neutrosophic graph and complete
single valued neutrosophicgraphs.In future study, we plan to extendour researchto

regular and irregular single valued neutrosophic graphs, bipolar single valued neutrosophic
graphs,interval valued neutrosophiagraphs,stronginterval valued neutrosophicregular

and irregular interval valued neutrosophic.
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Abstract— In this paper, the authors propose an
extended version of Dijkstra’ algorithm for finding the shortest
path on a network where the edge weights are characterized by
an interval valued neutrosophic numbers. Finally, a numerical
example is given to explain the proposed algorithm.

Keywords—Dijkstra algorithm; interval valued neutrosophic
number; Shortest path problem; Network;

I. INTRODUCTION

Smarandache [1] originally proposed the concept of a
neutrosophic set from a philosophical point of view. The
concept of the neutrosophic set (NS for short) has the ability to
handle uncertain, incomplete, inconsistent, the indeterminate
in a more accurate way. The theory of neutrosophic sets are a
generalization of the theory of fuzzy sets [3], intuitionistic
fuzzy sets [4] and interval- valued intuitionistic fuzzy sets [6].
The concept of the neutrosophic sets is expressed by a truth-
membership degree (T), an indeterminacy-membership degree
(I) and a falsity-membreship degree (F) independently, which
are within the real standard or nonstandard unit interval ] 0,1
“[. The concept of neutrosophic set is difficult to apply it real
scientific and engineering areas. For this purpose.
Smarandache [1] introduced the concept of SVNS, an instance
of neutrosophic set, whose functions of truth, indeterminacy
and falsity are within [0, 1]. In fact sometimes the degree of
truth-membership, indeterminacy-membership and falsity-
membership about a certain statement can not be defined
exactly in the real situations, but expressed by several
possible interval values. So the interval valued neutrosophic
set (IVNS) was required. For this purpose, Wang et al.[8]
introduced the concept of interval valued neutrosophic set
(IVNS for short), which is more precise and more flexible
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than the single valued neutrosophic set. The interval valued
neutrosophic sets (IVNS) is a generalization of the concept of
single valued neutrosophic set, in which three membership
functions are independent, and their values belong to the unite
interval [0, 1].

Some more literature about neutrosophic sets, interval valued
neutrosophic sets and their applications in divers fields can be
found in [9]. In addition, the operations on interval valued
neutrosophic sets and their ranking methods are presented in [10-
1]

The selection of shortest path problem (SPP) is one of classic
problems in graph theory. Several algorithms have been
proposed for solving the shortest path problem in a network. The
shortest path problem appears in various disciplines such as
transportation, road networks and other applications. The
shortest path problems could be classified into three types
[12]:

1) Problem of finding shortest path from a single source in
which the aim is to find shortest path from source node to all
other nodes around the graph.

2) Problem of finding shortest path to a single source in
which the aim is to find the shortest path between each
connected pair in the graph.

3) Problem of finding shortest path between each two nodes
in which the aim is to find shortest path between connected
pair in the graph.

In a network, the shortest path problem concentrates at finding
the path from one source node to destination node with
minimum weight. The edge length of the network may
represent the real life quantities such as, cost, time, etc. In
classical shortest path problem, it is assumed that decision
maker is certain about the parameters (time, distance, etc)
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between different nodes. But in real life situations, there
always exist uncertainty about the parameters between
different nodes. For this purpose, several algorithms have been
developed the shortest path under different types of input data,
including, fuzzy sets, interval valued fuzzy sets, interval
valued intuitionistic fuzzy sets and vague sets [13-18]. One of
the well- known algorithms in solving shortest path problem is
Dijikstra algorithm [19]. Dijikstra ‘algorithm finds the shortest
path from source node to other nodes in a graph, the so-called
single source shortest path problem.

Recently, several articles have been published on neutrosophic
graph theory [20-28]. In addition, Broumi et al. [29-32]
proposed some algorithms dealt with shortest path problem in
a network where the edge weights are characterized by a
neutrosophic numbers including single valued neutrosophic
number, bipolar neutrosophic numbers and interval valued
neutrosophic numbers.

The main purpose of this article is to introduce an extended
version of Dijkstra algorithm for solving shortest path problem
on a network where the edge weights are characterized by an
interval valued neutrosophic numbers. The decision maker can
determine the shortest path and the shortest distance of each
node from source node by using the proposed method. This
method is more efficient due to the fact that the summing
operation and the ranking of IVNNs can be done in an easy
and straight manner.

The article is organized as follows. Some basic concepts of
neutrosophic sets, single valued neutrosophic set and interval
valued neutrosophic sets are introduced in section 2. In section
3, a network terminology is introduced. The extended version
of Dijkstra’algorithm for solving the shortest path with
connected edges in neutrosophic data is proposed in section 4.
Section 5 illustrates a numerical example which is solved by
the proposed method. Conclusions and further research are
given in section 6.

II. PRELIMINARIES

In this section, we introduced some basic concepts and
definitions of single valued neutrosophic sets and interval
valued neutrosophic sets from the literature [ 1, 7, 8, 10, 11]

Definition 2.1 [1]. Let X be an universe of discourse of points
with generic elements in X denoted by x. Hence, the
neutrosophic set A ( NS A) is an object having the form A =

{<x: T,(x), I,(x), F,(x)> x € X}, where the functions
T, I, F: X—]70,1" define respectively the truth-membership
function, the indeterminacy- membership and the falsity-
membership function of the element x € X to the set A with
the condition:

0<T,(x)+ 1,(x)+ F,(x)<3". (1)

The functions 7, (x), /,(x) and F,(x) are real standard or

non-standard subset of 170,17[.
Since it is difficult to apply NSs to practical problems, Wang
et al. [ 7] introduced the concept of a SVNS, which is an
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instance of Neutrosophic set and can be utilized in real
scientific and engineering applications.

Definition 2. 2[7] Let X be an universe of discourse of points
(objects) with generic elements in X denoted by x. the single
valued neutrosophic set A (SVNS A) is characterized by truth-

membership function 7,(x) , an indeterminacy-membership
function / ,(x), and a falsity-membership ~function F,(x).

For each point x in X, 7,(x), I,(x), F,(x) € [0, 1]. A
SVNS A can be expressed as

A={<xi T (x), 1,(x), F,(x)>xe X} (2
Definition 2.3 [8]. Let X be an universe of discourse of
points (object) with generic elements in X denoted by x. An

interval valued valued neutrosophic set A ( IVNS A) is
characterized by an interval truth-membership function

T,(x)= I:T AL,T AU:I ,an interval indeterminacy-membership
function [/ ,(x)= [1 b IZ:I , and an interval falsity
membership function F,(x) = |:F AL , sz] . For each point x

in X T,(x), I,(x), F,(x) [0, 1]. An IVNS A can be
expressed as

A= (<x:T,(x),1,(x), F,(x)>xe X} (3

Definition 2.4[11]. Let 4 =< [TIL,TIU Mzﬁ,l{f },[FIL,FIU } >and

Ay =< [TQL,TZU},[IQL,I[ZJ },[FZL,Fg } > be two interval valued

neutrosophic numbers. Then, the operations for IVNNs are
defined as below:

(@)

il L Lyl U U UnU
A1®A2—<[Tl +Ty -1ty nY 1y

U
-

1 1

it | e ]
“
4 ® 4y =< |:T1LT2L,TIUT2U},|:[1L Y I S Ly L 11’/15’},
(i)
|:F1L B FEE R R 7FIUF2U:| S
(%)
(iii)
2 =<[1-a-rt1-a-ih [[abtal* | [ Y
(6)
(iv)
it =< atr ] [i-a-ira-a-hh [[i-a- b a-a- £ |-
where 4 >0
(7
Definition 2.5 [8]. An interval valued neutrosophic number
4 =< [TIL,Y]U},[IIL,I{]J,[EL,FF} > is said to be empty if and
only if
" =0,1Y =0,1 =1,17 =1,and F* =1,F/ =1and is
denoted by



Florentin Smarandache (author and editor)

0, ={<x,<[0, 0], [L 1], [ 1]>xeX} (7

A convenient method for comparing two interval valued
neutrosophic numbers is by use of score function.

Definition 2.6 [10]. Let 4 =< [TIL,TIU sz,lff },[FIL,FIU J > be
an interval valued neutrosophic number. Then, the score
function s(fll) and accuracy function H(}il) of an IVNN are
defined as follows:

® S(AI)ZGJX[2+TIL+TIU—2IIL —21f R -R'| ®

L oU_ U _7U_ L _mly_ U _Us_mlq_ 7L
h+h - -0 ) - A-T)-F (A=-f)-F(-1)

(if) i) - x

©)
Definition 2.7 [10]. Let 4 =< [TlL,TlU sz,llU J,[FIL,FIU J >
and 4, =< [TZL ,TZU},[IZL,IEZJ,[FZL,FZU } >are two interval valued

neutrosophic numbers. Then, we define a ranking method as
follows:

1. If S(zal) > 5(22) ,then ;11 is greater than ;12 ,that is,
A, is superior to 4, , denoted by 4, > 4,

If 5(4,)=s(4,),and H(A4)> H(4,)then 4, is
greater then 4, , thatis, 4, is superior to 4, ,
denoted by 4, > 4, .

ii.

III. NETWORK TERMINOLOGY

In this subsection we consider a directed network G= ( V, E)
where V denotes a finite set of nodes V={1,2,...,n} and E
denotes a set of m directed edges Ec 'V x V. Each edge is
denoted by an ordered pair (i, j) wherei,j € Vand i# j. In
this network, two nodes denoted s (source) and t (target) are
specified, which represent the source node and the destination

node. The path is defined as sequence F;

{i=4,,(,0) Iy 5o s dyy» (§_1,4;) ;=] } of alternating nodes and
edges. The existence of at least one P, in G = (V, E) is

supposed for every i € V-{s}.
d;; denotes an interval valued neutrosophic number assigned

with the edge (i,j), corresponding to the length necessary to
traverse (i, j) from i to j. In real problems, the lengths
correspond to the time, the distance, the cost, etc. Hence, the
interval valued neutrosophic distance along the path is denoted
as d(P) and is expressed as follows:

D)= > d;

(i,jeP)

(10)

Remark: A node i is called predecessor of node j if

(i) Nodei and node j is connected directly.

(i1)) The direction of path connected the node i and the node
jis fromito j.
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IV. INTERVAL VALUED NEUTROSOPHIC DIJKSTRA
ALGORITHM

In this subsection, we modified the fuzzy Dijkstra’s algorithm
adapted from [33] for computing the shortest path on a
network where the edge weights are characterized by an
interval valued neutrosophic numbers.

This algorithm finds the shortest path and the shortest distance
between a source node and any other node in the network. The
interval valued neutrosophic Dijikstra’ algorithm forwards
from a node i to an immediately successive node j using a
neutrosophic labeling procedure. Let u; be the shortest

distance from node 1 to node i and s (c?,-j) >0 be the length of

(i, j) edge. Then, the neutrosophic label for node j is defined
as:

[i;.i]=[@ ®d,,i. S(d;)>0. (11
Here label [u T i] mean we are coming from nodes i after
covering a distance u; from the starting node. Dijikstra’

algorithm classified the nodes into two classes: temporary set
(T) and permanent set (P). A temporary neutrosophic label can
be changed into another temporary neutrosophic label, if
shortest path to the same neutrosophic node is checked. If no
better path can be found then, the status of temporary
neutrosophic label is replaced to permanent status.

In the following, we introduce the four steps of interval valued
neutrosophic Dijkstra’ algorithm as follows:

Step 1: Assign to source node (say node 1) the permanent
label P [< [0, 0], [1, 1], [1, 1]>, -]. Set i=1.

Making a node permanent means that it has been included in
the short path.

P denotes a permanent label, while — means that there is no
sequence to the source node.

Step 2: Determine the temporary neutrosophic label [u; ©®d;;,

i] for each node j that can be arrived from i, provided j is not
permanently labeled. If node j is previously labeled as [, k]

through another node K, and if S(#; ®d~y-) < S(u;) change

[i;, K] with [, ®d, i].
Step 3: When all the nodes are permanently labeled, the
algorithm terminates. Otherwise, choose the label [ #, , s] with

shortest distance (i, ) from the list of temporary neutrosophic
labels. Set i=r and repeat step 2.

Step 4: Select the shortest path between source node 1 and the
destination node j by tracing backward through the network
using the label’s information.

Remark:

At each iteration among all temporary nodes, make those
nodes permanent which have smallest distance. Note that at
any iteration we can not move to permanent node, however,
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reverse is possible. After all the nodes have permanent labels
and only one temporary node remains, make it permanent.
After describing the interval valued neutrosophic Dijkstra’
algorithm, in next section a numerical example is given to
explain the proposed algorithm.

The flow diagram of interval valued neutrosophic Dijkstra
algorithm is depicted in figurel

Identify the source and destination node

as V; and v;

v

Set the node V; as permanent node

A

Compute the temporary label from V;

to its neighbor and find its minimum

A

distance node say v f

\ 4

Compute the distance d( v; +V i ) and

assign it as next permanent node in v f

[ ] No
yes
Y
Computation of shortest distance from
VitoV;

J
Fig. 1. Flow diagram representing the interval valued
neutrosophic Dijkstra algorithm.

Is the permanant

node v i

V. ILLUSTRATIVE EXAMPLE

In this subsection, an hypothetical example is used to verify
the proposed approach. For this, we consider the network
shown in figure2, then, we computed the shortest path from
node 1 to node 6 where edges is represented by an interval
valued neutrosophic numbers is computed. The extended
Dijikstra algorithm is applied to the following network.
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Fig.2. A network with interval valued neutrosophic weights
In this network each edge has been assigned to interval valued
neutrosophic number as follows:

Table 1. Weights of the graphs

Edges Interval valued neutrosophic
distance
1-2 <[0.1,0.2],0.2,0.3],[0.4, 0.5]>
1-3 <[0.2,0.4],[0.3,0.5],[0.1, 0.2]>
2-3 <[0.3,0.4], [0.1, 0.2], [0.3,0.5]>
2-5 <[0.1,0.3], [0.3, 0.4], [0.2, 0.3]>
3-4 <[0.2,0.3],[0.2,0.5],[0.4, 0.5]>
3-5 <[0.3, 0.6], [0.1, 0.2], [0.1, 0.4]>
4-6 <[0.4,0.6],[0.2,0.4], [0.1, 0.3]>
5-6 <[0.2, 0.3], [0.3, 0.4], [0.1, 0.5]>
Following the interval valued neutrosophic Dijkstra’s

algorithm, the details of calculations are defined below.
Iteration 0: Assign the permanent label [<[0, 0], [1, 1], [1,
1]>, -] to nodel .

Iteration 1: Node 2 and node 3 can be arrived from (the last
permanently labeled) node 1. Hence, the list of labeled nodes
(Temporary and permanently) is available in the following
table

Nodes Label Status
1 [<[0,0],[1, 1], 1, 17>, -] P
2 [<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1] T
3 [<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]>, 1] T

In order to compare <[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>and
<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]> we use Eq.8

S (<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>) =0.1

S (<[0.2, 0.4],[0.3, 0.5], [0.1, 0.2]>)=0.175

Since the rank of [<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1] is less
than [<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]>, 1]. Hence, the status
of node 2 is replaced by the permanent status.

Iteration 2: Node 3 and node 5 can be arrived from node 2.
Hence, the list of labeled nodes (temporary and permanent) is
available in the following table
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Nodes Label Status

1 [<[0, 0], [1, 1], [1, 11>, -] P

2 [<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1] P

3 [<[0.2,0.4],[0.3, 0.5],[0.1,0.2]>, 1] or T
[<[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]>, 2]

5 [<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>,2] | T

S (<[0.37, 0.52], [0.02, 0.06], [0.12, 0.25] >) =0.59

S (<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>) =0.51

Among the temporary labels [<[0.2, 0.4], [0.3, 0.5], [0.1,
0.2]>, 1] or [<[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]>, 2],
[<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>, 2] and since the
rank 0f<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]> is less than of <[0.37,
0.52], [0.02, 0.06], [0.12, 0.25]> and <[0.19, 0.44], [0.06,
0.12],[0.08, 0.15]>, So the status of node 3 is replaced by a
permanent status.

Iteration 3 : Node 4 and node 5 can be arrived from node 3.
Hence, the list of labeled nodes (temporary and permanently)
is available in the following table

Nodes Label Status

[<[0,01,[1, 1T, [1, 17>, -]

[<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1]

[<[0.2, 0.4], 0.3, 0.5], [0.1, 0.2]>, 1]

[<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]>, 3]

N |W| N —
|||

[<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>, 2]
or
[<[0.44, 0.76], [0.03, 0.1], [0.01, 0.08]>, 3]

S (<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]>) =0.54

S (<[0.44, 0.76], [0.03, 0.1], [0.01, 0.08]>) =0.71

Among the temporary labels [<[0.36, 0.58], [0.06, 0.25],
[0.04, 0.1]>, 3] or [<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>,
2], [<[0.44, 0.76], [0.03, 0.1], [0.01, 0.08]>, 3] and since the
rank of <[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>,is less than of
<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]> and <[0.44, 0.76],
[0.03, 0.1], [0.01, 0.08]>. So the status of node 5 is replaced
by a permanent status.

Iteration 4: Node 6 can be arrived from node 5. Hence, the
list of labeled nodes (temporary and permanent) is available in
the following table.

Nodes Label Status
1 [<[0,01,[1, 11,1, 17>, -] P
2 [<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1] P
3 [<[0.2,0.4], [0.3, 0.5], [0.1, 0.2]>, 1] P
4 [<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]>, 3] T
5 [<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>, 2] P
6 [<[0.35, 0.60], [0.01, 0.04], [0.008, 0.075]>, 5] T
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Since, there exist one permanent node from where we can
arrive at node 6. So, make temporary label [<[0.35, 0.60],
[0.01, 0.04], [0.008, 0.075]>, 5] as permanent.

Iteration 5: The only temporary node is 4, this node can be
arrived from node 3 and node 6. Hence, the list of labeled
nodes (temporary and permanent) is available in the following
table

Nodes

1

status

P

label
[<[0, 0], [1, 1], [1, 1]>, -]
[<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1]
[<[0.2, 0.4], 0.3, 0.5], [0.1, 0.2]>, 1]
[<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]>, 3]
or
[<[0.61, 0.84,[0.002, 0.016], [0.01,
0.023]>, 6]

2 P
3 P
4 T

5 [<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>, | P
2]

[<[0.35, 0.60], [0.01, 0.04], [0.008, 0.075]>, 5]

P

6

In order to compare <[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]>
and <[0.61, 0.48], [0.002, 0.016], [0.01, 0.023]> we use the
Eq.8

S (<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]> ) =0.54 and

S (<[0.61, 0.84],[0.002, 0.016], [0.01, 0.023]>) = 0.84

Since the rank of [<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]>, 3]
is less than [<[0.61, 0.84, [0.002, 0.016], [0.01, 0.023]>, 6].

And the node 4 is the only one temporary node remains then,
the status of node 4 is replaced by a permanent status.

Nodes Label Status
1 [<[Os 0]9 [1’ 1]’ [19 1]>’ _] P
2 [<[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]>, 1] p
3 [<[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]>, 1] p
4 [<[0.36, 0.58], [0.06, 0.25], [0.04, 0.1]>, | T
3]
5 [<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>, | P
2]
6 [<[0.35, 0.60], [0.01, 0.04], [0.008,0.075]>, 5] | P

Based on the step 4, the shortest path from node 1 to node 6 is
determined using the following sequence.

(6) — [< [0.35, 0.60], [0.01, 0.04], [0.008, 0.075]>, 5] — (5)
— [<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15]>, 2]

—(2) > [<[0.1,0.2],[0.2,0.3], [0.4, 0.5]>, 1] (1)

Hence, the required shortest pathis 1 >2 —>5—>6
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le, 11

[d, 3]

[e, 2]
Fig 3. Network with interval valued neutrosophic shortest
distance of each node from node 1.

Where, the neutrosophic label of each node is:

[aa ']: [< [07 0]7 [17 1]9 [19 1] >, ']

[b, 1 ]=[<[0.1,0.2],[0.2, 0.3], [0.4, 0.5], 1]

[c, 1 =[<[0.2,0.4],[0.3, 0.5], [0.1, 0.2] >, 1]

[d, 3]=[<[0.36, 0.58], [0.06, 0.25],[0.04, 0.1] >, 3]
[e, 2 I=[<[0.19, 0.44], [0.06, 0.12], [0.08, 0.15] >, 2]
[f, 5] =[<[0.35, 0.60], [0.01, 0.04], [0, 0.075] >, 5]

V1. CONCLUSION

This paper extended the single valued neutrosophic Dijkstra’s
algorithm for solving the shortest path problem of a network
where the edge weights are characterized by an interval valued
neutrosophic number. The use of interval valued neutrosophic
numbers as weights in the graph express more precision than
single valued neutrosophic numbers. Finally, a numerical
example has been solved to check the efficiency of the
proposed method. In future, we will research the application
of this algorithm.
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Abstract— In this paper, we develop a new approach to deal
with neutrosphic shortest path problem in a network in which
each edge weight (or length) is represented as triangular fuzzy
neutrosophic number. The proposed algorithm also gives the
shortest path length from source node to destination node using
ranking function. Finally, an illustrative example is also included
to demonstrate our proposed approach.

Keywords— triangular fuzzy neutrosophic sets; score function;
Shortest path problem

L.

In 1995, Smarandache talked for the first time about
neutrosophy and he in 1999 and 2005 [1, 2] defined one of
the most important new mathematical tool which is an
neutrosophic set theory for handling problems involving
imprecise, incomplete, indeterminate and inconsistent
information cannot be dealt with fuzzy sets as well as
intuitionistic fuzzy sets Smarandache [3] introduced the
concept of neutrosophic set and neutrosophic logic as
generalization of the concepts of fuzzy sets [4], intuitionistic
fuzzy sets [5]. The concept of neutrosophic set is characterized
by three independent membership degrees namely truth-
membership degree (T), indeterminacy-membership degree
(D), and falsity-membership degree (F). which are lies between
nonstandard unit interval 170, 1.

From scientific or engineering point of view, the neutrosophic
set and set- theoretic operator will be difficult to apply in the
real application. For this purpose, a subclass of the
neutrosophic sets called single-valued neutrosophic sets
(SVNS for short) was proposed by Wang et al [6]. The
concept of single valued neutrosophic sets has caught attention
to the researcher on various topics such as to be such as the
decision making problem, medical diagnosis and so on. Later
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on, Smarandache extended the neutrosophic set to
neutrosophic overset, underset, and offset [7]. Additional
literature on neutrosophic sets can be found in [7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19]. However, in uncertain and
complex situations, the truth-membership, the indeterminacy-
membership and the falsity-membership independently of
SVNS cannot be represented with exact real numbers or
interval numbers  Moreover, triangular fuzzy number can
handle effectively fuzzy data rather than interval number. For
this purpose. Biswas et al. [20] proposed the concept of
triangular fuzzy neutrosophic sets (TFNS) by combining
triangular fuzzy numbers (TFNs) and single valued
neutrosophic set (SVNS) and define some of its operational
rules and developed triangular fuzzy neutrosophic number
weighted arithmetic averaging and triangular fuzzy
neutrosophic number weighted arithmetic geometric averaging
operators to solve multi-attribute decision making problem . In
TFNS the truth, indeterminacy and the falsity-membership
functions are expressed with triangular fuzzy numbers instead
of real numbers. Also, Ye [21] defined trapezoidal fuzzy
neutrosophic set and developed trapezoidal fuzzy
neutrosophic number weighted arithmetic averaging and
trapezoidal fuzzy neutrosophic number weighted arithmetic
geometric averaging operators to solve multi-attribute decision
making problem. Recently, Broumi et al. [22, 23, 24]
presented the concept of single valued neutrosophic graph,
The single valued neutrosophic graph model allows the
attachment of truth-membership (t), indeterminacy—
membership (i) and falsity- membership degrees (f) both to
vertices and edges. The single valued neutrosophic graph is
the generalization of fuzzy graph and intuitionistic fuzzy
graph. In addition, Broumi et al. [25, 26] proposed the concept
of interval valued neutrosophic graph as a generalization the
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concept of the fuzzy graph, intuitionistic fuzzy graph, interval
valued fuzzy graph and single valued neutrosophic graph.
Also, Broumi et al. [27, 28] proposed the concept of bipolar
neutrosophic graph as a generalization the concept of the
fuzzy graph, bipolar fuzzy graph, single valued neutrosophic
graph. Smarandache [29, 30] proposed another variant of
neutrosophic graphs based on literal indeterminacy .

In graph theory, the shortest path problem is the problem of
finding a path between two nodes (or vertices) such that sum
of the weight of its constituent edges is minimized. This
problem has been studied for a long time and has attracted
researchers from various areas of interests such operation
research, computer science, communication network and
various other problem. There are many shortest path problems
[31-39] that have been studied with different types of input
data, including fuzzy set, intuitionistic fuzzy sets, trapezoidal
intuitionistic fuzzy sets vague set. Up to present, few research
papers deal with shortest path in neutrosophic environment.
Broumi et al. [40] proposed an algorithm for solving
neutrosophic shortest path problem based on score function.
The same authors in [41] proposed a study of neutrosphic
shortest path with single valued trapezoidal neutrosophic
number on a network. In addition Broumi et al. [42] proposed
develop an algorithm to find the shortest path on a network in
which the weights of the edges are represented by bipolar
neutrosophic numbers. Motivated by the works done in [40-
42 1, in this paper a new method is proposed for solving
shortest path problems in a network which the edges length
are characterized by single valued triangular neutrosophic
numbers.

The rest of the paper has been organized in the following way.
In Section 2, a brief overview of neutrosophic sets, single
valued neutrosophic sets and triangular fuzzy neutrosophic
sets. In section 3, we give the network terminology. In
Section 4, an algorithm is proposed for finding the shortest
path and shortest distance in triangular fuzzy neutrosophic
graph. In section 5 an illustrative example is provided to find
the shortest path and shortest distance between the source
node and destination node. Finally, in Section 6 we provide
conclusion and proposal for further research

II. PRELIMINARIES

In this section we give the definition and some important
results regarding neutrosophic sets, single valued neutrosophic
sets and triangular fuzzy neutrosophic sets

Definition 2.1 [3]. Let X be a space of points (objects) with
generic elements in X denoted by x; then the neutrosophic set

A (NS A) is an object having the form A = {< x: T,(x),
I,(x), F,(x)> x £ X}, where the functions T, I, F:

X—170,1"[define respectively the truth-membership function,
an indeterminacy-membership function, and a falsity-
membership function of the element x £ X to the set A with
the condition:

0T+ L)+ F (<3 ()
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The functions 7,(x), I,(x) and F,(x) are real standard or

nonstandard subsets of ]°0,1"[.

Since it is difficult to apply NSs to practical problems, Wang
et al. [14] introduced the concept of a SVNS, which is an
instance of a NS and can be used in real scientific and
engineering applications.

Definition 2.2 [4]. Let X be a space of points (objects) with
generic elements in X denoted by x. A single valued
neutrosophic set A (SVNS A) is characterized by truth-

membership function 7',(X) , an indeterminacy-membership
function /,(x), and a falsity-membership function F,(x).

For each point x in X 7,(x), I,(x), F,(x) £]0, 1]. A
SVNS A can be written as

A={<x:T,(x), I,(x), F,(x)>x £X} )
And for every x /X
0<T,(x)+ 1,(x)+ F,(x)<3. 3)

Definition 2.3 [21]. Assume that X be the finite universe of
discourse and F [0, 1] be the set of all triangular fuzzy

numbers on [ 0, 1]. A triangular fuzzy neutrosophic set
(TFNNS) 4 in X is represented

A={<xT(x), I,(x), F,(x)>x £X} “4)
Where fA(x):X— Fo,1 _, fA(x):X—‘ F,1 B and
Fx): X+ Fl,1 . The triangular fuzzy numbers
T, (1) =(Ty(x). Ti(x). Ti (), )
I,(0= (1, (). 15 (x), 1(x)) and ©)

FA (x)= (F; (x), FA2 (%), Fj (x)) ,respectively , denote the
truth-membership, indeterminacy-membership and a falsity-
membership degree of X in A and for every x /X

0= Ty(x) + [3(x)+ Fi(x)<3. 9

For notational convenience, the triangular fuzzy neutrosophic

value (TFNV) A is denoted by
A =((a ,b,c)le,f.g)(r,s,t))where,

(Ty(x), T3(x), Ti(x)) = (a, b, c), ®)
(I4(x), I5(x), I3(x)) = (e, f, g), and ©)
(Fi(x), Fi(x) ,Fj(x))=(r,s,1) (10)

Definition 2.4 [21]. A triangular fuzzy neutrosophic number
A z((a ,b,c)(e,f,g)(r,s t )> is said to be zero
triangular fuzzy neutrosophic number if and only if
(a,b,c)=(0,0,0), (e, f, ) =(1, I, and (1,5, ) =(1, 1, 1)
(In
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Definition 2.5 [20]. Let 4, ={(&,5.¢), (e, f1,2), (1 51.1))

and 4, = ((a3,b5,61),(€2, 2522)5(12,5,51,)) be two TNV in

the set of real numbers. and 0 A0 . Then, the operations rules
are defined as follows;

@)
~ ~ (al h Clzo alaz,bl. b2 Oblbz,cl ) OC102),
A P A4, E<
(€€, /1./2,8182), (11> 8150, 1h1y)
(12)
(i1)
(may,biby,cic0),
A R4 =((e: e0eey, fi. [20f1/2.8 - 2 08&)
(l"l . rz() nmn,s1. S 0S1S2,t1 . tz Otltz)
(13)
. 10(10 a)°,10(10 5)°,10 (10 ¢)?).,
(i o <+( 10.a)®10(105)°,10(10 ;) >,>
(610’flo,gIO),(’,IO,SIO,IIO)
(14)
(a10,blo,010),
(iv) 210 = -|(10(10e1)0,10(10f1)0,10(10g1)0) p
1010 4)°,10(10 57)°,10 (10 1)),
where o AO (15)

Ye [21] introduced the concept of score function and
accuracy function . The score function S and the accuracy
function H are applied to compare the grades of TFNS. These
functions shows that greater is the value, the greater is the
TFNS and by using these concept paths can be ranked.

Definition 2.6. Let 4 ={(a,b.¢), (e, f,.2), (51.1)) be a
TFNV, then, the score function S(;ll) and an accuracy
function H (;11) of TENV are defined as follows:

)

sG)=> 8. (@ b 6)0(- 26 @ (i 25, 1)

(16)
(17)

In order to make a comparisons between two TFNV,
Ye [21], presented the order relations between two TFNVs.

Definition 2.7. Let 4 = {(ay,b;,¢,).(e;, f;.1). (11, 51,4,)) and
4, = ((a2,b,¢5),(€1, 2,€2),(r2,53,1,)) be two TFNVs in the

set of real numbers. Then, we define a ranking method as
follows:

i.  Ifs(4)>s(4,),then 4, is greater than 4, , that is,

~ 1
(i) H(AI)EZ_,(al. 2b . ¢)0(r. 28, 1)

A, is superior to 4, , denoted by 4, > A,
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If s(4)=s(4),and H(A4)> H(A,)then 4 is
greater than 212 , that is, ;1] is superior to 212 , denoted
by 4, > A,.

III. NETWORK TERMINOLOGY

Consider a directed network G(V, E) consisting of a finite set
of nodes V={1, 2,....n} and a set of m directed edges
E ¢ VxV . Each edge is denoted is denoted by an ordered pair
(1,j) where i,j £ V and i = j . In this network, we specify two

nodes, denoted by s and t, which are the source node and the
destination node, respectively. We define a path F; = {i

=iy, (i,5) , 1y 5o s fjor > (o1 55) » §; =)} of alternating nodes and
edges. The existence of at least one path P, in G (V, E) is

assumed for every i £V-{s}.
d; denotes triangular fuzzy neutrosophic number associated

with the edge (i, j), corresponding to the length necessary to
traverse (i, j) from i to j. the neutrosophic distance along the
path P is denoted as d(P) is defined as

dPy= | 4,

ij

(1,j2P)

Remark : A node i is said to be predecessor node of node j if

(i) Node i is directly connected to node j.

(i1)) The direction of path connecting node i and j from i to j.
III. TRIANGULAR FUZZY NEUTROSOPHIC PATH

PROBLEM
In this paper the edge length in a network is considered to be a
neutrosophic number, namely, triangular fuzzy neutrosophic
number.
The algorithm for the shortest path proceeds in 6 steps.
Step 1 Assume a71 =<(0,0,0), (1,1, 1),(1, 1, 1)> and label
the source node (say nodel) as [amf1 =<(0,0,0), (1,1, 1), (1, 1,
1)>’_]'
Step 2 Find amfj = minimum { c;’i @c?lj };1=23,...
Step 3 If minimum occurs corresponding to unique value of i
d;,
corresponding to more than one values of i then it represents
that there are more than one interval valued neutrosophic path
between source node and node j but triangular fuzzy

(18)

.

i.e., 1 = r then label node j as [ r]. If minimum occurs

neutrosophic distance along path is d ;» 80 choose any value
of i.

Step 4 Let the destination node (node n) be labeled as [amfn , 1,
then the triangular fuzzy neutrosophic shortest distance
between source node is d, .

Step 5 Since destination node is labeled as [3’1 , 1], so, to find

the triangular fuzzy neutrosophic shortest path between source
node and destination node, check the label of node 1. Let it be
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[c;’, , p], now check the label of node p and so on. Repeat the
same procedure until node 1 is obtained.

Step 6 Now the triangular fuzzy neutrosophic shortest path
can be obtained by combining all the nodes obtained by the
step 5.

Remark 5.1 Let /_11 ;1=1, 2,..., n be a set of triangular fuzzy
neutrosophic numbers, if S( ;lk) < S( ;1,- ), for all i, the

triangular fuzzy neutrosophic number is the minimum of ,:lk

IV. ILLUSTRATIVE EXAMPLE

In order to illustrate the above procedure consider a small
example network shown in Fig. 2, where each arc length is
represented as triangular fuzzy neutrosophic number as shown
in Table 2. The problem is to find the shortest distance and
shortest path between source node and destination node on the
network.

Fig.1 A network with triangular fuzzy neutrosophic edges

In this network each edge have been assigned to triangular
fuzzy neutrosophic number as follows:

Edges triangular fuzzy neutrosophic distance

1-2 <(0.1,0.2,0.3), (0.2, 0.3, 0.5), (0.4, 0.5, 0.6)>
1-3 <(0.2,0.4,0.5), (0.3, 0.5, 0.6), (0.1,0.2, 0.3)>
2-3 <(0.3, 0.4, 0.6), (0.1, 0.2, 0.3), (0.3, 0.5, 0.7)>
2-5 <(0.1,0.3,0.4), (0.3,0.4, 0.5), (0.2, 0.3, 0.6)>
3-4 <(0.2,0.3,0.5), (0.2, 0.5, 0.6), (0.4, 0.5, 0.6]>
3-5 <(0.3, 0.6, 0.7), (0.1, 0.2, 0.3), (0.1, 0.4, 0.5)>
4-6 <(0.4, 0.6, 0.8), (0.2,0.4,0.5), (0.1, 0.3, 0.4)>
5-6 <(0.2,0.3, 0.4), (0.3,0.4,0.5), (0.1, 0.3, 0.5)>

Table 1. weights of the triangular fuzzy neutrosophic
graphs

Solution since node 6 is the destination node, so n= 6.

assume a71 =<(0,0,0), (1,1, 1), (1, 1, 1)> and label the source
node ( say node 1) as [<(0, 0, 0), (1, 1, 1), (1, 1, 1)>,-], the
value of 5’j ;j7=2,3,4,5 ,6 can be obtained as follows:
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Iteration 1 Since only node 1 is the predecessor node of node
2, so putting i = 1 and j =2 in step 2 of the proposed
algorithm, the value of ‘?z is

d, = minimum{ d, ® d,, } = minimum{<(0, 0, 0), (1, 1, 1), (1,
1, 1)> n <(0.1, 0.2, 0.3), (0.2, 0.3, 0.5), (0.4, 0.5, 0.6)>=
<(0.1,0.2,0.3),(0.2,0.3,0.5), (0.4, 0.5, 0.6)>

Since minimum occurs corresponding to i = 1, so label node 2
as [<(0.1, 0.2, 0.3), (0.2, 0.3, 0.5), (0.4, 0.5, 0.6)>, 1]

a72 =<(0.1,0.2,0.3), (0.2, 0.3, 0.5), (0.4, 0.5, 0.6)>

Iteration 2 The predecessor node of node 3 are node 1 and
node 2, so putting i =1, 2 and j = 3 in step 2 of the proposed
algorithm, the value of d; is d;=

minimum{ d, A d,;,d, P d,; }= minimum{<(0, 0, 0), (1, 1, 1),
(1,1, )> n <(0.2,0.4,0.5), (0.3, 0.5, 0.6), (0.1, 0.2, 0.3)>,
<(0.1,0.2,0.3), (0.2, 0.3, 0.5), (0.4, 0.5, 0.6)> " <(0.3,0.4,
0.6), (0.1, 0.2, 0.3), (0.3, 0.5, 0.7)> } = minimum{<(0.2, 0.4,
0.5), (0.3, 0.5, 0.6), (0.1, 0.2, 0.3)>, <(0.37,0.52, 0.72),
(0.02, 0.06, 0.15), (0.12, 0.25, 0.42)>}

S (<(0.2,0.4,0.5),(0.3,0.5,0.6), (0.1, 0.2, 0.3)>)
- 1 -
s(A]);E_& (@.2b. ¢)0(e;. 2. g0 (1. 2s;. ;) =0.57

S (<(0.37, 0.52, 0.72), (0.02, 0.06, 0.15), (0.12, 0.25, 0.42)>) =
0.73

Since S (<(0.2, 0.4, 0.5), (0.3, 0.5, 0.6), (0.1, 0.2, 0.3)>) <

S (<(0.37, 0.52, 0.72), (0.02, 0.06, 0.15), (0.12, 0.25, 0.42)>)
So, minimum{<(0.2, 0.4, 0.5), (0.3, 0.5, 0.6), (0.1, 0.2, 0.3)> ,
<(0.37, 0.52, 0.72), (0.02, 0.06, 0.15), (0.12, 0.25, 0.42)>}
=<(0.2, 0.4, 0.5), (0.3, 0.5, 0.6), (0.1, 0.2, 0.3)>

Since minimum occurs corresponding to i = 1, so label node 3
as [ <(0.2,0.4, 0.5), (0.3, 0.5, 0.6), (0.1, 0.2, 0.3)>, 1]

33= <(0.2,0.4,0.5), (0.3, 0.5, 0.6), (0.1, 0.2, 0.3)>
Iteration 3. The predecessor node of node 4 is node 3, so
putting i = 3 and j = 4 in step 2 of the proposed algorithm, the
value of d, is d,= minimum{ d; @ d;, }= minimum{<(0.2,
0.4, 0.5),(0.3,0.5,0.6), (0.1, 0.2, 0.3)>

N <(0.2,0.3,0.5), (0.2, 0.5, 0.6), (0.4, 0.5, 0.6]>} = <(0.36,
0.58, 0.75), (0.06, 0.25, 0.36), (0.04, 0.1, 0.18)>
So minimum {<(0.2, 0.4, 0.5), (0.3, 0.5, 0.6), (0.1, 0.2, 0.3)>
N <(0.2,0.3,0.5), (0.2, 0.5, 0.6), (0.4, 0.5, 0.6]>} = <(0.36,
0.58, 0.75), (0.06, 0.25, 0.36), (0.04, 0.1, 0.18)>
Since minimum occurs corresponding to i = 3, so label node 4
as [ <(0.36, 0.58, 0.75), (0.06, 0.25, 0.36), (0.04, 0.1, 0.18)>
3]

a74 =<(0.36, 0.58, 0.75), (0.06, 0.25, 0.36), (0.04, 0.1, 0.18)
Iteration 4 The predecessor node of node 5 are node 2 and
node 3, so putting i= 2, 3and j= 5 in step 2 of the proposed
algorithm, the value of a75 is 5’5 =

minimum{ d, A d,s,dy P dys } = minimum{<(0.1, 0.2, 0.3),
(0.2,0.3,0.5), (0.4, 0.5, 0.6)> N <(0.1,0.3,0.4), (0.3, 0.4,
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0.5), (0.2, 0.3,0.6)>, <(0.2,0.4,0.5), (0.3, 0.5, 0.6), (0.1, 0.2,
0.3)> N <(0.3,0.6, 0.7), (0.1, 0.2, 0.3, (0.1, 0.4, 0.5)>} =
Minimum {<(0.19, 0.44, 0.58), (0.06, 0.12, 0.25), (0.02, 0.06,
0.18)>, <(0.44, 0.76, 0.85), (0.03, 0.1, 0.18), (0.01, 0.08,
0.15)>}

S (<(0.19, 0.44, 0.58), (0.06, 0.12, 0.25), (0.02, 0.06, 0.18)>) =
0.73

S (<(0.44, 0.76, 0.85), (0.03, 0.1, 0.18), (0.01, 0.08, 0.15)>) =
0.84

Since S (<(0.19, 0.44, 0.58), (0.06, 0.12, 0.25), (0.02, 0.06,
0.18)>) ? S (<(0.44, 0.76, 0.85), (0.03, 0.1, 0.18), (0.01, 0.08,
0.15)>)

Minimum {<(0.19, 0.44, 0.58), (0.06, 0.12, 0.25), (0.02, 0.06,
0.18)>, <(0.44, 0.76, 0.85), (0.03, 0.1, 0.18), (0.01, 0.08,
0.15)>}

= <(0.19, 0.4, 0.58), (0.06, 0.12, 0.25), (0.02, 0.06, 0.18)>
dy=<(0.19, 0.4, 0.58), (0.06, 0.12, 0.25), (0.02, 0.06, 0.18)>

Since minimum occurs corresponding to i=2, so label node 5
as [<(0.19, 0.44, 0.58), (0.06, 0.12, 0.25), (0.02, 0.06, 0.18)>,
2]

Iteration 5. The predecessor node of node 6 are node 4 and
node 5, so putting i =4, 5and j = 6 in step 2 of the proposed
algorithm, the value of d is dg=

minimum{ d, P d,q,ds P ds }= minimum {<(0.36, 0.58,
0.75), (0.06, 0.25, 0.36), (0.04, 0.1, 0.18)> " <(0.4, 0.6, 0.8),
(0.2,0.4,0.5), (0.1, 0.3, 0.4)>, <(0.19, 0.44, 0.58), (0.06,
0.12, 0.25), (0.02, 0.06, 0.18)> N <(0.2, 0.3, 0.4), (0.3, 0.4,
0.5), (0.1, 0.3,0.5)>} = minimum{<(0.616, 0.832, 0.95),
(0.012, 0.1, 0.18), (0.004, 0.03, 0.072)>, <(0.352, 0.608,
0.748), (0.018, 0.048, 0.125), (0.002, 0.018, 0.09)> }

S (<(0.616, 0.832, 0.95), (0.012, 0.1, 0.18), (0.004, 0.03,
0.072)>)=0.89

S (<(0.352, 0.608, 0.748), (0.018, 0.048, 0.125), (0.002, 0.018,
0.09)>) = 0.83

Since S (<(0.352, 0.608, 0.748), (0.018, 0.048, 0.125), (0.002,
0.018, 0.09)>) ? S (<(0.616, 0.832, 0.95), (0.012, 0.1, 0.18),
(0.004, 0.03, 0.072)>)

minimum{<(0.616, 0.832, 0.95), (0.012, 0.1, 0.18), (0.004,
0.03, 0.072)>, <(0.352, 0.608, 0.748), (0.018, 0.048, 0.125),
(0.002, 0.03, 0.054)> }=<(0.352, 0.608, 0.748), (0.018, 0.048,
0.125), (0.002, 0.018, 0.09)>

dg=<(0.352, 0.608, 0.748), (0.018, 0.048, 0.125), (0.002,

0.018, 0.09)>

Since minimum occurs corresponding to i = 5, so label node 6
as [<(0.352, 0.608, 0.748), (0.018, 0.048, 0.125), (0.002,
0.018, 0.09)>, 5]

5’6 =<(0.352, 0.608, 0.748), (0.018, 0.048, 0.125), (0.002,

0.018, 0.09)>

Since node 6 is the destination node of the given network, so
the triangular fuzzy neutrosophic shortest distance between
node 1 and node 6 is <(0.352, 0.608, 0.748), (0.018, 0.048,
0.125), (0.002, 0.018, 0.09)>

Now the triangular fuzzy neutrosophic shortest path between
node 1 and node 6 can be obtained by using the following
procedure:
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Since node 6 is labeled by [<(0.352, 0.608, 0.748), (0.018,
0.048, 0.125), (0.002, 0.018, 0.09)>, 5], which represents that
we are coming from node 5. Node 5 is labeled by [<(0.19,
0.44, 0.58), (0.06, 0.12, 0.25), (0.02, 0.06, 0.18)>, 2] , which
represents that we are coming from node 2. Node 2 is labeled
by [<(0.1, 0.2, 0.3), (0.2, 0.3, 0.5), (0.4, 0.5, 0.6)>, 1] which
represents that we are coming from node 1. Now the triangular
fuzzy neutrosophic shortest path between node 1 and node 6 is
obtaining by joining all the obtained nodes. Hence the
triangular fuzzy neutrosophic shortest pathis 1°© 2 5° 6

The triangular fuzzy neutrosophic shortest distance and the
neutrosophic shortest path of all nodes from node 1 is shown
in the table 2 and the labeling of each node is shown in figure

N c? Triangular fuzzy
o i neutrosophic
de shortest path
between jth and
1st node
2 | <(0.1,0.2,0.3), (0.2, 0.3, 0.5), (0.4, 1° 2
0.5, 0.6)>
3 [ <0.2,04,0.5),(0.3,0.5,0.6), (0.1, 1° 3
0.2,0.3)>
4 | <(0.36, 0.58,0.75), (0.06, 0.25,0.36), | 1° 3 4
(0.04, 0.1, 0.18)>
5 | <(0.19,0.44,0.58), (0.06,0.12,0.25), | 1° 2 5
(0.02, 0.06, 0.18)>
6 | <(0.352,0.608, 0.748), (0.018, 0.048, 1° 2 5° 6
0.125), (0.002, 0.018, 0.09)>
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Table2. Tabular representation of different triangular fuzzy
neutrosophic distance and shortest path.

Fig.2. Network with triangular fuzzy neutrosophic shortest
distance of each node from node 1

V. CONCLUSION

In this paper, an algorithm has been developed for solving
shortest path problem on a network where the edges are
characterized by triangular fuzzy neutrosophic. We have
explained the method by an example with the help of a
hypothetical data. Further, we plan to extend the following
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algorithm of triangular fuzzy neutrosophic number shortest
path problem in a trapezoidal neutrosophic environment.
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Generalized Bipolar Neutrosophic
Graphs of Type 1

Said Broumi, Mohamed Talea, Assia Bakali, Florentin Smarandache

Said Broumi, Mohamed Talea, Assia Bakali, Florentin Smarandache (2017). Generalized Bipolar Neutrosophic
Graphs of Type 1. 20th International Conference on Information Fusion Xi'an, China, 7

Abstract—In this research paper, based on the notion of
generalized single valued neutrosophic graphs of type 1, we
presented a new type of neutrosophic graphs called generalized
bipolar neutrosophic graphs of type 1 (GBNG1) and presented a
matrix representation for it and studied some properties of this
new concept. The concept of GBNG1 is an extension of
generalized fuzzy graphs of type 1 (GFG1) and generalized
single valued neutrosophic of type 1 (GSVNG1).

Keywords—Bipolar neutrosophic graph; Generalized bipolar
neutrosophic graphs of type 1; Matrix representation.

[. INTRODUCTION

Smarandache [5] proposed the concept of neutrosophic set
theory (in short NS) as a means of expressing the
inconsistencies and indeterminacies that exist in most reallife
problem. The proposed concept generalized the concept of
fuzzy sets [13], intuitionistic fuzzy sets [11], interval-valued
fuzzy sets [9] and interval-valued intuitionistic fuzzy sets [12].
In neutrosophic set, every element is characterized three
membership degrees. truth membership degree T, an
indeterminate membership degree | and a false membership
degree F, where the degrees are totally independent, the three
degree are inside the unit interval 170, 1*[. To practice NS in
real life problems, The single valued neutrosophic set was
proposed by Smarandache in [5]. After, Wang et a.[§]
discussed some interesting properties related to single valued
neutrosophic sets. In [10], Deli et al. proposed the concept of
bipolar neutrosophic sets and discussed some interesting
properties. Some more literature about the extension of
neutrosophic sets and their applications in various fields can
be found in [6, 15, 26, 27, 28 29, 30, 31, 41, 42].

Graphs are models of relations between objects.
The objects are represented by vertices and relations by
edges. In a crisp graphs two vertices are either related or
not related to each other, mathematically, the degree of
relationship is either 0 or 1.While in fuzzy graphs, the
degree of relationship takes
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values from [0, 1]. In the literature, many extensions of fuzzy
graphs have been studied deeply such as bipolar fuzzy [1, 3,
16, 40]. All these types of graphs have a common property
that each edge must have a membership value less than or
equal to the minimum membership of the nodes it connects.
Samanta et al. [35] proposed two concept of fuzzy graphs
called generalized fuzzy graphs 1 (GFG1) and generalized
fuzzy graphs 2 (GFG2) and studied some major properties
such as completeness and regularity with proved results.
When the description of the objects or relationships, or both
happens to possess indeterminacy and inconsistency. The
fuzzy graphs and theirs extensions cannot deal with it. So, for
this purpose, Smarandache [4,7] proposed the two concepts of
neutrosophic graphs, one based on literal indeterminacy (1)
whereas the other is based neutrosophic truth-values (T, I, F)
on to deal with such situations. Subsequently, Broumi et al.
[23, 24, 25] introduced the concept of single valued
neutrosophic graphs (in short SVNGs) and investigate some
interesting properties with proofs and illustrations. Later on
the same authors [32, 33] proposed the concept of bipolar
single neutrosophic graphs (in short BSYNGs) and studying
some interesting properties. Later on, others researchers
proposed other structures of neutrosophic graphs [18, 19, 17,
20, 22, 23, 39]. Followed the concept of Broumi et a [23],
several studies appeared in [2, 14, 21, 36, 37, 38]

Similar to the bipolar fuzzy graphs, which have a common
property that each edge must have a membership value less
than or equal to the minimum membership of the nodes it
connects. Also, the bipolar neutrosophic graphs presented in
the literature [32, 43] have a common property that edge
positive truth-membership value is less than the minimum of
its end vertex values, whereas the edge positive indeterminate-
membership value is less than the maximum of its end vertex
values or is greater than the maximum of its end vertex values.
And the edge positive false-membership value is less than the
minimum of its end vertex values or is greater than the
maximum of its end vertex values. In [34], Broumi et al. have



Florentin Smarandache (author and editor)

discussed the removal of the edge degree restriction of single
valued neutrosophic graphs and presented a new class of
single valued neutrosophic graph called generalized single
valued neutrosophic graph of typel, which isais an extension
of generalized fuzzy graph of type 1 [35]. Motivated by the
concept of generalized single valued neutrosophic graph of
type 1(GSVNGY1) introduced in [34]. The main contribution
of this paper is to extend the concept of generalized single
valued neutrosophic graph of type 1 to generalized bipolar
neutrosophic graphs of type 1 (GBNG1) to model systems
having an indeterminate information and introduced a matrix
representation of GBNGL.

This paper is organized as follows. Section 2, focuses on
some fundamental concepts related to neutrosophic sets, single
valued neutrosophic sets, bipolar neutrosophic sets and
generalized single valued neutrosophic graphs type 1. Section
3, provides the concept of generalized bipolar neutrosophic
graphs of type 1 with an illustrative example. Section 4 deas
with the representation matrix of generalized bipolar
neutrosophic graphs of type 1 followed by conclusion, in
section 5.

I1.PRELIMINARIES

This section presented some definitions from [5,8,10, 32
34] related to neutrosophic sets, single valued neutrosophic
sets, bipolar neutrosophic sets, and generalized single valued
neutrosophic graphs of type 1, which will helpful for rest of
the sections.

Definition 2.1 [5]. Let X be a space of points (objects) with
generic elementsin X denoted by x; then the neutrosophic set
A (NS A) is an object having the form A = {< x: T,(X) ,

[,(X), Fo(X) > x € X}, where the functions T, I, F:

X—]70,1"[define respectively the truth-membership function,
indeterminate-membership function, and false-membership
function of the element x € X to the set A with the condition:

0<T,(X)+ 1 ,(X)+F,(X)<3* (1)

The functionsT,(X) , | ,(X) and F,(X) are real standard or
nonstandard subsets of] 0, 1*[.

Since it is difficult to apply NSs to practical problems,
Smarandache [5] introduced the concept of a SVNS, which is
an instance of a NS and can be used in rea scientific and
engineering applications.

Definition 2.2 [8]. Let X is a space of points (objects) with
generic elements in X denoted by x. A single valued
neutrosophic set A (SVNS A) is characterized by truth-

membership function T,(X) , an indeterminate-membership
function | ,(X) , and afalse-membership function F,(x) . For
each point x in X, T,(X), 1 ,(X), FA(X) €[0, 1]. A SYNS A
can be written as
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A={<x: To(X), [ ,(X), Fa(X)> x €X} (2

Definition 2.3 [10].A bipolar neutrosophic set A in X is
defined as an object of the form
A={<X, (T ()14 (). F4 (%), T4 (0).15 (x).Fx (x)) > x € X},

where T, I, FA:X — [1, 0] and T,, I;, F,: X — [-1, O].
The positive membership degree T, (x),If (x),F; (x) denotes
the truth membership, indeterminate membership and false
membership of an element € X corresponding to a bipolar
neutrosophic set A and the negative membership degree
Ty (x) , I;(x) , Fy(x) denotes the truth membership,
indeterminate membership and false membership of an
element € X to some implicit counter-property corresponding
to a bipolar neutrosophic set A. For convenience a bipolar
neutrosophic number is represented by
A=<Tx If, Fi Ty I5 Fa> (3)
Definition 2.4 [34]. Let V be anon-void set. Two functions
are considered as follows:
p=(pr, py, pr):V — [ 0,1]*and
w=(wr, w;, wp):VXV - [ 0,1]% . We suppose
A={(pr(x).pr(»)) |wr (X, y) = O},
B={(p;(x).p1(¥)) lw;(x,y) = O},
C={(pr (x),pr (¥)) lwr(x,y) = O},

We have considered wy, w; and wr = Ofor all set AB, C,
sinceitsis possible to have edge degree =0 (for T, or I, or F).
The triad (V, p, w) is defined to be generalized single valued
neutrosophic graph of type 1 (GSVNGL) if there are functions
a:A—[0,1],8:B—[0,1] and §:C— [ 0, 1] such that
wr(x,y) = a((or(x).pr(¥)))

w;(x,y) = B(pr (x).p1()))

wr(x,y) = 8((pr (x).pr (¥))) Wherex, ye V.

Here p(x)= (pr(x), p;(x), pr(x)), X€ V are the truth-
membership, indeterminate-membership  and  false
membership of the vertex x and w (x, y)=(w7(x,y), w;(x,y),
wr(x,9)), X, YE V are the truth-membership, indeterminate-
membership and fal se-membership values of the edge (x, y).

Definition 2.5 [32]. A bipolar single valued neutrosophic
graph of agraph ¢*= (V, E) isapair G = (A, B), where A =
(TS, Lf, FEf,T; ,1;,F;) is a bipolar single vaued
neutrosophic set in V and B = (T ,13, Ff.T; 5, F;) isa
bipolar single valued neutrosophic set in V2 such that

Ty (vi, vj) <min(Ty (v), T (v)))

I3 (v, vy) 2max(Lf (v;),1i (v))

Fg (v, vj) 2max(FS (v;),Fa (v))) and

Ty (v;, v;) =max (T, (v;),T4 (v)))

I (v, vy) <min(Iy (v). Ly (v)))

Fz (v, v;) <Smin(E (v;),F; (v))) foral vv; € V2.
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I1l. GENERALIZED BIPOLAR NEUTROSOPHIC GRAPH
OFTYPE1

In this section, based on the generalized single valued
neutrosophic graphs of type 1 proposed by Broumi et al. [34],
the definition of generalized bipolar neutrosophic graphs type
lisdefined asfollow:

Definition 3.1. Let V be anon-void set. Two functions are
considered, as follows:

p=(pt.pf p#.p7, P PF)V— [ —1,1]°and

w=(w?F 0}, wfwr, 0] ,w7):VXV- [ —1,1]°. We suppose
A={(p7 (x),p7 () w7 (X, y) = O},

B={(pi" (x).pi ) lwi (x, y) = O},

C={(p# (x).pF ) |wF (X, y) =0},

D={(p7 (x).p7 () lw7(x,y) < 0},

E={(or ().pr (")) lw; (x,y) <0},

F={(pr (x).pr ) lwF (X, y) < O},

We have considered w7, wf,wf = 0 and wr,w;, wy < 0for
al setsA,B, C, D, E, Fsinceit is possible to have edge
degree=0(forT* orI* or F*,T- orI~ or F™).

The triad (V, p,w) is defined to be generalized bipolar
neutrosophic graph of type 1 (GBNG1) if there are functions
a:A-[0,1],8:B-[0,1],6:C-> [0,1]and é:D- [ -1,0],
g:E-> [—-1,0], y:F- [ —1, 0]such that

wt(x,y) = a((pf (x).p7 ),

w7 (x,y) =&((pr (x).p7 ())),

wi (x,¥) = B((pi (X).pi ),

wr (x,y) = a((p; ().p; )),

wi (x,¥) = 8((pF (x).pF (1)),

wr (%, ¥) =P((pr ().pF (¥))) Wherex,y € V.

Here p(x)=(p7 (x), pi" (x). pi (x), pr (x), i (x), pr (%)),
X € V are the positive and negative truth-membership,
indeterminate-membership and false-membership of the
vertex x and w(x,y) =(wr(x,y) ., o (xy), 0i(Yy),
w7 (x,y), 07 (x,y),0r(x,y))XyE V ae the positive and
negative truth-membership, indeterminate-membership and
false-membership values of the edge (X, y).

Example3.2: Let the vertex set be V={x, vy, z, t} and edge set
be E={(x, y).(x, 2),(x, ).(y, )}

Table 1. Positive and negative truth- membership, indeterminate-membership
and false-membership of the vertex set.

X y z t
pf |05 09 03 038
of |03 0.2 0.1 05
pf |01 0.6 0.8 04
p; | 06 0.1 -0.4 -0.9
o[ |04 03 02 -0.6
o |02 0.7 0.9 -05

Let us consider functions a(m, n)= max

(mi, ), B(m, m)="LD 5, my= min (i, n),
&(m ,n)= min (mz,nz), o(m ,n)= , and Yp(m,n)=
max (mg, ng), Here,

(my+np)
2
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A={(0,5,0.9), (0.5, 0.3), (0.5, 0.8),(0.9, 0.8)}
B={(0.3,0.2), (0.3, 0.1), (0.3, 0.5), (0.2, 0.5)}
C={(0.1, 0.6), (0.1, 0.8), (0.1, 0.4), (0.6, 0.4)}
D={(-0.6, -1), (-0.6, -0.4), (-0.6, -0.9), (-1, -0.9)}

E ={(-0.4, -0.3), (-0.4, -0.2), (-0.4, -0.6), (-0.3, -0.6)}
F={(-0.2,-0.7), (-0.2, -0.9), (-0.2, -0.5), (-0.7, -0.5)}

Then

Table 2. Positive and negative truth- membership, indeterminate-membership
and false-membership of the edge set.

w (xy) | (xz) | (xt) | (O)
wi(xy) | 0.9 05 08 0.9
wi(xy) | 025 0.2 0.4 0.35
wi(xy) | 01 0.1 0.1 0.4
wi(xy) | -0.6 -0.6 0.9 0.9
o (xy) | -0.35 0.3 025 | -045
wp(xy) | 0.2 0.2 0.2 05

The corresponding generalized bipolar neutrosophic graph of
type 1lisshowninFig.2

X<05,03,0.1,-0.6,-0.4,-0.2> t<0.8, 0.5, 0.4, -0.9, -0.6, -0.5>

. <0.8, 04, 0.1,-0.9, -0.25, -0.2>

&

< 4,-0.9, -0.45, -0.5>

&

Q@

<

Q@

—

b3,

g 1,-0.6,-0.3,-0.2>
a

o

o

g

Z <0.3,01,08,-04,-0.2-0.9>
y<0.9,0.2,0.4,-04,-0.3,-0.7>

Fig 2. A BNG of type 1.

The easier way to represent any graph is to use the matrix
representation. The adjacency matrices, incident matrices are
the widely matrices used. In the following section, GBNGL1 is
represented by adjacency matrix.

IV. MATRIX REPRESENTATION OF GENERALIZED
BIPOLAR NEUTROSOPHIC GRAPH OF TYPE 1

Because positive and negative truth- membership,
indeterminate-membership and false-membership of the
vertices are considered independents. In this section, we
extended the representation matrix of generalized single
valued neutrosophic graphs of type 1 proposed in [34] to the
case of generalized bipolar neutrosophic graphs of type 1.

The generalized bipolar neutrosophic graph (GBNGL) has one
property that edge membership values (T, I, F*, T, I,
F~) depends on the membership value(T*, It, F*, T~, I,
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F~) of adjacent vertices. Suppose {=(V, p, w) is a GBNG1
where vertex set V={v,,v,,...,1,,}. The functions

a :A— [0, 1] istaken such that

wt(x,y) = a((pf (x),pf ())), wherex, ye V and
A={(pt (x).p7 (¥)) lw7(x, y) = O},

B :B— [0, 1] istaken such that

wf (x,y) = B((pi" (.o (1)), wherex, ye V and
B={(p/ (x).p/ ) |} (x,y) = O},

6 :C— [ 0,1] istaken such that

wi (x,¥) =6((pF (x),pF (¥))), wherex, ye V and
C={(p# ().pr () lwi(x, y) = O},

¢ :D—- [ —1, 0] istaken such that

wr (x,¥) =¢((pr (x).p7 ())), wherex, ye V and
D= {(pr (x).pr () |7 (X, y) <O},

o :E- [ —1, 0] istaken such that

w; (x,y) = a((pr (x).pr (v))), wherex, ye V and
E={(p; ().pr () low; (x,y) <0}, and

Y:F— [ —1, 0] istaken such that

wr (%, y) =p((or (x).p7 (¥))), wherex, ye V and
F={(or ().pr (1) lwr (x,y) < O},

The GBNGL can be represented by (n+1) x (n+1) matrix

Mg " =[a™ (i, j)] asfollows:

The positive and negative truth-membership( T+, T7) ,
indeterminate-membership (I*, I7) and false-membership
(F*, F7), values of the vertices are provided in the first row
and first column. The (i+1, j+1)-th-entry are the membership
(T*, T™), indeterminate-membership (I, I7)and the false-
membership (F*, F~) values of the edge (x;,x;), i, j=1,...,n if
i#].

The (i, i)-th entry is p(x;)=(p7 (xi), pi (x2), piF (x:), pr (x2),
pr (x), pr (x;)) where i=1,2,...,n. The positive and negative
truth-membership (T*, T™), indeterminate-membership (I,
I7) and false-membership (F*, F~), values of the edge can be
computed easily using the functions a, 8, 8, ¢ , ¢ and ywhich
arein (1, 1)-position of the matrix. The matrix representation
of GBNGL, denoted byM;"", can be written as sixth matrix

representation ME:, M(’;I,Mg;,Mgl_, M ME .
The M(f: can be represented as follows:

Table3. Matrix representation of T+*-GBNG1
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B vy (of (1)) v,(pi (v2)) v (o ()
vi(pf (v1)) pif (v1) Bloi (v).pif (v2)) | Blef (i) ()
v, (o (v2)) | Blof (v2).01 (v1)) pif (v;) Bloif (v2) .01 (v2)
vof @) | Blof ()i (1)) | Bloi (v).oif (v2)) pif (V)

+
The M¢, can be represented as follows
Tables. Matrix representation of F*-GBNG1

6 v, (pF (1)) v,(pf (v2)) vn(pif (V)
v1(pf (1)) pi(vy) 8(pf (v1).pf (v2)) | 8(pF (v1).pf (V)
vo(pF (v2)) | 8(pF (v2).pF (v1)) pi (v2) 8(pr (v2).pF (v2))
vn(pF () | 8(pf (vn)pE (1)) | 8(pF ()P (v2)) pi(vn)
The Mgl_ can be represented as follows

Table6. Matrix representation of T~-GBNG1

& vy (pr (V1)) v,(p7 (v2)) Un (07 (V1))
vi(p7 (1)) pr(vy) §lor (1)1 (12)) | §(p7 (v1).p7 (V)
va(p7r (v2)) | §(pr (v2).p7 (v1)) pr(v2) $(pr ()7 (v2))
valpr () | E(pr (vn).pr (1)) | §(p7 (vn).p7 (v2)) pr(Vn)

The M(’;I can be represented as follows
Table7. Matrix representation of I "-GBNG1

g

v1(pr (V1))

va(pr (v2))

v (o7 (V)

v1(pr (v1))

pr (v1)

alpi (vi).pi (v2))

alpi (v1) .o (W)

vy (pr (v2))

a(pr (v2).pr (V1))

pif (v2)

alpr (w2).pr (v2)

vn(Pr (V)

a(pi (va).pr (V1))

a(pi (v).pr (v2))

pir ()
The M¢, can be represented as follows
Table8. Matrix representation of F~-GBNG1
Y v1(pF (1)) v,(pF (V2)) Vn(pF (Vn))
vi(pr (V1)) pr(vy) Ylpr (v1).pr (v2)) Y(pr (v1).0F (7))
v (v2)) | Wlpr (v2).0F (V1) pr(v2) Y(pr (v2).p7 (v2))
va(pr (7)) | Ylor (v).pr (v1)) | PpF (Vn).pr (v2)) pr (V)

a vy (pf (v1)) v, (07 (v2)) v (0F (V)
vy (o7 (1)) pr(vy) a(pf (v1).07 (v2)) a(pf (v1).pF (V)
vo(pf (v2)) | alpf (v2).p7 (V1)) pt(v2) a(pf (v2).p7 (v2))
vnlpr () | alpf (vn).pF (1) | alpf (vn).0F (v2)) Pt (vy)

The Méz can be represented as follows

Table 4. Matrix representation of I*-GBNG1
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Remark 1: Ifpr (x)=p; (x)=pF (x)0,the generalized bipolar
neutrosophic graphs of type 1 is reduced to generalized single
valued neutrosophic graph of type 1 (GSVNGL).

Remark 2: If pr (x)=p; (x)=pF (x)0, andp;" (x)=pj (x) =0 ,
the generalized bipolar neutrosophic graphs type 1 is reduced
to generalized fuzzy graph of type 1 (GFG1).

Here the generalized bipolar neutrosophic graph of type 1
(GBNG1) can be represented by the matrix representation
depicted in table 15.The matrix representation can be written
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as sixth matrices one containing the entriesas T+, It , F*, T,
I, F~ (seetable 9, 10,11,12,13 and 14).

Tabled. T*- matrix representation of GBNG1

a=max(x,y) |*05) [ y(0.9 |[z03) |08
x(0.5) 05 0.9 05 0.8
y(0.9) 0.9 0.9 0 0.9
2(0.3) 05 0 03 0
1(0.8) 0.8 0.9 0 0.8

Tablel0. I'*- matrix representation of GBNG1

B=(x+y)2 | x03) [y02 [z01) |05
x(0.3) 03 0.25 0.2 0.4
y(0.2) 0.25 0.2 0 035
z(0.1) 02 0 0.1 0
t(0.5) 04 0.35 0 05

Tablell. F*- matrix representation of GBNG1

&= min(x, y) x(0.1) y(0.6) 2(0.8) t(0.4)
x(0.1) 01 0.1 0.1 0.1
y(0.6) 0.1 0.6 0 0.4
2(0.8) 0.1 0 08 0
t(0.4) 01 0.4 0 0.4

Tablel2. T™- matrix representation of GBNG1

F=min(x,y) | XC08) | y(01) | 204 | (-09)
x(-0.6) 06 06 06 09
y(-0.1) 06 01 0 09
2(-0.4) 06 0 04 0
1(-0.9) 09 09 0 09

Tablel3. I™- matrix representation of GBNG1

o=(x+y)2 | x(04) [y(03) [z-02) |06
x(-0.4) 0.4 -0.35 0.3 -0.25
y(-0.3) -0.35 03 0 -0.45
2(-0.2) 0.3 0 -0.2 0
1(-0.6) -05 -0.45 0 -0.6
Tableld.F~- matrix representation of GBNG1

Y= max(x, y) x(-0.2) y(-0.7) z(-0.9) t(-0.5)
x(-0.2) 0.2 02 0.2 02
y(-0.7) 0.2 0.7 0 05
2(-0.9) 0.2 0 0.9 0
t(-0.5) 0.2 05 0 05

The matrix representation of GBNG1 can be represented as
follows:
Tablel5. Matrix representation of GBNG1.
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(@ B.5,¢,0,9) | x(05,03, | y(09,02, | 203,01, | (08,05,
01,-06- | 06,-01- | 08-04- | 04,-09,
0.4,-0.2) 0.3,-0.7) 0.2,-0.9) 06, -

05)
x(05,0.3,0.1,- | (05 0.3, (09,025, | (05,02, (0.8,0.4,

0.6,-0.4, -0.2) 01,-06- | 01,-06- |01,-06- | 01,-09-
0.4,-0.2) 0.35,-0.2) 0.3,-0.2) 05,-0.2)

y(0.9,02,06,- | (09,025, | (0.9,02, (0, 0,0,0 | (09,

0.1,-0.3,-0.7) 0.1,-06 | 06,-0.1- 0, 0) 0.35, 0.4,
035-02) | 03-07) 0.9~

0.45,-0.5)

2(0.3,0.1,08,- | (05,02, (0,0,0,0 | (03,01 (0, 0,0

0.4,-0.2, -0.9) 0.1,-0.6,- 0, 0) 08,-04,- | ,0,0, 0)
0.3,-0.2) 0.2,-0.9)

1(0.8,05,04, - | (0.8 04, (09,035 | (0,0, 0,0 | (0.8,0.5,

09,-06, -05 | 01,-09,0. | 04,-09- 0, 0) 0.4, -0.9,-
5-0.2) 0.45,-0.5) 0.6,-0.5)

Theorem 1. Let Mgbe matrix representation of T*-GBNGL1,
then the degree of vertex

D+ (x)=2]=1,jzx ar+(k + 1,j + 1),x, €V or

D+ (xp)=2icyizpar+(i+1Lp + 1), x, EV.

Proof: Itissimilar asintheorem 1 of [34].

Theorem 2. Let M(’;; be matrix representation of I*-GBNGL,
then the degree of vertex

D+ (xp) =Xy jere ar+ (k + 1,7+ 1),x, €V oor

D+ (xp) =Xieqizp (@ + Lp+ 1), x5, EV.

Proof: It issimilar asintheorem 1 of [34].

Theorem 3. Let M};’: be matrix representation of F*-GBNGL,
then the degree of vertex

Dp+(xy) =21z @p+(k + 1,7+ 1), €V Or

Dp+(xp) =Xicyizpap+(i+ 1L, p + 1), x, EV.

Proof: It issimilar asin theorem 1 of [34]

Theorem 4. Let Mgl_ be matrix representation of T~-GBNGL,
then the degree of vertex

Dr-(xx) =X7=1jzx ar-(k + 1,j + 1),x, €V or

Dr-(xp) =Z?=1'i¢p ar-(i+1Lp+1),x, EV.

Proof: Itissimilar asintheorem 1 of [34].

Theorem 5. Let M, be matrix representation of /~-GBNG1,
then the degree of vertex

Di-(xy) =Xz jex -k + 1,j + 1),x, €V or

D;-(xp) :Z?zl_#p a-(i+1Lp+1),x, €EV.

Proof: It issimilar asintheorem 1 of [34].
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Theorem 6. Let M{, be matrix representation of F~-GBNG1,
then the degree of vertex

Dp-(xx) =Xj=1jzrar-(k + 1,j + 1),x, €V Or

Dp-(xp) =Z?=1'i¢p ar-(i+1L,p+1),x, EV.

Proof: Itissimilar asin theorem 1 of [34]

V. CONCLUSION

In this article, we have extended the concept of generalized
single valued neutrosophic graph of type 1 (GSVNG1) to
generalized bipolar neutrosophic graph of type 1(GBNGL) and
showed a matrix representation of it. The concept of GBNG1
can be applied to the case of tri-polar neutrosophic graphs and
multi-polar neutrosophic graphs. In the future works, we plan
to study the concept of completeness, the concept of regularity
and to define the concept of generalized bipolar neutrosophic
graphs of type 2.
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Introducing a Theory of Neutrosophic
Evolution: Degrees of Evolution,
Indeterminacy, and Involution

Florentin Smarandache

Florentin Smarandache (2017). Introducing a Theory of Neutrosophic Evolution: Degrees of
Evolution, Indeterminacy, and Involution. Progress in Physics 13(2), 130-135

During the process of adaptation of a being (plant, animal, or human), to a new envi-ronment or conditions,
the being partially evolves, partially devolves (degenerates), and partially is indeterminate i.e. neither
evolving nor devolving, therefore unchanged (neu-tral), or the change is unclear, ambiguous, vague, as in
neutrosophic logic. Thank to adaptation, one therefore has: evolution, involution, and indeterminacy (or
neutrality), each one of these three neutrosophic components in some degree. The degrees of evolution/
indeterminacy/involution are referred to both: the structure of the being (its body parts), and functionality of
the being (functionality of each part, or inter-functionality of the parts among each other, or functionality of
the being as a whole). We therefore introduce now for the first time the Neutrosophic Theory of Evolution,

Involution, and Indeterminacy (or Neutrality).

1 Introduction

During the 20162017 winter, in December-January, I went
to a cultural and scientific trip to Galdpagos Archipelago,
Ecuador, in the Pacific Ocean, and visited seven islands and
islets: Mosquera, Isabela, Fernandina, Santiago, Sombrero
Chino, Santa Cruz, and Rabida, in a cruise with Golondrina
Ship. I had extensive discussions with our likeable guide,
seflor Milton Ulloa, about natural habitats and their transfor-
mations.

After seeing many animals and plants, that evolved dif-
ferently from their ancestors that came from the continental
land, I consulted, returning back to my University of New
Mexico, various scientific literature about the life of animals
and plants, their reproductions, and about multiple theories of
evolutions. I used the online scientific databases that UNM
Library has subscribed to, such as MathSciNet, Web of Sci-
ence, EBSCO, Thomson Gale (Cengage), ProQuest, IEEE/
IET Electronic Library, IEEE Xplore Digital Library etc., and
DOAJ, Amazon Kindle, Google Play Books as well, doing
searches for keywords related to origins of life, species, evo-
lution, controversial ideas about evolution, adaptation and in-
adaptation, life curiosities, mutations, genetics, embryology,
and so on.

My general conclusion was that each evolution theory
had some degree of truth, some degree of indeterminacy, and
some degree of untruth (as in neutrosophic logic), depend-
ing on the types of species, environment, timespan, and other
hidden parameters that may exist.

And all these degrees are different from a species to an-
other species, from an environment to another environment,
from a timespan to another timespan, and in general from a
parameter to another parameter.

By environment, one understands: geography, climate,
prays and predators of that species, i.e. the whole ecosystem.
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I have observed that the animals and plants (and even
human beings) not only evolve, but also devolve (i.e. invol-
ve back, decline, atrophy, pass down, regress, degenerate).
Some treats increase, other treats decrease, while others re-
mains unchanged (neutrality).

One also sees: adaptation by physical or functional evo-
lution of a body part, and physical or functional involution
of another body part, while other body parts and functions
remain unchanged. After evolution, a new process start, re-
evaluation, and so on.

In the society it looks that the most opportunistic (which
is the fittest!) succeeds, not the smartest. And professional
deformation signifies evolution (specialization in a narrow
field), and involution (incapability of doing things in another
field).

The paper is organized as follows: some information on
taxonomy, species, a short list of theories of origin of life, an-
other list of theories and ideas about evolution. Afterwards
the main contribution of this paper, the theory of neutrosoph-
ic evolution, the dynamicity of species, several examples of
evolution, involution, and indeterminacy (neutrality), neutro-
sophic selection, refined neutrosophic theory of evolution,
and the paper ends with open questions on evolution/neutral-
ity/involution.

2 Taxonomy

Let’s recall several notions from classical biology.

The taxonomy is a classification, from a scientifically
point of view, of the living things, and it classifies them into
three categories: species, genus, and family.

3 Species

A species means a group of organisms, living in a specific
area, sharing many characteristics, and able to reproduce with
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each other.

In some cases, the distinction between a population sub-
group to be a different species, or not, is unclear, as in the
Sorites Paradoxes in the frame of neutrosophy: the frontier
between <A> (where <A> can be a species, a genus, or a fa-
mily), and <nonA> (which means that is not <A>) is vague,
incomplete, ambiguous. Similarly, for the distinction be-
tween a series and its subseries.

4 Theories of origin of life

Louis Pasteur (1822—-1895) developed in 1860 the theory of
precellular (prebiotic) evolution, which says that life evolved
from non-living chemical combinations that, over long time,
arose spontaneously.

In the late 19th century a theory, called abiogenesis, pro-
mulgated that the living organisms originated from lifeless
matter spontaneously, without any living parents’ action.

Carl R. Woese (b. 1928) has proposed in 1970’s that the
progenotes were the very first living cells, but their biological
specificity was small. The genes were considered probable
(rather than identical) proteins.

John Burdon Sanderson Haldane (1872-1964) proposed
in 1929 the theory that the viruses were precursors to the liv-
ing cells [1].

John Bernal and A. G. Cairns-Smith stated in 1966 the mi-
neral theory: that life evolved from inorganic crystals found
in the clay, by natural selection [2].

According to the little bags theory of evolution, the life
is considered as having evolved from organic chemicals that
happened to get trapped in some tiny vesicles.

Eigen and Schuster, adepts of the hypercycle theory, as-
serted in 1977 that the precursors of single cells were these
little bags, and their chemical reactions cycles were equiva-
lent to the life’s functionality [3].

Other theories about the origin of life have been proposed
in the biology literature, such as: primordial soup, dynamic
state theory, and phenotype theory, but they were later dis-
missed by experiments.

5 Theories and ideas about evolution

The theory of fixism says that species are fixed, they do not
evolve or devolve, and therefore the today’s species are iden-
tical to the past species.

Of course, the creationism is a fixism theory, from a re-
ligious point of view. Opposed to the fixism is the theory of
transformism, antecedent to the evolutionary doctrine, in the
pre-Darwinian period, which asserts that plants and animals
are modified and transformed gradually from one species into
another through many generations [22].

Jean Baptiste Pierre Antoine de Monet Lamarck (1749-
1829), in 1801, ahead of Charles Darwin, is associated with
the theory of inheritance of acquired characteristics (or use-
inheritance), and even of acquired habits. Which is called
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Lamarckism or Lamarckian Evolution.

If an animal repeatedly stresses in the environment, its
body part under stress will modify in order to overcome the
environmental stress, and the modification will be transmitted
to its offspring.

For example: the giraffe having a long neck in order to
catch the tree leaves [4].

Herbert Spencer (1820—1903) used for the first time the
term evolution in biology, showing that a population’s gene
pool changes from a generation to another generation, pro-
ducing new species after a time [5].

Charles Darwin (1809-1882) introduced the natural se-
lection, meaning that individuals that are more endowed with
characteristics for reproduction and survival will prevail (“se-
lection of the fittest””), while those less endowed would perish
[6].

Darwin had also explained the structure similarities of
leaving things in genera and families, due to the common de-
scent of related species [7].

In his gradualism (or phyletic gradualism), Darwin said
that species evolve slowly, rather than suddenly.

The adaptation of an organism means nervous response
change, after being exposed to a permanent stimulus.

In the modern gradualism, from the genetic point of view,
the beneficial genes of the individuals best adapted to the en-
vironment, will have a higher frequency into the population
over a period of time, giving birth to a new species [8].

Herbert Spencer also coined the phrase survival of the
fittest in 1864, that those individuals the best adapted to the
environment are the most likely to survive and reproduce. Al-
fred Russel Wallace (1823—-1913) coined in 1888 the terms
Darwinism (individuals the most adapted to environment pass
their characteristics to their offspring), and Darwinian fitness
(the better adapted, the better surviving chance) [9].

One has upward evolution (anagenesis, coined by Alph-
eus Hyatt, 1838-1902, in 1889), as the progressive evolution
of the species into another [10], and a branching evolution
(cladogenesis, coined in 1953 by Sir Julian Sorell Huxley,
1887-1975), when the population diverges and new species
evolve [11].

George John Romanes (1848—1894) coined the word neo-
Darwinism, related to natural selection and the theory of ge-
netics that explains the synthetic theory of evolution. What
counts for the natural selection is the gene frequency in the
population [12]. The Darwinism is put together with the pa-
leontology, systematics, embryology, molecular biology, and
genetics.

In the 19th century Gregor Johann Mendel (1822-1884)
set the base of genetics, together with other scientists, among
them Thomas Hunt Morgan (1866—1945).

The Mendelism is the study of heredity according to the
chromosome theory: the living thing reproductive cells con-
tain factors which transmit to their offspring particular char-
acteristics [13].
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August Weismann (1834-1914) in year 1892 enounced
the germ plasm theory, saying that the offspring do not in-
herit the acquired characteristics of the parents [14].

Hugo de Vries (1848-1935) published a book in 1901
on mutation theory, considering that randomly genetic mu-
tations may produce new forms of living things. Therefore,
new species may occur suddenly [15].

Louis Antoine Marie Joseph Dollo (1857-1931) enunci-
ated the Dollo’s principle (law or rule) that evolution is irre-
versible, i.e. the lost functions and structures in species are
not regained by future evolving species.

In the present, the synergetic theory of evolution considers
that one has a natural or artificial multipolar selection, which
occurs at all life levels, from the molecule to the ecosystem
— not only at the population level.

But nowadays it has been discovered organisms that have
re-evolved structured similar to those lost by their ances-
tors [16].

Life is... complicated!

The genetic assimilation (for Baldwin Effect, after James
Mark Baldwin, 1861-1934) considered that an advantageous
trait (or phenotype) may appear in several individuals of a
population in response to the environmental cues, which
would determine the gene responsible for the trait to spread
through this population [17].

The British geneticist Sir Ronald A. Fisher (1890-1962)
elaborated in 1930 the evolutionary or directional determin-
ism, when a trait of individuals is preferred for the new gen-
erations (for example the largest grains to replant, chosen by
farmers) [18].

The theory of speciation was associated with Ernst Mayr
(b. 1904) and asserts that because of geographic isolation new
species arise, that diverge genetically from the larger original
population of sexually reproducing organisms. A subgroup
becomes new species if its distinct characteristics allow it to
survive and its genes do not mix with other species [19].

In the 20th century, Trofim Denisovitch Lysenko (1898—
1976) revived the Lamarckism to the Lysenkoism school of
genetics, proclaiming that the new characteristics acquired by
parents will be passed on to the offspring [20].

Richard Goldschmidt (1878-1958)in 1940 has coined the
terms of macroevolution, which means evolution from a long
timespan (geological) perspective, and microevolution, which
means evolution from a small timespan (a few generations)
perspective with observable changes [1].

Sewall Wright (1889-1988), in the mid 20th century, de-
veloped the founders effect of principle, that in isolated places
population arrived from the continent or from another island,
becomes little by little distinct from its original place pop-
ulation. This is explained because the founders are few in
number and therefore the genetic pool is smaller in diversity,
whence their offspring are more similar in comparison to the
offspring of the original place population.
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The founders effect or principle is regarded as a particu-
lar case of the genetic drift (authored by the same biologist,
Sewall Wright), which tells that the change in gene occurs by
chance [21].

The mathematician John Maynard Smith has applied the
game theory to animal behavior and in 1976 he stated the
evolutionary stable strategy in a population. It means that,
unless the environment changes, the best strategy will evolve,
and persist for solving problems.

Other theories related to evolution such as: punctuated
equilibrium (instantaneous evolution), hopeful monsters, and
saltation (quantum) speciation (that new species suddenly oc-
cur; by Ernst Mayr) have been criticized by the majority of
biologists.

6 Open research

By genetic engineering it is possible to make another com-
bination of genes, within the same number of chromosomes.
Thus, it is possible to mating a species with another closer
species, but their offspring is sterile (the offspring cannot re-
produce).

Despite the tremendous genetic engineering development
in the last decades, there has not been possible to prove by
experiments in the laboratory that: from an inorganic matter
one can make organic matter that may reproduce and assimi-
late energy; nor was possible in the laboratory to transform a
species into a new species that has a number of chromosomes
different from the existent species.

7 Involution

According to several online dictionaries, involution means:

— Decay, retrogression or shrinkage in size; or return
to a former state [Collins Dictionary of Medicine, Robert M.
Youngson, 2005];

— Returning of an enlarged organ to normal size; or
turning inward of the edges of a part; mental decline associ-
ated with advanced age (psychiatry) [Medical Dictionary for
the Health Professions and Nursing, Farlex, 2012];

— Having rolled-up margins (for the plant organs) [Col-
lins Dictionary of Biology, 3rd edition, W. G. Hale, V. A.
Saunders, J. P. Margham, 2005];

— A retrograde change of the body or of an organ [Dor-
land’s Medical Dictionary for Health Consumers, Saunders,
an imprint of Elsevier, Inc., 2007];

— A progressive decline or degeneration of normal phy-
siological functioning [The American Heritage, Houghton
Mifllin Company, 2007].

8 Theory of Neutrosophic Evolution

During the process of adaptation of a being (plant, animal, or
human) B, to a new environment 7,
— B partially evolves;
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— B partially devolves (involves, regresses, degene-
rates);

— and B partially remains indeterminate which means
neutral (unchanged), or ambigous — i.e. not sure if it is evo-
lution or involution.

Any action has a reaction. We see, thank to adaptation:
evolution, involution, and neutrality (indeterminacy), each
one of these three neutrosophic components in some degree.

The degrees of evolution/indeterminacy/involution are re-
ferred to both: the structure of B (its body parts), and func-
tionality of B (functionality of each part, or inter-functiona-
lity of the parts among each other, or functionality of B as a
whole).

Adaptation to new environment conditions means de-
adaptation from the old environment conditions.

Evolution in one direction means involution in the oppo-
site direction.

Loosing in one direction, one has to gain in another direc-
tion in order to survive (for equilibrium). And reciprocally.

A species, with respect to an environment, can be:

— in equilibrium, disequilibrium, or indetermination;
— stable, unstable, or indeterminate (ambiguous state);
— optimal, suboptimal, or indeterminate.

One therefore has a Neutrosophic Theory of Evolution,
Involution, and Indeterminacy (neutrality, or fluctuation
between Evolution and Involution). The evolution, the in-
volution, and the indeterminate-evolution depend not only on
natural selection, but also on many other factors such as: ar-
tificial selection, friends and enemies, bad luck or good luck,
weather change, environment juncture etc.

9 Dynamicity of the species

If the species is in indeterminate (unclear, vague, ambiguous)
state with respect to its environment, it tends to converge to-
wards one extreme:

— either to equilibrium/stability/optimality, or to dise-
quilibrium/instability/suboptimality with respect to an envi-
ronment;

— therefore the species either rises up gradually or sud-
denly by mutation towards equilibrium/stability/optimality;

— or the species deeps down gradually or suddenly by
mutation to disequilibrium/instability/suboptimality and
perish.

The attraction point in this neutrosophic dynamic sys-
tem is, of course, the state of equilibrium/stability/optimality.
But even in this state, the species is not fixed, it may get,
due to new conditions or accidents, to a degree of disequilib-
rium/instability/suboptimality, and from this new state again
the struggle on the long way back of the species to its attrac-
tion point.
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10 Several examples of evolution, involution, and inde-
terminacy (neutrality)

10.1 Cormorants example

Let’s take the flightless cormorants (Nannopterum harrisi) in
Galdpagos Islands, their wings and tail have atrophied (hence
devolved) due to their no need to fly (for they having no
predators on the land), and because their permanent need to
dive on near-shore bottom after fish, octopi, eels etc.

Their avian breastbone vanished (involution), since no
flying muscles to support were needed.

But their neck got longer, their legs stronger, and their
feet got huge webbed is order to catch fish underwater (evo-
lution).

Yet, the flightless cormorants kept several of their ances-
tors’ habits (functionality as a whole): make nests, hatch the
eggs etc. (hence neutrality).

10.2 Cosmos example

The astronauts, in space, for extended period of time get ac-
customed to low or no gravity (evolution), but they lose bone
density (involution). Yet other body parts do not change, or
it has not been find out so far (neutrality/indeterminacy).

10.3 Example of evolution and involution

The whales evolved with respect to their teeth from pig-like
teeth to cusped teeth. Afterwards, the whales devolved from
cusped teeth back to conical teeth without cusps.

10.4 Penguin example

The Galdpagos Penguin (Spheniscus mendiculus) evolved
from the Humboldt Penguin by shrinking its size at 35 cm
high (adaptation by involution) in order to be able to stay cool
in the equatorial sun.

10.5 Frigate birds example

The Galdpagos Frigate birds are birds that lost their ability to
dive for food, since their feathers are not waterproof (invo-
lution), but they became masters of faster-and-maneuverable
flying by stealing food from other birds, called kleptoparasite
feeding (evolution).

10.6 Example of Darwin’s finches

The 13 Galdpagos species of Darwin’s Finches manifest var-
ious degrees of evolution upon their beak, having different
shapes and sizes for each species in order to gobble different
types of foods (hence evolution):

— for cracking hard seeds, a thick beak (ground finch);

— for insects, flowers and cacti, a long and slim beak
(another finch species).

Besides their beaks, the finches look similar, proving they
came from a common ancestor (hence neutrality).
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If one experiments, let’s suppose one moves the thick-
beak ground finches back to an environment with soft seeds,
where it is not needed a thick beak, then the thick beak will
atrophy and, in time, since it becomes hard for the finches to
use the heavy beak, the thin-beak finches will prevail (hence
involution).

10.7 El Nino example

Professor of ecology, ethology, and evolution Martin Wikel-
ski, from the University of Illinois at Urbana-Champaign, has
published in Nature a curious report, regarding data he and
his team collected about marine iguanas since 1987. During
the 1997-1998 El Nifio, the marine algae died, and because
the lack of food, on one of the Galdpagos islands some ma-
rine iguanas shrank a quarter of their length and lost half of
their weight (adaptation by involution).

After plentiful of food became available again, the ma-
rine iguanas grew back to their original length and weight
(re-adaptation by evolution).

[J. Smith, J. Brown, The Incredible Shrinking Iguanas, in
Ecuador & The Galdpagos Islands, Moon Handbook, Avalon
Travel, p. 325.]

10.8 Bat example

The bats are the only mammals capable of naturally flying,
due to the fact that their forelimbs have developed into webb-
ed wings (evolution by transformation). But navigating and
foraging in the darkness, have caused their eyes’ function-
ality to diminish (involution), yet the bats “see” with their
ears (evolution by transformation) using the echolocation (or
the bio sonar) in the following way: the bats emit sounds by
mouth (one emitter), and their ears receive echoes (two re-
ceivers); the time delay (between emission and reception of
the sound) and the relative intensity of the received sound give
to the bats information about the distance, direction, size and
type of animal in its environment.

10.9 Mole example

For the moles, mammals that live underground, their eyes
and ears have degenerated and become minuscule since their
functions are not much needed (hence adaptation by invo-
lution), yet their forelimbs became more powerful and their
paws larger for better digging (adaptation by evolution).

11 Neutrosophic selection

Neutrosophic selection with respect to a population of a spe-
cies means that over a specific timespan a percentage of its in-
dividuals evolve, another percentage of individuals devolve,
and a third category of individuals do not change or their
change is indeterminate (not knowing if it is evolution or in-
volution). We may have a natural or artificial neutrosophic
selection.
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12 Refined Neutrosophic Theory of Evolution

Refined Neutrosophic Theory of Evolution is an extension
of the neutrosophic theory of evolution, when the degrees of
evolution/indeterminacy/involution are considered separately
with respect to each body part, and with respect to each body
part functionality, and with respect to the whole organism
functionality.

13 Open questions on evolution/neutrality/involution

13.1. How to measure the degree of evolution, degree of in-
volution, and degree of indeterminacy (neutrality) of a species
in a given environment and a specific timespan?

13.2. How to compute the degree of similarity to ances-
tors, degree of dissimilarity to ancestors, and degree of inde-
terminate similarity-dissimilarity to ancestors?

13.3. Experimental Question. Let’s suppose that a par-
tial population of species S| moves from environment 7; to
a different environment 1,; after a while, a new species S,
emerges by adaptation to 1,; then a partial population S,
moves back from 7, to 1;; will S, evolve back (actually de-
volve to S)?

13.4. Are all species needed by nature, or they arrived by
accident?

14 Conclusion

We have introduced for the first time the concept of Neutro-
sophic Theory of Evolution, Indeterminacy (or Neutrality),
and Involution.

For each being, during a long timespan, there is a process
of partial evolution, partial indeterminacy or neutrality, and
partial involution with respect to the being body parts and
functionalities.

The function creates the organ. The lack of organ func-
tioning, brings atrophy to the organ.

In order to survive, the being has to adapt. One has adap-
tation by evolution, or adaptation by involution — as many
examples have been provided in this paper. The being par-
tially evolves, partially devolves, and partially remains un-
changed (fixed) or its process of evolution-involution is inde-
terminate. There are species partially adapted and partially
struggling to adapt.
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Abstract

In this chapter, the goal programming in neutrosophic environment
is introduced. The degree of acceptance, indeterminacy and rejection
of objectives is considered simultaneous. In the two proposed
models to solve Neutrosophic Goal Programming Problem (NGPP),
our goal is to minimize the sum of the deviation in the model (I),
while in the model (I1), the neutrosophic goal programming problem
NGPP is transformed into the crisp programming model using truth
membership, indeterminacy membership, and falsity membership
functions. Finally, the industrial design problem is given to illustrate
the efficiency of the proposed models. The obtained results of Model
(I) and Model (II) are compared with other methods.

Keywords

Neutrosophic optimization; Goal programming problem.

1 Introduction

Goal programming (GP) Models was originally introduced by Charnes and
Cooper in early 1961 for a linear model . Multiple and conflicting goals can be
used in goal programming. Also, GP allows the simultaneous solution of a system
of Complex objectives, and the solution of the problem requires the establishment
among these multiple objectives. In this case, the model must be solved in such
a way that each of the objectives to be achieved. Therefore, the sum of the
deviations from the ideal should be minimized in the objective function. It is
important that measure deviations from the ideal should have a single scale,
because deviations with different scales cannot be collected. However, the target
value associated with each goal could be neutrosophic in the real-world
application. In 1995, Smarandache [17] starting from philosophy (when [8]
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fretted to distinguish between absolute truth and relative truth or between
absolute falsehood and relative falsehood in logics, and respectively between
absolute membership and relative membership or absolute non-membership and
relative non-membership in set theory) [12] began to use the non-standard
analysis. Also, inspired from the sport games (winning, defeating, or tie scores),
from votes (pro, contra, null/black votes), from positive/negative/zero numbers,
from yes/no/NA, from decision making and control theory (making a decision,
not making, or hesitating), from accepted/rejected/pending, etc. and guided by
the fact that the law of excluded middle did not work any longer in the modern
logics. [12] combined the non-standard analysis with a tri-component
logic/set/probability theory and with philosophy. How to deal with all of them at
once, is it possible to unity them? [12].

Netrosophic theory means Neutrosophy applied in many fields in order to
solve problems related to indeterminacy. Neutrosophy is a new branch of
philosophy that studies the origin, nature, and scope of neutralities, as well as
their interactions with different ideational spectra. This theory considers every
entity <A> together with its opposite or negation <antiA> and with their spectrum
of neutralities <neutA> in between them (i.e. entities supporting neither <A>
nor<antiA>). The <neutA> and <antiA> ideas together are referred to as <nonA>.

Neutrosophy is a generalization of Hegel's dialectics (the last one is based
on <A> and <antiA> only). According to this theory every entity <A> tends to
be neutralized and balanced by <antiA> and <nonA> entities - as a state of
equilibrium. In a classical way <A>, <neutA>, <antiA> are disjoint two by two.
But, since in many cases the borders between notions are vague, imprecise,
Sorites, it is possible that <A>, <neutA>, <antiA> (and <nonA> of course) have
common parts two by two, or even all three of them as well. Hence, in one hand,
the Neutrosophic Theory is based on the triad <A>, <neutA>, and <antiA>. In
the other hand, Neutrosophic Theory studies the indeterminacy, labeled as I, with
In =1 for n > 1, and ml + nl = (m+n)l, in neutrosophic structures developed in
algebra, geometry, topology etc.

The most developed fields of Netrosophic theory are Neutrosophic Set,
Neutrosophic Logic, Neutrosophic Probability, and Neutrosophic Statistics - that
started in 1995, and recently Neutrosophic Precalculus and Neutrosophic
Calculus, together with their applications in practice. Neutrosophic Set and
Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy
logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy
logic). In neutrosophic logic a proposition has a degree of truth (7), a degree of
indeterminacy (/), and a degree of falsity (F), where 7T,LF are standard or non-
standard subsets of J°0, 17/.
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The important method for multi-objective decision making is goal
programming approaches in practical decision making in real life. In a standard
GP formulation, goals and constraints are defined precisely, but sometimes the
system aim and conditions include some vague and undetermined situations. In
particular, expressing the decision maker’s unclear target levels for the goals
mathematically and the need to optimize all goals at the same needs to
complicated calculations.

The neutrosophic approach for goal programming tries to solve this kind
of unclear difficulties in this chapter.

The organization of the chapter is as follows. The next section introduces
a brief some preliminaries. Sections 3 describe the formation of the Problem and
develop two models to neutrosophic goal programming. Section 4 presents an
industrial design problem is provided to demonstrate how the approach can be
applied. Finally, conclusions are provided in section 5.

2 Some Preliminaries

Definition 1. [17]

A real fuzzy number j is a continuous fuzzy subset from the real line R
whose triangular membership function ,; () is defined by a continuous mapping
from R to the closed interval [0,1], where
(1) wuy()=o0 forall ye(—o0,q],

(2)  wj () s strictly increasing on J e[ay,m],
) uy)=1 forJ=m,
(4)  pj(v) is strictly decreasing on J e[m,a, ]

®) My (V)=o0 for all Je[a2,+oo).

This will be elicited by:
J-a , a<J<m,
m—a
ay—J (1)
i (/)= , m<J<ay,
(12 —-m
0, otherwise.
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>

Gl

m &
Fig. 1: Membership Function of Fuzzy Number J.
Where m is a given value a; and a, denote the lower and upper bounds.

Sometimes, it is more convenient to use the notation explicitly highlighting the
membership function parameters. In this case, we obtain

ﬂ(J;alamaaZ):MaX{Min{ﬂaa2 -/ :|>0} (2)

m-—a; ap—m

In what follows, the definition of the a-level set or a-cut of the fuzzy number
J is introduced.

Definition 2. [1]

Let X = {x;, x2, ..., x»} be a fixed non-empty universe, an intuitionistic fuzzy
set IFS 4 in X is defined as

A ={<x,yA (x),04 (x )>|x eX} 3)

which is characterized by a membership function ., :x —[0,1] and a non-
membership function o, :x —[0,1] with the condition 0< s, (x)+uv, (x)<1
forall x < x where u, and v, represent, respectively, the degree of membership

and non-membership of the element x to the set 4. In addition, for each IFS 4 in
X, 7z (x)=1-p (x)—v, (x)forall x cx iscalled the degree of hesitation

of the element x to the set 4 . Especially, if z, (x ) =0, then the IFS 4 is degraded

to a fuzzy set.
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Definition 3. [4] The o-level set of the fuzzy parameters J in problem (1)

is defined as the ordinary set L, (f ) for which the degree of membership function

exceeds the level, a, « <[o0,1], where:
La(j)={JeR|yJ~(J)2a} 4)
For certain values 06; to be in the unit interval.

Definition 4. [10] Let X be a space of points (objects) and x€X. A
neutrosophic set A in X is defined by a truth-membership function (x), an
indeterminacy-membership function (x) and a falsity-membership function (x).
It has been shown in figure 2. (x), (x) and (x) are real standard or real nonstandard
subsets of ]0—,1+[. That is Ta(x):X—]0—,1+], [la(x):X—]0—,1+[ and
Fa(x):X—]0—,1+[. There is not restriction on the sum of (x), (x) and (x), so
0—<supT a(x)<supla(x)<F a(x)<3+.

In the following, we adopt the notations u(x), oa(x) and va(x) instead of
Ta(x), 1a(x) and Fa(x), respectively. Also, we write SVN numbers instead of
single valued neutrosophic numbers.

Definition 5. [10] Let X be a universe of discourse. A single valued
neutrosophic set A over X is an object having the form

A={(x, pa(x), ca(x),va(x)):x€X},

where ua(x):X—[0,1], ca(x):X—[0,1] and va(x):X—[0,1] with 0<ua(x)+
oa(x)tva(x)<3 for all x€X. The intervals u(x), ca(x) and va(x) denote the truth-
membership degree, the indeterminacy-membership degree and the falsity
membership degree of x to A, respectively.

For convenience, a SVN number is denoted by A=(a,b,c), where
a,b,c€[0,1] and a+b+c<3.

Definition 6. Let J be a neutrosophic number in the set of real numbers R,
then its truth-membership function is defined as

J_
4 , aq <J SLIZ,
G —q
-J
Ti(J)={2"=,  ay<J<a, (5)
a3 —d
0, otherwise.

its indeterminacy-membership function is defined as
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b by <J <b,,
bZ_bl
by—J
I:(J)= , by <J <b;,
i) by by 2 3
0, otherwise.

and its falsity-membership function is defined as

J-c
1 N (4] <J SCZ’
€4
cy=J
Fi(J)={=2—,  ¢;<J<q,
370
1, otherwise.

Truth membership
function

Indeterminacy
membership
function

(6)

(7

Xi

Falsity membership
function

Xi

X1

Xi

Fig. 2: Neutrosophication process [11]
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3 Neutrosophic Goal Programming Problem
Goal programming can be written as:
Find x =(x1,x5,...x,, )7
To achieve:
z; =t;, i =12,k (8)

Subject to
xeX

where ¢, are scalars and represent the target achievement levels of the objective
functions that the decision maker wishes to attain provided, X is feasible set of
the constraints.

The achievement function of the (8) model is the following:

Min Z;(W 11 Wi D;) )
Goal and constraints:
z;+n; —p; =t;,i €{1,2,..,k}
xeX, n,p=20, n-p=0
n;, p;are negative and positive deviations from ¢ target.
The NGPP can be written as:
Find x =(x1,x5,....x,, )7
So as to:
Minimize z; with target value #, acceptance tolerance

a; , indeterminacy tolerance d;, rejection tolerance ¢; ,
Subject to
xeX

gj (X)Sbj,j =12,....m
i 20, i=12,...n

with truth-membership, indeterminacy-membership and falsity-membership
functions:
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1, lf Zi Stl’
T2l o, <
g (z;)=41- P if 1;Sz; <t +a;, (10)
i
0, if z;2t; +a,
0, lf‘ Zi Stl’
Zi _ti

o lf tl SZi Stl +di’
GI'I(Zl'): ! (11)

z; =t .
1- ! ! , l_f tl +dl SZI Stl +al,
4 —a;
0, lf Z; Ztl +al'
0, !f Zi Stl’
I z:—t: .
Ui (Zi): lC. L y lf tl SZZ- Stl +Ci’ (12)
1
1, lf Zi 2[1 +Cl

Mz (2,05, (20), Vo (21)

Hz, (#:) 1?,[. {Z,'j

':rz_-(zi]

[ L +. d; b+ -t( +¢
Fig. 3: Truth-membership, indeterminacy-membership and falsity-

membership functions for z;

To maximize the degree the accptance and indeterminacy of NGP
objectives and constriants, also to minimize the dgree of rejection of NGP
objectives and constriants

Max p. (z;), i =12,k

Max o, (z;), i =1,2,...k 13)
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Subject to

>0, j=1L2,...,n

where . (z;). o

Zi

(z;) v, (z;)are truth membership function, indeterminacy

membership function, falsity membership function of Neutrosophic decision set
respectively.

The highest degree of truth membership function is unity. So, for the
defined the truth membership function ,, (z,), the flexible membership goals

having the aspired level unity can be presented as
e (z; )+ =pip =1

For case of indeterminacy (indeterminacy membership function), it can be
written:

0. (zi)+ni2—pi =05
For case of rejection (falsity membership function), it can be written
4 (zi)+ni3-pi3=0
Here  n;,p;1» ni2,pj2, nizand p;y are under-deviational and over-
deviational variables.

Our goals are maximize the degree of the accptance and indeterminacy of
NGP objectives and constriants, and minimize the dgree of rejection of NGP
objectives and constriants.

Model (I). The minimization of the sum of the deviation can be formulated
as:

, k k k
MinZ=3" wani+Y . wini+ ) Wisp;3 (14)
Subject to

we (zp)rn 21, i =12,k
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o, (Zi )+”i2 >0.5,i=12,...k
v, (2;)=pi3<0, i =12,k
v, (z;)20, i =12,k

s (z,- )ZUZ’ (z,- ), i=L2,..k

xeX

On the other hand, neutrosophic goal programming NGP in Model (13) can
be represented by crisp programming model using truth membership,
indeterminacy membership, and falsity membership functions as:

Max a, Max y, Min 8 (15)

0<a+y+p<3

a,y20, f<1

g;(x)<b;,j=12,.,m

>0, Jj=12,...,n

In model (15) the Maxa,Maxy are equivalent to Min(1-a), Min(1-7)

respectively where 0<q, y<1
Min p(1-a)(1-7) (16)
Subject to
z; <t; +a; (a; —d; ) B(1-a)(1-¥), i =1,2,...k

z;<t;, i =12,k

i°
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0<a+y+p<3
a,y20, <1
gj (X)Sbjaj =12,....m

x >0, Jj=1L2,..,n

If we take p(1-a)(1-y)=v the model (16) becomes:

Model (IT).
Minimize v (17)
Subject to
z; St +a; (aq; —d; v, i =12,k

2 <ty i =120k

i
0<a+y+p<3

a,y20, <1

gj (X)Sbj,./' =12,....m
x; =0, j=12,..n

The crisp model (17) is solved by using any mathematical programming
technique with v as parameter to get optimal solution of objective functions.

4 Illustrative Example

This industrial application selected from [15]. Let the Decision maker
wants to remove about 98.5% biological oxygen demand (BOD) and the
tolerances of acceptance, indeterminacy and rejection on this goal are 0.1, 0.2 and
0.3 respectively. Also, Decision maker wants to remove the said amount of
BODSs within 300 (thousand $) tolerances of acceptance, indeterminacy and
rejection 200, 250, 300 (thousand $) respectively. Then the neutrosophic goal
programming problem is:

min zl(xl,xz,x3,x4):19.4x1_1'47+l6.8x2_1'66
+91.5x 33 +120x 7033,

min 22(xl,xz,x3,x4)=x1x2x3x4,

sit.:

x; 20,i=12,3,4.
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With target 300, acceptance tolerance 200, indeterminacy tolerance 100 ,
and rejection tolerance 300 for the first objective z;.

Also, with target 0.015, acceptance tolerance 0.1, indeterminacy tolerance
0.05, and rejection tolerance 0.2 for the second objective z».

Where x; is the percentage BODS5(to remove 5 days BOD) after each step.
Then after four processes the remaining percentage of BODS will be x;, i=1, 2, 3,
4. The aim is to minimize the remaining percentage of BODS5 with minimum
annual cost as much as possible. The annual cost of BODS5 removal by various
treatments is primary clarifier, trickling filter, activated sludge, carbon
adsorption. z; represent the annual cost. While z; represent removed from the
wastewater.

The truth membership, indeterminacy membership, falsity membership
functions were considered to be neutrosophic triangular.

The truth membership functions of the goals are obtained as follows:

1 if 2, <300,
~300
wl (z1)=1-2== i 300<z, <500,
0, if 2,500
1 if z,<0015,
~0.015
wh(z5)= I_ZZT’ if 0.015<z2,<0.115,

0, if z,20115.

The indeterminacy membership functions of the goals are given:

0, if 2, <30,
2,-300
/ 100
o (1)= 2,-300
1-

100
0, if 2,260

L if 300<z, <400,

. if 400<z, <600,

0, if z,<0.015
z,-0.015
0.05
1_22—0.015
0.05
0, if z,20215

] , i 0.015<z2, <0.065,
0'2 (22)2
, if 00655z, <0215,

The falsity membership functions of the goals are obtained as follows:
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0, if 2z, <300,
| 2,-300
- . if 300<z, <600,
o (F1)=) 5 o #3005
L if ;2600
0, if 2y <0015,
~0.015
o (25)= ”T if 0.015<z,<0215,
L if zy20215

The software LINGO 15.0 is used to solve this problem. Table (1) shows
the comparison of the obtained results among the proposed models and the others
methods.

Table 1: Comparison of optimal solution based on different methods:

Methods z; Z X7 X X3 Xy
FG’P? Ref[15] 363.8048 0.04692  0.705955 0.7248393 0.1598653 0.5733523
IFG’P? Ref[15] 422.1483 0.01504  0.638019 0.662717 0.09737155 0.3653206

Model (I) 317.666 0.1323  0.774182 0.7865418 0.2512332 0.8647621

Model (II) 417.6666 02150  2.628853 3.087266 0.181976E-01 1.455760

It is to be noted that model (I) offers better solutions than other methods.

5 Conclusions and Future Work

The main purpose of this chapter was to introduce goal programming in
neutrosophic environment. The degree of acceptance, indeterminacy and
rejection of objectives are considered simultaneously. Two proposed models to
solve neutrosophic goal programming problem (NGPP), in the first model, our
goal is to minimize the sum of the deviation, while the second model,
neutrosophic goal programming NGP is transformed into crisp programming
model using truth membership, indeterminacy membership, and falsity
membership functions.

Finally, a numerical experiment is given to illustrate the efficiency of the
proposed methods.

Moreover, the comparative study has been held of the obtained results and
has been discussed. In the future studies, the proposed algorithm can be solved
by metaheuristic algorithms.
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Abstract

The Critical Path Method (CPM) is one of several related techniques
for planning and managing of complicated projects in real world
applications. In many situations, the data obtained for decision
makers are only approximate, which gives rise of neutrosophic
critical path problem. In this chapter, the proposed method has been
made to find the critical path in network diagram, whose activity
time uncertain. The vague parameters in the network are represented
by triangular neutrosophic numbers, instead of crisp numbers. At the
end of chapter, an illustrative example is provided to validate the
proposed approach.

Keywords

Neutrosophic Sets; Project Management; CPM; Score and Accuracy
Functions.

1 Introduction

Project management is concerned with selecting, planning, execution and
control of projects in order to meet or exceed stakeholders' need or expectation
from project. Two techniques of project management, namely Critical Path
Method (CPM) and Program Evaluation and Review Technique (PERT) where

179


mailto:smarand@unm.edu

Florentin Smarandache (author and editor) Collected Papers, XIV

developed in 1950s. [1] The successful implementation of CPM requires clear
determined time duration for each activity.

Steps involved in CPM include [2]:

e Develop Work Breakdown Structure of a project, estimate the resources
needed and establish precedence relationship among activities.

e Translate the activities into network.
e Carry out network computation and prepare schedule of the activities.

In CPM, the main problem is wrongly calculated activity durations, of
large projects that have many activities. The planned value of activity duration
time may change under certain circumstances and may not be presented in a
precise manner due to the error of the measuring technique or instruments etc. It
has been obvious that neutrosophic set theory is more appropriate to model
uncertainty that is associated with parameters such as activity duration time and
resource availability in CPM.

This chapter is organized as follows: In section 2, the basic concepts
neutrosophic sets are briefly reviewed. In section 3, the mathematical model of
neutrosophic CPM and the proposed algorithm is presented. In section 4, a
numerical example is illustrated. Finally, section 5 concludes the chapter with
future work.

2 Preliminaries

In this section, the basic definitions involving neutrosophic set, single
valued neutrosophic sets, triangular neutrosophic numbers and operations on
triangular neutrosophic numbers are outlined.

Definition 1. [3, 5-7] Let X be a space of points (objects) and x€EX. A
neutrosophic set A in X is defined by a truth-membership function T4(x), an
indeterminacy-membership function I;(x) and a falsity-membership function
F4(x). T4(x), I4(x) and F4(x) are real standard or real nonstandard subsets of /-
0, I"[. That is Ty(x):X—] 0, 1", [,(x):X—] 0, I'[ and F4(x):X—] 0, I"[. There
is no restriction on the sum of T,(x), I, (x) andF,(x), so 0— < sup T4(x) + sup
Iy (x) +sup Fy(x) <3+.

Definition 2. [3, 8] Let X be a universe of discourse. A single valued neutrosophic
set A over X is an object having the form A={(x, T4(x), I4(x), F4(x)):x€X},
where T 4(x):X—[0,1], I4(x):X—[0,1] and F4(x):X—[0,1] with 0< T4(x)+
I4(x)+ F4(x)<3 for all x€X. The intervals T 4(x), I4(x) and F 4(x) denote the
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truth-membership degree, the indeterminacy-membership degree and the falsity
membership degree of x to A, respectively. For convenience, a SVN number is
denoted by A= (a, b, ¢), where a, b, c€ [0, 1] and a+b+c<3.

Definition 3. [4, 5] Let a5 ,6;, 3; €[0,1] and a4, a;, az€ Rsuchthata; < ap; <
az . Then a single valued ftriangular neutrosophic number,
a=((aq, az, a3); ag, 0, ;) is a special neutrosophic set on the real line set R,
whose truth-membership, indeterminacy-membership, and falsity-membership
functions are given as follows:

Ts (x)
i (x -a, ) ) cr<a
g ay — a if a; < x < ay
_ Qg if x= a €))
<a3 —x) ) <x<
kaa P ifa, <x<a;
0 otherwise
Iz (x)
(az —x+ 05(x — al)) ,
ifa,<x<a
(a; —ay) I 2
_ 0g if x=a (2)
(x —ay + 04(az — x)) .
ifa,<x<a
k (az —ay) fa 3
1 otherwise
Fa(x)
(az —x+,8a(x—a1)) Fa<x<
ifa,<x<a
(a; —ay) ! 2
= ﬁfl lfx = qQ (3)
(x—a+p,(a-x))
t @ —ay) ifa, <x<az
1 otherwise

where o .05 and B, denote the maximum truth-membership degree, minimum

indeterminacy-membership degree and minimum falsity-membership degree
respectively. A single valued triangular  neutrosophic = number
a=((aq, az, a3); ag , 0, ;) may express an ill-defined quantity about a,which

is approximately equal to a.
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Definition 4. Let d=((ay, a,, a3); o , 05, ;) and b=((by, by, b3); a3, 5, B5)

o
be two single valued triangular neutrosophic numbers and ¥y be any real
number. Then,

a+b=((ay + by, a, + by, a3 + b3); oz a5, 050 5, Ba VB p)
ad— b=((ay —b3,a; —by,a; —by); agro g, 050 5, Bg VB )
((albl,azbz,a3b3); A g A 3, eﬁve B BEVB ’E)

if (ag > 0,b3 > 0)
((a1b3,azby,azby); oz Ao 3, 05V0 5, Ba VB j)

ab = if (a3<0,b;>0)
((azbz, azby, a1by); ogna g, 650 5, Ba vBp)
if(a3 < 0,b3 < 0)
a; a, a
((—1,—2,—3);aaAa 5 0av0 5, BavBp) if(az > 0,by > 0)
bs by by
a az a; a, .
z— ((b—3,b—2,b—1);(lﬁ/\ot B,eﬁveB,BﬁVBz) lf(a3<0,b3>0)
a: a, a
k (_3'_2'_1); o g AOL eﬁve B BﬁVBE) if(a3 < 0,b3 <0)
by by b3

o= ((yaq,vaz,yaz);04,05,B g if(y>0)
"7 U(vas, vaz,va)); 05,0 4,B ) if (¥<0)

1 = (21 a0 0, ]
a - ((a3’a21a1)1aa Iea JBd), Where (a :'t 0)

3 Critical Path Method in Neutrosophic Environment and

the Proposed Algorithm

Project network is a set of activities that must be performed according to
precedence constraints determining which activities must start after the completion
of specified other activities. Let us define some terms used in drawing network
diagram of CPM:

e Activity: It is any portion of a project that has a definite beginning and
ending and may use some resources such as time, labor, material,
equipment, etc.

e Event or Node: Beginning and ending points of activities denoted by
circles are called nodes or events.

e  C(ritical Path: Is the longest path in the network.

The CPM in neutrosophic environment takes the following form:
A network N=(E, A, T), being a project model, is given. E is asset of events
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(nodes) and Ac EXE is a set of activities. T is a triangular neutrosophic number
and stand for activity duration.
To obtain crisp model of neutrosophic CPM we should use the following

equations:

We defined a method to compare any two single valued triangular
neutrosophic numbers which is based on the score function and the accuracy
function. Let @ =((aq,by,¢1), @, 05, B;) be a single valued triangular

neutrosophic number, then
S@) = —[a; + by +¢;1x(2 + 23-65-5;) (4)
and
~ 1
A@) = __[ag + by + ¢ ]X(2 + 0-65 + ;) (5)

It is called the score and accuracy degrees of a, respectively. The
neutrosophic CPM model can be represented by a crisp model using truth
membership, indeterminacy membership, and falsity membership functions and
the score and accuracy degrees of a, using equations (1), (2), (3) and (4), (5)
respectively.

Notations of CPM solution:

Tf=Earliest occurrence time of predecessor event i,
T!= Latest occurrence time of predecessor event 7,
T"je:Earliest occurrence time of successor event j,
le: Latest occurrence time of successor event j,

Ti‘;- /Start= Earliest start time of an activity #j,

Ti‘}’- /Finish=Earliest finish time of an activity #j,

'T"il]- /Start=Latest start time of an Til activity ij,

Tilj /Finish= Latest finish time of an activity ij,

T;; = Duration time of activity i,

Earliest and Latest occurrence time of an event:

Fe_
J

value.

maximum (T"je +T; ), calculate all ’T"je for jth event, select maximum
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T!=minimum (T} — T})), calculate all T} for ith event, select minimum
value.

TS /Start=T,

Tf /Finish=T¢ + T;; ,
T}, /Finish=T},

Til]-/Start=T}l - Tl] .

Critical path is the longest path in the network. At critical path, '1~"f=7'il, for
all 7, and don't care of the value of «,6,[3.

Slack or Float is cushion available on event/ activity by which it can be
delayed without affecting the project completion time.

Slack for ith event =T} — T, for events on critical path, slack is zero.

From the previous steps we can conclude the proposed algorithm as
follows:

Stepl: To deal with uncertain, inconsistent and incomplete information
about activity time, we considered activity time of CPM technique as triangular
neutrosophic number.

Step 2: Draw CPM network diagram.

Step 3: Determine floats and critical path, which is the longest path in
network.

Step 4: Determine expected project completion time.

4 Illustrative Examples

To explain the proposed approach in a better way, we solved numerical
example and steps of solution are determined clearly.

1.1. Numerical Example I

You are given the following data for a project:

Table 1. Input data for neutrosophic cpm.

Activity Immediate Predecessors Time (days)

A (1-2) e 3 =((2,3,4);0.6,0.3,0.1)

B (13 5 = ((4,5,6); 0.8,0.2,0.4)

C (2-4) A i i

Do : i =((1,4,8);0.8,0.6,0.4)
(3-4) & = ((2,6,8); 0.6,0.4,0.2)

E (4-5) c,D 8

((6,8,10); 0.6,0.4,0.4)
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Step 1: Neutrosophic model of project take the following form:

N=(E, A, T), where E is asset of events (nodes) and Ac EXE is a set of
activities, T is a triangular neutrosophic number and stand for activity time.

Step 2: Draw network diagram of CPM.

Fig.1. Network diagram of CPM

| = Determine earliest start/finish of each activity.

Q\ = Determine latest start/finish of each activity.

Step 3: Determine critical path, which is the longest path in the network.

From Fig.1, we find that the critical path is B-D-E and is denoted by red
line.

Step 4: Calculate project completion time.

The neutrosophic time of project completion = (12, 19, 24; 0.6, 0.4,
O4)tA + tC + tG + t] days.

To determine crisp value of project completion time we will use Eq.4, then
the expected time of project completion in deterministic environment = 12 days.
5 Conclusion

Neutrosophic set is a generalization of classical set, fuzzy set and
intuitionistic fuzzy set because it not only considers the truth-membership and
falsity- membership but also an indeterminacy function which is very obvious in
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real life situations. In this chapter, we have considered activity time of CPM as
triangular neutrosophic numbers. In future, the research will be extended to deal
with different project management techniques.
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Abstract

In Geographical information systems (GIS) there is a need to model
spatial regions with indeterminate boundary and under
indeterminacy. The purpose of this chapter is to construct the basic
concepts of the so-called "neutrosophic sets via neutrosophic
topological spaces (NTs)". After giving the fundamental definitions
and the necessary examples we introduce the definitions of
neutrosophic open sets, neutrosophic continuity, and obtain several
preservation properties and some characterizations concerning
neutrosophic mapping and neutrosophic connectedness. Possible
applications to GIS topological rules are touched upon.

Keywords

Logic, Set Theory, Topology, Neutrosophic set theory,
Neutrosophic topology, Neutrosophic open set, Neutrosophic semi-
open set, Neutrosophic continuous function.

1 Introduction

Neutrosophy has laid the foundation for a whole family of new
mathematical theories generalizing both their classical and fuzzy counterparts,
such as a neutrosophic set theory. In various recent papers, F. Smarandache
generalizes intuitionistic fuzzy sets (IFSs) and other kinds of sets to neutrosophic
sets (NSs). F. Smarandache also defined the notion of neutrosophic topology on
the non-standard interval. Indeed, an intuitionistic fuzzy topology is not
necessarilly a neutrosophic topology. Also, (Wang, Smarandache, Zhang, and
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Sunderraman, 2005) introduced the notion of interval neutrosophic set, which is
an instance of neutrosophic set and studied various properties. We study in this
chapter relations between interval neutrosophic sets and topology. In this chapter,
we introduce definitions of neutrosophic open sets. After given the fundamental
definitions of neutrosophic set operations, we obtain several properties, and
discussed the relationship between neutrosophic open sets and others, we
introduce and study the concept of neutrosophic continuous functions. Finally,
we extend the concepts of neutrosophic topological space.

2 Terminologies

We recollect some relevant basic preliminaries, and in particular, the work
of Smarandache in [1, 2, 3], and Salama et al. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
Smarandache introduced the neutrosophic components 7, I, F, which represent
the membership, indeterminacy, and non-membership values respectively, where

J_0,1+|_ is a non-standard unit interval. Hanafy and Salama et al. [10, 11]

considered some possible definitions for basic concepts of the neutrosophic crisp
set and its operations. We now improve some results by the following.

Definition 2.1 [24] Let 7, I, F be real standard or nonstandard subsets of
107,17, witn
Sup-T=t-sup, inf-T=t-inf
Sup-I=i-sup, inf-I=i-inf
Sup-F=f-sup, inf-F=f-inf
n-sup=t-sup~+i-sup+f-sup
n-inf=t-inf+i-inf+f-inf.
T, I, F are called neutrosophic components.

We shall now consider some possible definitions for basic concepts of the
neutrosophic set and its operations due to Salama et al.

Definition 2.2 [23] Let X be a non-empty fixed set. A neutrosophic set
(NS for short) A is an object having the form

A - {<x, ,LlA(X),GA(X),Q/A(X)> X e X}

where 4, (x),0,(x), and y, (x) which represent the degree of membership

function (namely z,(x)), the degree of indeterminacy (namely & ,(x)), and the
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degree of non-membership (namely 5 ,(x) ) respectively of each element x € X

to the set A4 .
A neutrosophic 4 = {(x, 1,(x),0,(x),y,(x)): x € X} can be identified
to an ordered triple (4, (x),o ,(x),y ,(x)) In JO}F\_ on X.
Remark 2.3 [23] For the sake of simplicity, we shall use the symbol
A= {3, 1£,(x), 0, (x), 7, ()}
for the NS A = {(x, £2,(x),0, (%), 7 ,(x)) : x € X}

Definition 2.4 [4] Let 4 = (4 ,(x),0,(x),7,(x)) a NS on X, then the
complement of the set A(C(A) for short, maybe defined as three kinds of

complements
L C) = {1 = 1, (x),1-y (X)) 1 x € X},
2. C(A) = {(x,7,(2),0,(0), p,(0)) 1 x € X},
3. C() = {x,7,(0).1- 0, (X), 1, (x)) : x € X},
One can define several relations and operations between GNSS as follows:

Since our main purpose is to construct the tools for developing

neutrosophic set and neutrosophic topology, we must introduce the NSS 0 y and

1y [23]in X as follows:

1- 0 y may be defined as four types:

1. ON:{<X907091>:'X€X} or
2. 0, ={(x,0,1,1):xe X} or
3. ON:{<X707190>:'X€X} or

4. 0, ={(x,0,0,0):xe X}
2-1 y may be defined as four types:

1. L, ={(x,1,0,0):xe X} or
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2. 1N2{<x917071>:XEX} or
3 1= L1,0) v e X} or
4. 1, ={(x,1,1,I): xe X}

Definition 2.5 [23] Let X be a non-empty set, and GNSS A4 and B in the

form A = {x, 11, ()., (x). 7, (X)}> B = {x. 41, (), ()75 (x)}» then we
may consider two possible definitions for subsets (4 < B)

(A < B) may be defined as
1. Type 1:
A B <= p,(x) < py(x),0,(x) 2 o5(x),andy, (x) < y5(x) or
2. Type 1:
A B <= p,(x) < py(x),0 ,(x) 2 o5(x),and y, (x) = y5(x) -

Definition 2.6 [23] Let {Aj cjed } be an arbitrary family of NSSin X ,
then

1. N4 ; may be defined as two types:
Type 1 M A = (8 & g1, (0 A 0 (), V7, ().
Type 2: VA, = (6, A 41y (9), v, 0 (), v, 7, ().
2. U Aj may be defined as two types:
-Type 1: A4, =(x, N My (x),jZ, Oy (x)’/e‘.; 7 4 (X))
Type 2: U A, = (x, vty (%) A 0y () A 7 ()

Definition 2.7 [25] A neutrosophic topology ( N1 for short) and a non

empty set X isafamily T of neutrosophic subsets in X satisfying the following
axioms

1. 0,1, et

2. GNG,er forany G,G, et
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3. UG et V{G |jel}crT.

In this case the pair (X,r) is called a neutrosophic topological space (
NTS for short) and any neutrosophic set in 7 is known as neutrosophic open set
( NOS for short) in X . The elements of 7 are called open neutrosophic sets, A
neutrosophic set F is closed if and only if it C(F) is neutrosophic open [26-
30].

Note that for any NTS A in (X,7), we have Cl(A°)=[Int(A)]" and
Int(A°)=[CI(A)]".

Example 2.8 [4] Let X = {a,b,c,d},and 4= {x, 1, (x),0,(x), 7 ,(x)}

A={(x,0.5,0.5,04):xe X}

B={(x,0.4,0.6,08): x € X}

D= {(x,05,0.6,04): x € X}

C=1{(x,0.4,0.5,08):xe X}

Then the family 7 =1{0,,1 ,4,B,C,D} of NSs in X is neutrosophic
topology on X .

Definition 2.9 [23] Let (x,7) be NIs and 4= {x, z2,(x),c,(x),7 ,(x)}
bea NS in X .

Then the neutrosophic closure and neutrosophic interior of A4 are defined
by

1. NCL(A)="{K :KisaNCSinX and 4 < K}

2. NInt(A)=U{G:Gis aNOSinX and G < 4}

It can be also shown that NCI(A4) is NCS and NInt(A) isa NOS in

1. A isin X ifand only if NCI(A).
2. Ais NCS in X ifand only if Nint(A4)=A.

Proposition 2.10 [23] Let (x,7) be a NTS and A, B be two
neutrosophic sets in X . Then the following properties hold:
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1. NInt(4)c A,

2. A= NCI(A),

3. Ac B=> NInt(A) = Nint(B),

4. A< B = NCI(A) = NCI(B),

5. NCL(NCL(A))= NCL(A)
NiInt(Nint(A)) = NInt(A),

6. NInt(A U B)= NInt(A) U Nint(B)
NCI(A N B)= NCI(A)~ NCI(B),

7. NCI(A)\U NCI(B) = NInt(AU B),

Definition 2.11 [23] Let 4= {s,(x),0,(x),y,(x)} be a neutrosophic
opensetsand B = {4, (x),o,(x),y,(x)} be aneutrosophic set on a neutrosophic

topological space (X,7) then

1. A is called neutrosophic regular open iff 4 = NInt(NCI(A)).

2. If Be NCS(X) then B is called neutrosophic regular closed iff
A= NCI(NInt(A)).
3 Neutrosophic Openness

Definition 3.1 A neutrosophic set (Ns) A in a neutrosophic topology
(X,7) is called

1. Neutrosophic semiopen set (NSOS) if 4 < NCI(NInt(A)),

2. Neutrosophic preopen set (NPOS) if A < NInt(NCI(A)),

3. Neutrosophic & -open set (NaOS) if A < Nint(NCI(NInt(A)))
4. Neutrosophic S -open set (NBOS) if A < NCI(NInt(NCI(A)))

An (Ns) A is called neutrosophic semi-closed set, neutrosophic & -

closed set, neutrosophic pre-closed set, and neutrosophic regular closed set,
respectively (NSCS, N & CS, NPCS, and NRCS, resp.), if the complement of A
is a NSOS, N & OS, NPOS, and NROS, respectively.
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Definition 3.2 In the following diagram, we provide relations between
various types of neutrosophic openness (neutrosophic closedness): Opt

Remark 3.3 From above the following implication and none of these
implications is reversible as shown by examples given below

NROS [NRCS]

v

NOS [NCS]

|

NOS [N CS] \

!

NPOS [NPCS] NSOS [NSCS]

|

NOS [NCS] \

Reverse implications are not true in the above diagram. The following is
a characterization of a N @ OS.

Example 3.4 Let X = {a,b,c} and:
A=1{(0.5,0.5,0.5),(0.4,0.5,0.5),(0.4,0.5,05)),
B =¢(0.3,0.4,04),(0.7,0.5,0.5),(0.3,0.4,04)) .
Then 7= {ON,IN,A, B} is a neutrosophic topology on X . Define the two
neutrosophic closed sets C, and C, as follows,
C, =((0.5,0.5,0.5),(0.6,0.5,0.5),(0.6,0.5,0.5)),

C, =((0.7,0.6,0.6),(0.3,0.5,0.5),(0.7,0.6,0.6)) -
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Then the set A is neutrosophic open set (NOs) but not neutrosophic regular open
set (NROs) since A4 # NInt(NCI(A)), and since A < NInt(NCI(NInt(A)))

where the NInt(NCI(Nint(A))) is equal to:
{(0.5,0.5,0.5),(0.3,0.5,0.5),(0.7,0.6,0.6))
so that A is neutrosophic & -open set (N & Os).
Example 3.5 Let X = {a,b,c} and:
A4={(0.5,0.5,0.5),(0.4,0.5,0.5),(0.4,0.5,0.5)) ,
B =((0.3,0.4,04),(0.7,0.5,0.5),(0.3,0.4,04)) , and
C =((0.5,0.5,0.5),(0.4,0.5,0.5),(0.5,0.5,0.5)) .
Then 7= {ON,IN,A, B} is a neutrosophic topology on X . Define the two
neutrosophic closed sets C, and C, as follows:

C, =((0.5,0.5,0.5),(0.6,0.5,0.5),(0.6,0.5,0.5)),
C, ={(0.7,0.6,0.6),(0.3,0.5,0.5),(0.7,0.6,0.6)) -

Then the set C is neutrosophic semi open set (NSOs), since
C < NCI(NInt(C)),
where NCI(NInt(C)) ={(0.5,0.5,0.5),(0.3,0.5,0.5),(0.7,0.6,0.6)y but not

neutrosophic & -open set (N & Os) since C@_ Nint (N Cl (Nlnt (C))) where the
NInt(NCI(Nint(C))) is equal {((0.5,0.5,0.5),(0.4,0.5,0.5),(0.3,0.4,04)) , in
the sense of 4 = B <> 1,(x) < p1,(x),0 (%) 2 o5(x),and y ,(x) < y,(x) -

Example 3.6 Let X = {a,b,c} and:
A4={(0.4,0.5,04),(0.5,0.5,0.5),(0.4,0.5,04)) ,
B =1((0.7,0.6,0.5),(0.3,0.4,0.5),(0.3,0.4,04)) , and
C =((0.5,0.5,05),(0.5,0.5,0.5),(0.5,0.5,0.5)) .
Then 7= {ON,I N,A,B} is a neutrosophic topology on X . Define the two
neutrosophic closed sets C, and C, as follows:
C, ={((0.6,0.5,0.6),(0.5,0.5,0.5),(0.6,0.5,0.5)),

C, =((0.3,0.4,05),(0.7,0.6,0.5),(0.7,0.6,0.5)) .
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Then the set C is neutrosophic preopen set (NPOs), since C < Nint(NCI(C)),
where NInt(NCI(C)) ={(0.7,0.6,0.5),(0.5,0.5,0.5),(0.3,0.4,0.5)) but not

neutrosophic & -open set (N Os) since CNInl‘(NCl(NInt (C))) where the
NInt(NCI(NInt(C))) is equal ((0,0,0),(1,1,1),(0,0,0)) .

Example 3.7 Let X = {a,b,c} and:

A=1{((0.5,0.5,0.5),(0.4,0.5,0.5),(0.4,0.5,05)),

B =1((0.3,0.4,04),(0.7,0.5,0.5),(0.3,0.4,04)) , and

C =((0.3,0.3,03),(0.4,0.5,0.5),(0.3,0.4,04)) .
Then 7= {ON,I N 4, B} is a neutrosophic topology on X . Define the two
neutrosophic closed sets C, and C, as follows,

C, ={(0.5,0.5,0.5),(0.6,0.5,0.5),(0.6,0.5,0.5)),

C, =((0.7,0.6,0.6),(0.3,0.5,0.5),(0.7,0.6,0.6)) -

Then the set C is neutrosophic A -open set (N Os), since
C < NCI(NInt(NCI(C))), where

NCI(NInt(NCI(A)))=(0.7,0.6,0.6),(0.3,0.5,0.5),(0.7,0.6,0.6)),

but not neutrosophic pre-open set (NPOs) neither neutrosophic semi-open set

(NSOs) since CNCI(NInt(C)) where the NCI(NInt(C)) is equal
{(0.5,0.5,0.5),(0.3,0.5,0.5),(0.7,0.6,0.6))

Let (X,7)be NTS and A=1{4,,4,,4;} be a NSinX . Then the *-
neutrosophic closure of 4 (* —NCI(A) for short) and *-neutrosophic interior

( *—NInt(A) for short) of A are defined by
1. aNCi(A4)=N{K :isaNRCSinXandAc K},
2. aNInt(A) = U{G :GisaNROSinX andG < A4},
3. pNCI(A)=N{K :isaNPCSinXandA < K},
4. pNInt(A) = J{G :GisaNPOSinX andG < A4},
5. sNCI(A)=N{K :isaNSCSinXandA < K},

6. sNInt(A)={G:GisaNSOSinX andG < A4},
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7. BNCI(A)=N{K :isaNCLCSinXandA < K},
8. BNInt(A)=U{G:GisaNLOSinX andG < A},
9. ¥rNCI(A)=N{K :isaNRCSinXandA< K},

10. »NInt(A) = U{G : GisaNROSinX andG < A} .

Theorem 3.8 4 Ns A ina NTs (X,r) isa N OS if and only if it is
both NSOS and NPOS.

Proof. Necessity follows from the diagram given above. Suppose that A
is both a NSOS and a NPOS. Then 4 — NCI(NInt(A)), and so

NCI(A) = NCI(NCI(NInt(A)))= NCI(NInt(A))
It follows that 4 — Nint(NCI(A)) = NInt(NCI(NInt(A))), so that 4
isa N& OS. We give condition(s) for a NS to be a N& OS.

Proposition 3.9 Let (X,7r) be a neutrosophic topology space NTs. Then

arbitrary union of neutrosophic & -open sets is a neutrosophic & -open set, and
arbitrary intersection of neutrosophic & -closed sets is a neutrosophic & -closed
set.

Proof. Let A={(x, 1, ,0,,7,):i €A} be a collection of neutrosophic

Q -open sets. Then, for each i € A, A,- C Nint (N Cl (N]m (Al))) Its follows
that

|4 | NInt(NCI(NInt(A))) = NInt((_NCI(NInt(4))))
= NInt(NCI({_NInt(4,))) = NInt(NCI(NInt({_J4))))

Hence UAZ- is a neutrosophic & -open set. The second part follows
immediately from the first part by taking complements.

Having shown that arbitrary union of neutrosophic & -open sets is a
neutrosophic & -open set, it is natural to consider whether or not the intersection
of neutrosophic & -open sets is a neutrosophic & -open set, and the following

example shown that the intersection of neutrosophic & -open sets is not a
neutrosophic & -open set.

Example 3.10 Let X = {a,b,c} and
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A=1((0.5,0.5,0.5),(0.4,0.5,0.5),(0.4,0.5,0.5)),
B =1((0.3,0.4,04),(0.7,0.5,0.5),(0.3,0.4,04)) .

Then 7 = {ON,I N,A, B} is a neutrosophic topology on X . Define the
two neutrosophic closed sets C, and C, as follows,

C, =((0.5,0.5,0.5),(0.6,0.5,0.5),(0.6,0.5,0.5)),
C, =((0.7,0.6,0.6),(0.3,0.5,0.5),(0.7,0.6,0.6)) -

Then the set 4 and B are neutrosophic & -open set (N & Os) but
AN B is not neutrosophic & -open set. In fact AMB is given by
((0.3,0.4,04),(0.4,0.5,0.5),(0.4,0.5,0.5)) ,

and NInt(NCI(NInt(A B))) = ((0.5,0.5,0.5),(0.7,0.5,0.5),(0.3,0.4,04)) ,
so A" BNInt(NCI(NInt(A N B))) .

Theorem 3.11 Let A be a (Ns) in a neutrosophic topology space NTs
(X,7). If B is a NSOS such that B < A < NInt(NCI(B)),then 4 isaN&

0S.

Proof. Since B is a NSOS, we have B c NCI(NInt(B)). Thus,
A c NInt(NCI(A)) € NInt(NCI(NCI(NInt(B)))) = Nint(NCI(NInt(B))) < Nint(NCI(NInt(A))).

andsoisaa N& OS

Proposition 3.12 In neutrosophic topology space NIs (X,r), a
neutrosophic & -closed (NQ& Cs) if'and only if 4= aNCI(A).

Proof. Assume that A is neutrosophic & -closed set. Obviously,

A e {B; | Bisaneutrosophic —closedsetand AC B}

and also

A={B, | B.isaneutrosophic —closedsetand A C B, } ,

= aNCI(A).

Conversely suppose that 4 = aNCI(A) , which shows that
A e {B; | Bisaneutrosophic —closedsetand AC B.} .

Hence A is neutrosophic & -closed set.
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Theorem 3.13 A neutrosophic set 4 ina NIs X is neutrosophic &
-open (resp., neutrosophic preopen) if and only if for every N aOs pap) € A,

there exists a N @& Os (resp., NPOs) Bp(a’ﬂ) such that p(a, ff) € Bp(aﬁ) cA4.

Proof. If A is a NX Os (resp., NPOs), then we may take Bp(a,ﬁ) =4

for every p(a,B)e 4.

Conversely assume that for every NP p(a, ) € 4, there exists a N & Os
(resp., NPOs) Bp(a,ﬂ) such that p(Ol, ,8) € Bp(a,,g) C A . Then,

A= Jtp(a.B)| p(a.p) € Ay | JiB oy | (@, B) € A} A,

and so A=\ J{B,op) | P, B) € 4},

which is a N & Os (resp., NPOs) by Proposition 3.9.

Proposition 3.14 Ina NTs (X,r), the following hold for neutrosophic &

-closure:
l. aNCI(0_)=0_.
2. aNCI(A) is neutrosophic & -closed in (X,7) for every Nsin A .

3. aNCI(A) = aNCI(B) whenever A — B foreveryNs A and B
in X .
4. aNCI(aNCI(A))= aNCI(A) foreveryNs A in X .

Proof. The proof is easy.

4 Neutrosophic Continuous Mapping

Definition 4.1 [25] Let (X,7,) and (Y,z,) be twoNTSs,and let /' : X — Y
be a function. Then 7 is said to be strongly N -continuous iff the inverse image

of every NOSin 7, isaNOSin ¢, .

Definition 4.2 [25] Let (X,z,) and (Y,z,) be two NTSs,and let f: X — Y
be a function. Then 7 is said to be continuous iff the preimage of each NS in

7z, isaNSin 7 .
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Example 4.3 [25] Let X={a,b,c; and Y ={a,b,c}. Define

neutrosophic sets 4 and B as follows:
A=1{((0.4,0.4,0.5),(0.2,0.4,0.3),(0.4,0.4,05)),
B =((0.4,0.5,0.6),(0.3,0.2,0.3),(0.4,0.5,0.6)) .

Then the family 7, :{ON,IN,A} is a neutrosophic topology on

X and 7,=1{0,,l,,B} is a neutrosophic topology on Y.
Thus (X,7,) and (Y,z,) are neutrosophic topological spaces.
Define 7:(X,7) —> (¥.7,)

as f(a)=b, f(b)=a, f(c)=c.

Clearly 7 is N -continuous.

Now s is not neutrosophic continuous, since f - (B) T for
Ber,.

Definition 4.4 Let / be a mapping from a NTS (X,7) to a NTS (¥,x).
Then 7 is called

-1
1. a neutrosophic & -continuous mapping if f7(B) isaNQ Osin X
for every NOs B in Y .

-1
2. aneutrosophic pre-continuous mapping if f (B) isaNPOsin X for
every NOs Bin?Y.

-1
3. aneutrosophic semi-continuous mapping if f (B) is a NSOs in X

for every NOs BinY.
-1
4. a neutrosophic B _continuous mapping if f (B) isaNZ Osin X

for every NOs BinY,
Theorem 4.5 For a mapping 7 froma NTS (X,7) toa NTS (Y,«), the

following are equivalent.

1. 7 is neutrosophic pre-continuous.
-1
2. [ (B)isNPCsin X for every NCs B in Y .

3. NCl(NInt(f‘l(A)))g f_l(NCZ(A)) for every neutrosophic set
AinY.
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Proof. (1) = (2) The proofis straightforward.

(2)= (3) Let A beaNSin Y . Then NCI(A) is neutrosophic closed.

It follows from (2) that f _I(N Cl(A)) isa NPCSin X so that
NCI(NInt( £~ (4))) < NCI(NInt( f (NCI(A)) < £~ (NCI(4)).
(3)=> (1) Let A beaNOSin Y .Then 4 isaNCSin Y ,and so

NCI(NInt(f ™ (A))) < £~ (NCI(A) = £ (4).

This implies that

NInt(NCI(f ™ (4))) = NCI(NCI( £ (4))) = NCI(NInt(f " (4)))

= NCI(NInt(f (D) < /' (4) = £ 7(4),
and thus fﬁl(A) - N]”f(NCl(fil(A))). Hence fil (A) is a NPOS in
X ,and 7 is neutrosophic pre-continuous.

Theorem 4.6 Let 7 be a mapping from a NTS (X,7) to a NTS (Y,x)

that satisfies

NCl(NInt(NCl(f_l(B))))g f_l(NCl(B)), for every NS B in Y .

Then 7 is neutrosophic & -continuous.

Proof. Let B beaNOSin Y . Then B isa NCSin Y , which implies
from hypothesis that

NCI(NInt(NCI(f ™' (B))) < f(NCI(B))= ™' (B).

It follows that

NInt(NCI(NInt( £~ (B))))= NCI(NCI(NInt( /' (B))))

— NCI(NInt(NInt( £ ™ (B))))

= NCI(NInt(NCI(f ™' (B))))

= NCI(NInt(NCI(f ™ (B))))< /' (B)
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=f(B)
so that f_l(B) - NInt(NCl(NInt(f‘I(B)))). This shows that f_l(B) isaN

& OSin X .Hence, 7 isneutrosophic & -continuous.

Definition 4.7 Let p(c, 8) bea NP ofa NTS (X,7). ANS A of X is
called a neutrosophic neighborhood (NH) of p(«, ) if there exists a NOS B
in X suchthat p(a,f)e B A.

Theorem 4.8 Let 7 be a mapping from a NTS (X,7) to a NTS (Y,x).

Then the following assertions are equivalent.
1. f is neutrosophic pre-continuous.
2. Foreach NP p(a,8)e X andevery NH A of f(p(a,f3)), there

exists a NPOS B in X such that p(a,ﬂ) eBc f_l(A).

3. Foreach NP p(a,f) € X andevery NH A4 of f(p(a,B)), there exists
a NPOS B in X suchthat p(a,8)eB and f(B)c A4.

Proof. (1)= (2) Let p(a,8) beaNPin X andlet 4 be a NH of
f(p(a, B)) . Then there existsaNOS B in Y suchthat f(p(a,B))e Bc A

-1
. Since 7 is neutrosophic pre-continuous, we know that f (B) is a NPOS in

X and

pla.p)e f(f(pla.p))c [ (B)c [ (A).
Thus (2) is valid.
(2)=@3) Let p(a,) be a NP in X and let 4 be a NH of
f(p(a, B)) . The condition (2) implies that there exists a NPOS B in X such
that p(@, B) € B () sothat p(a,B)< B and f(B)C f(f(4))c 4

. Hence (3) is true.

(3)=(1). Let B be aNOS in Y and let P(a,ﬂ)ef_l(B). Then
f(p(a,B))e B, and so B is a NH of f(p(a,f)) since B is a NOS. It

follows from (3) that there exists a NPOS A4 in X such that p(a, f) e 4 and
f(A) < B so that,
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pla.f)edc [ (f(A)c /7 (B).
Applying Theorem 3.13 induces that f _I(B) isaNPOS in X . Therefore,

/ is neutrosophic pre-continuous.

Theorem 4.9 Let 7 be a mapping from a NTS (X,7) to a NTS (Y,x).

Then the following assertions are equivalent.
1. 7 isneutrosophic & -continuous.
2. Foreach NP p(a,)e X andevery NH A of f(p(a,f3)), there exists
aNQ 0S B in X suchthat p(a,f)eBc f7(4).

3. Foreach NP p(a,8) € X and every NH A of f(p(a, B)), there exists
aN% 0S B in X suchthat p(a,f)e B and f(B)c A.

Proof. (1)= (2) Let p(a,8) beaNPin X andlet 4 be a NH of
f(p(a, B)) . Then there existsaNOS C in Y suchthat f(p(a,8))eBc 4

-1
. Since f is neutrosophic & -continuous, B= f (C) isaNPOSin X and

pla.f)e f(f(pla.p))cB=f(C)c f(A).
Thus (2) is valid.

(2)=@3) Let p(a,) be a NP in X and let 4 be a NH of
f(p(a,B)). Then there exists a NXOS B in X such that

p(O!,ﬁ) EBQf_l(A) by (2). Thus, we have p(a,B)eB and
f(B)c f(f_1 (A)) C A . Hence (3) is valid.

(3)= (1).Let B beaNOSin Y and we take p(@, ) Ef_l(B).Then

f(pa,p))e f(f_l (B)) S B, Since B is NOS, it follows that B is a NH of

f(p(a, B)) so from (3), there exists a N& OS A such that p(a,8) € A and
f(A) < B so that,

pla.feAc [ (f(A)c f(B).
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-1
Using Theorem 3.13 induces that f (B) isa N OSin X . Therefore,

7 is neutrosophic & -continuous.

Combining Theorems 4.6 and 4.9, we have the following characterization
of neutrosophic & -continuous.

Theorem 4.10 Let 7 be a mapping from a N7S (X,7) to a NIS (Y,x).

Then the following assertions are equivalent.

1. 7 isneutrosophic & -continuous.
-1
2. If C isaNCSin Y ,then [ (C) isaN@ CSin X .

3. NCI(NInt(NCI(f~'(B))))< ' (NCI(B)) for every NS B in Y .
4. Foreach NP p(a, ) e X andevery NH A of f(p(a, ), there exists
aNQ 0S B suchthat p(a,f)eBc [ (4).
5. Foreach NP p(a,8) e X andevery NH A of f(p(a, f3)), there exists
aNO OS B suchthat p(a,f)e B and f(B)c 4.

Some aspects of neutrosophic continuity, neutrosophic N-continuity,
neutrosophic strongly neutrosophic continuity, neutrosophic perfectly
neutrosophic continuity, neutrosophic strongly N-continuity are studied in [25] as
well as in several papers. The relation among these types of neutrosophic
continuity is given as follows, where N means neutrosophic:

Example 4.11 Let X =Y = {a,b, ¢} . Define neutrosophic sets 4 and
B as follows 4=((0.5,0.5,0.5),(0.4,0.5,0.5),(0.4,0.5,0.5))

B=((03,0.4,04),(0.7,05,0.5),(0.3,04,0.4)).
C=((05,0.5,0.5),(04,0.5,0.5),(0.5,0.5,0.5)) and
D=((04,0.5,0.5),(0.5,0.5,0.5),(0.5,0.5,0.5)) . Then the family

0= {ONale A,B} isa neutrosophic topology on X and 7, = {ON,lN,D}

is a neutrosophic topology on Y . Thus (X ) Tl) and (Y s 2'2) are neutrosophic
topological spaces. Define [:(X,7,)—>(Y,7,) as f(a)=b, f(b)=a, f(c)=c.

Clearly f is neutrosophic semi-continuous, but not neutrosophic & -
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. . -1 — . .
continuous, since f (D) =C not not neutrosophic & -open set, i.e

Cg NInt(NCI(NInt(C))) where the NInt(NCI(NInt(C))) is equal
((0.5,0.5,0.5),(0.4,0.5,0.5),(0.3,0.4,0.4)) .

Neutrosophic continuity

l

‘ Neutrosophic N-continuity ‘
! l \
Neutrosophic-continuity \

Neutrosophic semi-continuity

l

Neutrosophic -continuity

Neutrosophic pr-continuity

The reverse implications are not true in the above diagram in general as the
following example.

Example 4.12 Let X =Y ={a,b,c} and
4=((04,0.5,0.4),(0.5,0.5,0.5),(0.4,0.5,0.4))
B=((0.7,0.6,0.5),(0.3,0.4,0.5),(03,0.4,0.4)) . and
C={((0.5,0.5,0.5),(0.5,0.5,0.5),(0.5,0.5,0.5)) .

Then 7, ={0y,ly,4,B} is a neutrosophic topology on X and

T,= {ON,IN,C} is a neutrosophic topology on Y . Thus (Xafl) and (Ya Tz)

are neutrosophic topological spaces. Define f I(X ,Tl)—)(Y ) T2) as identity
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function. Then / is neutrosophic pre-continuous but not neutrosophic -
continuous, since /(C)=C is neutrosophic pre open set (NPOs) but not
neutrosophic & -open set (V& Os).

Example 4.13 Let X =Y ={a,0,¢} . Define neutrosophic sets A4 and
B as follows 4={(05,0.5,0.5),(04,0.5,0.5),(04,0.5,0.5)).
B=((0.3,0.4,0.4),(0.7,0.5,0.5),(0.3,0.4,0.4)) . and
D=((03,04,04),(03,03,0.3),04,05,0.5)) . 7, =(0,.1,. 4.8} isa
neutrosophic topology on X and 7, =1{0,,1,,D} is a neutrosophic topology
on ¥ . Define f:(X,1)>(1,7,) as f(@)=c. f(B)=a. f(c)=b. Clearly

f is neutrosophic ,B -continuous, but not neutrosophic pre-continuous neither

neutrosophic semi-continuous since

1(D)=((0.3,0.3,0.3),(0.4,0.5,0.5),(0.3,0.4,0.4)) = C is neutrosophic
B -open set (N B 0s), since C € NCI(NInt(NCI(C))),
where NCI(NInt(NCI(4)))=((0.7,0.6,0.6),(0.3,0.5,0.5),(0.7,0.6,0.6)) . but

not neutrosophic pre-open set (NPOs) neither neutrosophic semi-open set

(NSOs) since CNCI(NInt(C)) where the NCI(NInt(C)) is equal
((0.5,0.5,0.5),(0.3,0.5,0.5),(0.7,0.6,0.6)) .

Theorem 4.14 Let | bea mapping from NTS (X, Tl) to NTS (X, 72).

1t / is both neutrosophic pre-continuous and neutrosophic semi-continuous,

neutrosophic & -continuous.

Proof. Let B be an NOS in Y . Since / is both neutrosophic pre-
-1
continuous and neutrosophic semi-continuous, f (B ) 1s both NPOS and NSOS

in X . It follows from Theorem 3.8 that f_l(B) isaNO OSin X sothat | is

neutrosophic & -continuous.
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5 Conclusion

In this chapter, we have introduced neutrosophic & -open sets,
neutrosophic semi-open sets, and studied some of its basic properties. Also we
study the relationship between the newly introduced sets namely introduced
neutrosophic & -open sets and some of neutrosophic open sets that already
exists. In this chapter also, we presented the basic definitions of the neutrosophic
o-topological space and the neutrosophic a-compact space with some of their
characterizations were deduced. Furthermore, we constructed a neutrosophic o-
continuous function, with a study of a number its properties. Many different
adaptations, tests, and experiments have been left for the future due to lack of
time. There are some ideas that we would have liked to try during the description
and the development of the neutrosophic topological space in the future work.
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Neutrosophic linear fractional
programming problem
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Mai Mohamed, Mohamed Abdel-Baset, Abdel-Nasser Hussein, Florentin Smarandache
(2017). Neutrosophic linear fractional programming problem. Octogon Mathematical
Magazine 25(1), 202-220

ABSTRACT. In this paper, a solution procedure is proposed to solve neutrosophic
linear fractional programming (NLFP) problem where cost of the objective function,
the resources and the technological coefficients are triangular neutrosophic numbers.
Here, the NLFP problem is transformed into an equivalent crisp multi-objective
linear fractional programming (MOLFP) problem. By using proposed approach, the
transformed MOLFP problem is reduced to a single objective linear programming
problem(LPP) which can be solved easily by suitable LP problem algorithm. The
proposed procedure illustrated through a numerical example.

1 INTRODUCTION

Linear fractional programming (LFP) is a generalization of linear
programming (LP) whereas the objective function in a linear program is a
linear function; the objective function in a linear-fractional program is a
ratio of two linear functions. Linear fractional programming is used to
achieve the highest ratio of profit/cost, inventory/sales, actual cost/standard
cost, output/employee, ctc. Decision maker may not be able to specify the
coefficients (some or all) of LFP problem due to incomplete and imprecise
information which tend to be presented in real life situations. Also aspiration
level of objective function and parameters of problem, hesitate decision
maker. These situations can be modeled efficiently through neutrosophic
environment. Neutrosophy is the study of neutralities as an extension of
dialectics. Neutrosophic is the derivative of neutrosophy and it includes
neutrosophic set, neutrosophic probability, neutrosophic statistics and
neutrosophic logic. Neutrosophic theory means neutrosophy applied in many
fields of sciences, in order to solve problems related to indeterminacy.

Key words and phrases. Linear fractional programming problem;
Neutrosophic; Neutrosophic set; Triangular neutrosophic numbers.
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Although intuitionistic fuzzy sets can only handle incomplete information
not indeterminate, the neutrosophic set can handle both incomplete and
indeterminate information.[1,6-8] Neutrosophic sets characterized by three
independent degrees namely truth-membership degree (T),
indeterminacy-membership degree(I), and falsity- membership degree (F),
where T,IF are standard or non-standard subsets of ]70,1%[. The decision
makers in neutrosophic set want to increase the degree of truth-membership
and decrease the degree of indeterminacy and falsity membership. The
structure of the paper is as follows: the next section is a preliminary
discussion; the third section describes the LFP problem with Charnes and
cooper’s transformation; the fourth section presents multi-objective linear
fractional programming problem; the fifth section presents neutrosophic
linear fractional programming problem with solution procedure; the sixth
section provides a numerical example to put on view how the approach can
be applied; finally, the seventh section provides the conclusion.

2 PRELIMINARIES

In this section, the basic definitions involving neutrosophic set, single valued
neutrosophic sets, neutrosophic numbers, triangular neutrosophic numbers
and operations on triangular neutrosophic numbers are outlined.

Definition 1. [2] Let X be a space of points (objects) and z € X. A
neutrosophic set A in X is defined by a truth-membership function T A (),
an indetermminacy-membership function A (x) and a falsity-membership
function FA(z). TA(z),[A(x) and F'A(x) are real standard or real
nonstandard subsets of ]70,1 *[. That is TA (z) : X —]70,1 [,

ITA(z): X —]70,1 T[and FA(z): X —]70,1 *[. There is no restriction on
the sum of Ty (x), I4 (z) and Fx (z), so

0— <supTs(z)+suply(z)+supFa(x) <3+.

Definition 2. [2] Let X be a universe of discourse. A singe valued
neutrosophic set A over X is an object having the form
A={{z,Tar(z),Ir(x),Fa(z)):z € X}, where Ty (z) : X = [0,1],

In(z): X —[0,1] and Fy (z) : X — [0,1] with

0<Ta(x)+1a(z)+ Fa(z) <3 for all z € X. The intervals Ty (z), I (x)
and Fy (z) denote the truth-membership degree, the
indeterminancy-membersjip degree and the falsity membersjip degree of x to
A, respectively. For convenience, a SVN number is denoted by A = (e, b, ¢),
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where a,b,c € [0,1] and a+ b+ ¢ < 3.

Definition 3. Let J be a neutrosophic number in the set of real numbers R,
then its truth-membersjip function is defined as

Jo0L gy < J <ay

a2—aj’

Ty =S 2= < J<a (1)
0, otherwise

Its indeterminancy-membership function is defined as

J—b

@7 by <J < by
I3()) = o2, ba<J <bs 2)

0, otherwise

And its falsity-membersjip function is defined as

J—c
ey asJ<oe

Fi)={ 2=2 s <i<e (3)
1, otherwise

Definition 4. [3] A triangular neutrospohic number @ =< (a1, by, 1) ;

ag, 03, Bg > is a special neutrosophic set on the real number set R and
ag.03, Bz € [0,1] . The truth-membership, indeterminancy-membership and
falsity-membership functions of @ are defined as follows:

foula fa; <z <h

o ifz=b0
15 (z) = o e (4)
a (@) ((é—l_m—gf—‘)—@- ifhi<z<e
0 otherwise

(Lgreleal) e <2< by

0~ ifz="b
I; (J’) = a- z(c1—x : (5)
a % ifby <z<c
L1 : otherwise

( (bi—z+Bz(x—a1)) . )
i T(bl—a:f) L if a1 S X S bl

B ifz==0b
F;(x) = a(c1—

() femtidbalera) gy, <p <o
L1 otherwise
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If a; > 0 and at least ¢; > 0 then a =< (a1,b1,¢1); ag, 65, Bz > is called a
positive triangular neutrosophic number, denoted by & > 0. Likewise, if

¢1 <0 and at least a1 <0, then a =< (a1,b1,c1); g, 0z, 5z > is called a
negative triangular neutrosophic number, denoted by a < 0.

Definition 5. [3] Let @ =< (a1,b1,¢1); g, 0, ) > and b =< (az, b3, ¢5);
5 0;, B;) > be two single valued triangular neutrosophic and v # 0 be any
real number. Then,

1.

&+E:< (al+a2,bl—}—bg,cl—1-62);(15/\0&3,95\/05,,35\/55>
2.

5—3:< (a1 — co,b1 — by, ¢y —ag);&a/\()zg,ea\/ﬂg,ﬂa\/ﬁg>
3.

< (a1ag,biby, crca) 505 A ag, 05V Oy, Ba V By > (c1 > 0,¢c2 > 0)
ab = < (alcg,blbg,clag) e 7 A ag, A 95,55 V ,35 > (01 <0,co > 0)
< (c1eg,b1bg,a1a9) ;05 A a—,;,&a V eg,ﬁa V BE > (¢; <0,c2 <0)

4.
a b .
y (a,8,2 soa N ag, 05V 05, Bz V B; > (> 0,c0 > 0)
¢ _ a b .
g_ E;’b_;”:_; 7QEAQZ795\/95v5’dVB;>(CI<0,CQ>0)
b
%,gi-,%>;aa/\agﬁav%,ﬁaVB5>(q<0,cQ<0)
5.

i { < (yar,vbi,ver) ; o, 05, Bz > (v > 0)
< (yer,vbi,yar) s oG, 0, Bz > (v < 0)

3. LINEAR FRACTIONAL PROGRAMMING PROBLEM (LFPP)

In this section, the general form of LFP problem is discussed. Also, Charnes
and Cooper’s [4] linear transformation is summarized.
The linear fractional programming (LFP) problem can be written as:

_ch-:cj*#p_cTa?er_N(x) )

Maa:Z(:z:)m Zdj.’lﬁj‘{“Q N dT$+q - D(T)’
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Subject to

zreS={zeR": Az < b,z >0}
Where j =1,2,...,n, A€ R™*" bec R™, ¢j,d;j € R", and p,q € R. For some
values of z, D (z) may be equal to zero. To avoid such cases, we requires
that either {Az < b,z > 0= D (z) >0} or {Az < bz > 0= D (z) < 0}.
For convenience here, we consider the first case,

ie. {Az <b,z>0= D (z) >0} (8)
Using Charnes and Cooper’s linear tranformation the previous LFP problem
is equivalent to the following linear programming (LP) problem:

Maxc™y + pt,

Subject to

dy+qgt=1, Ay—bt=0,t>0,y >0,y R"te R (9)

Consider the fractional programming problem

N (z)
Max Z (z) = 1
w7 = 5 (10)
Subject to
Az <bx>0,ze A={z: Az < b,z >0= D (x) >0}
By the transformation ¢ = 5%57, y = tz we obtained the following:
Y
Max tN (t) ,
Subject to
A(%)—bgO,t[)(%)=l,t>0,y20 (11)

By replacing the equality constraint ¢ (%) =1 by an inequality constraint
tD (%) < 1. We obtain the following:

Max tN (%) ,
Subject to
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A(%)—bgO,tD(%)gl,t>0,yZO (12)
If in equation (10), N (z) is concave, D (z) is concave and positive on A, and

N () is negative for each x € A\, then
D (x)

. —N (z
M(L:I;;I;GAB"(.Z.—) < M'aneAT:(v)) = Ma$m€A1m),

where — IV (z) is convex and positive. Now linear fractional program (10)

N (z)

transformed to the following LP problem:

Max tD <%) ,

Subject to
A(%)—bgo,—m(?j—)g1,t>o,yzo (13)

4 MULTI-OBJECTIVE LINEAR FRACTIONAL PROGRAMMING
PROBLEM

In this section, the general form of MOLFP problem is discussed and the
procedure for converting MOLFP problem into MOLP problem is illustrated.
The MOLFP problem can be written as follows:

Maz z (z) = [21 () , 22 (%) , o 2k (T)]
Subject to

reA={x:Ar < b,z >0} (14)

With b€ R™ A € R™" and z (v) = 2% = B o d; € R and

pi,q € R, 1=1,2,..., k.

Let I be the index set such that I = {i : N; (z) > 0 for x € A} and

I¢={i: N;(z) <0 for z € A}, where TUT¢={1,2,...,K}. Let D (z) be
positive on A where A is non-empty and bounded. For simplicity, let us take
the least value of 1/ (djxz 4+ ¢;) and 1/ [— (¢;x + p;)] is t for i € I and i € I¢,
respectively i.e.

-1
———— >tforie /and ——— >t fori e I° (15)
(dix + ;) (ciz + mi)

By using the transformation y = tx (¢t > 0), and equation 15, MOLFP
problem (14) may be written as follows:
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Mazx z; (y,t) = {tNi (%) , fori e I;tD; (—i—) , for i € Ic}
Subject to

tD; (%) <1, foriel, —tN, (%) <1, for

ieIC,A(%)—bgO,t,yZO (16)
If ¢ € I, then truth-membership function of each objective function can be
written as:
0 if tN;(¥) <0
1; (tNi (%)) = ”vaf) if 0<tN; (%) <zi+a (17)
1 if tNi (%) >z +a
If ¢ € I, then truth-membership function of each objective function can be
written as:
(] if tD; (%) <0
T (tDi (—?)) = ‘7’@ if 0<tD;(¥)<z+a (18)
1 if tD; (4) > 2+ a;
If ¢ € I, then falsity-membership function of each objective function can be
written as:
1 if tN; (%) <0
. NEAN tNi(¥) . y 19
F(tNi(5)) =9 1— 522 if 0<iNi(Y) Szite (19)
1 if tN; (%) > zi+¢
fi¢e I then falSity-rnembership function of each objective function can be
written as:
1 if tD; (%) <0
A ¥
Rt (4)) =4 1- DD ip 0 <tDi (L) <7+ (20)

if tDi (%) > Zi + ¢;

If ¢ € I, then indeterminancy-membership function of each objective function
can be written as:
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0 if tN; (%) <0
Ii (tNi (%)) = tZl,(i) if 0<tN; (%) < z+d; (21)
1 it tN;(¥) >zi+di

If 7 € I, then indeterminancy-membership function of each objective
function can be written as:

y 0 if tD; (%) 0
neo () = w0 <zva )
if tD ( ) 2z +di

Where e;,d; and ¢; are acceptance tolerance, indeterminancy tolerane and
rejection tolerance. Zmmermann [5] proved that if membership function

wp (y,t) of complete solution set (y,t), has a unique maximum value

pp (y*,t*) then (y*,t*) which is an element of complete solution set (y,t) can
be derived by solving linear programming with one variable A. Using
Zimmermann’s min operator and membership functions, the model (14)
transformed to the crisp model as:

Maz A
Subject to,
T; (tNi (%)) > A, for i€l
T; (tD; (4)) > A, for ielI°
F; (tNZv (%)) <A, for 1€l
F tDZ(%)) <A, for 1€lI°
I (tNZ- (%)) <A for i€l
I (tDZ(%)) <\, for i€l¢
tD; (¥) <1, for i€l
—tN; (¥) <1,  for i€l°
A(%)—bgo,t,y,AZo. (23)

5 NEUTROSOPHIC LINEAR FRACTIONAL PROGRAMMING
PROBLEM

In this section, we propose a procedure for solving neutrosophic linear
fractional programming problem where the cost of the objective function, the
resources, and the technological coefficients are triangular neutrosophic
numbers.
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Let us consider the NLFP problem:

Moz z (z) = ;@{UQZ{
>odjzi+q
Subject to
al]TJ S Ei’ i = 1a2a"'7ma ZL'] 2 0, _] = 1,2,...,71, (24)

We assume that ¢;, p, ij, ¢,a;; and b; are triangular neutrosophic numbers for
each i =1,2,...,m and j = 1,2, ..., n, therefore, the problem (24) can be
written as:

S (¢j15 g2, j3; 0, 05, Be) 5 + (p1, p2, P3; 5, O, B)

Max z (z) =
> (dj1, djo, djs; oz, 05, B5) 5 + (a1, g2, 435 @ 03 B)

(25)
Subject to

Z (aij1, aij2, aigs; o, 0g, Ba) < (ba, bia, bis; o, 05, 55)

i=1,2,,mz; >0,j=1,2,...,n

Where &, 6,5 € [0, 1] and stand for truth-membership, indeterminancy and
falsity-membership function of each neutrosophic number. ’

Here decision maker want to increase the degree of truth-membership and
decrease the degree of indeterminancy and falsity membership. Using the
concept of component wise optimization, the problem (25) reduces to an
equivalent MOLFP as follows:

Mazx Z; (2) = 2t +p1’
> dj3zj + g3

Y cpmjtpa

Max Z =
ax Zs () S dpov; 1 @2

_ > ¢z +p3
Yodpzi+aq

_ Za'g.%'j + agy
> Bawi+ By

Maz Z3 (x)

Max Z4 (x)
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Z@ng-i-@];
Max Z =1-==—"7 26
o 73 (0) =1 - g (26)
MaxZG(x)zl————Zﬁzxj_‘_ﬁﬁ

Yo agr;+ag

Subject to

Z%’ﬂ’j < bﬂ,zaijﬂj < bi?azaz]f’)x] < bz3azaawj g,
Z%%’ <6, Zﬁaﬂ?;‘ < By
z;20,1=1,2,...,m;5=1,2,...,n.

Let us assume that z1, 29, 23, 24, 25 and zg > 0 for the feasible region. Hence,
the MOLFP problem can be converted into the following MOLP problem:

Mazx z (y,t) Zcﬂy] + mt,
Mazx 2 (y,t Z ¢joy; + pat,
Maz z3 (y,t chsyg + pst,
Mazx 24 ( Z azy; + apt,
Maz z5(y,t) = 1 — (Z Oayj — 6,;1&) ,

Mazx 25 (y,t) =1 — (Zﬁayj - ﬁt),

Subject to

Zdj?)yj +q3t <1,
Y dppys + @t < 1,
Zdjlyj +qit <1,
> Bayi+ Bt <1,
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Z%yj + 05t <1,
Zaayj + agt < 1,
Z(Lz’jlyj —biit <0,
z a;joyj — bt <0,
Z aij3y; — bist <0,
Z agzy; — ozt <0,

Zefiyj - egt <0,

Zﬁay]“ﬁ'[;tS(L

ty; >0,0=1,2,...,m;j=1,2,...,n. (27

Solving the transformed MOLP problem for each onjective function, we
obtain 27, 23, 23, 23, 25 and z{. Using the membership functions defined in
previous section, the above model reduces to:

Maz A
Subject to

Zleyj +pit — 2A 2 0,
Z cjoyj + pat — 25X > 0,
> cjay; + pat — 25X > 0,

Zag’yj +azt — 24X > 0,
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1 (3 ey + 05t) — 32 <0,
1- (Zﬁa’yj +/Bﬁt) — 262 <0,

Zdj3yj +q3t <1,
Zdjzyj +got < 1,
Zdjlyj +aqt <1,
Zﬁgyj + B3t <1,
D O+ 05t <1,

> agy;+agt <1,
Zaijlyj ~ byt <0,
Z aij2y; — biot <0,
> aigay; — bist <0,
> g — ot <0,

> 0qu; — 05 <0,

> Baui = Bt <0,

by >0,i=1,2,...m;5=1,2,...,n. (28)
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5.1 ALGORITHM

The proposed approach for solving NLFP problem can be summarized as
follows:

Step 1. The NLFP problem is converted into MOLFP problem using
component wise optimization of triangular neutrosophic numbers.

Step 2. The MOLFP problem is transformed into MOLP problem using the
method proposed by Charnes and Cooper.

Step 3. Solve each objective function subject to the given set of constraints.
Step 4. Define membership functions for each objective function as in
section four.

Step 5. Use Zimmermann'’s operator and membership functions to obtain
crisp model.

Step 6. Solve crisp model by using suitabe algorithm.

6 NUMERICAL EXAMPLE

A company manufactures 3 kinds of products i, IT and IIT with profit around
8,7 and 9 dollars per unit, respectively. However, the cost for each one unit
of the products is around 8, 9 and 6 dollars, respectively. Also it is assumed
that a fixed cost of around 1.5 dollars is added to the cost function due to
expected duration through the process of production. Suppose the materials
needed for manufacturing the products I, II and III are about 4, 3 and 5
units per pound, respectively. The supply for this raw material is restricted
to about 28 pounds. Man-hours availability for product I is about 5 hours,
for product II is about 3 hours, and that for III is about 3 hours in
manufacturing per units. Total man-hours availability is around 20 hours
daily. Determine how many products of I, I and III should be manufactured
in order to maximize the total profit. Also during the whole process, the
manager hesitates in prediction of parametric values due to some
uncontrollable factors.

Let 21,22 and x3 unis be the amount of I, IT and III, respectively to be
produced. After prediction of estimated parameters, the above problem can
be formulated as the following NLFPP:

Maz 7 (7) = - 8x1N+ 7$2~+ 9:1:3N
8x1 + 9z9 + 623 + 1.5
Subject to

4y + 39 + 5r3 < 28,
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gml +§x2 +§x3 < 2~0, T1,%9,x3 >0

. With 8= (7,8,9; 0.5,0.8,0;3) , 7= (6,7,8;0.2,0.6,0.5),
§= (8,9,10;0.8,0.1,0.4), 6 = (4,6,8;0.75,0.25,0.1),
15=(1,1.5,2;0.75,0.5,0.25) , 1= (3,4,5;0.4,0.6,0.5),
3=1(2,3,4;1,0.25,0.3), 5= (4,5,6;0.3,0.4,0.8),

28 = (25, 28, 30;0.4,0.25,0.6) , 20 = (18,20,22;0.9,0.2,0.6) .
This problem is equivalent to the following M@LFPP:

Tx1 + 6x9 + 813

M =
ar A (33) 921 + 10xo + 8x3 + 2’
7 9
Maz 2 (z) = 8x1 -+ Txo + 923 ’
8x1 + 925 + 63 + 1.5
3 1
Maz 2 (z) = 9z1 + 8x9 4 10x3 ,
Txy +8ro +4xs+ 1
0.5 0.2 0.8
Max z4 () Tt D.2ra + 0.0

= 0.37; + 0.429 + 0.123 + 0.25°

B 0.827 + 0.6z9 + 0.1x3
0.8zy + 0.1z + 0.2523 + 0.5’

Mazx z5(z) =1

0.3z; + 0.529 + 0.4x3

Max z5(x) =1 —
0.5z1 4+ 0.8z5 + 0.75z3 + 0.75

Subject to

3x1 + 229 + 4z < 25,

4x1 + 32 + x5 < 28,

51 + 4dxs + 63 < 30,

4xq + 229 + 223 < 18,

51 + 322 + 3x3 < 20,

6z + 4xs + 43 < 22,
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0.4z + o + 0.3z3 < 0.4,
0.6z1 + 0.25z2 + 0.4423 < 0.25,
0.5x1 + 0.3z + 0.8z3 < 0.5,
0.3z + x2 + 23 £ 0.9,
0.4x1 + 0.25z9 + 0.2523 < 0.2,

0.821 + 0.322 + 0.3z3 < 0.6,
Using the transformation the problem is equivalent to the following MOLPP:

Maz z1 (y,t) = Ty1 + 6y2 + 8ys,

Max 2y (y,t) = 8yr + Ty2 + Yys,

Maz z3 (y,t) = 9y1 + 8y + 10ys,
Max z4 (y,t) = 0.5y; + 0.2y2 + 0.8ys,
Mazx 25 (y,t) = 0.5y; + 0.15y2 + 0.5,

Mazx zg (y,t) = Q.2y1 + 0.3y2 + 0.35y3 + 0.75, (31)
Subject to

9y1 + 10y2 + 8ys + 2t < 1,

S8y; +9ys + 6y + 1.5t < 1,

Ty +8ys +4ys +t < 1,
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0.3y1 + 0.4ys + 0.1ys + 0.25¢ < 1,
0.8y1 + 0.1ys + 0.25y3 + 0.5t < 1,
0.5y1 +0.8y2 + 0.75y3 + 0.75t < 1,
3y1 + 2y + dys — 25¢ < 0,
4y1 + 3y2 + dyz — 28t < 0,

51 + 4ya + 6ys — 30t <0,
4y + 2y2 + 2y3 — 181 <0,
5y1 + 3y2 + 3yz — 20t < 0,
6y1 + 4yo + 4ys — 22t <0,
0.4y; + y2 + 0.3y3 — 0.4¢ < 0,
0.6y1 + 0.25y2 4 0.4y3 — 0.25¢ < 0,
0.591 + 0.3y2 + 0.8y3 — 0.9t < 0,
0.3y1 +y2+y3 — 0.9t <0,

Y1,Y2,Y3,t =0

Solving each objective at a time we get:

z1 = 0.7143, z2 = 0.8036, z3 = 0.8929, z4 = 0.0714, 5 = 0.833, 2z = 0.7813
Now the previous problem reduced to the following LPP:
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Max A\
Subject to

Tyr + 6y2 + 8yz — 21X > 0,

8y1 + Tys + 9yz — 22A > 0,
9y1 + 8y + 10y3 — z3A > 0,
0.5y1 + 0.2y2 + 0.8ys — zaA > 0,
0.5y2 + 0.15y3 + 0.5 — z5A <0,
0.2y1 + 0.3y + 0.3y3 + 0.75 — 26 A < 0
9y1 + 10y + Bys + 2t < 1,
8y1 + 9y + 6y3 + 1.5t < 1,‘
Tyr + 8ys +4ys +t < 1,
0.3y; + 0.dyg + 0.1y3 + 0.25¢ < 1,
© 0.8y1 + 0.1ys + 0.25y3 + 0.5¢ < 1,
0.5y1 4 0.8y +0.75y3 + 0.75¢ < 1,
3y + 2y + dyz — 25t < 0,

4y1 + 3y2 + dyz — 28t <0,
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dy1 + 4y + 6ys — 30t < 0,
Aoy + 2ys + 23 — 18 < 0,
5y1 + 32 + 3yz — 20t < 0,
6y + dya + 4ys — 22t < 0,
0.43/1 +y2 + 0.3ys — 0.4t <0,
0.6y; 4+ 0.25y2 + 0.4ys — 0.25¢ < 0,
0.5y1 + 0.3y2 + 0.8y3 — 0.5¢ < 0,
0.3y +y2 +y3— 0.9t <0,
Y1, Y2, y3,t >0, A€ [0,1] (32)

Solving by LINGO we have y; = 0,y, =0,y3 = 0,0893, A = 1, t = 0.1429.
The optimal of original problem as z; = 0, 29 = 0,23 = 0.6249.

7 CONCLUSION

In this paper, a method for solving the NLFP problem where the cost of the
objective function, the resources and the technological coefficients are
triangular neutrosophic numbers is proposed. In the proposed method,
NLFP problem is transfomed to a MOLFP problem and the resultant
problem is converted to a LP problem. In future, the proposed approach can
be extended for solving multi-objective neutrospohic linear fractional
programming problems (MONLFPPs).
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Abstract—In this paper, we propose the complex neutrosophic
soft set model, which isa hybrid of complex fuzzy sets, neutr osophic
sets and soft sets. The basic set theoretic operations and some
concepts related to the structure of this model are introduced, and
illustrated. An example related to a decison making problem
involving uncertain and subjective information is presented, to
demonstratethe utility of thismodel.

Keywor ds—complex fuzzy sets; soft sets, complex neutrosophic sets;
complex neutrosophic soft sets; decision making

L

The neutrosophic set model (NS) proposed by Smarandache [1,
2] is a powerful tool to deal with incomplete, indeterminate and
inconsistent information in the real world. It is a generalization of
the theory of fuzzy sets [3], intuitionistic fuzzy sets [4, 5],
interval-valued fuzzy sets [6] and interval-valued intuitionistic
fuzzy sets [7]. A neutrosophic set is characterized by a truth-
membership degree (t), an indeterminacy-membership degree (i)
and a falsity-membership degree (f), all defined independently,
and all of which lie in the real standard or nonstandard unit
interval ]-0, 1*[. Since this interval is difficult to be used in real-
life situations, Wang et al. [8] introduced single-valued
neutrosophic sets (SVNSs) whose functions of truth,
indeterminacy and falsity all lie in [0, 1]. Neutrosophic sets and
its extensions such as single valued neutrosophic sets, interval
neutrosophic sets, and intuitionistic neutrosophic sets have been
applied in a wide variety of fields including decision making,
computer science, engineering, and medicine [1-2, 8-27, 36-37].

INTRODUCTION

227

The study of complex fuzzy sets were initiated by Ramot et al.
[28]. Among the well-known complex fuzzy based models in
literature are complex intuitionistic fuzzy sets (CIFSs) [29, 30],
complex vague soft sets (CVSSs) [31, 32] and complex
intuitionistic fuzzy soft sets (CIFSSs) [33].These models have
been used to represent the uncertainty and periodicity aspects of
an object simultaneously, in a single set. The complex-valued
membership and non-membership functions in these models have
the potential to be used to represent uncertainty in instances such
as the wave function in quantum mechanics, impedance in
electrical engineering, the changes in meteorological activities,
and time-periodic decision making problems.

Recently, Ali and Smarandache [34] developed a hybrid model of
complex fuzzy sets and neutrosophic sets, called complex
neutrosophic sets. This model has the capability of handling the
different aspects of uncertainty, such as incompleteness,
indeterminacy and inconsistency, whilst simultaneously handling
the periodicity aspect of the objects, all in a single set. The
complex neutrosophic set is defined by complex-valued truth,
indeterminacy and falsity membership functions. The complex-
valued truth membership function consists of a truth amplitude
term (truth membership) and a phase term which represents the
periodicity of the object. Similarly, the complex-valued
indeterminacy and falsity membership functions consists of an
indeterminacy amplitude and a phase term, and a falsity
amplitude and a phase term, respectively. The complex
neutrosophic set is a generalized framework of all the other
existing models in literature.
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However, as the CNS model is an extension of ordinary fuzzy
sets, it lacks adequate parameterization qualities. Adequate
parameterization refers to the ability of a model to define the
parameters in a more comprehensive manner, without any
restrictions. Soft set theory works by defining the initial
description of the parameters in an approximate manner, and
allows for any form of parameterization that is preferred by the
users. This includes using words and sentences, real numbers,
functions and mappings, among others to describe the parameters.
The absence of any restrictions on the approximate description in
soft set theory makes it very convenient to be used and easily
applicable in practice. The adequate parameterization capabilities
of soft set theory and the lack of such capabilities in the existing
CNS model served as the motivation to introduce the CNSS
model in this paper. This is achieved by defining the complex
neutrosophic set in a soft set setting.

The rest of the paper is organized as follows. In section 2, we
present an overview of some basic definitions and properties
which serves as the background to our work in this paper. In
section 3, the main definition of the CNSS and some related
concepts are presented. In section 4, the basic set theoretic
operations for this model are defined. The utility of this model is
demonstrated by applying it in a decision making problem in
section 5. Concluding remarks are given in section 6.

IL.

In this section, we recapitulate some important concepts
related to neutrosophic sets (NSs), and complex neutrosophic sets
(CNSs). We refer the readers to [1, 8, 10, 34] for further details
pertaining to these models.

PRELIMINARIES

Let X be a space of points (objects) with generic elements in
X denoted by x.

Definition 1. [1] A neutrosophic set A is an object having the
form A = {{x, T, (x), 14(x), F4(x)): x € X}, where the functions
T,I,F : X -]70,1*[, denote the truth, indeterminacy, and falsity
membership functions, respectively, of the element x € X with
respect to set A. These membership functions must satisfy the
condition ~0 < Ty(x) + Ii(x) + F,(x) < 3*. )
The functions T,(x),I4(x), and F,(x) are real standard or
nonstandard subsets of the interval ]70,1*[. However, these
intervals make it difficult to apply NSs to practical problems, and
this led to the introduction of a single-valued neutrosophic set
(SVNS) in [12]. This model is a special case of NSs and is better
suited to handle real-life problems and applications.

Definition 2. [8] An SVNS A is a neutrosophic set that is
characterized by a truth-membership function T,(x), an
indeterminacy-membership function I,(x), and a falsity-
membership function F,(x), where T,(x), [,(x), F,(x) € [0,1].
A SVNS A can thus be written as

A= {(X, TA(X),IA(X),FA(X)):X € X} (2)
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Definition 3. [8] The complement of a neutrosophic set A,
denoted by A€, is as defined below for all x € X:

Ti(x) = Fy(x), I5(x) = 1 = I, (x), Ff (x) = T, (x).

Definition 4. [10] Let U be an initial set and E be a set of
parameters. Let P(U) denote the power set of U, and let A — E.
A pair (F,A) is called a soft set over U, where F is a mapping
given by F:A - P(U). In other words, a soft set is a
parameterized family of subsets of the set U. Every F (e), where
e € E, from this family may be considered as the set of e-
elements of the soft set (F, A).

Definition 5. [34] A complex neutrosophic set A defined on a
universe of discourse X, is characterized by a truth membership
function T,(x), an indeterminacy membership function I,(x),
and a falsity membership function F, (x) that assigns a complex-
valued grade for each of these membership function in A for any
x € X. The values of T,(x), I,(x) and F,(x), and their sum may
assume any values within a unit circle in the complex plane, and
is of the form Ty(x) = ps(x)e#a™ [,(x) = q4(x)e™4™, and
Fu(x) = ry(x)ei®a® All the amplitude and phase terms are

real-valued and  pu(x),qa(x),14(x) €[0,1],  whereas
Ua(x),v4(x), wa(x) € (0,2m], such that the condition
0<palx) +qa(x) +14(x) <3 3)

is satisfied. A complex neutrosophic set A can thus be
represented in set form as:

A= {(x,Ty(x) = ar,1,(x) = a5, F4(x) = ap):x € X},
where T,;:X - {ar:ar € C,|ar| < 1}, I;:X - {a;:q; €
C,la;| <1}, F;: X - {ap:ap € C,|ag| < 1}, and also
IT4(0) + ;) + Fa(x)] < 3, @)
The interval (0, 27] is chosen for the phase term to be in line with
the original definition of a complex fuzzy set in which the
amplitude terms lie in an interval of (0, 1), and the phase terms
lie in an interval of (0, 27].

Remark: In the definition above, i denotes the imaginary number
i =+/—1 and it is this imaginary number i that makes the CNS
have complex-valued membership grades. The term e’® denotes
the exponential form of a complex number and represents e'? =
cos @ +isiné.

Definition 6. [34] Let A = {{x, T4 (x), [,(x),Fy(x)): x € X} be a
complex neutrosophic set over X. Then the complement of 4,
denoted by AS, is defined as:

A° = {(x, T (), 15 (%), Ff (x)): x € X},
where T£ (x) = 1, (x)el(2r-#a@),
I5(x) = (1 — q4(x))e!G™va®), and
Ff () = pa(x)e!er=oat),
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III. COMPLEX NEUTROSOPHIC SOFT SETS

In this section, we introduce the complex neutrosophic soft set
(CNSS) model which is a hybrid of the CNS and soft set models.
The formal definition of this model as well as some concepts
related to this model are as given below:

Definition 7. Let U be universal set, E be a set of parameters
under consideration, A € E, and i, be a complex neutrosophic
set over U for all x € U. Then a complex neutrosophic soft set
xaover U is defined as a mapping y,: E = CN(U), where CN(U)
denotes the set of complex neutrosophic sets in U, and ¥, (x) =
@ if x ¢ A. Here ¥,(x) is called a complex neutrosophic
approximate function of y, and the values of ¥, (x) is called the
x -elements of the CNSS for all x € U. Thus, y, can be
represented by the set of ordered pairs of the following form:
x4 ={(x, ¥s(x)):x €E,¥,(x) € CN(U)},

where Pa(x) = (pa(x)e™4®), g, (x)e™4D, 1y (x)e'a™),
Parqa Ta are real-valued and lie in [0,1], and w,, Vv, w, €
(0, 27t]. This is done to ensure that the definition of the CNSS
model is line with the original structure of the complex fuzzy set,
on which the CNSS model is based on.

Example 1. Let U be a set of developing countries in the
Southeast Asian (SEA) region, that are under consideration, E be
a set of parameters that describe a country’s economic indicators,
and A = {e;, e,,e3,e,} € E, where these sets are as defined
below:
U = {u; = Republic of Philippines, u, = Vietnam,

U3 = Myanmar, u, = Indonesia},
E = {e, = inflation rate, e, = population growth, e; = GDP
growth rate, e, = unemployment rate, e = export volume}.

The CNS ¥,(e;), P4(e;), W, (e3) and ¥, (e,) are defined as:
ya©)

(0.6ej°'8”,0.3eji42,0.5e"°'3") (0.7e‘°”,0.2ej°'9”,0.lejg3l)

) )

u u
i (0.9ej°'1”,0.4;j",0.7ej°'7”) (0.3610'4‘7,()_2;05”’0'76]0.5,0) ’
u, u,
Y a(&)
(0'2610'2”,O.Sejy‘l,o.6ej°'3p) (0-4310'3”,0.4e"°'4”,o.zej%)
= U, u,
(O.Se“"‘”,O.2ej°"”,0.3ej°-7/’) (0_1ej0'4p’O.Sejl-zp’osei().lp)
u, u,
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Y a(&)
(04.¢.0.1e" 022" (0.3¢,0.3¢"%,0.2¢")
— y, u,
(0.2¢1°77,0.4.€°%,0.5¢"°*) (0.5¢'°*,0.4¢",0.6¢"" )
u, u,
and
Y a(&)

(0.3e1'°~2”,0.5e"‘f,0.5ei°~‘”) (0.1ej°",0.6ei°"‘”,O.4ej“l)

) s

— Y u,
(0.1ei°-'p 0.2e/°% 0.4ej°'2”) (o.zei"-zf’ 0.5e/% 0.3e"’"”) '
u, ' u,

Then the complex neutrosophic soft set y, can be written as a
collection of CNSs of the form:

Xa = {¥a(e1), Waley), Pale3), Palen)}

Definition 8. Let y, and yg be two CNSSs over a universe U.
Then we have the following:
(1) xa is said to be an empty CNSS, denoted by xa,, if
Y,(x) =0, forall x € U;
(ii) x4 is said to be an absolute CNSS, denoted by y,,, if
Y,(x) =Uforall x € U;
(iii) y, is said to be a CNS-subset of yz, denoted by x4 € x5,
if for all x €U, ¥,(e) € Wg(e), that is the following
conditions are satisfied:
pa(e) < pg(e),qale) < qgle),ra(e) <mgle),
and  py(e) < pg(e),va(e) < vg(e) wy(e) < wg(e).
(iv) x4 is said to be equal to yp, denoted by y, = yp, if forall
x € U the following conditions are satisfied:
pa(e) = pp(e),qa(e) = qp(e), ma(e) = rz(e),
and  py(e) = ug(e),vale) = vg(e), wy(e) = wp(e).

Proposition 1. Let y, € CN(U). Then the following hold:
@) () = Xai

(1) Xa, = Xay-

Proof. The proofs are straightforward from Definition 8.

IV.  OPERATIONS ON COMPLEX NEUTROSOPHIC
SOFT SETS

In this section we define the basic set theoretic operations on
CNSSs, namely the complement, union and intersection.

Let x4 and yz be two CNSSs over a universe U.
Definition 9. The complement of y,, denoted by x5, is a CNSS

defined by x5 ={(x,9¥5(x)):x € U}, where ¥5(x) is the
complex neutrosophic complement of Y.
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Example 2. Consider Example 1. The complement of y, is given

by xi = {¥ile), ¥iler) Yiles) Yile)}. For the sake of
brevity, we only give the complement for 5 (e,) below:

Y@
(O.Se”'z”,0.7ej¥,0.6e“'“’) (o.le”p,0.8e“-‘p,o.7eiﬂf)

s s

= Y, u,
(0.7¢1%,0.66%,0.9¢" ) (0.7¢%,0.8¢"*,03e" )|
u, ' u,

The complements for the rest of the CNSs can be found in a
similar manner.

Definition10. The union of y, and yz, denoted by y, U xp, is
defined as:

Xe = xa 0 xp = {(x,4(x) Uypp(x)) : x € U},

(x, (%)) ifeecA—B,
xc(@) =4 (x,9p(x)) if e€ B—A4,
(6, Pa(x) Uyp(x)) if e€ANB,

where C = AU B,x € U, and
(pA (x) \V Ds (x))ei(ﬂA(x)UﬂB(x))
Ya() Uhp(0) = { (q4(x) A g5 (x))e @ @) b,
(ra () Arg(x))ei(@aVes)
where V and A denote the maximum and minimum operators
respectively, whereas the phase terms of the truth, indeterminacy
and falsity functions lie in the interval (0,2m], and can be
calculated using any one of the following operators:
(i) Sum:
Hauv () = pa(x) + pp(x), vaup (x) = va(x) + vp(x),
and WauB (.x) = wA(x) + (I)B(x).
(i1) Max:
taue () = max(p, (), 15 (X)), Vays () = max(v, (x), vs (%)),
and w4y (x) = max(w, (x), wp(x)).
(iii) Min:
Bang(x) = min(:uA(x)’.uB(x))'vAﬂB(x) = min(VA(x)'VB(x))'
and w4np(x) = min(w, (x), wp (x)).
(iv) “The game of winner, neutral, and loser””:
(x) if pa(x) > x
#Aug(x) — {:uA Pa pB( )

MB(O;) iff Py ((x)) > Pa ((x))

_ (valx if q4(x) <gp(x

vanC) = [0S S and
_wa()f () < 1p(x)

waup () = {wi(x) if r:(x) < ri(x)'

All of the operators presented above are straightforward
generalizations of the corresponding operators that were
originally defined in [28]. The intersection between CNSSs are
defined in a similar manner in Definition 11.
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Definition 11. The intersection of y, and yg, denoted by
Xa 0 xp, is defined as:

Xp = Xa 0 xg = {(x,Pa(x) APp(x)) : x € U},

(%, Pa(x)) if e€ A—B,
xp(e) =1 (x, P (%)) if e€ B—A4,
(o Ya(x) Npp(x)) ife€ANB,

where D = AUB,x € U, and
(pa(x) A g (x))ei(uA(X)UuB(x))
Ya() App() = § (94(0) V g5 () e (ave®) 4,
(ra(x) v 1(x) e (@aves()
where V and A denote the maximum and minimum operators
respectively, whereas the phase terms of the truth, indeterminacy
and falsity functions lie in the interval (0,2m], and can be

calculated using any one of the following operators that were
defined in Definition 10.

V. APPLICATION OF THE CNSS MODEL IN A
DECISION MAKING PROBLEM

In Example 1, we presented an example related to the economic
indicators of four countries. In this section, we use the same
information to determine which one of the four countries that are
studied has the strongest economic indicators. To achieve this, a
modified algorithm and an accompanying score function is
presented in Definition 12 and 13. This algorithm and score
function are an adaptation of the corresponding concepts
introduced in [35], which was then made compatible with the
structure of the CNSS model. The steps involved in the decision
making process, in the context of this example, until a final
decision is reached, is as given below.

Definition 12. A comparison matrix is a matrix whose rows
consists of the elements of the universal set
U = {u;,uy, ...,u,,}, whereas the columns consists of the
corresponding parameters E = {e;, e,,...,e,} that are being
considered in the problem. The entries of this matrix are
¢ij, such that

Cij = (aamp + Bamp - Vamp) + (aphase + .Bphase - yphase)'
where the components of this formula are as defined below for all
b, € U, such that b; # by:
®gmp = the number of times the value of the amplitude term of
Ty, (¢)) 2 Ty, (e)),
Bamp = the number of times the value of the amplitude term of
Iy (&) = In,(e)),
Yamp = the number of times the value of the amplitude term of
Fy, () = Fy, (),
and
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@ppase = the number of times the value of the phase term of

Ty, () = Ty, (¢)),
Bphase = the number of times the value of the phase term of

Iy, () = In(g;),
Yphase = the number of times the value of the phase term of

Fy, () = i, (e))-

Definition 13. The score of an element U, can be calculated by
the score function S; which is defined as S; = }; c;;.

Next, we apply the algorithm and score function in a decision
making problem. The steps are as given below:

Step 1: Define a CNSS

Construct a CNSS for the problem that is being studied, which
includes the elements w;(i =1,2,..,m), and the set of
parameters ej(j =1,2,...,n), that are being considered.

In the context of this example, the universal set U, set of
parameters A, and the CNSS y, that were defined in Example 1
will be used.

Step 2: Construct and compute the comparison matrix

A comparison matrix is constructed, and the values of ¢;; for each
element ; and the corresponding parameter e; is calculated using
the formula given in Definition 12. For this example, the
comparison matrix is given in Table 1.

Table 1.Comparison matrix for y4

U e e, e; ey

u 6 3 3 5
w 3 5 I 2
U 4 3 1 -1
U -1 7 5 8

Remark: In this example, the phase terms denotes the time taken
for any change in the economic indicators to affect the
performance of the economy. The magnitude of these phase terms
would indicate the economic sectors that has the most influence on
the economy and by extension, the sectors that the economy is
dependent on. Therefore, the closer the phase term is to 0, the
smaller it is, whereas the closer the phase term is to 2m, the larger

.. 3m .
it is. For example, phase terms of Tﬂ is larger than the phase terms

s T
ofg and > As such, the values of @ppqse, Bprase ad Yppase Was by
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computing the number of times the value of the phase term of
element b;; exceeds the value of the phase term of element by;.

Step 3: Calculate the score function

Compute the scores S; for each element w; (i = 1,2, ... ,m) using
Definition 13. The score values obtained are given in Table 2.

Table 2. Score function for y,

U s,
” 17
% 1
Ug 1
” 19

Step 4: Conclusion and discussion

The values of the score function are compared and the element

with the maximum score will be chosen as the optimal alternative.

In the event that there are more than one element with the

maximum score, any of the elements may be chosen as the

optimal alternative.

In the context of this example, rglgl)]({Si} = uy. As such, it can be
L

concluded that country u, i.e. Indonesia is the country with the
strongest economic indicators, followed closely by the Republic
of Phillipines and Vietnam, whereas Myanmar is identified as the
country with the weakest and slowest growing economy, among
the four South East Asian countries that were considered.

VI. CONCLUSION

In this paper, we introduced the complex neutrosophic soft set
model which is a hybrid between the complex neutrosophic set and
soft set models. This model has a more generalized framework
than the fuzzy soft set, neutrosophic set, complex fuzzy set models
and their respective generalizations. The basic set theoretic
operations were defined. The CNSS model was then applied in a
decision making problem involving to demonstrate its utility in
representing the uncertainty and indeterminacy that exists when
dealing with uncertain and subjective data.
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Interval neutrosophic sets applied to ideals
in BCK/BClI-algebras

Seok-Zun Song, Madad Khan, Florentin Smarandache, Young Bae Jun

Seok-Zun Song, Madad Khan, Florentin Smarandache, Young Bae Jun (2017). Interval neutrosophic sets applied to ideals
in BCK/BCl-algebras. Neutrosophic Sets and Systems 18, 16-26

Abstract: For 4,5, k,l,m,n € {1,2,3,4}, the notion
of (T(i,7),I(k,1), F(m,n))-interval neutrosophic ideals in

Keywords: interval neutrosophic set; interval neutrosophic ideal.

1 Introduction

BCK-algebras entered into mathematics in 1966 through the
work of Imai and Iséki [3], and have been applied to many
branches of mathematics, such as group theory, functional anal-
ysis, probability theory and topology. Such algebras generalize
Boolean rings as well as Boolean D-posets (= MV -algebras).
Also, Is¢ki introduced the notion of a BC'I-algebra which is a
generalization of a BC' K -algebra (see [4]). The neutrosophic set
developed by Smarandache [7, &, 9] is a formal framework which
generalizes the concept of the classic set, fuzzy set [14], interval
valued fuzzy set, intuitionistic fuzzy set [1], interval valued in-
tuitionistic fuzzy set and paraconsistent set etc. Neutrosophic
set theory is applied to various part, including algebra, topol-
ogy, control theory, decision making problems, medicines and
in many real life problems. Wang et al. [11, 12, 13] presented
the concept of interval neutrosophic sets, which is more precise
and more fl xible than the single-valued neutrosophic set. An
interval-valued neutrosophic set is a generalization of the con-
cept of single-valued neutrosophic set, in which three member-
ship (¢,4, f) functions are independent, and their values belong
to the unit interval [0, 1]. The interval neutrosophic set can repre-
sent uncertain, imprecise, incomplete and inconsistent informa-
tion which exists in real world. Jun et al. [5] discussed interval
neutrosophic sets in BCK/BCI-algebras, and introduced the
notion of (7'(¢, j), I(k, 1), F'(m,n))-interval neutrosophic subal-
gebras in BCK/BCT-algebras for 4, j, k,l,m,n € {1,2,3,4}.
They also introduced the notion of interval neutrosophic length of
an interval neutrosophic set, and investigated related properties.

In this article, we apply the notion of interval neutrosophic
sets to ideal theory in BC'K/BCI-algebras. We introduce the
notion of (7°(4, j), I(k,1), F(m,n))-interval neutrosophic ideals
in BCK/BC1I-algebras for i, j, k,l,m,n € {1,2,3,4}, and in-
vestigate their properties and relations.
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BCK/BC1I-algebras is introduced, and their properties and re-
lations are investigated.

2 Preliminaries

By a BCI-algebra (see [2, 6]) we mean a system X := (X, %,0)
in which the following axioms hold:

D ((@*y)*(zx2))* (zxy) =0,
D) (z* (z*y)) *xy =0,
() z %z =0,
(V) zxy=y*xz=0 = z=y

forall x,y, z € X.Ifa BCI-algebra X satisfie 0%z = 0 for all
x € X, then we say that X is a BC K -algebra (see [2, 0]).

A non-empty subset S of a BC'K/BC1T-algebra X is called a
subalgebra (see [2, 0]) of X if z xy € S forall x,y € S.

The collection of all BC' K -algebras and all BC'I-algebras are
denoted by Bg (X) and Br(X), respectively. Also B(X) :=
BK(X) U B[(X)

We refer the reader to the books [2] and [6] for further infor-
mation regarding BC'K / BC'I-algebras.

By a fuzzy structure over a nonempty set X we mean an or-
dered pair (X, p) of X and a fuzzy set p on X.

Definition 2.1 ([10]). A fuzzy structure (X, u) over (X, *,0) €
B(X) is called a

o fuzzy ideal of (X, *,0) with type 1 (briefl , 1-fuzzy ideal of
(X, *,0)) if

(Vo € X) (1(0) > p(x)),
(Va,y € X) (u(z) > min{u(x xy), u(y)}),

2.1)
2.2)
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o fuzzy ideal of (X, ,0) with type 2 (briefl , 2-fuzzy ideal of ~ Given an interval neutrosophic set Z := (Z[T],Z[I],Z[F]) in

(X, %,0))if X, we consider the following functions (see [5]):
(Vx € X) (u(0) < p(x)), (2.3) I[Ting : X — [0,1], 2 — inf{Z[T](z)}
(Vo,y € X) (u(z) <minfu(z+y),u(y)}),  (2.4) It : X — [0,1], 2 — inf{Z[I](x)}

I[Flint : X — [0,1], z — inf{Z[F](z)}
o fuzzy ideal of (X, *,0) with type 3 (briefl , 3-fuzzy ideal of
(X, *,0)) if it satisfie (2.1) and
I Tsup : X — [0,1], & — sup{Z[T](z)}
I sup : X — [0,1], & — sup{Z[I](z)}
I[F)sup : X — [0,1], z > sup{Z[F](z)}.

(Vo,y € X) (u(z) > max{pu(z xy), u(y)}),  (2.5)

o fuzzy ideal of (X, *,0) with type 4 (briefl , 4-fuzzy ideal of
(X, *,0)) if it satisfie (2.3) and

(V2. y € X) (u(z) < max{u(z «y), u(y)}). (26) 3 Interval neutrosophic ideals

) ) Definition 3.1. For any 4, j, k, [, m,n € { 1,2, 3, 4}, an inter-
Let X be a non-empty set. A neutrosophic set (NS) in X (see  val neutrosophic set Z := (Z|T), Z|1), Z|F']) in X is called a (T
[8]) is a structure of the form: %z', i), I(k, 1), F(m, n))-interval neutrosophic ideal of X if the
OIIZ)wing assertions are valid.
A= {{z; Ap(z), Ar(x), Ap(2)) |z € X}
() (X,Z[T)ing) is an i-fuzzy ideal of (X,#,0) and

where Ar : X — [0,1] is a truth membership function, A; : (X, Z[T)sup) is a j-fuzzy ideal of (X, ,0),
X — [0,1] is an indeterminate membership function, and A :
X — [0,1] is a false membership function. (2) (X, Z[I]ine) is a k-fuzzy ideal of (X, *,0) and (X, Z[/]sup)

An interval neutrosophic set (INS) A in X is characterized by is an [-fuzzy ideal of (X, *,0),

truth-membership function 74, indeterminacy membership func-
tion 14 and falsity-membership function F'4. For each point x in
X, Ta(x), Ia(x), Fa(z) € [0,1] (see [12, 13]).

In what fOHOV}’S, let (X,*,0) € B(X) and P*([O7 1]) be the  Example 3.2. Consider a BC K-algebra X = {0,1,2,3} with
family of all subintervals of [0, 1] unless otherwise specifie . the binary operation * which is given in Table 1 (see [6]).

(3) (X,Z[F)int) is an m-fuzzy ideal of (X,x,0) and
(X, Z[Flsup) is an n-fuzzy ideal of (X, *,0).

Definition 2.2 ([12, 13]). An interval neutrosophic set in a
nonempty set X is a structure of the form:

(33021

Table 1: Cayley table for the binary operation “x

* 0 1 2 3

7= {{z,Z[T)(x),Z[I](2),Z[F](z)) |z € X} 0 0 0 0 0

1 1 0 0 1

where 92 ) 9 0 )
3 3 3 3 0

I[T): X — P*([0,1])

which is called interval truth-membership function,
(1) LetZ := (Z[T], Z|I], Z]F]) be an interval neutrosophic set

Il : X — P*(]0,1]) in (X, x,0) for which Z[T'], Z[I] and Z[F] are given as follows:
which is called interval indeterminacy-membership function, and [0.4,0.6) ifx=0,
I[F]: X — P*([0,1]) ' ’ 0.2,0.7) ifz=2,
o 01,08 ifz=3,

which is called interval falsity-membership function.

For the sake of simplicity, we will use the notation 7 := [0.5,0.6) %fﬂ? =0,
(Z[T),Z[I],Z|F)) for the interval neutrosophic set ) * (0.4,0.6) ifz =1,
I} X = P((0.1]) = - (0.2,0.9] ifz=2,
T :={(x,Z[T)(x),Z[I)(2),Z[F)(x)) |z € X }. [0.5,0.7) ifz =3,
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and
[0.4,0.5) ifz=0,
. . (03,05) ifz=1,
I[F]: X = P*([0,1]) 2 +— 0.1,0.7] ifz =2,
(0.2,0.8] ifz =3.

It is routine to verify that Z := (Z[T], Z[I], Z[F]) is a (T'(1,4),
I(1,4), F(1,4))-interval neutrosophic ideal of (X, *,0).

(2) LetZ := (Z[T1], Z|I], Z]F]) be an interval neutrosophic set

in (X, *, 0) for which Z[T], Z[I] and Z[F] are given as follows:
[0.1,0.4) ifz =0,
I X =P 2= 3 103708 ife =2,
04,0.6) ifz=3,
(0.2,0.5) ifz =0,
: * 0.5,0.6] ifz=1,
X =PH00) =0 0607 itz =2
03,0.8] ifz =3,

and

0.3,04) ifz =0,
| ) (04,07) ifz =1,
IFX = PA0A) 229 (06.0.8) ife =2,
0.4,0.6] ifz = 3.

By routine calculations, we know that Z := (Z[T], Z[I], Z[F))
is a (T'(4,4), 1(4,4), F(4,4))-interval neutrosophic ideal of
(X, *,0).

Example 3.3. Consider a BC'I-algebra X = {0, a, b, ¢} with the
binary operation * which is given in Table 2 (see [0]).

“ 2

Table 2: Cayley table for the binary operation “x

* 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Let Z := (Z[T], Z[I], Z[F]) be an interval neutrosophic set in
(X, *,0) where Z[T|, Z[I] and Z[F] are given as follows:

0.33,0.91) ifz =0,
. ) (0.72,0.91) ifz =a,

I X =PH0.0) 2= 3 072)0.82) itz =b,
(0.55,0.82] ifz =rc,
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0.22,0.65) ifz =0,

P 052,055 ifz =a,

L X = PH00) 2= 0 (062,065)  ifa = b,
0.62,0.55) ifz=c,

and

(0.25,0.63) ifz =0,

. ) 0.45,0.63] ifz = a,

IF: X = PO 2= 9 (035 053] ife b,
0.45,0.53) ifz=c.

Routine calculations show that Z := (Z[7T], Z[I], Z[F))
is a (T(4,1), I(4,1), F(4,1))-interval neutrosophic ideal of
(X,%,0). Butitisnota (7'(2,1), I(2,1), F'(2,1))-interval neu-
trosophic ideal of (X, %, 0) since

I[T]ime(a) = 0.72 > 0.55 = min{Z[T )¢ (a % b), Z[T]ins (b)},

T int(b) = 0.62 > 0.52 = min{Z[1]ine (b * ¢), Z|1]ine(c) },
and/or
Z[F)int(c) = 0.45 > 0.35 = min{Z[Fine(c * a), Z[Flint(c) }.

Also, itisnota (7(4,3),
ideal of (X, *,0) since

1(4,3), F(4,3))-interval neutrosophic

T[T )sup () = 0.82 < 0.91 = max{Z[T]nt (c * b), Z[T]ins (b)}

and/or
Z[F)sup(b) = 0.35 < 0.62 = max{Z[Fine(b* a),Z[Flint(a)}.

We also know that 7 := (Z[T], Z[I], Z[F]) is not a (T'(2,3),
1(2,3), F(2,3))-interval neutrosophic ideal of (X, *,0).

Let Z := (Z[T), Z[I], Z|F]) be an interval neutrosophic set in
X. We consider the following sets (see [5]):

U(Z[T)y; or) :=A{z € X [ Z[T]y(2) = ar},
L(Z[Ty; as) = {x € X [ Z[T]y(z) < as},

U(Z[I]y; Br) :={x € X | Z[I]y(x) > b1},
L(Z[I]y;Bs) == {z € X | I[I]y(z) < Bs},

and

UZ[Fly; 1) = A{x € X | I[Fly(z) = 71},
L(Z[Fly;ns) == A{z € X | I[Flyp(x) < s},

where ¢ € {inf,sup}, and oy, ag, f1, Bs, yr and g are num-
bers in [0, 1].

Theorem 3.4. Given an interval neutrosophic set 1T :=
T[], Z[F)) in (X, *,0), we have the following assertions:

([T,



Florentin Smarandache (author and editor)

M 7 = (I[T], I[IL I[F]) is a (T(174)7 1(174)7
F(1,4))-interval  neutrosophic  ideal of (X, x*,0),
then U(I[T]inf; Oé]), L(I[T]Sup; 0(5), U(Z[I]inf; ﬁ]),
L(I[[}sup;ﬂS)r U(I[F}inff)/]) and L(I[F]sup;'YS) are
either empty or ideals of (X, *,0) for all ay, ag, Br, Bs,

,YIJ ’75’ € [07 1}

@ 1 = (I[T]a I[IL I[F]) is a (T(471)a I(4al)a
F(4,1))-interval  neutrosophic  ideal of (X,%,0),
then L(I[T]inﬁ Oé[), U(I[T]sup; aS): L(I[I]inf; ﬁ[):

U(I[I]sup;ﬁS)’ L(I[F]mfaryI) and U(I[F]supa’YS) are
either empty or ideals of (X, x,0) for all ay, ag, B, Bs,

Y Vs € [Ov H

G Iy I = (Z[T), I[1], I[F]) is a (T(1,1), I(1,1),
F(1,1))-interval  neutrosophic  ideal of (X ,*,0),
then U(I[T]inf;al)’ U(I[T]sup;aS): ( [ ]mf;ﬂ[)

U(Z)sup; Bs), U(Z[Flint;vi) and U(Z[Flsup;ys) are
either empty or ideals of (X, *,0) for all oy, as, Br, Bs,

V1, Vs € [07 1}

@ If T = (Z[T), Z[1], Z[F]) is a (T(4,4), 1(4,4),
F(4,4))-interval  neutrosophic  ideal of (X, %,0),
then  L(Z[T)int;r), L(Z[T|supivs),  L(Z[]ins; Br),

L(Z[I)sup; Bs), L(Z[Fling;vr) and L(Z[Flsup;vys) are
either empty or ideals of (X, *,0) for all ay, as, Br, Bs,
Y1, Vs S [07 1}

Proof. (1) Assume that 7 := (Z[T)], Z[I], Z[F]) is a (T'(1,4),
I(1,4), F(1,4))-interval neutrosophic ideal of (X, *,0). Then
(X, Z[T)int), (X, Z[I)int) and (X, Z[F)int) are 1-fuzzy ideals of
X; and (X, Z[T)sup)s (X, Z[I)sup) and (X, Z[Fsyp) are 4-fuzzy
ideals of X. Let vy, avg € [0, 1] be such that U(Z[Tin¢; ey) and
L(Z[T)sup; vs) are nonempty. Obviously, 0 € U(Z[T)ins; 1)
and 0 € L(Z[T)sup; s). Let z,y € X be such that x x y €
U(I[T]inf; Ck[) and y € U(I[T]inf; Oq). Then I[T]inf(x * y) >
ag and Z[Tine(y) > ar, and so

I([T)int(x) > min{Z[T|ine(z * y), Z[T]ine(y) } > o,

thatis, z € U(Z[T)ing; ar). fx vy € L(Z[T)sup; vs) and y €
L(Z[T)sup; as), then T[T syp(zxy) < agand Z[Tgup(y) < ag,
which imply that

[T sup(z) < max{Z[Tsup(z * y), Z[T)sup(y) } < as,

that is, © € L(Z[T)sup;xs). Hence U(Z[T|ins; ) and
L(Z[T)sup; vs) are ideals of (X, x,0) for all ay, g € [0,1].
Similarly, we can prove that U(Z[I]ins; Br), L(Z[I]sup;Bs),
U(Z[Fling; 1) and L(Z[Flsup; vs) are either empty or subalge-
bras of (X, *,0) for all 51, Bs, 71, 7s € [0,1]. By the similarly
way to the proof of (1), we can prove that (2), (3) and (4) are
true. O
Corollary 3.5. Given an interval neutrosophic set T := (Z[T],
T[], Z[F)) in (X, *,0), we have the following assertions:
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() If T := (Z[T), T|1). Z|F)) is a (T(3.4), I(3,4), F(3,4))-
interval neutrosophic ideal of (X,%,0) or a (T(i,2),
1(i,2), F(i,2))-interval neutrosophic ideal of (X, *,0)
Jor i € {1,3}, then U(Z[Tint;r), L(Z[T)sup; as),
UZing; Br).  L(Z[sup; Bs).  U(Z[Fling;y1)  and
L(Z[Fsup;vs) are either empty or ideals of (X, *,0) for
all ag, s, Br. Bs, 71, s € [0, 1].

Q) IfT = (Z[T), Z|I), Z[F)) is a (T(4,3), 1(4,3), F(4,3))-
interval neutrosophic ideal of (X,*,0) or a (T(2,7),
1(2,7), F(2,7))-interval neutrosophic ideal of (X,x,0)
Jor j € {1,3}, then L(Z[T)ing;r), U(Z[T)sup; vs),
L(I[I]inf;ﬁl): U(I[I]sup;ﬁS): L(I[F]inf;’yl) and
U(Z[Flsup;ys) are either empty or ideals of (X, *,0) for
all ay, as, Br, Bs, 1. vs € [0,1].

(3) If T := (Z|T), Z|I], Z[F)) is a (T(3,1), I(3,1), F(3,1))-
interval neutrosophic ideal of (X,*,0) or a (T(i,3),
I(i,3), F(i,3))-interval neutrosophic ideal of (X,*,0
Jor i € {1,3}, then U(Z[Tint;r), U(Z[T)sup; ts),
U(Z[)int; B1),  UZsup; Bs),  U(Z[Flint;vr) and
U(Z[Flsup;s) are either empty or ideals of (X, *,0) for
all oy, as, Br, Bs, v1. vs € [0,1].

F(i,2))-interval neutrosophic ideal of( 7*,0) for i
{27 4} then L( [T]lnf7 OZI)’ L(I[T]bupa aS) L(I[I]inf; 6[)’
L(Z[I]sup; 65)’ L(I[F]inf; 71) and L( [ sups ’YS) are ei-
ther empty or ideals of (X, ,0) for all oy, ag, B1, Bs, V1,
vs € [0,1].

Proof. Straightforward since every 3-fuzzy (resp., 2-fuzzy) ideal
is a 1-fuzzy (resp., 4-fuzzy) ideal. O

Theorem 3.6. Given an interval neutrosophic set T := (Z[T],
Z[I], Z]F)) in (X, *,0), the following assertions are valid.

(1) [f U(I[T]inf;al)’ L(I[T]sup;aS): U(I[I]inf;ﬁl),
L(I[I]sup;ﬁs), U(I[F]mfy’yl) and L(I[F]supa’yS)
are nonempty ideals of (X, *,0) for all o;, as, Br, Bs, V1,
vs € [0,1], then T := (Z[T), Z|I], Z[F]) is a (T(1,4),
1(1,4), F(1,4))-interval neutrosophic ideal of (X, *,0).

(2) If U(I[T]inf; OZ]), U(I[T]sup; aS): U(I[I]inf; ﬂ]),
U(I[[]sup;ﬁs>: U(I[F]mfy’yf) and U<I[F]sup775)
are nonempty ideals of (X, *,0) for all o;, as, Br, Bs, V1,
vs € [0,1], then T = (Z[T), Z[I], Z|F)) is a (T(1,1),
I(1,1), F(1,1))-interval neutrosophic ideal of (X, *,0).

(3) If L(I[T}lnf7 CV[), U(I[T]sup; O[S), L(I[I]inf; ﬁ])y
U(I[I]sup;ﬁS): L(I[F]inf;’yl) and U(I[F]sup;’VS) are
nonempty ideals of (X, *,0) for all oy, s, Br, Bs, VI,
vs € [0,1], then T = (Z[T), Z[I], Z|F)) is a (T(4,1),
1(4,1), F(4, 1))-interval neutrosophic ideal of (X, *,0).

@ If  L(Z[T)ins; ax), L(I[T]surﬁas)’ L(ZI)int; Br),
L(I()sup; Bs).  L(Z[Flint;vr) and L(Z[Flsup;7ys) are
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nonempty ideals of (X, *,0) for all ay, ag, Br, Bs, V1,
vs € [0,1], then T := (Z[T), I|I), Z|F)) is a (T(4,4),
1(4,4), F(4,4))-interval neutrosophic ideal of (X, *,0).

Proof. (1) Suppose that U(Z[Tint;r), L(Z[T)sup; as),
U@l 8, L@Mapi Bs)  UEIFlurs ) and
L(Z[Fsup;vs) are nonempty ideals of (X,*,0) for all ay,
as, B1, Bs, 1, vs € [0,1]. If (X, Z[T]int) is not a 1-fuzzy ideal
of (X, *,0), then there exist z, y € X such that

T[T int (2) < min{Z[T]int(z % y), Z[T]int () }-

If we take ooy = min{Z[Ting(z*y), Z[T)int(y)}, then x xy, y €
U(Z[T)ing; 1) but @ ¢ U(Z[T)ing; oor). This is a contradic-
tion, and so (X,Z[T]inr) is a 1-fuzzy ideal of (X, *,0). If
(X, Z[Tsup) is not a 4-fuzzy ideal of (X, %, 0), then

ZTsup(a) > max{Z[Tsup(a * b), Z[T]sup(b) }

for some a,b € X, and so a * b, b € L(Z[Tsup; xs) and a ¢
L(I[T]sum Oés) by taking

ag = max{Z[T|sup(a *b), Z[T)sup(b) }.

This is a contradiction, and therefore (X, Z[T]syp) is a 4-fuzzy
ideal of (X, *,0). Similarly, we can verify that (X, Z[I]in¢) is
a 1-fuzzy ideal of (X, *,0) and (X, Z[I]sup) is a 4-fuzzy ideal
of (X,%,0), and (X,Z[FJin) is a 1-fuzzy ideal of (X,x,0)
and (X, Z[Fsyp) is a 4-fuzzy ideal of (X, *,0). Consequently,
T := (Z|T), Z[I),Z[F))isa (T(1,4),I(1,4), F(1,4))-interval
neutrosophic ideal of (X, *,0). The assertions (2), (3) and (4)
can be proved by the similar way to the proof of (1). O

Theorem 3.7. [f an interval neutrosophic set T := (Z[T], Z[I],
IIF)) in (X,%,0) is a (T(2,3), 1(2,3), F(2,3))-interval
neutrosophic ideal of (X,*,0), then — U(Z|Tint; 1),
L(I[T]sup§aS)cr U(Z[I]inf;ﬁl)c’ L(Z[I]su;ﬂﬁs’)cy
U(Z[Flint;y1)¢ and  L(Z[Fsup;vs)® are either empty or
ideals of (X, *,0) for all a;, as, B1, Bs, V1, Vs € [0, 1].

Proof. Let T = (I[T), Z[I], Z[F]) be a (T(2,3), I(2,3),
F(2, 3))-interval neutrosophic ideal of (X, *,0). Then

(1) (X, Z[Ting), (X, Z[1int) and (X, Z[Fline) are 2-fuzzy ide-
als of (X, x,0),

2) (X, Z[T)sup)> (X,Z[I]sup) and (X,Z[Flsup) are 3-fuzzy
ideals of (X, *,0).

Let a7, as, Br, Bs, v, Vs €

U(Z[Tins; 1),

[0,1] be such that
LTl as)’s Ui B
LT B5)s  UE[Flarivn)® and  LE[Flaupi 19)°
are nonempty. Then there exist x,y,z,a,b,d € X
such that = € U(Z[T)in;;ar)% a € L(Z[T)sup; s)S,
(/S U(Z[I]inf;ﬂl)ca be L(I[I]sup;ﬂS)ca z € U(I[F]inf;'}/l)c
and d € L(Z[F)sup;vs). Hence
I T)ine(0) < Z[T)ine(x)
ZT)sup(a) > ag,

< oy and Z[T]ep(0) >
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I[I]lnf(o) S I[I]mf(y) < /81 andI[I]Sup(O) Z I[I]sup(b) >
Bs,

I[Flint(0) < Z[Fline(2)
I[F]sup(d) >8>
and so 0 € U(Z[Tlin; )¢ N L(Z[T)sup; s)¢, 0 €
U(I[I]inf;ﬁl)c N L(I[I]sup;ﬁS)c’ and 0 € U(I[F]inf§’71)c N
L(Z[F)sup;vs)®. Let x,y € X be such that x *x y €
U(Z[T)ing; ar) and y € U(Z[T)ing; oor)©. Then Z[Tins(xxy) <
oy and Z[Tine(y) < a. Hence

< 41 and Z[Flgp(0) >

Z[Tin (x) < min{Z[Tine (2 * ), T[Tl (y)} < e,

and so © € U(Z[Ting; aor)€. Thus U(Z[T |ins; oor)€ is an ideal of
(X, *,0). Similarly, we can verify that

o Ifxxy € L(Z[T)sup; vs)® and y € L(Z[T]sup; s)®, then
x € L(Z[T)sup; 0s)<,

o Ifzxy € U(Z[I]ins; Br)° and y € U(Z[I]ins; B1)°, then
x € U(Z[I]int; B1)¢,

o Itz %y € L(T[I]sup; 33)° and y € L(Z[I]sup; 3s)°, then
HAS] L(I[I]sup;BS)c7

o Ifzxy € UZ[Flint; 1) and y € U(Z[Flint; v1)°, then
z € U(Z[Flint;v1)°,

o Ifxxy € L(Z[Flsup;vs)® and y € L(Z[Flgup;vs)®, then
T e L(I[F]sup;’YS)c'

Therefore L(Z[T]sup; vs), U(Z{]int; B1)%, L(Z[]sups Bs)°,
U(Z[Fling;yr)© and L(Z[Fsup; vs)€ are ideals of (X, *,0). O

The converse of Theorem 3.7 is not true in general as seen in
the following example.

Example 3.8. Consider a BC'I-algebra X = {0, 1, a, b, ¢} with
the binary operation * which is given in Table 3 (see [6]).

Table 3: Cayley table for the binary operation “x”

* 0 1 a b c
0 0 0 a b c
1 1 0 a b c
a a a 0 c b
b b b c 0 a
c c c b a 0

Let 7 := (Z[T], Z[I], Z[F)]) be an interval neutrosophic set in
(X, *,0) where Z[T|, Z[I] and Z[F] are given as follows:

0.25,0.85) ifx =0,
(0.45,0.83] ifz =1,
T[T : X = P([0,1]), =+ { [0.55,0.73] ifz =a,
(0.65,0.73] ifz =b,
(0.65,0.75) ifx =c,



Florentin Smarandache (author and editor)

I : X — 75([0, 1]), = —

and

I[F): X — P([0,1]), z

Then

{0}
UZ[T)ing;ar)® = q {0,1}
{0,1,a}

{0}
L(I[T]SumaS)c = {0,1}

{0,1,¢}

=

U(Z[1)ins; Br)° = {0, 1,}b}

><’8

{0}
L(Z[I]sup;ﬁs)c = {071}
{0,1,¢}

U(Z[Flint; 1) = ig,}La}
X

0

L(Z[Flsup;vs)© = %8: },}b}
X

0.3,0.75
0.3,0.70
0.6,0.63
0.5,0.63
0.6, 0.68

A,_,A
e =T

~~—

[0.44,0.9)
(0.55,0.9]
[0.55,0.7]
(0.66, 0.8]
0.66,0.7)

ifz =0,
ife =1,
ifr=a,
ifx =0,
ifx =c¢,

ifx =0,
ifer=1,
ife =a,
ifx =0,
ifx =c.

if a; €[0,0.25),

if oy € (0.25,0.45),
if o € (0.45,0.55),
if a; € (0.55,0.65),
if a; € (0.65,1.0],

ifag €
ifag €
ifag €
ifag €
ifag €

=
2
~

M MMM

0.85,1.0],
0.83,0.85),
0.75,0.83),
0.73,0.75),
[0,0.73),

0.70,0.75),
0.68,0.70),
0.63,0.68),
0,0.63),

[0,0.44],

(
(
(

0.44,0.55],
0.55,0.66],
0.66,1.0],

Hence the nonempty sets U (Z[Tint; 1) L(Z[Tsup; @)%,

U@ine; Br)° L(Zsup; Bs)°

L(Z[Flsup;vs)© are ideals of (X

5
)

U(Z[Fint;v1)°
0) for all ay, as, Br, Bs,

and
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~v1,vs € [0,1]. But Z := (Z[T)], Z[I], Z[F)) is not a (T'(2,3),
1(2,3), F(2,3))-interval neutrosophic ideal of (X, %, 0) since

T[Tt (c) = 0.65 > 0.55 = min{Z[T)in¢(c * a), Z[T]ine (@)},
I[Tsup(a) = 0.73 < 0.75 = max{Z[T]sup(a * ¢), Z[T]sup(¢)},
Iine(c) = 0.6 > 0.5 = min{Z[I]in¢(c * a), T[T (a)},
T[Isup(a) = 0.63 < 0.68 = max{Z[I]sup(a * ¢), T[sup(c)},

Z[Flint(¢) = 0.66 > 0.55 = min{Z[F|int(c * a), Z[Flint(a)},
and/or
Z[Flsup(a) = 0.7 < 0.8 = max{Z[Flsup(a * ¢), Z[Flsup(c)}.

Using the similar way to the proof of Theorem 3.7, we have
the following theorems.

Theorem 3.9. Given an interval neutrosophic set T := (Z[T],
Z[I], ZF)) in (X, *,0), we have the following assertions:

() If 7 = (Z[T), Z|I], Z|F]) is a (T(2,2), I1(2,2),
F(2,2))-interval neutrosophic ideal of (X,x*,0), then
U(I[T]inf;al)cx U(I[T]supnaS) ( [}mfzﬁ])c,

U(I[I]sup;ﬁS>C: U(I[F]mfy’yl) and U [F]supy’ys are
either empty or ideals of (X, *,0) for all ay, as, Br, Bs, V1,
Vs € [Oa 1]

Q) If T = (I[T], T[], Z[F)) is a (T(3,2), 1(3,2),
F(3,2))-interval neutrosophic ideal of (X,x*,0), then
LTThasiar)',  U@Tlapias)’ LTt B1)
U(Zsups Bs)®s L(Z[Fling; 1) and U(Z[Flsup;ys)© are
either empty or ideals of (X, *,0) for all oy, s, Br, Bs, V1,
Vs € [0, 1].

() If T = (I[T], Z[1], ZIF)) is a (T(3,3), I(3,3),
F(3,3))-interval neutrosophic ideal of (X,x*,0), then
LTt 0r)',  LTThpias)s LTt B1)°
L(T[Taup: 05", L(Z{Flingi v0)° and L(Z[Flaupi 1) are
either empty or ideals of (X,x*,0) for all oy, ag, Br, Bs,
~v1, vs € [0,1].

Using the similar way to the proofs of Theorems 3.4 and 3.7,
we have the following theorem.

Theorem 3.10. Given an interval neutrosophic set T := (Z[T],
Z[),Z[F])in (X,*,0), we have the following assertions:

W) If T = (Z[1], Z[1], Z[F)) is a (T(1,2), I(1,2),
F(1,2))-interval neutrosophic ideal of (X,*,0), then
U(Z[Ting; ox), U(Z[T)sup; vs)", U(Z[I)ins; Br),
U(T{Tp: B9, U(TIF e 11) and U(Z{FJaup 75" are
either empty or ideals of (X, *,0) for all ay, ag, Br1, Bs,
1. 7s € [0, 1].
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Q) If T := (Z|T), Z[I), Z|F)) is a (T(1,3), I(1,3), neutrosophicideal T := (Z|T),Z[I],Z[F]) of (X, x,0) satisfies
F(1,3))-interval neutrosophic ideal of (X,*,0), then
U(Z[Tint; 1), L(Z[Tsup; as), U(Z[1int; B1), Z[Tint(2) = Z[Tint (y)
LTI B5) U(T{Flingi 1) and L(T[Flaupsys)° are I(T)uup () < T[Ty ()
either empty or ideals of (X, *,0) for all ay, ag, B, Bs, T[Tt (z) = T]ine(y)
vros €0 Z{1)o(#) < Z{T}upl0) oy
I[Flint(x) = Z[Flint(y)
G I T = (@I, T, TF) is a (T21), 121) Tl (2) < TIF)p(s)

F(2,1))-interval neutrosophic ideal of (X,*,0), then

U(Z[Tins; o1)", U(Z[Tsup; vs), U(Z[Iing; B1)%,  forall z,y € X with x < 1.

U(Z[]sup; Bs), U(Z[Fling; v1)¢ and U(Z[F }sup”és) ;Ve

either empty or ideals of (X, x,0) for all oy, g, Br, Bs,

NI s eﬁ)t?}l]. # ) Proof. IfZ := (Z[T|,Z[I],Z[F])isa(T(1,4),1(1,4), F(1,4))-
interval neutrosophic ideal of (X,*,0), then (X,Z[T)int),
(X, Z[I)int) and (X, Z[FJin¢) are 1-fuzzy ideals of (X, *,0), and

@ If 7 = (ZI[1), I[1], Z[F]) is a (T(3,1), 1(3,1), (X,Z[T)sup), (X,Z[]sup) and (X, Z[Flsyp) are 4-fuzzy ideals

F(3,1))-interval neutrosophic ideal of (X,*,0), then of (X,x,0). Letx,y € X be such thatz < y. Thenz xy = 0,

LIMi0r)’,  UTapias) LT A1), andso

U(I[I}sup;ﬂS)r L(I[F}inf;’yf)c and U( [F]sup,ﬁys) are

either empty or ideals of (X, *,0) for all ay, ag, B, Bs, Z[Tint(x) = min{Z[Tine(z * y), Z[T|ine (y) }

v s € 0,1 = min{Z[Tint (0), Z[TTint (y) } = Z[Tine (),
® 0”(14)1)2 (I[ZZF]’ (1}, I}[lF]) C;'S la } ((?(’4) 0 (2ah4)7 Z[Tsup(x) < max{Z[T]sup(x * y), Z[T]sup(y) }

F(2 interval neutrosophic ideal o ), then = max{Z[Tsup(0), Z[T)sup = I[T)sup (v),

UM 01)'s (Tl vs), U@ o 61 ax{Z[Tsup(0), Z[T]sup(y) } = Z[T]sup(v)

L(I[I]sup;ﬂS)’ U(I[F]inﬁ'yl)c and L(I[F]supa’VS) are

either empty or ideals of (X, *,0) for all oy, ag, Br, Bs, I[int(z) > min{Z[]ins (@ * y), Z[{]int (v) }

1. s € [0,1]. = min{Z[{]ins (0), Z[LJin¢ () } = Z[L]int (y),
©) If 7 = (I[T]a I[I]v Z[F]) is a (T(3v4)7 1(354)7 I[I]sup(x) SmaX{I[I]sup(x*y)aI[I]sup(y)}

F(3,4))-interval neutrosophic ideal of (X,x*,0), then = max{Z[Isup(0), Z[Lsup ()} = Z[Tsup (1),

L(Z[T)ins; 1), L(Z[Tsup; avs), L(Z[I]ing; Br)©,

L(Z[I)sup; Bs), L(Z[Fling;v1)¢ and L(Z[Flsup;ys) are

either empty or ideals of (X,*,0) for all oy, ag, Br, Bs, I[Flint(z) > min{Z[Fin ( Y), Z[Flint(y)}

7175 € [0 1] = min{Z[Fling (0), ZFlint (%)} = Z[Flint (v),

@) 1f(412):)= (I[ilf], (1), I}EF]) ;S la }Téglé?)ao)f(‘lah?)v I[Flsup(z) < max{Z[F]sup(z * ), Z[Flsup(y)}
F(4,2))-interval neutrosophic ideal o ,%,0), then — max = .
LI[Thusiar),  U@Tlawpias)® LT[ Br). - O () = )

U(ZUsup; Bs), L(Z[Fling; vr) and U(Z[Flsup;ys)® are  pig completes the proof. O
either empty or ideals of (X, *,0) for all oy, ag, By, Bs,
Y1, Vs € [Oa 1]

® If 7 = (Z|T), Z|I), Z[F)) is a (T(4,3), 1(4,3), Using the similar way to the proof of Proposition 3.11, we have
F(4,3))-interval neutrosophic ideal of (X,*,0), then the following proposition.
L(I[T]mf; Ol]), L(I[T]sup; aS)C: L(I[I]inf; 5[);

L(Z[sup; Bs)S,  L(Z[Flint;vr) and  L(Z[Flsup;vs)© .. ) ) )

are either empty or ideals of (X, *,0) for all ay, s, B, Proposition 3.12. Given an interval neutrosophic set T :=
T|T), Z|I|,Z|F)) in (X, *,0), we have the following assertions:

Bs, v1, vs € [0,1]. (Z[T], 711}, ; g

Proposition 3.11. Every (T(1,4), I(1,4), F(1,4))-interval (1) If T := (Z[T), Z|1], Z[F]) is a (T(1,1), I(1,1), F(1,1))-
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interval neutrosophic ideal of (X, ,0), then

VA
7

[TTint(z) = Z[T]int (y)
[T

7]
[
[

Tlsup(®) = Z[Tsup(y)
I]inf( [ ]mf( )

1] [sup(y)
F [Flint (y)
Z[Flsup(v)

8
\ v

3.2)
sup

(
1nf(1'

forall x,y € X withx < y.
2 1 = (I[T], I[I], I[F]) isa (T(4,1), 1(4,1), F(4,1))-

interval neutrosophic ideal of (X, ,0), then
I[T]mf( ) [T]mf(y)
Z[T]sup(x) =2 Z[T]sup(y)
I[I]m( ) [ ]mf( )
I sup(w) > Z[]sup(y) G2
Z[Flint(z) < Z[Fline(y)
Z[Flsup(z) = Z[Flsup(y)

forall x,y € X withx < y.

@) [T = (T[T], ZU), Z[F)) is a (T(4,4), I(4,4), F(4,4))-
interval neutrosophic ideal of (X, *,0), then

I[Tint () < I[T]ine(y)
Z[T]sup(x) < Z[T]sup(y)
I[I]mf(x) [ ]mf( )
I{sup(w) < Z[]sup(y) G4
I[F]mf(x) < [ ]mf( )
ZFsup(z) < Z[Flsup(y)

forall x,y € X withx <.

Proposition 3.13.  For every (4,7
{(27 2)7 (2a 3)’ (37 2)a (37 3)}) Every (T(i,j), I(i,j), F(’L,]) -
interval neutrosophic ideal T = (Z[T), Z|1], Z|F)) *
satisfies

~m

il
[
I[Iint(x) = Z[1]ine(0)
T sup(®) = Z[1]sup(0) (3.5)
Z[Flint(z) = Z[Flint (0)
I[Flsup(z) = Z[Flsup(0)

forallx,y € X withx <y

Proof. Assume that 7 := (Z[T], Z[I], Z[F]) is a (T(2,3),
1(2,3), F(2,3))-interval neutrosophic ideal of (X, *,0). Then
(X, Z[T)int), (X, Z[I)ing) and (X, Z[Fin¢) are 2-fuzzy ideals of
(X, *,0), and (X, Z[T)sup)s (X,Z[]sup) and (X, Z[F]sup) are

240

3-fuzzy ideals of (X,
Then z * y = 0, and thus

Z[TTint(z) < min{Z[Ting
= min{I[T]inf

T[T sup(x) > max{Z[T)sup(x * y
= max{Z[T]sup(0), 7]

I ]int(z) < min{Z[1]ins
= min{I[I]inf

I sup(x) = max{Z[I]
= max{Z[I]sup(0), Z[I]s

Z[Flint(r) < min{Z[FJin
= min{Z[FJin

ol
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*,0). Let z,y € X be such that z < y.

(x*y), Z[T]ine(y) }
(0)71[ Lnf( )} I[ ]mf(O),

)a I[T]sup(y)}
Jsup (¥)} = Z[Tint (0),

(x*y), L]t (y)}

(0)7Z[I]inf(y)} = Z[I]inf(o)a

up('r * y)aI[I]sup(y)}

up(y)} :I[I]inf(0)7

(@), T[Fline(y)}

£(0), Z[Fint (y)} = Z[Flint (0),

Z[Flup() > max{Z[Fls, <x ). Z[F)uup (4)}
— mac{Z[Foup (0). Z[Fluup (4)} = Z[Fiu 0).

It follows that Z[T|int(z) = Z[T)int(0), Z[T)sup(z) =
Z[Tsup(0), Z[]int(x) = Z[I]int(0), Z[]sup(x) = Z[I]sup(0),
Z[F)int(x) = Z[F)int(0) and Z[Flgyp(x) = Z[F)sup(0) for all
z,y € X with x < y. Similarly, we can verify that (3.5) is true
for (i,7) € {(2,2),(3,2),(3,3)}. O

Using the similar way to the proof of Propositions 3.11 and

3.13, we have the following proposition.

Proposition 3.14. Given an interval neutrosophic set T =
(Z[T), Z[1], Z]F)) in (X, *,0), we have the following assertions:

interval neutrosophic ideal of (X, *,0) for j € {2,3}, then

I[T]lnf( ) [T]lnf(y)
Z[Tsup(x) = Z[Ts5up(0)
Iint(z) > Z{Tint (y)
Tl aup(®) = T[T uup(0) G0
I[F]lnf(x) > [ ]mf( )
[F]bup(x) =I[F ]SUP(O)

forall x,y € X withx < y.

Q) If T := (Z|T), Z|I), Z|F)) is a (T(i, 1), I(i,1), F(i,1))-
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interval neutrosophic ideal of (X, x,0) for i € {2,3}, then  and so

Z[Tint () = Z[TTint (0) I[Tint(x) > min{Z[Tint (z * y), Z[T|int (y) }
T sup(z) = Z[T)sup(y) > min{min{Z[Tin¢((x * y) * 2), Z[T]ine(2) },
I[I}ln( ) [I}lnf(o) I[T]mf( )}
T () > Tl (1) G = sin{min{ (ot (0), Z(Thut (=)}, ZThne ()}
I[Flint(z) = Z[Fine (0) = min{Z[TTint (), Z[Tlint (2) },

Z[Flsup(x) > Z[Flsup(y)

I[Tsup(z) < max{Z[T]sup(z * y), Z[T]sup(y)}
< max{max{Z[T]sup((z * y) * 2), Z[T]sup(2) },
I[Tlsup(y)}
= max{max{Z[Tsup(0), Z[T]sup(2) }, Z[Tlsup(y) }

forall x,y € X withx < y.

(3) If T == (Z[T), ZII), Z|F)) is a (T(i,4), I(i,4), F(i,4))-

interval neutrosophic ideal of (X, *,0) for i € {2, 3}, then — masx{Z[Tleu (), Z[Tloup ()},
Z[Tine(x) = Z[Tine (0)
I[Tsup(x) < Z[T]sup(y) Tt (z) = min{Z[I]ins(z * y), Z[1ime (y)}
Iint(x) = Z[I]int(0) (3.8) > min{min{Z[]ine((z * y) * 2), T[]t (2)},
I sup(x) < I ]sup(y) T ine ()}
I[Flint(x) = Z[F]int (0) = min{min{Z[Iin¢ (0), Z[L)in (2) }, [ )ins (1) }
I[Flsup(z) < Z[Fsup(y) = min{Z[1)int (v), T ]ins (2)},

forall x,y € X withx < y.
I sup(2) < max{Z[lsup(® * y), Z[{]sup(y)}
< max{max{Z|[|sup y) *2), L )sup(2) },
4 If7 ::] (Z[11, I[Ih]v Ic[jF]g i}z}éT(%)]}a 1(4,.7{)5 1;‘§43}{))' a { i (I([I] )(y)}) Hleuo (23
interval neutrosophic ideal of (X, *,0) for j € {2, 3}, then sup
8 ’ = max {mas{Z[Taup (0). Tl uup(2)}. Tl uup (4}

I[T]lnf( ) [T]mf(y) :maX{I[ﬂsup(y [I]SUP( )}
ITsup(2) = Z[Tsup(0)
It (7) < Z[]int (y) 3.9)  IFlus(@) > min{Z[Flint (2 ), T[Flint ()}
I[sup(x) = Z[I]sup(0) > min{min{Z[Flint((z * y) * 2), Z[Flint(2) },
Z[F]mf(z) S [ ]mf( ) _’Z[F]mf(y)}
T up () = ZF e (0) = min{min{Z[Fliu (0), ZFlut (=)}, ZFlat (4)}
forall x,y € X withx < y. = min{Z[Flint (y), Z[Flint (2) },
Proposition 3.15. Every (T(1,4), I(1,4), F(1,4))-interval ZIFlsup(z) < max{Z[Flsup(z *y), Z[Flsup(y)}
neutrosophic ideal T := (Z[T], Z[I], Z|F)) of (X, x, 0) satisfies < max{max{Z[F|sup((x * y) * 2), Z[Flsup(2)},
. I[Flsup(y)}
I[Tine(x) = min{Z[T]ing(y), Z[T]ine(2) }
T{Tuple) < max{T Ty (0). T (2} I
Tllur(e) 2 min(TTcl) s} 5 0 i}
T sup(z) < max{Z[I]sup(y), Z[I]sup(2)} ' This completes the proof. O
Z[Fling () 2 min{Z[Fline (), Z[Fline (2)} Using the similar way to the proof of Proposition 3.15, we have
Z[Flsup(2) < max{Z[Flsup(y), Z[Flsup(2)} the following proposition.
Jorallxz,y,z € X withx*xy < z. Proposition 3.16. Given an interval neutrosophic set T =

(Z[T), Z|1], Z[F)) in (X, *,0), we have the following assertions:

Proof. Letx,y,z € X besuchthatzxy < z. Then (zxy)xz =0, (1) IfZ := (Z[T), Z[I], Z|F)) is a (T(1,1), I(1,1), F(1,1))-
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interval neutrosophic ideal of (X, ,0), then

Ting(z) > min{Z[T]ine (y), Z[T]ine (2) }
Tlsup(2) = max{Z[Tsup(y), Z[T)sup(2) }
Iine(z) = min{Z[T]ine(y), Z[ine (2)}
sup(2) > max{Z[{]sup(y), Z[{]sup(2)}
Flint(2) > min{Z[Flint (), Z[Fline(2) }
Flsup(z) = max{Z[Flsup(y), Z[Flsup(2)}

forall x,y,z € X withx xy < z.

z

o L B W

[
[
[
[
[
[

N

() IfT = (Z[T], Z1], I[F)) is a (T'(4,1), I1(4,1), F(4,1))-

interval neutrosophic ideal of (X, *,0), then
I[Tins () < min{Z[Tine(y), Z[TTine ()}
I[T)sup(2) = max{Z[T]sup(y), Z[Tlsup(2)}

N

Iing(2) < min{Z[I]ine(y), Z[{]ine(2)}
Tsup(2) > max{Z[{]sup(y), Z[{]sup(2)}
Fling(z) < min{Z[Fline(y), Z[Flint (2)}
Flsup(2) > max{Z[Flsup(y), Z[Flsup(2)}

forallx,y,z € X withx xy < z.

N N

[
[
[
[
[
[

N

interval neutrosophic ideal of (X, x,0), then

int (%) < MIn{Z[Tint(y), Z[Tline ()}
sup(2) < max{Z[T]sup(y), Z[T]sup(2)}
Ting(2) < min{Z[int(y), Z[L]ine(2) }
sup(2) < max{Z[{]sup(y), Z[{]sup(2)
Flint(2) < min{Z[FJint (y), Z[Fline (2)
Flsup(#) < max{Z[Flsup(y), Z[Fsup(2)}

forall x,y,z € X withx xy < z.

N

T
T

N

]
Jsu

N

N N
—~ —

[
[
[
[
[
[

N

Proposition 3.17.  For every (4,7) €
{(2’ 2)7 (2a 3)’ (37 2)a (3’ 3)}’ Every (T(Za ])a I(Za ])a F(Zvj))'
interval neutrosophic ideal T := (Z[T), Z|I], Z|F)]) of (X, *,0)
satisfies

I[T}lnf( ) [T]lnf (0)

Z[Tsup(x) = Z[Tsup(0)

I[I]int(z) = Z[1ins (0

I sup(z) = Z[1]sup(0) G40

I[F]mf(x) :I[ ]mf( )

I[Flsup(x) = Z[Fsup(0)

forall x,y,z € X withx xy < z.
Proof. Assume that 7 := (Z[T], Z[I], Z[F]) is a (T(2,3),

1(2,3), F(2,3))-interval neutrosophic ideal of (X,*,0). Then
(X, Z[T)int), (X, Z[I)int) and (X, Z[F)int) are 2-fuzzy ideals of
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I[Flsup(z) > max{Z[Fsup(z * y),
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(X, *,0),and (X, Z[T)sup)> (X, Z[I)sup) and (X, Z[F|gyp) are 3-
fuzzy ideals of (X, ,0). Let z:,y, 2 € X be such that x x y < z.
Then (z * y) * z = 0, and thus

I[Tine(x) < min{Z[Tins (2 * y), Z[Tine (y) }
< min{min{Z[T)int((z * y) * 2), Z[T|ins(2) },
Z[T)int(y) }
—min{min{f{ Jin(0), Z[TJins (2) }, Z[T Jine (y) }
Z[Tsup () = max{Z[Tsup(z * ), Z[T]sup(y) }
> max{max{Z[T]sup((z * y) * 2), Z[T]sup(2)},
Z[Tsup ()}

= max{max{Z[T]sup(0), Z[T]sup(2) }, Z[T]sup(y) }
Z[Ts5up(0),

Iint(2) < min{Z[I]int(z * y), Z[L]ine (y) }
< min{min{Z[1)ine((z * y) * 2), Z[I]ins(2)},
It (y)}
= min{min{Z{Tin(0), Z[Lint (2)}, Z[Tine (y) }
= I[I]ins(0),

I sup(z) = max{Z[I]sup(z * y), Z[I]sup(y) }
> max{max{Z[/]sup((x * y) * 2), Z[]sup(2)},
IMsup(y)}
= max{max{Z[]sup(0), Z[I]sup(2) }; Z[I]sup(¥)}
= I[I]sup(o)a

I[Fline(x) < min{Z[Fline(x * y), Z[Fint (y) }
< min{min{Z[Fins((z * y) * 2), Z[Fint (2) },
I[F]lnf(y)}
= min{min{Z[Flin¢(0), Z[Fint (2) }, Z[Fine (y) }
= Z[Flint(0),

I[Flsup(y)}

> max{max{Z[Flsup((z * y) * 2), Z[Flsup(2)},
I[Flsup(y)}

= max{max{Z[Flsup(0), Z[Flsup(2) }, Z[Flsup (y) }

- Z[F]sup(0)~

Since I[T]inf(O) S I[T]inf($>y I[T]sup<0) Z I[T]bup< )
I[I]l (O) <I[IL ( ) I[ ]sup(o) > I[ ]sup( ) I[F]mf( ) >
Z[Flint(z) and Z[Flsup(0) > Z[Flsup(z), it follows that
% lnt(0) = I[Thine(2), I[Tlsup(0) = Z[Tsup (),

}lnf( ) [I]inf(ﬁr)sI[I]sup(O) = I[I]sup( ) I[F]mf(o) =



Florentin Smarandache (author and editor)

Z[F)int () and Z[Fsup(0) = Z[Flgup(x). Similarly, we can ver-

ify that (3.11) is true for (4,7) € {(2,2),(3,2),(3,3)}.

O
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forall x,y,z € X withx xy < z.

Using the similar way to the proof of Propositions 3.15 and 4 Acknowledgments

3.17, we have the following proposition.

Proposition 3.18. Given an interval neutrosophic set T

(Z[T),Z[1],Z[F)) in (X, *,0), we have the following assertions:

D 1=

(I[T]a I[I]v I[FD is a (T(17])7 I(laj), F(la]))'

interval neutrosophic ideal of (X, *,0) for j € {2,3}, then

I[Tine(x) = min{Z[T]ine(y), Z[T]ine (2) }
I[Tsup(x) = Z[T]sup(0)
Iint () = min{Z[I]ine(y), Z[{]ine(2)}
I[I]Sup( ): [ ]sup(o)
I[Flint(x) 2 min{Z[Fin¢(y), Z[Fline (2) }
I Flsup(7) = Z[Flsup(0)

forall x,y,z € X withx xy < z.

@) 1 =

I T]inf(x) = I[T]inf(o)

Tlsup(7) > min{I[T]sup(y)aZ[T}sup(z)}

NN

]
Hsup(x) > min{Z[Isup(¥), Z[{]sup(2) }
T[Flhut(

)
F]inf $) - I[F]inf(o)
F]sup(x) > min{I[F]sup(y)aI[F]sup(z)}

forall x,y,z € X withx xy < z.

[
[
[
[
[
[

N

( [ ], I[I]a I[F]) is a (T(Zal)a I(ivl)a F(Zv]-))'
interval neutrosophic ideal of (X, x,0) for i € {2, 3}, then

(3) IfI ( [ ]7 I[I]a I[F]) is a (T(Zv4)a I(iv4)a F('Lv4))'
interval neutrosophic ideal of (X, x,0) for i € {2, 3}, then
I[T]mf( ) I[T]inf(o)
I[T]bup( ) < maX{I[T]sup(y)aZ[T}sup(z)}
I ins(2) = Z[{]ins (0)
Isup(z) < max{Z[{]sup(y), Z[]sup(2)}
Z[Flint(x) = Z[Flint (0)
I[Flsup () < max{Z[Flsup(y), Z[Flsup(2)}
forall x,y,z € X withx xy < z.

@ 1=

(I[T]a I[I]v I[F]) is a (T(4’])’ I(4aj)7 F(4a]))'

interval neutrosophic ideal of (X, *,0) for j € {2, 3}, then

I[Tine(z) < max{Z[T]ine(y), Z[T]ine (2)}
ZTsup(x) = Z[Tsup(0)

Iint(z) < max{Z[I]int(y), Z[I]int(2)}
Isup(x) = I[I]sup(0)

I[Flint(x) < max{Z[Flint(y), Z[Flint(2)}
I Flsup(7) = Z[Flsup(0)
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Graphs of Type 1. In New Trends in Neutrosophic Theory and Applications, vol. 1I, eds.: Florentin Smarandache, Surapati
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ABSTRACT

In this paper, we introduced a new neutrosophic graphs called bipolar complex neutrosophic graphs of typel
(BCNG1) and presented a matrix vepresentation for it and studied some properties of this new concept. The concept
of BCNGI is an extension of generalized fuzzy graphs of type 1 (GFGI), generalized single valued neutrosophic
graphs of type 1 (GSVNGI), Generalized bipolar neutrosophic graphs of type 1(GBNGI) and complex neutrosophic
graph of type 1(CNGI).

KEYWORDS: Bipolar complex neutrosophic set; Bipolar complex neutrosophic graph of typel;
Matrix representation.

1. INTRODUCTION

In 1998, (Smarandache, 1998), introduced a new theory called Neutrosophy, which is basically a
branch of philosophy that focus on the origin, nature, and scope of neutralities and their
interactions with different ideational spectra. Based on the neutrosophy, Smarandache defined the
concept of neutrosophic set which is characterized by a degree of truth membership T, a degree of
indeterminate- membership I and a degree false-membership F. The concept of neutrosophic set
theory is a generalization of the concept of classical sets, fuzzy sets (Zadeh, 1965), intuitionistic
fuzzy sets (Atanassov, 1986), interval-valued fuzzy sets (Turksen, 1986). Neutrosophic sets is
mathematical tool used to handle problems like imprecision, indeterminacy and inconsistency of
data. Specially, the indeterminacy presented in the neutrosophic sets is independent on the truth
and falsity values. To easily apply the neutrosophic sets to real scientific and engineering areas,
(Smarandache, 1998) proposed the single valued neutrosophic sets as subclass of neutrosophic
sets. Later on, (Wang et al., 2010) provided the set-theoretic operators and various properties of
single valued neutrosophic sets. The concept of neutrosophic sets and their extensions such as
bipolar neutrosophic sets, complex neutrosophic sets, bipolar complex neutrosophic sets (Broumi
et al2017) and so on have been applied successfully in several fields
(http://fs.gallup.unm.edw/NSS/).

Graphs are the most powerful tool used in representing information involving relationship between
objects and concepts. In a crisp graphs two vertices are either related or not related to each other,
mathematically, the degree of relationship is either 0 or 1. While in fuzzy graphs, the degree of
relationship takes values from [0, 1]. In (Shannon and Atanassov, 1994) introduced the concept of
intuitionistic fuzzy graphs (IFGs) using five types of Cartesian products. The concept fuzzy graphs
and their extensions have a common property that each edge must have a membership value less
than or equal to the minimum membership of the nodes it connects.
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When description of the object or their relations or both is indeterminate and inconsistent, it cannot
be handled by fuzzy graphs and their particular types (Sharma et al., 2013; Arindam et al., 2012,
2013). So, for this reason, (Smarandache, 2015) proposed the concept of neutrosophic graphs
based on literal indeterminacy (I) to deal with such situations. Then, (Smarandache, 2015, 2015a)
introduced another version of neutrosophic graph theory using the neutrosophic truth-values (T, I,
F) and proposed three structures of neutrosophic graphs: neutrosophic edge graphs, neutrosophic
vertex graphs and neutrosophic vertex-edge graphs. Later on (Smarandache, 2016) proposed new
version of neutrosophic graphs such as neutrosophic offgraph, neutrosophic bipolar/tripola/
multipolar graph. Presently, works on neutrosophic vertex-edge graphs and neutrosophic edge
graphs are progressing rapidly. (Broumi et al., 2016) combined the concept of single valued
neutrosophic sets and graph theory, and introduced certain types of single valued neutrosophic
graphs (SVNG) such as strong single valued neutrosophic graph, constant single valued
neutrosophic graph, complete single valued neutrosophic graph and investigate some of their
properties with proofs and examples. Also, (Broumi et al., 2016a) also introduced neighborhood
degree of a vertex and closed neighborhood degree of vertex in single valued neutrosophic graph
as a generalization of neighborhood degree of a vertex and closed neighborhood degree of vertex
in fuzzy graph and intuitionistic fuzzy graph. In addition, (Broumi et al., 2016b) proved anecessary
and sufficient condition for a single valued neutrosophic graph to be an isolated single valued
neutrosophic graph. After Broumi, the studies on the single valued neutrosophic graph theory have
been studied increasingly(Broumi et al., 2016c, 2016d, 2016e, 2016g, 2016h, 20161; Samanta et
al.,2016; Mehra,2017; Ashraf et al.,2016; Fathi et al.,2016)

Recently, (Smarandache, 2017) initiated the idea of removal of the edge degree restriction of fuzzy
graphs, intuitionistic fuzzy graphs and single valued neutrosophic graphs. (Samanta et al,2016)
introduced a new concept named the generalized fuzzy graphs (GFG) and defined two types of
GFG, also the authors studied some major properties such as completeness and regularity with
proved results. In this paper, the authors claims that fuzzy graphs and their extension defined by
many researches are limited to represent for some systems such as social network. Later on
(Broumi et al., 2017) have discussed the removal of the edge degree restriction of single valued
neutrosophic graphs and defined a new class of single valued neutrosophic graph called
generalized single valued neutrosophic graph of typel, which is a is an extension of generalized
fuzzy graph of typel (Samanta et al, 2016). Later on (Broumi et al., 2017a) introduced the concept
of generalized bipolar neutrosophic of type 1. In addition, (Broumi et al., 2017b) combined the
concept of complex neutrosophic sets with generalized single valued neutrosophic of typel
(GSVNG1) and introduced the complex neutrosophic graph of typel(CNG1). Up to day, to our
best knowledge, there is no research on bipolar complex neutrosophic graphs.

The main objective of this paper is to extended the concept of complex neutrosophic graph of type
1 (CNG1) introduced in (Broumi et al., 2017b) to bipolar complex neutrosophic graphs of typel
and showed a matrix representation of BCNG1.

The remainder of this paper 1s organized as follows. In Section 2, we review some basic
concepts about neutrosophic sets, single valued neutrosophic sets, complex neutrosophic sets,
bipolar complex neutrosophic sets, generalized fuzzy graph, generalized single valued
neutrosophic graphs of type 1, generalized bipolar neutrosophic graphs of type 1 and complex
neutrosophic graph of type 1. In Section 3, the concept of complex neutrosophic graphs of type 1
is proposed with an illustrative example. In section 4 a representation matrix of complex
neutrosophic graphs of type 1 1s introduced. Finally, Section Soutlines the conclusion of this paper
and suggests several directions for future research.
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2. PRELIMINARIES

In this section, we mainly recall some notions related to neutrosophic sets, single valued
neutrosophic sets, complex neutrosophic sets, bipolar complex neutrosophic sets, generalized fuzzy
graph, generalized single valued neutrosophic graphs of type 1,generalized bipolar neutrosophic
graphs of type 1 and complex neutrosophic graph of type 1 relevant to the present work. See
especially (Smarandache, 1998; Wang et al. 2010; Deli et al., 2015; Ali and Smarandache, 2015;
Broumi et al., 2017, 2017b,2017¢; Samanta et al.2016) for further details and background.

Definition 2.1 (Smarandache, 1998). Let X be a space of points and let X «X. A neutrosophic
set A in X is characterized by a truth membership function T, an indeterminacy membership
function [, and a falsity membership function F. T, I, F are real standard or nonstandard subsets of
170,17, and T, I, F: X—]70,1"[. The neutrosophic set can be represented as

There is no restriction on the sum of T, I, F, So
O <Tp(X)+ [a(X)+F A (x)< 3", (2)

From philosophical point of view, the neutrosophic set takes the value from real standard or non-
standard subsets of ]70,17[. Thus it is necessary to take the interval [0, 1] instead of ]70,17[. For
technical applications. It is difficult to apply ]®,17[ in the real life applications such as engineering
and scientific problems.
Definition 2.2 (Wang et al. 2010). Let X be a space of points (objects) with generic elements in
X denoted by x. A single valued neutrosophic set A (SVNS A) is characterized by truth-
membership function T4(X) , an indeterminate-membership function [,(x), and a false-
membership function F 4 (x). For each point x in X, Ta(x), [5(X), FA(X)E[0, 1]. A SVNS A canbe
written as

A={(x, To(x), 14 (%), Fa(x)): x € X}(3)
Definition 2.3 (Deli et al., 2015). A bipolar neutrosophic set A in X is defined as an object of the
form
A={<x, (T (x),15 (x),F5 (x),T5 (x),15 (x),Fy (x))>: x e X}, where TS, I7,F£:X > [1, 0] and
Ta, I1,Fa:: X [-1, 0] .The positive membership degree T, (x),Lf (x),F; (x) denotes the truth
membership, indeterminate membership and false membership of an element « X corresponding
to a bipolar neutrosophic set A and the negative membership degree T4 (x), I (x),F; (x) denotes
the truth membership, indeterminate membership and false membership of an element ¢ X to some
implicit counter-property corresponding to a bipolar neutrosophic set A. For convenience a bipolar
neutrosophic number is represented by

A <(TA+>IX’FA+3TA_J/; 9FA_> (4)

Definition 2.4 (Ali and Smarandache, 2015)
A complex neutrosophic set A defined on a universe of discourse X, which is characterized by a
truth membership functionT,(x), an indeterminacy membership functionIs(x), and a falsity
membership functionF 4 (x) that assigns a complex-valued grade of T (X), [4(X), and Fo(X) in A
for any x € X. The valuesT,(x), 15 (x), andF 4 (x)and their sum may all within the unit circle in the
complex plane and so is of the following form,
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Ta(X)=pa(x).ea®),

Ia (%)=qa (x).e/"4®and

Fa(x)=r4(x).e/®a®

Where, p4(X),qa(X),ra(x) and 1A (%), VA(X),04(X) are respectively, real valued and
pa(x),qa(X),ra(x) €[0, 1] such that

0 =pa(3)+qa(x) +ra(x)=3
The complex neutrosophic set A can be represented in set form as
A={(x ()=, 1 () =a,F()=a,):xe X}
where T4:X - {ar:a; €C, larp| <1},
1i:X - {a;:a; €C, |a;| <1},
Fp:X > {ap:ap € C, |ag| < 1}and
|To(x) + I4(x) + Fa(x)] < 3.
Definition 2.5 (Ali and Smarandache, 2015) The union of two complex neutrosophic sets as
follows:

Iet A and B be two complex neutrosophic sets in X, where A:{(x, Ta(x),14(x), F4 (x)): X €
X }and

B={(x, Tp(x),15(x), Fg (x)): X €E X}.

Then, the union of A and B is denoted as A Uy B and is given as

Where the truth membership functionT, (%), the indeterminacy membership function I (%)
and the falsehood membership function F, (%) is defined by

Taug()=[(Pa(x) v pB(X))].e]'pTAuB(X),

Laus (0)=[(qa (%) A qp(x))].€"ave ™,

Faup(X)=[(ra(x) A rg(x))].e“Favs™

WhereV and Adenotes the max and min operators respectively.

The phase term of complex truth membership function, complex indeterminacy membership
function and complex falsity membership function belongs to (0,27) and, they are defined as

follows:

a) Sum:

Maup () = 1, (%) + pig (),

vaup(x) = va(x) + vp(x),

®auB(X) = 0A(X) + 0p(x).

b) Max:
Haup () = max (1, (), 1y ®)).
vaup() = max(v, (x), vg(x)),
©auB(x) = max(w, (x), op(x)).

c) Min:

Hyup(X) = min (uA(X), uB(X)),
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Vaup(®) = min(vs(x), v ()
waug(X) = min((DA(X),coB(x)),
d) “The game of winner, neutral, and loser”:
() if py>ps
Haos (x) = } :
My (x) if py>p,
va(x) if g,<gs
Vaos (x) = N >
ve(x) if g5 <4,
@, (x) if r,<r
@D, 5 (A) = ) ’ :
y wy(x) if 1<y
The game of winner, neutral, and loser is the generalization of the concept “winner take all”

introduced by Ramot et al. in (2002) for the union of phase terms.
Definition 2.6 (Ali and Smarandache, 2015) Intersection of complex neutrosophic sets

Let A and B be two complex neutrosophic sets in X, A={(x, T(x),1,(x), F4 (x)): HEX }and

B={(x, Tg(x), I3 (%), Fg (x)): x € X}.
Then the intersection of A and B is denoted as A Ny B and is define as

A Ny B={(x, Tang(X), [an(X), Fanp(X)): x € X}

Where the truth membership functionTyng(%), the indeterminacy membership function Ixnp(X)
and the falsehood membership function Fpng(x%) is given as:

Tane(X)=[(pa(x) A PB(X))]-te'”TA”B(X),
Lane ()=[(qa(®) V qp(x))].e"ans®,

Fans@)=[(ra(x) v rp(x))].¢*Fanz®
WhereV and A denotes denotes the max and min operators respectively
The phase terms e"*Tans @ e/V1ans® and e’*Fane™® was calculated on the same lines by winner,
neutral, and loser game.
Definition 2.7(Broumi et al., 2017c). A bipolar complex neutrosophic set A in X is defined as an
object of the form
A={<x, T{eT? | I}eil] Fielfd Treils |Teilz FrelFi>: x ¢ X}, where T{, If, FF:X > [1, 0]
and Ty, I;, F1: X [-1, 0] .The positive membership degree Ty (x),I; (x),F; (x) denotes the
truth membership, indeterminate membership and false membership of an element x € X
corresponding to a bipolar complex neutrosophic set A and the negative membership degree
Ty (x),I; (x), Fy (x) denotes the truth membership, indeterminate membership and false
membership of an element x € Xto some implicit counter-property corresponding to a bipolar
complex neutrosophic set A. For convenience a bipolar complex neutrosophic number is
represented by

A= <T1+€iT2+,11+€ il;,F1+eiF2+,T1_€ iTZ—,Il_e“;,Fl_eiF2—>
Definition 2.8 (Broumi et al., 2017c¢). The union of two bipolar complex neutrosophic sets as
follows:

Let A and B be two bipolar complex neutrosophic sets in X , where
A= (Tfe'™ Ifel? Fre'™ Ty el I7e's Fye'?) and
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» + s + . + . _— _ 4y — _ o g—
B=(Tf e+ 1fe's Ffe'fa Tye'ls Iyells Fyelfs)
Then the union of 4 and B is denoted as AUy, B and is given as

AUBNB B {('x’T+AuB (x)’[+AuB (x)’F+AuB (x)’T_AuB (x)"[_AuB (x)’F_AuB (x)) £ X}

Where positive the truth membership function 7", , (x) , positive the indeterminacy membership

function I, (x) and positive the falsehood membership function F*, , (x), negative the truth

membership function?” , , (x) , negative the indeterminacy membership function [, , (x) and

negative the falsehood membership function 7™, , ()») is defined by
Tius (¥)= (Tf V T§)e! @ um),
Taup(®)= (Tf AT3)e!Tz V),
Lius ()= (IF AI)elEVD)
Taup(®)= (I v I5)ellzVis >,
i (0= (R A EDel0R),
Faup (%)= (Fy v F3)e'(Fz V)
Where \ and A denotes the max and min operators respectively
The phase term of bipolar complex truth membership function, bipolar complex indeterminate
membership function and bipolar complex false -membership function belongs to (0,27) and,
they are defined as follows:
e) Sum:
Ty (X)=TF (x)+T5 (x)
Taup(X)=T4 (x)+Tp (x)
Lius (X)=17 (x)+1# (x)
Laup(¥)=14 (x)+1§ (x)
AUB(X) FA (x)"'FI;'-(x)
Faup(x)=Fqy (x)+Fg (x)
f) Max and min:
T3 ()-max(T{ (x),T7 (%))
T35 (¥)=min (T3 (2).T5 (%))
g ()=min (I} (), 13 ()
True (¥)=max(l; (x).]5 ()
Fius (¥)=min (Ff (x),F5 (x))
Faup(X)=maxFy (x),F5 (x))
2) “The game of winner, neutral, and loser™:
T (x): {T+A(x) Zf P4 > Ps ’
T7(x) if pz>ps
()= {T_Ax) /' Pa<Ps
T75(x) ¥ Pp<pa
e - (x)_{[u(x) Zf 94 <95 ,
I"5(x) i g5 <4q,
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:J]_A(x) 7 q.>4gs

Fu® F %>

P B8 I i, om
F aa (%)= {F*A(x) i rA < rB

B B A

N F~ (x) if r,>r
' (x):{F~A . a2y

3(X) if rp>r,
Example 2.9: Let X = {x,, x5} be a universe of discourse. Let A and B be two bipolar complex
neutrosophic sets in X as shown below:

» . ) I} 7 _n s
<0.5e*-0-7, 0.2¢%7,0.4¢401,—0.7¢704,—0.3¢" 3, —0.2¢"0)

= - ]

, —2TC

. , T 3 o ]
0.6e%98,0.3¢"3,0.1¢%3, —0.8¢%7%5, —0.4¢" 3 , —-0.1e/701

X2

I el )

And

Then

0.9¢i07 0.2¢i™ 01el01 _0.7¢i706 _( 2¢'7F —0.2ef-°)

AUgy B =
BN ( X

<0 80109, 0.3¢'3,0.1¢102,—0.8¢1-06, 01", —0,1¢t~01)
. ) . ) . J] . ) . y V. 6

X2 }
Definition 2.10(Broumi et al., 2017¢) The intersection of two bipolar complex neutrosophic sets
as follows:

Let 4 and B be two bipolar complex neutrosophic sets in X, where

A= (T e [fell Fitelf Ty el I7elz Frelfz) and

B= (T5 el I3 ¢!l Fel Tyells Iyelli Fyelf)

Then the intersection of A and B is denoted as 4Ny B and is given as

Ay B =Y (5T s ()T s (X0, F " g ()T s (30,0 s (%), F 7 (2)) 1 36 x}

Where positive the truth membership function 7", , (JC), positive the indeterminacy membership
function I A (x) and positive the falsehood membership function /' o (x) , negative the truth membership
function” ™ 5 (JC) , negative the indeterminacy membership function I, (x) and negative the falsehood
membership function ', , (JC) is defined by

TA+ﬂB (x): (T1+ A T;)ei(TzinT:) ,
Tip(X)= (T v Ty el 0T),
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Ling (0)= (I v 1)),
Tine(¥)= (I AI3)el2"s),
Fang ()= (FiF v F3)e!® nFD
Fing (X)= (Ff AF3)eltz M)
Where \~ and ~ denotes the max and min operators respectively
The phase term of bipolar complex truth membership function, bipolar complex indeterminacy
membership function and bipolar complex falsity membership function belongs to (0,27) and,
they are defined as follows:
h) Sum:
Tang (X)=T4 (x)+T5 (x)
Tins (D=Tz (X)+T5 (%)
Ling CO=I3 () +I7 (%)
Tans C)=17 () +15 (%)
Fang (X)=F5 (x)+Fg (x)
Fanp (x)=Fq (x)+Fp (x)
1) Max and min:
/s (X)=min(T5 (x), T (1))
Tinp (x)= max (T (x),T5 (x))
Tinp (0)=max (I} (0).IF (%))
[rng (X)=min(I; (). (x))
Fang (x)=max (F; (x),Fg (x))
Fang (¥)=minFy (x).F5 (x))
1) “The game of winner, neutral, and loser:
Tz (x): {TJrA (x) lf Pa<Ps :
Tp(x) if pp<pa
{ () i pi>ps
“ana (%) .
5(X) i ps>pa
{ A(JC) 7 q.>9;s i
Iyl F @y

I () i q,<4s
I"3(x) i g5<q,

S0 i ®SE
s ()= {F

B i BB
P ua(%)=4" A ¥ s
- @ 00 i <

Example 2.11: Let X = {x;, x5} be a universe of discourse. Let A and B be two bipolar complex
neutrosophic sets in X as shown below:

(0.5ef-°-7, 0.2¢7 0.4et01 _07¢i-04 _0 3¢"T, —0.2¢40)

% )

1 \

AnB
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And

Then

Definition 2.12 (Samanta et al.2016). Let V be a non-void set. Two function are considered as
follows:

p:V - [0,1]and w:VxV — [0,1] . We suppose

A= {(p(x), p() | w(x, )> 0},

We have considered wy, > 0 for all set A

The triad (V, p, w) is defined to be generalized fuzzy graph of first type (GFG1) if there is function
a:A— [0,1] suchthat w(x,y) =a((p(x), p(y))) Where x, yE V.

The p(x), x€ V are the membership of the vertex x and w(x, y), X, y€ V are the membership,
values of the edge (x, y).

Definition 2.13 (Broumi et al., 2017). Let V be a non-void set. Two function are considered as
follows:

p=(pr, P1> pr):V = [ 0,1]%and

w=(wg, ®;, wg):VxV = [0,1]% . Suppose

A= {(pr(0).pr(M) lwr(x, y) 2 0},

B= {(p1(x),p;(¥)) lw,(x, y) = 0},

C= 1r(0).pr(¥)) [wp(x, y) = 0},

We have considered wy, w; and wr =0 for all set A,B, C, since its is possible to have edge
degree =0 (for T, or I, or F).

The triad (V, p, w) is defined to be generalized single valued neutrosophic graph of type 1
(GSVNG]) if there are functions

a:A- [0,1], £:B— [0,1] and §:C— [ 0, 1] such that

wr(x,y) = a((pr(x).p7(¥)))

wr(x, y) = B((p1(x).p1(¥)))

wg (%, y)= 6((pr(x),p£(¥))) wherex, y€ V.

Here p(x)= (pr(x), pi(x), pr(x)), XE V are the truth- membership, indeterminate-membership
and false-membership of the vertex x and w (x, y)=(wz(x,y), w;(x,y), wg(x,¥)), X, yE V are the
truth-membership, indeterminate-membership and false-membership values of the edge (x, y).

252



Florentin Smarandache (author and editor) Collected Papers, XIV

Definition 2.14 (Broumi et al., 2017b) Let V be a non-void set. Two functions are considered as
follows:

p:(pTa P, pF):\] 2 [ 01 1]3and

w=(wy, w;, wp):VxV - [0,1]3 . Suppose

A= {(pr(x),pr (V) |wr(x, y) = 0},

B= {(pl(x):pl(y)) ]a)[(X, y) = 0}9

C={(pr(x).pr(¥)) lwr(x, y) = 0},
We have considered wy, w; and wy = 0 for all set A,B, C, since its is possible to have edge

degree =0 (for T, or I, or F).

The triad (V, p, w) 1s defined to be complex neutrosophic graph of type 1 (CNG1) if there are
functions

a:A— [0,1], f:B— [ 0,1] andd:C— [ 0, 1] such that

wr(x,y) = a((pr(x).pr(¥)))

wr(x,y) = B(pr(x).p1 (¥)))

wp(x,¥) = 6((pr(x).pr(¥)))
Where x, yE V.

Here p(x) =( pr(x), pi(x), pr(x)), x € V are the complex truth-membership, complex
indeterminate-membership and complex false-membership of the vertex x and w (x, V)=(w¢(x, y),
wr(x,v), wp(x,v)), X, yE V are the complex truth-membership, complex indeterminate-
membership and complex false-membership values of the edge (x, y).

Definition 2.15 (Broumi et al., 2017b). Let V be a non-void set. Two function are considered as
follows:

p=(PT.P1 > PE-PT- P1-PF):V = [0,1]% X [ -1, 0]%and

w=(wF,07, of,wT, o,0F):VxV - [0,1]3 x [ —1,0]® . We suppose

A= {(pT(®),p1 (V) l0T(x, ) = 0},

B={(p{ (®).pf (") |00 (x, y) = 0},

C={(pr (%).p¥ (") |0 (x, y) = 03,

D={(p1(0),pr (V) lo1(x, y) < 0},

E={(pr (.pr (") |01 (%, y) < 03,

F={(Pr (0,05 (7)) |05 (x, y) < 03,

We have considered wF, o ,wf = 0and w7y, oy, wy < 0 forall set A, B, C, D, E, F since its
is possible to have edge degree =0 (for T* or " or F¥*, T or I~ or F7).

The triad (V, p, w) is defined to be generalized bipolar neutrosophic graph of first type (GBNG1)
if there are functions

a:A-[0,1] ,:B-[0,1] , 8§:C>[0,1] and §D—>[-1,0] , 6:E>[-1,0] , Yy:F -
[ —1, O]such that

w1 ®y) = a(PT(X).pT())),

wT(xy) =§(PT(X).pT())

Wy (%) = BUPT ().p1 )

wr (x,y) = o((py X).p1 (¥)))

w§ (% y) = 8(PF (X).pE (1))

wg (X y) = Y((pr (X).Pr (¥)))

Where x, yE V.

Here p(x)=(pF (%), pf (X), pr (%), p7(X), P (X), pr (X)), XE V are the positive and negative
membership, indeterminacy and non-membership of the vertex x and w(X,y)=(wF (X V),
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of (%y), of(x%y), ©7xY), o[ X y),wr(XY)), X, YE V are the positive and negative
membership, indeterminacy membership and non-membership values of the edge (x, y).

3. Bipolar Complex Neutrosophic Graph of Type 1

In this section, based on the concept of bipolar complex neutrosophic sets (Broumi et al., 2017c¢)
and the concept of generalized single valued neutrosophic graph of type 1 (Broumi et al., 2017),
we define the concept of bipolar complex neutrosophic graph of type 1 as follows:

Definition 3.1. Let V be a non-void set. Two function are considered as follows:

p=(PT.PT1 - PF-PT, PT-PF):V = [—1,1]%nd

O=(0F,0], Of,07, o7,wF):VxV - [ —1,1]° . We suppose

A={(pT(®).p1 (V) loT(x, ) = 03,

B={(p (%).p1 (") |0 (x, y) = 0},

C={(p (%).PF (") |0 (%, y) = 03,

D= {(pr().p1(¥)) [07(x, y) < 03,

E={(pr (¥),pr (") |wr(x,y) < 0},

F= {(pr (),p5 (¥)) |0g (%, y) < 0},

We have considered w}, of ,wf = 0and wy, o, wg < 0 forall set A, B, C, D, E, F since its
is possible to have edge degree =0 (for T* or I* or F¥,T” or [~ or F7).

The triad (V, p, w) is defined to be bipolar complex neutrosophic graph of first type (BCNG1) if
there are functions

a:A-[01] ,p:B->[01],86:C->[0,1] and §D—>[-1,0] , 6:E>[-1,0] , Yy:F—>
[ —1, 0]such that

wT(%y) = (P (X).pT ()

wr(%y) = &(Pp1 ()1 (),

o (x,y) = BUPT (X).p1 (7)),

wr (%,y) = o((pr X).pr ()

o (%,y) = 8((P§ (x),pE (1)),

W (%,y) = W((pr (x),pF (¥)))

Where x, yE V.

Here p(x)=(pF(x), pf (X), pr(X), p1(X), p1 (X), Pr (X)), XE V are the positive and negative
complex truth-membership, indeterminate and  false-membership of the vertex x and
o =i y), of % 9), 0of (%,9), 01X ¥),0] (% 9),wF (X, ¥)), X, yE V are the positive and
negative complex truth-membership, indeterminate and false-membership values of the edge (x,
).

Example 3.2: Let the vertex set be V={x, y, z, t} and edge set be E={(x, y),(x, 2),(x, t),(y, t)

X y z t
pr | 0.5e"0% 0.9¢-09 0.3¢%03 0.8¢ 701
pr 0.3¢i% 0.2¢"s 0.1eb27 0.5¢l™
pi 0.1e%03 0605 0.8¢105 0.4e07
pr -0.6e"706  |-let” 04et 01 | -0.9gt01
pr -0.4e'~%" -0.3¢"0 -0.2¢0703 -0.6e"~ 02
Pr @ 2t -0 3o -0.9e! 2" -0, 3g="
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Table 1: Bipolar complex truth-membership. bipolar complex indeterminate-membership and bipola
complex false-membership of the vertex set.
Let us consider the function

a(m,n)=(ms¥ v ni). e Tmun,
B(m,n)=(mj Anj).elmun
§(m,n)=(mf An}). e Fmun,
&(m .n)= (m7 Ang).el*Tmun

o(m n)= (m; vnj).e Tmun and

P(m.n )=
Here,

(mf V ng).e  rmun,

A—F(O .}EIUS 096‘109) (Oqel(}B 039103) (0.}9103 Dgelﬂl) (099109 Ogel()l)}

B = {(0.3¢"%, 0.2¢/ 4) (03e '+, 0.1e!2™), (03e . 0591“) (02e s, 0.5eMm)}
c={(o. 1e1°3 0.6e"%-%), (0. 1e”’3 0.8e'%), (0. 1e1°3 0.4e"%7), (0. 6e‘°5 0.4e%7)}
D={(-0.66"~0%, -1¢:"), (-0.6¢"~%5, -0.4¢1=0%), (-0.6¢~9%, -0.9¢i~01), (-1et~T, -0.9¢01))

E = {(-0.4e"727,-0.3e'?), (-0.4e" 27, -0.2e792), (-0.4e" 27, -0.6e"~92), (-0.3e"?, -0.6e-%2)}
F = {(-0.2¢"7°3,-0.7¢"%°), (-0.2¢"7%3,-0.9¢"7%7), (-0.2¢" "3, -0.5e"77), (-0.7¢"7%%,-0.5¢" ")}

Then
w ) (x,2) (x,0) (7,6)

W} (%,y) 0.9¢10° 0.5¢108 0.8¢i08 0.9¢409

+ T . 3T 3T A
Or &) | 0.9e'% 0.le"s 03¢5 0.2¢'%
(UF+(X,Y) 0_19.1.0.3 0.1€i'0'3 0.1€i'0'3 0.4ei,0.5
or(xy) || -1et" oGe—~0% 20.9e4-0¢ Elet ="
w7 (%y) || -0.3et0 -0.2¢t—2m -0.4¢t-—2m -0.3el0
wWE(XY) -0.2el-0:3 -0.2e%-0:3 -0.2¢i—03 0.5¢i-06

Table 2: Bipolar complex truth-membership, bipolar complex indeterminate-membership and bipolar
complex false-membership of the edge set.

The corresponding complex neutrosophic graph is shown in Fig.2

x<0.5/98, 0.3 &/%, 0.1 /03, 0,610 0 dei=2m g5, t<0.8¢/"1,0.5¢/7, 0.4¢/°”,

-0.9¢+701 %-02 0.5¢' ™

<0.8¢/ 08, D.SeE'T, 0.1¢/03,
,]’.*0.6. —0-4€i‘_2". —0.26j'0i‘_0'3'>,l

.M
el"l, 0.46"0'5,
.0 i—0.6
,-0.5¢i7065

z <03 eﬁ , 0.1e/27 (8¢l 05

-0.4¢'701,-0.2¢"703, .0.9¢5 72>

Fig 2. BCNG of type 1.
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4. Matrix Representation of Bipolar Complex Neutrosophic Graph of Type 1

In this section, bipolar complex truth-membership, bipolar complex indeterminate-membership,
and bipolar complex false-membership are considered independent. So, we adopted the
representation matrix of complex neutrosophic graphs of type 1 presented in (Broumi et al.,
2017b).

The bipolar complex neutrosophic graph (BCNG1) has one property that edge membership values
(T*, 1%, F*,T~, 17, F7) depends on the membership values(T*, I*, F*, T~, 1", F™) of adjacent
vertices. Suppose {=(V, p,w) is a BCNGI where vertex set V={v;,0,,...,0,}. The functions

a:A— [0,1] is taken such that w7 (x,y) =a ((pF(x),pF(y))), where x, y€ V and A=
{(pF(x).p7 (V) lwT(x,y) 2 0},

f:B-[0,1] is taken such thatwi(x,y) =8 (p; (x),p;(y))), where x, y€ V and B=
{(pi" ().pi ) w7 (%, ¥) = 03,

§:C— [0,1] is taken such thatwi(x,y) =6 ((pF(x),pF(¥))), where x, y€ V and C =
{(pr (0).pf () lwE(x, ) 2 03,

£:D—> [—1,0] is taken such that wr(x,y) =& (pr(x),p7(¥))), where X, y€ V and D=
{(or (x).p7 () lwr(x, y) <0},

0:E—-[—1,0] is taken such thatw; (x,y) =a((p; (x),p; (¥))), where x, y€ V and E=
{(pr (0).pr () |y (x,y) <0}, and

P F—> [—1,0] is taken such thatwg (x,y) =y ((pr (x),pr(y))), where X, y€E V and F =
{(or (X).pF (1)) lwr (%, ¥) < 03,

The BCNGI1 can be represented by (n+1) x (n+1) matrix M g;I’F=[aT'I'F (1,))] as follows:

The positive and negative bipolar complex truth-membership(T+,T ™), indeterminate-membership
(I, I7) and false-membership (F*, F7), values of the vertices are provided in the first row and
first column. The (i+l, j+1)-th-entry are the bipolar complex truth -membership (T*, T7),
indeterminate-membership (I*, I 7)and the false-membership (F*, F ™) values of the edge (x3,%7),
i,j=1,...,nif i#].

The (i, i)-th entry is p(x;)=(p7 (x;), pi (%;), P& (x1), pr (%), pr (%), pr (x;)) where i=1,2,...n.
The positive and negative bipolar complex truth-membership (T+, T7), indeterminate-
membership (1%, I7) and false-membership (FT, F~), values of the edge can be computed easily
using the functions a, 5, §, £, 0 and 1P which are in (1,1)-position of the matrix. The matrix

. - . . . +

representation of BCNGI, denoted byM(T;f‘F, can be written as sixth matrix representation Mgl 5
I agFY g TT T g FT
Mg, Mg, Mg, » Mg, . Mg, -

The Mg: is represented in Table 3.
Table 3. Matrix representation ofTt-BCNG1

p7 (Vn)
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The M é: is presented in Table 4.Table4. Matrix representation of/ *- BCNG

B v1(01 (v1)) v (pf (v2)) vn(pr (W)
v1(PI+(v1)) PI+(U1) ﬁ(Pl+ (W):P?L(Uz)) B(Pf(vﬂapf(vn))
Uz(PI-F(Vz)) B(Pf(vz)spfr('h)) P{+(172) B(Pf(vz)apf(vz))
va0r () | BoF G0 0) | B w)of () PE (o)

1
The Mg: is presented in Table 5.
Table5. Matrix representation of F*- BCNGI

5 U1(P-F+(v1)) Uz(P; (v2)) Un(/);(vn))

v1(pg (1)) pE(v1) §(pr (1).pE (V2)) | 8(oF (v1).0F (V)
Vz(P;(vz)) 5 ( P;‘_(vz) > P;"(vﬂ ) P;(Uz) 5(01-?'- (vz)aP;(Uz))
XHC) M B YA L) pE (o)
The Mgl_ 1s shown in table 6.

Table 6. Matrix representation of 7-- BCNG1

The Mg, is shown in Table 7.
Table 7. Matrix representation of /~- BCNGI

pr ()

a v1(pr (V1)) vo(pr (v2)) vn(P; (Vn))
vi(pr (V1)) pr (V1) a(pr (v1), a(pr (v1).pr (V)
pr(vy))
va(pr (v2)) a(pr (v2).p; (V1)) pi (v2) a(p; (v2).p; (v2))
vn(p[_(vn)) 0(p1_(vn)spl_(v1)) 0(pf(vn), pl_(vn)
pr (v2))

The M 51" is presented in Table 8.
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Table8. Matrix representation of F~- BCNG1

v v, (07 (v) 0,07 () U (pr (B)
vy (Pr(v1)) pr (v1) Y(pr (v1).07 (v3)) Y(pr (v1).pr (v,))
e (02)) | R (v )pr (v PHCA) Vo7 (v2).07 (02)
0 (0a(0)) | P e o)) | $r (w)pr o) P2 (v

Remarkl:if p; (x)=p; (x)=pr (x)0,the bipolar complex neutrosophic graphs of type 1 is reduced
to complex neutrosophic graph of type 1 (CNG1).

Remark2:ifp7 (x)=p; (x)=pr (x)0, andp;" (x)=p (x) =0 , the bipolar complex neutrosophic
graphs of type lis reduced to generalized fuzzy graph of type 1 (GFG1).

Remark3:if the phase terms of bipolar complex neutrosophic values of the vertices equals 0, the
bipolar complex neutrosophic graphs of type 1is reduced to generalized bipolar neutrosophic graph
of type 1 (GBNG1).

Remark4:if p7(x) =p; (x) =pr(x) 0, and the phase terms of positive truth-membership,
indeterminate-membership and false-membership of the vertices equals 0, the bipolar complex
neutrosophic graphs of type 1is reduced to generalized single valued neutrosophic graph of type
1 (GSVNGI).

Here the bipolar complex neutrosophic graph of type 1 (BCNG1) can be represented by the matrix
representation depicted in table 15.The matrix representation can be written as sixth matrices one

containing the entries asT*, IT , F*, T~ , 17, F~ (see table 9, 10,11,12,13 and 14).

Table 9. T*- matrix representation of BCNG1

o x(0.5 ¢/%9) v(0.9 ¢799%) [2(0.3 /93) [1(0.8 e/01)
x(0.5 e-0%) 0.5 /08 0.9 ¢:0 0.5 ¢):0® 0.8 e08
(0.9 e-09) 0.9 gJ0° 0.9 eJ0° 0 0.9 gJ-09
2(0.3 P05 0.5 /08 0 0.3 e/03 0
(0.8 01 0.8 /08 0.9 /09 0 0.8 ¢J-01
Table 10. I - matrix representation of BCNG1
B X(0.3 &3) y(02¢¥5) | 2(0.1 2™ t(0.5 k™)
3T 3w T 3T 3T
x(0.3 ") 03¢ 0.2 ¢ 0.1 e% 0.1
y(0.2 ejT) 0.2 &% 0.2 &% 0 0.2 %
(0.1 e}-2m) 01 = 0 01 o2m 0
£(0.5 &™) 0.3 2" 0.2 5 0 0.5 el™
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) X(Ol ei.0.3) Y(06 ej.O.S) Z(08 ej.O.S) t(0.4€j'0'7)
X(O.l ej~0.3) 0.1 ei.0.3 0.1 ei.0.3 0.1 ej.0.3 0.1 ej,0,3
y(06 ej.O.S) 0.1 ei.0.3 0.6 ej,0,5 0 0.461-.0.5
2(0.8¢/%%) | 0103 0 0.8 ¢)05 0
t(0.4¢707) 0.1 %03 0.4eJ05 0 0.4e/:07
Table 12:T - matrix representation of BCNG1
$ x(-0.6 e=00) y(-1 et~ ™) 2(-0.4 et=01) [ {(-0.9¢7-01)
x(-0.6e"7%¢)  [-0.6e"7%6 3. gh 06796  |-09et706
y(_l ei.—n) -1 ei.—n’ -1 ei.—n‘ 0 -1 ei.—n
2(-04e'"%h)  |-06e'7%° 0 04e01 [0
t(-0.9e4701) -0.9 706 4. @5 E 0 -0.9e"701
Table 13:1™ - matrix representation of BCNGI
g X047 Ty03e™) [7(-02¢7%%) [1(-0.66"0%)
x(-0.4e~2™) -0.4 ¢4=27 -0.3¢ "0 -0.2e4~%" -0.4e! 2"
y(-0.3e"%) -0.3 e"0 -0.3 e"0 0 -0.3 e'0
2(-0.2 e703) 0.2 gl 0 024703 10
t(-0.6€i'_0'2) -0.4 6,i.—2n’ -0.3 ei,o 0 -O.6€i'_0'2
Table 14:F~- matriX representation of BCNG1
1/) X(-0.2 ei'_zn) Y(-O7 ei'_0'6) Z(-O.9 ei.—Zn) t(_O.Sel‘.—TE)
X(-0R2E-2m), || 022 _02e!—03 202 gl-—03 _02¢i—03
y(-0.7 -7%¢) ]-0.2 ¢%703 -0.7 e470¢ 0 -0.5¢4-06
2(-09le" 2 [-0.2¢" 08 0 09e—2T |0
1(-0.5e""™) 4 5, g=03 -0.3 e"? 0 -0.5¢"""

The matrix representation of GBNGI is shown in Table 15.
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(a.f.6.5,0.9)

= .3m
x<0.5 /08 0.3 /7T,
j.0.3
0.1 -

y<0.9ei%9, 02¢'%,
0.6e'-°-5, -1ei~‘“' -

z <0.3e/93,0.1
ei.Zn, 0.89i‘0'5,-

1<0.8¢1%1, 0501,
0.4e107, -0.9¢i701_

-0, .- 0 _0.7¢i-0. 0.4ei 01 0.6e*02.05¢! ™, .
0.6¢"70¢,-0.4¢'727,- | 0.3€'0,-0.7el-065 QBiTE 0761065 ’
0.2¢"703> i )

0.9e""2™>
x<05e'0%03 | 056008 03T, | <0909, 02e05, | <05°%01 | <(geivs 03ei7,
€7%,01e03, 0103, 0.1e3, e'r,0.1e'03, | 0.1e103,
0.6€i‘_0'6,— 0.6ei~'°‘6,—0.4ei"2",— _lei-‘ﬂ’ _0.3ei~0’ = 0.6ei"°'6, _0.9ei-—0.6’ =
0.4¢"27 . 0.2¢"703> 0.2e+703 > 022", - 04e™ 27, -
0.2¢703> 0.2ei703> 0.2} 003>
y<09e1%9, 02¢/7, | <0.9¢109, 0.2¢/%, | <09e192,02¢', |(0,0,0,00,0) | <09ei®9 02¢F,

0.60105, i .
0.3e'0,-0.7e1-065

O.Iei'°-5, .
-le' ™, -0.3¢e'0, -

0.68i'0‘5, _1ei.—1t’ =
0.3e'?,-0.7¢* 06>

0.4ei'°-5, -1ei~‘“' .
0.3e'0,-.0.5¢i-0.65

0.2ei.—0.3 >
z <0.3e'%3,0.1 0.8 i (0, 0,0,0,0 z<03¢%3%,01 [(0, 0, 0,0,0
] > <0.5e}? '0_1 s 5 s VU, R L 5 5 s VLU,
e'-z",_ 0.8el~0-5,_ 0.1ei03 o Gef_oz O) e].Zn’. 0.8ei 05 O)
0.4e’04,0.2¢-03, 02ei-2% . 0.4e!™0,
-0.9e* "> 0.2¢i-03> 0.2ef' oF
09e' 27>
t<0'.88i'0.1' 0.5_ei-", <0.8ei08, O.BefT“, <0.9e1%?, 0-29%, ©, 0,0,0,0, <0.8ei-°~1, 0'5‘.3“'
0.4ei07 .09e' 01 . 016193 04¢i05,-1e--™, - | 0) 0.4ei%7,.09¢i701 .
0.6ef"°'z,-0.59i“", 5 _o_gej.—l;.ﬁ’ ) 03¢,-0.5¢1 06> 0.6ef'“°'z,-0.5ei"", ~
0.78"70‘6> 0.4ei_—21( - 0.79"“0'6>
O.Zei,Oi.—0.3.>

Table 15: Matrix representation of BCNG1.

Theorem 1. Let M :be matrix representation of TT-BCNG1, then the degree of vertex
DT+(XR):Z?=L]-¢,( aT+(k + J,j + ]),xk € A% or
Dr+ (%p)=Zispizp ar+( + Lp+ 1), xp € V.

Proof: It is similar as in theorem 1 of (Broumi et al., 2017b).

Theorem 2. Let M{;t be matrix representation of I*- BCNG1, thenthe degree of vertex
D+ (xy) =Xiepjer @+ (k + 1, j + 1),x, € Voor

D1+(xp) :Z?=l,i¢p a1+(i + J,p + 1), xp e V.

Proof: It is similar as in theorem 1 of (Broumi et al., 2017b).

260



Florentin Smarandache (author and editor) Collected Papers, XIV

Theorem 3. Let Mg: be matrix representation of F*- BCNGI, then the degree of vertex

D+ (1) =521 jexr+(k + 1,j + 1),x, € Vor
Dp+(xp) =Xicpizp ap+(i+ Lp + 1), x, EV.

Proof: It is similar as in theorem 1 of (Broumi et al., 2017b)

Theorem 4. Let ng_ be matrix representation of T~- BCNG], then the degree of vertex
Dp-(x,) =i iwpar-(+ 1,p+ 1), x, EV.

Proof: It is similar as in theorem 1 of (Broumi et al., 2017b).

Theorem S. Let M{;: be matrix representation of /~- BCNGI, then the degree of vertex
Dp-(x) =X jerc M-k + Lj+ D,x, € Vor

Dp-(xp) =Xi=pizp -+ Lp+ 1), xp €V,

Proof: It is similar as in theorem 1 of (Broumi et al., 2017b).

Theorem 6. Let Mf 1_ be matrix representation of F~- BCNG1, then the degree of vertex
Dg-(xy) :Z;;],j#( ap-(k+ 1,j+ 1),x € Vor
Proof: It is similar as in theorem 1 of (Broumi et al., 2017b)

5. CONCLUSION

In this article, we have extended the concept of complex neutrosophic graph of type 1 (CNG1) to
bipolar complex neutrosophic graph of type 1(BCNGI) and presented a matrix representation of
it. The concept of BCNGI is a generalization of Generalized fuzzy graph of type 1 (GFGI),
generalized bipolar neutrosophic graph of type 1 (GBNGI), generalized single valued
neutrosophic graph of type 1 (GSVNG1) and complex neutrosophic graph of type 1(CNG1). This
concept can be applied to the case of tri-polar neutrosophic graphs and multi-polar neutrosophic
graphs. In the future works, we plan to study the concept of completeness, the concept of regularity
and to define the concept of bipolar complex neutrosophic graphs of type 2.
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and Its Application in BCK/BCI-Algebras
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of Neutrosophic Sets and Its Application in BCK/BCI-Algebras. In New Trends in Neutrosophic
Theory and Applications, vol. 11, eds.: Florentin Smarandache, Surapati Pramanik, 308-326

ABSTRACT

Generalized neutrosophic set is introduced, and applied it to BCK/BC1I-algebras. The notions
of generalized neutrosophic subalgebras and generalized neutrosophic ideals in BCK/BCI-
algebras are introduced, and related properties are investigated. Characterizations of
generalized neu-trosophic subalgebra/ideal are considered. Relation between generalized
neutrosophic subalgebra and generalized neutrosophic ideal is discussed. In a BCK -algebra,
conditions for a generalized neutrosophic subalgebra to be a generalized neutrosophic ideal are
provided. Conditions for a gen-eralized neutrosophic set to be a generalized neutrosophic ideal
are also provided. Homomorphic image and preimage of generalized neutrosophic ideal are

considered.

KEYWORDS: Generalized neutrosophic set, generalized neutrosophic subalgebra, generalized
neutrosophic ideal.

1 Introduction

Zadeh (1965) introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set. As
a generalization of fuzzy sets, Atanassov (1986) introduced the degree of nonmember-ship/
falsehood (f) in 1986 and defined the intuitionistic fuzzy set. Smarandache introduced the degree
of indeterminacy/neutrality (i) as independent component in 1995 (published in 1998) and
defined the neutrosophic set on three components

(t, i, f) = (truth, indeterminacy, falsehood).
For more detail, refer to the site

http://fs.gallup.unm.edu/FlorentinSmarandache.htm.
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The concept of neutrosophic set (NS) developed by Smarandache (1999) and Smarandache
(2005) is a more general platform which extends the concepts of the classic set and fuzzy set,
intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. Neutrosophic set theory is
applied to various part (refer to the site http://fs.gallup.unm.edu/neutrosophy.htm). Agboola
and Davvaz (2015) introduced the concept of neutrosophic BCI/BC K-algebras, and presented
elementary properties of neutrosophic BC'I/BC K-algebras. Saeid and Jun (2017) gave relations
between an (€, € V g)-neutrosophic subalgebra and a (g, € V ¢)-neutrosophic subalgebra, and
discussed characterization of an (€, € V g)-neutrosophic subalgebra by using neutrosophic €-
subsets. They provided conditions for an (€, €V g)-neutrosophic subalgebra to be a (g, €V q)-
neutrosophic subalgebra, and investigated properties on neutrosophic g-subsets and neutrosophic
€V g-subsets. Jun (2017) considered neutrosophic subalgebras of several types in BCK/BCI-
algebras.

In this paper, we consider a generalization of Smarandache’s neutrosophic sets. We in-
troduce the notion of generalized neutrosophic sets and apply it to BCK/BCI-algebras. We
introduce the notions of generalized neutrosophic subalgebras and generalized neutrosophic ide-
als in BCK/BCI-algebras, and investigate related properties. We consider characterizations of
generalized neutrosophic subalgebra/ideal, and discussed relation between generalized neutro-
sophic subalgebra and generalized neutrosophic ideal. We provide conditions for a generalized
neutrosophic subalgebra to be a generalized neutrosophic ideal in a BC K-algebra. We also
provide conditions for a generalized neutrosophic set to be a generalized neutrosophic ideal, and
consider homomorphic image and preimage of generalized neutrosophic ideal.

2 PRELIMINARIES

By a BCI-algebra we mean an algebra (X, x,0) of type (2,0) satisfying the conditions:
(al) ((zxy)* (zx2))* (zxy) =0,
(a2) (zx (zxy))xy=0,
(a3) z*xxz =0,
(ad) zxy=y*xx=0 = =y,
for all x,y,z € X. If a BC'I-algebra X satisfies the condition
(ab) 0z =0 for all z € X
then we say that X is a BCK -algebra. A partial ordering “<” on X is defined by
Ve,ye X)(z <y < zxy=0).
In a BCK/BC1I-algebra X, the following properties are satisfied:

Ve e X)(zx0=2x), (2.1)
(Vo,y,z € X) (z*xy)x 2= (T x2)*y). (2.2)
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A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x xy € S for
all z,y € S. A nonempty subset I of a BCK/BCI-algebra X is called an ideal of X if

0el, (2.3)
Ve,ye X)(zxyel, yel = xz€l).

We refer the reader to the books (Meng & Jun, 1994) and(Huang, 2006) for further infor-
mation regarding BC'K/BCI-algebras.
For any family {a; | i € A} of real numbers, we define

, max{a; |7 € A} if A is finite,
i A} =
\/{a i€ A} { sup{a; | i € A}  otherwise.

, min{a; | i € A} if A is finite,
| ie A} =
/\{az e A { inf{a; | i € A}  otherwise.

If A ={1,2}, we will also use a1 V az and aj A ag instead of \/{a; | i € A} and A{a; | i € A},
respectively.

By a fuzzy set in a nonempty set X we mean a function p: X — [0, 1], and the complement
of p, denoted by u, is the fuzzy set in X given by pu¢(z) =1 — p(z) for all x € X. A fuzzy set
win a BCK/BCI-algebra X is called a fuzzy subalgebra of X if p(z xy) > u(x) A p(y) for all
x,y € X. A fuzzy set p in a BCK/BCI-algebra X is called a fuzzy ideal of X if

(Vz € X)(u(0) > p(x)), (2.5)
(V,y € X)(u(x) > plz xy) A p(y))- (2.6)

Let X be a non-empty set. A neutrosophic set (NS) in X (Smarandache, 1999) is a structure
of the form:

A= {{z; Ar(z), Ar(z), Ap(x)) | x € X}

where Ap : X — [0,1] is a truth membership function, A7 : X — [0,1] is an indeterminate
membership function, and Ar : X — [0,1] is a false membership function. For the sake of
simplicity, we shall use the symbol A = (Ar, Ay, Ar) for the neutrosophic set

A= {{z; Ar(z), Ar(z), Ap(x)) | x € X}.

3 GENERALIZED NEUTROSOPHIC SETS

Definition 3.1. A generalized neutrosophic set (GNS) in a non-empty set X is a structure of
the form:

A= {(z; Ar(2), Arr(2), Arr(z), Ap(2)) | @ € X, Arr(z) + Arp(z) < 1}
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where Ap : X — [0,1] is a truth membership function, Ap : X — [0,1] is a false membership
function, Arr : X — [0,1] is an indeterminate membership function which is familiar with truth
membership function, and Arp : X — [0, 1] is an indeterminate membership function which is
familiar with false membership function.

Example 3.2. Let X = {a,b,c} be a set. Then

A = {{a;0.4,0.6,0.3,0.7), (b;0.6,0.2,0.5,0.7), (; 0.1,0.3,0.5,0.6))}
is a GNS in X. But

B ={(a;0.4,0.6,0.3,0.7), (b;0.6,0.3,0.9,0.7), (¢;0.1,0.3,0.5,0.6)) }
is not a GNS in X since Brr(b) + Brp(b) =0.34+0.9 =12 > 1.

For the sake of simplicity, we shall use the symbol A = (A, A;p, Arp, Ap) for the generalized
neutrosophic set

A= {{z;Ar(z), Arr(x), Arp(2), Ap(z)) | z € X, Arr(z) + Arp(z) < 1}.
Note that every GNS A = (Ap, Ajr, Arp, Ap) in X satisfies the condition:
(Vo € X) (0 < Ar(z) + Arr(z) + Arp(z) + Ap(z) < 3).

If A= (AT, A]T, A]F, AF) is a GNS in X, then (JA = (AT, A[T, A?T’ A%) and OA = (ACF,
A, Arp, Ap) are also GNSs in X.

Example 3.3. Given a set X = {0,1,2,3,4}, we know that

A = {{0;0.4,0.6,0.3,0.7), (1;0.6,0.2,0.5,0.7), (2:0.1,0.3,0.5, 0.6),
(3;0.9,0.1,0.8,0.6), (4;0.3,0.6,0.2,0.9)}

is a GNS in X. Then

04 = {(0;0.4,0.6,0.4,0.6), (1;0.6,0.2,0.8,0.4), (2; 0.1,0.3,0.7,0.9),
(3;0.9,0.1,0.9,0.1), (4;0.3,0.6,0.4,0.7)}

and

OA = {(0;0.3,0.7,0.3,0.7), (1;0.3,0.5,0.5,0.7), (2; 0.4, 0.5, 0.5, 0.6),
(3;0.4,0.2,0.8,0.6), (4;0.1,0.8,0.2,0.9)}

are GNSs in X.
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4 APPLICATIONS IN BCK/BCI-ALGEBRAS

In what follows, let X denote a BC'K/BCI-algebra unless otherwise specified.

Definition 4.1. A GNS A = (Ap, Arp, Arp, Ap) in X is called a generalized neutrosophic
subalgebra of X if the following conditions are valid.

Ar(z xy) 2 Ar(z) A Ar(y)
(V. € X) Arr(z*y) > Arr(x) AN Arr(y) (4.1)
’ Arp(zxy) < Arp(z) V Are(y) | .

Ap(zxy) < Ap(x) V Ar(y)

Example 4.2. Consider a BCK-algebra X = {0, 1,2,3} with the Cayley table which is given
in Table 1.

Wy

Table 1: Cayley table for the binary operation “x

W N = O *
W N = OO
W = O O
w O O O
SN = Ol Ww

Then the GNS

A = {(0;0.6,0.7,0.2,0.3), (1;0.6, 0.6,0.3,0.3),
(2:0.4,0.5,0.4,0.7), (3;0.6,0.3,0.6,0.5)}

in X is a generalized neutrosophic subalgebra of X.

Given a GNS A = (Ap, A, Arp, Ap) in X and ap, arp, Br, Brr € [0,1], consider the
following sets.

U
U
L
L

T,ar) :={x € X | Ap(x) > ar},
IT,air) :={x € X | Arr(z) > arr},
F,Br) :={z € X | Ap(z) < Br},
IF, Brp):={zx € X | Arr(z) < Brr}.

(
(
(
(
Theorem 4.3. If a GNS A = (Ar, Arr, Arr, AF) is a generalized neutrosophic subalgebra of

X, then the set U(T, ar), UUT, arr), L(F, Br) and L(IF, Brr) are subalgebras of X for all ar,
arr, Br, Bir € [0,1] whenever they are non-empty.
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Proof. Assume that U(T,ar), U(IT, arr), L(F,Br) and L(IF,Srr) are nonempty for all arp,
arr, Br, Brr € [0,1]. Let z,y € X. If 2,y € U(T, ar), then Ap(z) > ar and Ar(y) > ap. It
follows that

Ar(z xy) > Ar(z) AN Ar(y) > ar

and so that x xy € U(T,ar). Hence U(T,ar) is a subalgebra of X. Similarly, if z,y €
U(IT,arr), then x xy € U(IT, ayr), that is, U(IT, ayr) is a subalgebra of X. Suppose that
x,y € L(F,Br). Then Ap(xz) < fr and Ap(y) < Br, which imply that

Ap(rxy) < Ap(z) V Ar(y) < BF,

that is, x x y € L(F,Br). Hence L(F,[F) is a subalgebra of X. Similarly we can verify that
L(IF, Brr) is a subalgebra of X. O]

Corollary 4.4. If a GNS A = (Ar, Arr, Arp, Ar) is a generalized neutrosophic subalgebra of
X, then the set

A(ar, arr, Br, Brr) :={z € X | Ar(x) > ar, Arr(z) > arr, Ar(z) < Br, Arr(x) < Brr}
is a subalgebra of X for all ar, arr, Br, Brr € [0,1].
Proof. Straightforward. O

Theorem 4.5. Let A = (Ap, Arr, Arp, Ar) be a GNS in X such that U(T,ar), U(IT, ar),
L(F,Br) and L(IF,Brr) are subalgebras of X for all ar, arr, Br, Brr € [0, 1] whenever they
are non-empty. Then A = (A, Arr, Arp, Ar) is a generalized neutrosophic subalgebra of X.

Proof. Assume that U(T, ar), U(IT, arr), L(F, fr) and L(IF, Brr) are subalgebras for all ar,
arr, Br, Brr € [0,1]. If there exist x,y € X such that

Ar(z xy) < Ar(z) A Ar(y),

then z,y € U(T,ty) and x xy ¢ U(T,t,) for to = Ap(z) A Ar(y). This is a contradiction, and
SO

Ar(z xy) > Ar(z) A Ar(y)

for all z,y € X. Similarly, we can prove

Arr(z xy) > Arr(z) A Arr(y)

for all z,y € X. Suppose that

Arp(z*xy) > Arp(z) V Arr(y)
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for some x,y € X. Then there exists fg € [0,1) such that

Arp(zxy) > fg > Arr(z) V Arr(y),

which induces a contradiction since z,y € L(IF, fg) and x *y ¢ L(IF, fg). Thus

Arp(zxy) < Arp(z) V Are(y)

for all x,y € X. Similar way shows that

Ap(z*xy) < Ap(z) V Ar(y)

for all z,y € X. Therefore A = (Ap, Arp, Arp, Ap) is a generalized neutrosophic subalgebra of
X. d

Since [0, 1] is a completely distributive lattice under the usual ordering, we have the following
theorem.

Theorem 4.6. The family of generalized neutrosophic subalgebras of X forms a complete dis-
tributive lattice under the inclusion.

Proposition 4.7. Every generalized neutrosophic subalgebra A = (Ap, Arp, Arp, Ap) of X
satisfies the following assertions:

(1) (Vo € X) (A7(0) > Ar(z), Arr(0) > Arr(z)),
(2) (VreX) (Arp(0) < Ajp(z), Ap(0) < Ap(z)).
Proof. Since x x x = 0 for all x € X, it is straightforward. O

Theorem 4.8. Let A = (Ap, Arr, Arp, Ap) be a GNS in X. If there exists a sequence {a,}
i X such that li_>m Ar(ap) =1 = li_}m Arr(ay) and li_}m Ap(an) = 0 = 1i_>m Arr(ay), then
Ar(0) =1= Arr(0) and Ap(0) =0 = Arp(0).

Proof. Using Proposition 4.7, we know that Ap(0) > Ar(an), Arr(0) > Arr(an), Arp(0) <

Arr(ay) and Ap(0) < Ap(ay,) for every positive integer n. It follows that
1> Ap(0) > nh_{{.loAT@n) =1,
1> A (0) > JLH;oAIT(an) =1,
0<Arp(0) < nlLI)gOAIF(an) =0,

0<Ap(0) < 1i_>m Ap(ay,) =0.

Thus AT(O) =1= A[T(O) and AF(O) =0= A[F(O) L]
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Proposition 4.9. If every GNS A = (Ar, Arr, Arr, Ar) in X satisfies:

(Va.y € X) ( Ap(xzxy) > Ar(y), Arr(x*xy) > Arr(y) > |

Arp(rxy) < Arr(y), Ar(z*y) < Ap(y)
then A = (Ar, Arr, Arp, Ar) is constant on X.

Proof. Using (2.1) and (4.2), we have Ap(x) = Ap(ax0) > Ap(0), Arp(x) = App(2x0) > Arp(0),
Arp(x) = Arp(z % 0) < Arp(0), and Ap(z) = Ap(z % 0) < Ap(0). It follows from Proposition
4.7 that AT($) = AT(O), A]T(x) = A]T(O), A]F(a?) = A[F(O) and AF(:E) = AF(O) forallz € X.
Hence A = (Ap, Arp, Arp, Ap) is constant on X. O

A mapping f: X — Y of BCK/BCI-algebras is called a homomorphism (?7) if f(x *xy) =
f(z) * f(y) for all x,y € X. Note that if f: X — Y is a homomorphism, then f(0) = 0. Let
f X — Y be a homomorphism of BCK/BCI-algebras. For any GNS A = (Ap, Arr, Arr,
Ar) in Y, we define a new GNS A/ = (Aéi, A{T, A{F, A?) in X, which is called the induced
GNS, by

Al () = Ap(f(2)), Alp(z) = Arr(f(2)) ) | @3
Afp(@) = Arp(f(2)), Ap(z) = Ap(f(2))

Theorem 4.10. Let f : X — Y be a homomorphism of BCK/BCI-algebras. If a GNS A =
(Ap, Arr, Arp, Ap) in'Y is a generalized neutrosophic subalgebra of Y, then the induced GNS

Al = (ACJ;, A{T, A;F, AQ) i X is a generalized neutrosophic subalgebra of X .

(V;UEX)(

Proof. For any =,y € X, we have

Al (zxy) = Ar(f(z *y)) = Ap(f(2) * f(y))
> Ar(f(2)) A Ar(f(y)) = A

N
&
>
N
N
S

Al xy) = Arr(f(z + ) = Arr(f(2) = f(y))
> Arr(f(2)) A Arr(f(y)) = Alp(z) A Al (),

Al (@ xy) = Arp(f(z ) = Are(f(2) * f(y))
< Arr(f(2)) V Arp(f(y) = Al p(2) v AT (y),

and
Af(xxy) = Ap(f(x xy)) = Ar(f(2) * f(y))
< Ap(f(@)) V Ar(f(y) = Af(2) V AL(y).
Therefore A7 = (A;, A{T, A{ 7 A;) is a generalized neutrosophic subalgebra of X. O
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Theorem 4.11. Let f : X — Y be an onto homomorphism of BCK/BCI-algebras and let

A = (Ar, Ar, Arp, Ap) be a GNS in Y. If the induced GNS Af = (Al Al AT, AL) in

X is a generalized neutrosophic subalgebra of X, then A = (A, Arr, Arr, Ar) is a generalized
neutrosophic subalgebra of Y .

Proof. Let z,y € Y. Then f(a) =z and f(b) =y for some a,b € X. Then

Ar(z *y) = Ar(f(a) = f(b)) = Ap(f(a* b)) = Af(a* )
> Al (a) A AL(b) = Ar(f(a)) A Ar(f(b))
= Ap(x) AN Ar(y),

Arr(z +y) = Arp(f(a) = f(b)) = Arr(f(a b)) = Afp(a*b)
> Al (a) A ATL(D) = Arr(f(a)) A Arr(£(B))
= Arr(x) AN Arr(y),

Arp(z*y) = Arp(f(a) * f(b)) = Arp(f(a*b)) = A p(ab)
< Afp(a) v AT (0) = Arp(f(a) V Arp(f(B))
(

= Arr(z) V Arr(y),
and
Ap(z+y) = Ap(f(a) * (b)) = Ap(f(a*b)) = Af(a*b)
< Af(a) v AL(®) = Ap(f(a)) V Ap(f (b))
= Ap(z) V Ap(y).
Hence A = (Ap, Arr, Arr, Ar) is a generalized neutrosophic subalgebra of Y. O

Definition 4.12. A GNS A = (Ap, A7, Arr, Ar) in X is called a generalized neutrosophic
ideal of X if the following conditions are valid.

(v € X) ( Ar(0) > Ar(z), Arr(0) > Arr(z) ) 7 (4.4)
Arr(0) < Arp(z), Ap(0) < Ap(z)
Ar(z) > Ap(z *y) A Ar(y)
(Vg € X) Arr(z) > Arr(z < y) AN Arr(y) (4.5)

Arp(z) < Arp(zxy) V Arr(y)
Ap(z) < Ap(z*y) V Ar(y)

Example 4.13. Consider a BC' K-algebra X = {0, 1,2, 3} with the Cayley table which is given
in Table 2.
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Wy

Table 2: Cayley table for the binary operation “x

* 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 3 4 1 0

Let

A = {{0;0.8,0.7,0.2,0.1), (1;0.3,0.6,0.2,0.6), (2;0.8,0.4, 0.5, 0.3),
(3;0.3,0.2,0.7,0.8), (4;0.3,0.2,0.7,0.8) }.

be a GNS in X. By routine calculations, we know that A is a generalized neutrosophic ideal of
X.

Lemma 4.14. Every generalized neutrosophic ideal A = (Ar, Arr, Arr, Ar) of X satisfies:

Ar(z) > Ar(y), Arr(z) > Arr(y) )
Arp(z) < Arp(y), Ar(z) < Ap(y) )

Proof. Let z,y € X be such that x <y. Then x xy = 0, and so

(Vm,yeX)(xgy :>{ (4.6)

Ar(z) > Ar(z *y) N Ar(y) = Ar(0) A Ar(y) = Ar(y),
(x) = Arr(z *y) AN Arr(y) Arr(0) A Arr(y) = Arr(y),
Arp(z) < Arp(z xy) vV Arp(y)Arr(0) V Are(y) = Arr(y),
< Ap(zxy)V Ar(y)Ar(0) V Ar(y) = Ar(y).

This completes the proof. ]

Lemma 4.15. Let A = (Ap, Arr, Arr, Ar) be a generalized neutrosophic ideal of X. If the
inequality x xy < z holds in X, then Ar(x) > Ar(y) N Ar(2), Arr(z) > Arr(y) A Arr(z),
AIF(LIZ') < A[F(y) vV A[F(Z) and AF(.T) < Ap(y) \Y AF(Z)

Proof. Let x,y,z € X be such that z xy < z, Then (z *y) * z =0, and so
Ar(z) > \{Ar(z ), Ar(y)}
> A{A\Ar((@«y) 2), Ar()}, Ar(y) }

_/\{/\{AT z)}, Ar(y )}
:/\{AT y), Ar(2)},
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Arr() = N{Arr(z +y), Arr(y)}
> /\{/\{AIT ((zxy) *z), Arp(z )}7AIT(y)}

= A\ {/\{AIT ), Arr( )},AIT(?/)}
= N\{Ar(v), Air(2)},

Arp(x) < \/{Arp(z xy), Arp(y)}
<V {V{Ar (@ y) <), Ap(2)} Arr(y)}

—\/{\/{AIF ), Arp( )},Afp(y)}
_\/{AIF ), Arp(2)},

and
Ap(x) < \/{Ap(@ +y), Ap(y)}
<\/ {\/{AF«m ry)+ z>,AF<z>},AF<y>}
=\/ {\/{AF 2)}, Arly )}
= \/{4r(y), Ar(2)}.
This completes the proof. O

Proposition 4.16. Let A = (Ap, Arp, Arp, Ar) be a generalized neutrosophic ideal of X. If
the inequality

(- ((xxay)xag)*--)xap, =0
holds in X, then
Ar(z) > N{Ar(ai) |i=1,2,--- ,n},
Arr(z) = N{Arr(ai) |i=1,2,-- ,n},
Arp(z <\/{A1F a;) |i=1,2,--- ,n},
Ap(x <\/{AFa,|z—12 ,n}.
Proof. 1t is straightforward by using induction on n and Lemmas 4.14 and 4.15. O

Theorem 4.17. In a BCK-algebra X, every generalized neutrosophic ideal is a generalized

neutrosophic subalgebra.

274



Florentin Smarandache (author and editor) Collected Papers, XIV

Proof. Let A = (Ap, Arr, Arr, Ar) be a generalized neutrosophic ideal of a BCK-algebra
X. Since zxy < x for all z,y € X, we have Ap(x xy) > Ar(x), Arr(x *y) > Arr(z),
Arp(x xy) < Arp(z) and Ap(x xy) < Ap(x) by Lemma 4.14. It follows from (4.5) that

Ar(z xy) > Ap(x) > Ar(z * y) N Ar(y) > Ar(z) A Ar(y),
Arr(z*y) > Arr(z) > Arr(z *y) A Arr(y) > Arr(o) A Arr(y),

Arp(zxy) < Arp(z) < Arp(z*y) vV Arp(y) < Arp(z) V Are(y),
and
Ap(xxy) < Ap(z) < Ap(zxy)V Ap(y) < Ap(z) V Ap(y).
Therefore A = (Ap, Arr, Arr, Ar) is a generalized neutrosophic subalgebra of X. O

The converse of Theorem 4.17 is not true. For example, the generalized neutrosophic subal-
gebra A in Example 4.2 is not a generalized neutrosophic ideal of X since

AT(Q) =04 z 0.6 = AT(2 * 1) VAN AT(l)
and /or

We give a condition for a generalized neutrosophic subalgebra to be a generalized neutro-
sophic ideal.

Theorem 4.18. Let A = (Ar, Arr, Arr, Ar) be a generalized neutrosophic subalgebra of X

such that
Ar(z) > Ar(y) A Ar(2),
Arr(x) > Arr(y) N Arr(2),
Arp(z) < Arp(y) V Arr(2),

Ap(z) < Ap(y) V Ar(2)

for all z,y,z € X satisfying the inequality x xy < z. Then A = (Ap, Arp, Arp, Ap) is a
generalized neutrosophic ideal of X.

Proof. Recall that Ap(0) > Ap(z), Arp(0) > App(x), Arp(0) < Arp(x) and Ap(0) < Ap(x) for
all x € X by Proposition 4.7. Let z,y € X. Since z * (z *xy) < y, it follows from the hypothesis

that
Ar(z) = Ap(z +y) A Ar(y),
Arr(x) = Arr(z *y) A Arr(y),
Arr(z) < Arp(z*y) V Arr(y),
Ap(z) < Ap(z*xy)V Ap(y).
Hence A = (Ar, Arr, Arr, Ar) is a generalized neutrosophic ideal of X. O
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Theorem 4.19. A GNS A = (Ap, Arp, Arr, Ar) in X is a generalized neutrosophic ideal of
X if and only if the fuzzy sets Ar, Arr, Ajp and A% are fuzzy ideals of X.

Proof. Assume that A = (Ap, Arp, Arp, Ap) is a generalized neutrosophic ideal of X. Clearly,
A7 and Ajr are fuzzy ideals of X. For every x,y € X, we have

1r(0)=1-A1r(0) > 1 - Arp(z) = Ajp(2),
A%(0) =1—Ap(0) > 1— Ap(z) = A% (x),

tr(x) =1—Arp(x) 21— Arp(zxy) vV Arr(y)
= N\{1 — Arp(z xy),1 — Arp(y)}
= N\ {A7r( *y), Afp(y)}
and
Ap(z) =1-Ap(z) 21— Ap(z*y) vV Ar(y)
= N1 —Ap@@*y),1 - Ar@y)}
= N\{A%(z *y), AR (y)}.

Therefore A, Arr, Afp and A% are fuzzy ideals of X.
Conversely, let A = (Ar, Arr, Arp, Ar) be a GNS in X for which Ap, Arp, A and A
are fuzzy ideals of X. For every x € X, we have Ar(0) > Ar(x), Arr(0) > Arr(z),

1—A;r(0) = A75(0) > Afp(x) =1 — Arp(x), that is, Arp(0) < Arp(x)
and
1—Ap(0) = A%(0) > A%(z) =1 — Ap(x), that is, Ap(0) < Ap(z).
Let z,y € X. Then

Ar(z) > Ar(z *y) A Ar(y),
Arr(z) > Arr(z *y) A Arr(y),

L~ Arp(z) = Ajp(2) 2 Afp(z + y) A Afp(y)
= /\{1 —Arp(x*xy),1 — AIF(y)}
=1-\/{Ar(z*y), Arr(y)}.
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and
1— Ap(z) = A5 (z) > A% (z % y) A AG(y)
- /\{1 —Ap(zxy),1 — Ar(y)}
=1 \/{AF($ * y);AF(y)}v

that is, Arp(x) < Arp(zxy) vV Arp(y) and Ap(z) < Ap(x*y) V Ap(y). Hence A = (Ar, Arr,
Arp, Ap) is a generalized neutrosophic ideal of X. O

Theorem 4.20. If a GNS A = (A, Arp, Arp, Ap) in X is a generalized neutrosophic ideal of
X, then OA = (Ar, Arr, Afp, AT) and OA = (Ap, A%, Ap, Arr) are generalized neutrosophic
ideals of X.

Proof. Assume that A = (Ap, Arr, Arp, Ap) is a generalized neutrosophic ideal of X and let
z,y € X. Note that OA = (Ap, Arr, Ay, A7) and OA = (AS,, A%, Ap, Arp) are GNSs in X.
Let z,y € X. Then
Afp(zry) =1— Amp(zxy) <1— N{Amr(2), Arr(y)}
= V{1 = Arr(2), 1 - Arr(y)}
= \/{AIT ATr(y) }s

Ap(z*xy) =1—Ar(zr*y) <1-— /\{AT@U%AT(?J)}
=Vﬂ—ATx1—Aﬂw}
_ \/{AC c }

Afp(zry) =1— Arp(zxy) > 1 - \/{Ar(2), Arr(y)}
= \{1 - Arp(2),1 - Arp(y)}
= /\{AIF Afp(y)}

and
A(ay) = 1— Ap(a+y) = 1 — \/{Ar(@), Ar(y)}
=AﬂfAFx1fAmw}
_ /\{Ac c }

Therefore OA = (Ar, Arr, Afp, AT) and QA = (ASp, A%, Ap, Arp) are generalized neutro-
sophic ideals of X. O
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Theorem 4.21. If a GNS A = (Ar, Arr, Arr, Ar) is a generalized neutrosophic ideal of X,
then the set U(T,ar), UIT,arr), L(F,Br) and L(IF,Brr) are ideals of X for all ar, arr,
Br, Brr € [0,1] whenever they are non-empty.

Proof. Assume that U(T,ar), U(IT,arr), L(F,Br) and L(IF,B;r) are nonempty for all ar,
arr, Br, Brr € [0,1]. It is clear that 0 € U(T,ar), 0 € U(UIT,arr), 0 € L(F,5Fr) and 0 €
L(IF,Brr). Let z,y € X. f xxy € U(T,ar) and y € U(T,ar), then Ar(x *xy) > ar and
Ar(y) > ap. Hence

Ar(z) > Ar(z *y) A Ar(y) > ar,

and so z € U(T, ar). Similarly, if exy € U(IT,ar) and y € U(IT,ar), then z € U(IT, ar). If
xxy € L(F,Br) and y € L(F, Br), then Ap(z *y) < Br and Ap(y) < Br. Hence

Arp(z) < Ap(zxy) vV Ar(y) < Br,

and so x € L(F,Bp). Similarly, if x xy € L(IF,Brr) and y € L(IF, B;r), then € L(IF, BF).
This completes the proof. ]

Theorem 4.22. Let A = (Ar, Arr, Arr, Ar) be a GNS in X such that U(T,ar), UIT, arr),
L(F,Br) and L(IF, Brr) are ideals of X for all ar, ayr, Br, Brr € [0,1]. Then A = (A, Arr,
Arr, Ar) is a generalized neutrosophic ideal of X .

Proof. Let ar, arr, Br, Brr € [0,1] be such that U(T, ar), U(IT, arr), L(F, Br) and L(IF, BrF)
are ideals of X. For any x € X, let Ap(z) = ap, Arr(z) = arr, Arp(x) = Brr and Ap(z) = Sr.
Since 0 € U(T,ar), 0 € U(IT,ayr), 0 € L(F,BFr) and 0 € L(IF, frr), we have A7(0) > ar =
AT(QJ), A[T(O) > oy = A[T(a}), A[F(O) < ﬁ[F = A[F(x) and AF(O) < ﬁF = AF({L') If there
exist a,b € X such that Ap(a *b) < Ar(a) A Ar(b), then a,b € U(T, ap) and axb ¢ U(T, )
where o := Ar(a) A Ar(b). This is a contradiction, and hence Ar(x *y) > Ap(z) A Ar(y) for
all z,y € X. Similarly, we can verify Arp(z xy) > Arp(z) A Arp(y) for all z,y € X. Suppose
that A[F(a * b) > A[F(a) V A[F(b) for some a,b € X. Taking 8y := A[F(a) vV A[F(b) induces
a,b € L(IF,Brr) and a*xb ¢ L(IF, rF), a contradiction. Thus Arp(x *xy) < Arp(x) V Arp(y)
for all z,y € X. Similarly we have Ap(x xy) < Ap(x) V Ap(y) for all z,y € X. Consequently,
A= (Ap, Arr, Arp, Ar) is a generalized neutrosophic ideal of X. O

Let A be a nonempty subset of [0, 1].
Theorem 4.23. Let {I; | t € A} be a collection of ideals of X such that

(1) X= UL,
teA

(2) (Vs,teN) (s>t <= I, CL).
Let A = (Ar, Arr, Arr, Ar) be a GNS in X given as follows:
Ap(z) =V{t e M|z € It} = Ar(z)
App(e) = Mt € A |2 € I} = Ap(a) ) /
Then A = (Ar, Arr, Arr, Ar) is a generalized neutrosophic ideal of X .

(VméX)(
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Proof. According to Theorem 4.22, it is sufficient to show that U(T,t), U(IT,t), L(F,s) and
L(IF,s) are ideals of X for every ¢t € [0, A7(0) = A;r(0)] and s € [A;r(0) = Ap(0),1]. In order
to prove U(T,t) and U(IT,t) are ideals of X, we consider two cases:

(i) t=V{geA|qg<t}
(i) t #V{g e Al g <t}

For the first case, we have

v eU(T,t) <= (Vg <t)(wel,) <z e (I,
q<t

e U(IT,t) <= (Vg < t)(x € I,) <=z € (I,
q<t

Hence U(T,t) = (1, = U(IT,t), and so U(T,t) and U(IT,t) are ideals of X. For the second
q<t
case, we claim that U(T,t) = JI, = U(IT,t). If z € |J1,, then z € I, for some ¢ > t. It
9=t q>t
follows that Ayp(z) = Ap(x) > g > t and so that € U(T,t) and x € U(IT,t). This shows

that (J1I, CU(T,t) = U(IT,t). Now, assume that = ¢ |JI;,. Then = ¢ I, for all ¢ > ¢. Since
q=>t q>t

t # \/{qg € A | ¢ < t}, there exists ¢ > 0 such that (t —e,£) " A = (. Hence = ¢ I, for all
q > t — ¢, which means that if z € I, then ¢ <t —e. Thus Ajp(z) = Ap(z) <t —¢e < t,
and so z ¢ U(T,t) = U(IT,t). Therefore U(T,t) = U(IT,t) C |JI,;. Consequently, U(T,t) =

g>t

U(IT,t) = | I, which is an ideal of X. Next we show that L(F,s) and L(IF,s) are ideals of
q>t
X. We consider two cases as follows:

(iii) s=A{reA|s<r},
(iv) s#N{reA|s<r}.

Case (iii) implies that

v € L(IF,s) <= (Vs<r)(w € L) <=z € (I,
s<r

reU(F,s) <= (Vs<r)(zel,)<=z¢c ﬂIr.
s<r

It follows that L(IF,s) = L(F,s) = () I, which is an ideal of X. Case (iv) induces (s, s+&)NA =
() for some ¢ > 0. If x € | I, thei1<; € I, for some r < s, and so Arp(z) = Ap(x) < r <s,
that is, € L(IF,s) ands?e L(F,s). Hence I, C L(IF,s) = L(F,s). If x ¢ |J I, then
x ¢ I, for all » < s which implies that z ¢S%T: for all r < s + ¢, that is, if xsér I, then
r > s+e¢e. Hence Ajp(z) = Ap(z) > s+¢€ > s, and so « ¢ L(Arp,s) = L(Ap,s). Hence

L(Arp,s) = L(Ap,s) = |J I, which is an ideal of X. This completes the proof. O

s>r
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Theorem 4.24. Let f : X — Y be a homomorphism of BCK/BCI-algebras. If a GNS A =
(A, Arr, Arp, Ap) inY is a generalized neutrosophic ideal of Y, then the new GNS Af = (Ag,
A;T, A}CF, Aé) in X is a generalized neutrosophic ideal of X .

Proof. We first have

for all x € X. Let x,y € X. Then

AL (2) = Ar(f(2) > Ar(f(x) * F(1) A Ar(F(y))
= Ar(f(z*y)) A Ar(f(y))
= Ah(z % y) A AL (y),

Alp(x) = Air(f(2)) = Arr(f(@) * f()) A Arr(f(y))
= Arr(f(z*y) NArr(f(y))
= A{T(l‘ * y) A A{T(y)a

Al p(2) = Arp(f(2) < Arp(f(2) * F(y)) V Are(f(y))
=Arr(f(zxy)) vV Ar(f(y))
= A_J;F (x * y) \% A‘]ICF (y)

and
Al(z) = Ap(f(2) < Ap(f(2) « [) V Ap(f())
= Ap(f(zxy)) VvV Ar(f(y))
— Al (zxy) vV AL(y).
Therefore Af = (A%, A{T, A}c I A{,) in X is a generalized neutrosophic ideal of X. O

Theorem 4.25. Let f : X — Y be an onto homomorphism of BCK/BCI-algebras and let
A = (Ap, Arr, Arp, Ap) be a GNS in Y. If the induced GNS A = (A, AT, AT Al)
in X is a generalized neutrosophic ideal of X, then A = (Ap, Arr, Arp, Ar) is a generalized

neutrosophic ideal of Y .
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Proof. For any = € Y, there exists a € X such that f(a) = z. Then

Ar(0) = A(£(0)) = AJ(0) > Af(a) = Ar(f(a)) = Ar(z),
F(0) = AJ(0) > Al (a) = A1T< () = Arr(z),
(0)) = AJ(0) < Afp(a) = Arp(f(a)) = Arp(2),

Ap(0) = Ap(£(0)) = AL(0) < Al(a) = Ap(f(a)) = Ap(a).

flax b)) N Ar(f (b))
fla)* f(0)) N Ar(f(b))

Arr(z) = Arp(f(a)) = Al (a)

«b) A AT (b)

(a*b)) N Arr(f(b))
(a) = f(b)) A Arr(f(b))
*y) N Arr(y),

Arp(z) = Arp(f(a) = Af(a)
< AT (axb)V AT (b)
= Arr(f(axb)) VvV Arp(f(b))
= Arp(f(a) = f(b)) V Arp(f(D))
= Arp(z*y) vV Arp(y),

and

Therefore A = (A, Arr, Arr, Ar) is a generalized neutrosophic ideal of Y. O
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Bipolar Neutrosophic Minimum Spanning Tree
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Abstract The aim of this article is to introduce a matrix
algorithm for finding minimum spanning tree (MST) in the
environment of undirected bipolar neutrosophic connected
graphs (UBNCG). Some weights are assigned to each edge in
the form of bipolar neutrosophic number (BNN). The new
algorithm is described by a flow chart and a numerical example
by considering some hypothetical graph. By a comparison, the
advantage of proposed matrix algorithm over some existing
algorithms are also discussed.

Keywords—Neutrosophic sets, bipolar
spanning tree problem, score function.

neutrosophic  sets,

L

The concept of neutrosophic set (NS) in 1998 was proposed by
Smarandache [1], from the philosophical point of view, to
represent uncertain, imprecise, incomplete, inconsistent, and
indeterminate information that are exist in the real world. The
concept of the classic set, fuzzy set and intuitionistic fuzzy set
(IFS) is generalized by the concept of neutrosophic set. Within
the real standard or non-standard unit interval 170, 17[, the
neutrosophic sets are categorized into three membership
functions called truth-membership function (t), an
indeterminate-membership function (i) and a false-membership
function (f). For the first, Smarandache [1] introduced the single
valued neutrosophic set (SVNS) to apply in science and
engineering applications. Later on, some properties related to
single valued neutrosophic sets was studied by Wang et
al.[2].For dealing with real, scientific, and engineering
applications, the neutrosophic set model is an important tool
because it can handle not only incomplete information but also
the inconsistent information and indeterminate information.
One may refer to regarding the basic theory of NS, SVNS and
their extensions with applications in several fields. Many
researches making particularizations on the T, I, F components
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which leads to define particular case of neutrosophic sets such
as simplified neutrosophic sets [20], interval valued
neutrosophic sets [22], bipolar neutrosophic sets [23],
trapezoidal neutrosophic set [24], rough neutrosophic set [25]
and so on. As a special case of NSs, Ye[24] introduced the
concept of single—valued trapezoidal neutrosophic set. In
addition, a new ranking method to define the concept of cut sets
for SVITNNs were proposed by Deli and Subas [26]. The
authors applied it for solving MCDM problem. Mumtaz et al.[
28] defined the concept of bipolar neutrosophic soft sets and
applied it to decision making problem.

Prim and Kruskal algorithm are the common algorithms for
searching the minimum spanning tree including in classical
graph theory. A new theory is developed and called single
valued neutrosophic graph theory (SVNGT) by applying the
concept of single valued neutrosophic sets on graph theory. The
concept of SVNGT and their extensions finds its applications
in diverse fields [6-19]. To search the minimum spanning tree
in neutrosophic environment recently few researchers have
used neutrosophic methods. Ye [4] developped a method to find
minimum spanning tree of a graph where nodes (samples) are
represented in the form of SVNS and distance between two
nodes which represents the dissimilarity between the
corresponding samples has been derived. To cluster the data
represented by double-valued neutrosophic information,
Kandasamy [3] proposed a double-valued Neutrosophic
Minimum Spanning Tree (DVN-MST) clustering algorithm.A
solution approach of the optimum spanning tree problems
considering the inconsistency, incompleteness and
indeterminacy of the information, which was proposed by
Mandal and Basu [5]. The authors consider a network problem
with multiple criteria, which are represented by weight of each
edge in neutrosophic set. The approach proposed by the authors
is based on similarity measure. In another paper, Mullai [20]
discussed the MST problem on a graph in which a bipolar
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neutrosophic number is associated to each edge as its edge
length, and illustrated it by a numerical example.

The main objective of this paper is to present a neutrosophic
version of Kruskal algorithm for searching the cost minimum
spanning tree of an undirected graph in which a bipolar
neutrosophic number is associated to each edge as its edge
length.

The rest of the paper is organized as follows. The concepts of
neutrosophic sets, single valued neutrosophic sets, bipolar
neutrosophic sets and the score function of bipolar neutrosophic
number are briefly presented in section 2. A novel approach for
finding the minimum spanning tree of neutrosophic undirected
graph is proposed in section 3. A numerical example is
presented to illustrate the proposed method in Section 4. A
comparative study with existing methods is proposed in section
5, Finally, the main conclusion is presented in section 6.

II. Prliminaries

Some of the important background knowledge for the
materials that are presented in this paper is presented in this
section. These results can be found in [1, 2, 23].

Definition 2.1 [1] Le & be a universal set. The neutrosophic set
A on the universal set ¢ categorized into three membership
functions called the true T,(x), indeterminate I,(x) and false
F4(x) contained in real standard or non-standard subset of ]-0,
1+[ respectively.

—0 < sup Ty (x) +suply (x) +supF (x) < 3+(1)

Definition 2.2 [2] Let ¢ be a universal set. The single valued
neutrosophic sets (SVNs) A on the universal ¢ is denoted as
following

A={<x:Ta(x),Ja ), Fa(x) >x €&} (2)

The functions Ty(x) € [0. 1], I5(x) € [0. 1] and Fo(x) € [0. 1]
are named degree of true, indeterminate and false membership
of x in A, satisfy the following condition:
0<T, x)+, xX)+F, x)<3 3)

Definition 2.3 [23]. A bipolar neutrosophic set A in ¢ is defined
as an object of the form

Ampex, TP 1P() FP() T'0) I"(3) F'()5, e
X}, where 77 17 F?.& = [1,0]and T", I" [F":& =

p p
[-1, 0] .The positive membership degree T7(x) , 17(x) ,
P
F7(x) denotes the true membership, indeterminate

membership and false membership of an element € ¢
corresponding to a bipolar neutrosophic set A and the negative

membership degree r (x)’[ (x),F (x) denotes the true
membership, indeterminate membership and false membership
of an eclement € ¢ to some implicit counter-property
corresponding to a bipolar neutrosophic set A.
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To compare two Bipolar neutrosophic numbesr (abbr.BNNs),
Deli et al.[23] introduced the concept of score function and in
case where the score value of two BNNs are same, they can be
distinguished by using accuracy function and certainty function
as follow

Definition 2.4[23]. Letd =<T”,1”,F*,T",I",F" >be a
bipolar neutrosophic number, then, the score function s(;l ),

accuracy function a(;l ) and certainty function c(;l ) ofaBNN
are defined as follows:

s(4 ):[%)x[T” +1-17 +1-F" +1+T”—I”—F”J

Q) 4)
(i) a(A)=TP —FP +T" —F" )
(iify €A =T = F (6)

For any two BNNs 4, and 4, :
i, Ifs(4)>s(4),then 4 is greater than 4, , that is,

A, is superior to 4, , denoted by 4, > 4,

Ifs(;ll) = s(,zlz) and a(/zll) - a(;lz) , then ,le is greater

than 1:12 , that is, ,:11 is superior to 22 , denoted by

i

Ifs(4)=s(4), a(4)=a(4y), andc(4) > c(4y)

then ,:11 is greater than ,:12 , that is, 21 is superior to

A, , denoted by 4, > 4,

If s(4)=s(4), a(4)=a(4y), and c(4) = c(4y)

then 4, is equal to 4, , thatis, 4, is indifferent to 4, ,

denoted by 4, = 4,

ii.
iii.
1v.

III. MINIMUM SPANNIG TREE ALGORITHM OF BN- UNDIRECTED
GRAPH

In this section, a neutrosophic version of Kruskal algorithm
is proposed to handle minimum spanning tree in a bipolar
neutrosophic environment. In the following, we propose a
bipolar neutrosophic minimum spanning tree algorithm, whose
steps are defined below:

Algorithm:

Input: The weight matrix M = [W] for the undirected

y nxn
weighted neutrosophic graph G .
Output: Minimum cost Spanning tree 7' of G .

Step 1: Input neutrosophic adjacency matrix A .

L., by

Step 2: Translate the BN-matrix into score matrix [S i

using score of bipolar neutrosophic number.
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Step 3: Iterate step 4 and step 5 until all (n - 1) entries matrix @

of § are either marked or set to zero or other words all the
nonzero elements are marked.

Input Adjacency Matrix

Step 4: Find the score matrix S either columns-wise or row- 4 = [wy]
wise to find the unmarked minimum entries .S i which is the T :
weight of the corresponding edge €;; in S. Determine score for each wi; € 4
Step 5: If the corresponding edge e; of selected Sl./. produce a and get 5 = [Sij]mm
cycle with the previous marked entries of the score matrix S ¥
then set S, = 0 else mark S, . Determine the minimum non-
ij ij N )
o . . . zero entry 5;; € 5 and marked 1t
Step 6: Building the graph 7" including only the marked entries
from the score matrix S which shall be desired minimum cost v
spanning tree OfG . Find the next minimum non-zero
entry 57 € 5§ and marked it
Step 7: Stop. ¥
An illustrative flow chart of the given algorithm is y Find the next m’.‘fmu;l fen-zero
presented in fig. 3. entry sy €.
¥

IV. NUMERICAL EXAMPLE

. . . . , If marking s¥; leading to a | fith
In this section, a numerical example is explained based on the fArkig sy seading 1o 8 foop W

above algorithm. Consider a hypothetical graph with edge
values are given in the table below. No ¥

previous edges

Mark 5,"5

F

[ Continue till last iteration ]

Fig. 3 (Flow chart describing proposed algorithm)

The BN- adjacency matrix A is given below:
Fig 2. Undirected bipolar neutrosophic- graphs =

0 <0.3,0.1,0.2,-0.8,—0.5,-0.1 >
<0.3,0.1,0.2,-0.8,-0.5,-0.1 > 0
E Edge ]ength <04,05,04,-0.2,—-0.4,-0.5 > 0
e1r <0.3,0.1,0.2,—0.8,—0.5,—0.1 > < 0.6,0.7,0.8, —8.6,—0.4,—0.4 ><0.4,0.8,0.3, —3.2,—0.5,—0.7 >
€13 <04,05,0.4,-0.2,—0.4,—-0.5 >
€14 < 0.6,0.7,0.8,—0.6,—0.4,—0.4 > <04,05,04,-0.2,-0.4,-0.5 >< 0.6,0.7,0.8,—-0.6,—0.4,—0.4 >
€4 <0.4,0.8,0.3,—0.2,—0.5,—0.7 > 0 <04,08,0.3,-0.2,-0.5,-0.7 >
€34 <0.20307 —02 —04 —0.4 > 0 <0.2,0.3,0.7,—-0.2,-0.4,—-0.4 >
= <0.2,03,0.7,—0.2,—0.4,—0.4 > 0
€35 <04,06,05-04,-04,-03 > < 0.4,0.6,0.5,—0.4,—0.4,—0.3 >< 0.5,0.4,0.3,—0.4,—0.5,—0.8 >
€45 <0.5,04,0.3,-04,-0.5,—-0.8 >
0
0

<04,0.6,05,-0.4,-0.4,—-0.3 >
<0.5,04,0.3,-0.4,-0.5,-0.8 >

0
Hence, using the score function introduced in definition 2.1,

we get the score matrix
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0 047 0.53
047 0 0

§=]053 0 0
0.38 0.55 0.52

0 0 043

0.38
0.55
0.52
0
0.62

0

0.43
0.62
Fig. 4. Score matrix
Clearly from figure 4, it is observed that 0.38 is the least

value so edge (1, 4) is marked as red as shown in figure 5. This
process shall be continued until last iteration.

0.62

Fig. 5
Clearly from the figure 6, the next non zero minimum entries
0.43 is marked and colored corresponding edge (3, 5) is given
in figure 7.

0 0.47 053 088 0
047 O 0 0.55 0
§=10.53 0 0 0.52 0.43
0.38 0.55 0.52 0 0.62
0 0 03 0.62 0
Fig. 6

Fig7
0 0Z7 053 088 0
047 0 0 0.55 0
5 =10.53 0 0 0.52 0.43
0.38 0.55 0.52 0 0.62
0 0 043 0.62 0
Fig.8
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Clearly from the figure 8, the next minimum non-zero
element 0.47 is marked and the colored corresponding edge is
given in figure 9.

Fig 9
Clearly from the figure 10. The next minimum non-zero
element 0.52 is marked, and colored corresponding edge (3, 4)
is given in figure 11.

0 027 053 088 O
047 O 0 0.55 0
S =10.53 0 0 0552 043
0.38 0.55 0.52 0 0.62
0 0 043 0.62 0
Fig.10

1g.11

Clearly from the figure 12. The next minimum non-zero
element 0.53 is marked. But while drawing the edges it
produces the cycle. So we reject and mark it as 0 instead of 0.53

0 047 053 088 O
0.47 0 0 055 0
S=|8530 O 0 0152 043
038 055 052 0 0.62
0 0 043 062 0
Fig .12

The next least value is 0.55 but including this edge results
in the formation of a cycle. So this value is marked as zero as
shown in the figure 13.
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0 027 0.53 038 0
0.47 0 0 8550 O
S=|8530 O 0 0552 0.43
0.38 0.55 0.52 0 0.62
0 0 043 0.62 0
Fig .13

Clearly from the figure 14. The next minimum non-zero
element 0.62 is marked. But while drawing the edges it
produces the cycle. So we reject and mark it as 0 instead of 0.62.

0 047 0.53 038 0
0.47 0 0 ©550 0
S=|8530 O 0 0.52 0.43
0.38 0.55 0.52 0 8.2 0
0 0 043 0.62 0
Fig .14

After the above steps, the final path of minimum cost of
spanning tree of G is given in figure 15.

Fig .15. Final path of minimum cost of spanning tree of G .

Following the steps of proposed algorithm presented in
section 3. Therefore the crisp minimum cost spanning tree is 1,8
and the final path of minimum cost of spanning tree is{2,1},{1,
4},{4,3},{3,5}.

V. COMPARATIVE STUDY

In this section, the same process is carried out by the
algorithm of Mullai et al [20]. The results obtained in different
iterations by this existing algorithm are illustrated below.

Let C; = {1}and C; = {2,3,4,5}
Iteration 2:
Let C, = {1,4}and C, = {2,3,5}
Iteration 3:
Let C3 = {1,4,3} andC; = {2,5}
Iteration 4:

Let C, = {1,4,5,3} and 6‘4 = {2}
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Based on these iterations of Mullai’s algorithm, we have the
following MST.

Fig .16.MST obtained by Mullai’s Algorithm

This comparison makes the point that that both the
existing and new algorithm leads to the same results.

The advantage of new algorithm over existing
algorithm is that the new algorithm is matrix based and can be
easily performed in MATLAB while Mullai’s algorithm is
based on edge comparison and is difficult to be performed.

VI. CONCLUSION

This paper considers a minimum spanning tree
problem under the situation where the weights of edges are
represented by BNNs. It is discussed how proposed algorithm
is better in formulation and implementation. This work can be
extended to the case of directed neutrosophic graphs and other
types of neutrosophic graphs such as interval valued bipolar
neutrosophic graphs
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Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache, V. Venkateswara Rao
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(2018). Interval Complex Neutrosophic Graph of Type 1. In Neutrosophic Operational Research,
vol. III, eds.: Prof. Florentin Smarandache, Dr. Mohamed Abdel-Basset, Dr. Victor Chang,

87-106

Abstract

The neutrosophic set theory, proposed by smarandache, can be used
as a general mathematical tool for dealing with indeterminate and
inconsistent information. By applying the concept of neutrosophic
sets on graph theory, several studies of neutrosophic models have
been presented in the literature. In this paper, the concept of complex
neutrosophic graph of type 1 is extended to interval complex
neutrosophic graph of type 1(ICNGI1). We have proposed a
representation of ICNG1 by adjacency matrix and studied some
properties related to this new structure. The concept of ICNGI1
generalized the concept of generalized fuzzy graphs of type 1
(GFG1), generalized single valued neutrosophic graphs of type 1
(GSVNGI1) generalized interval valued neutrosophic graphs of type
1 (GIVNGI1) and complex neutrosophic graph type 1(CNG1).

Keywords

Neutrosophic set; complex neutrosophic set; interval complex
neutrosophic set; interval complex neutrosophic graph of type 1;
adjacency matrix.

1 Introduction

Crisp set, fuzzy sets [14] and intuitionisitic fuzzy sets [13] already acts as
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the concept of neutrosophic sets (NSs in short). Neutrosophic sets came as a
glitter in this field as their vast potential to intimate imprecise, incomplete,
uncertainty and inconsistent information of the world. Neutrosophic sets
associates a degree of membership (T) , indeterminacy(I) and non- membership
(F) for an element each of which belongs to the non-standard unit interval -0,
1+[. Due to this characteristics, the practical implement of NSs becomes difficult.
So, for this reason, Smarandache [5, 6] and Wang et al. [10] introduced the
concept of a single valued Neutrosophic sets (SVNS), which is an instance of a
NS and can be used in real scientific and engineering applications. Wang et al.
[12] defined the concept of interval valued neutrosophic sets as generalization of
SVNS. In [11], the readers can found a rich literature on single valued
neutrosophic sets and their applications in divers fields.

Graph representations are widely used for dealing with structural
information, in different domains such as networks, image interpretation, pattern
recognition operations research. In a crisp graphs two vertices are either related
or not related to each other, mathematically, the degree of relationship is either 0
or 1. While in fuzzy graphs, the degree of relationship takes values from [0, 1].In
[1] Atanassov defined the concept of intuitionistic fuzzy graphs (IFGs) with
vertex sets and edge sets as IFS. The concept of fuzzy graphs and their extensions
have a common property that each edge must have a membership value less than
or equal to the minimum membership of the nodes it connects.

Fuzzy graphs and their extensions such as hesitant fuzzy graph,
intuitionistic fuzzy graphs ..etc , deal with the kinds of real life problems having
some uncertainty measure. All these graphs cannot handle the indeterminate
relationship between object. So, for this reason, Smaranadache [3,9]defined a
new form of graph theory called neutrosophic graphs based on literal
indeterminacy (I) to deal with such situations. The same author[4]initiated a new
graphical structure of neutrosphic graphs based on (T, I, F) components and
proposed three structures of neutrosophic graphs such as neutrosophic edge
graphs, neutrosophic vertex graphs and neutrosophic vertex-edge graphs. In [8]
Smarandache defined a new classes of neutrosophic graphs including
neutrosophic offgraph, neutrosophic bipolar/tripola/ multipolar graph. Single
valued neutrosphic graphs with vertex sets and edge sets as SVN were first
introduced by Broumi [33] and defined some of its properties. Also, Broumi et
al.[34] defined certain degrees of SVNG and established some of their properties.
The same author proved a necessary and sufficient condition for a single valued
neutrosophic graph to be an isolated-SVNG [35]. In addition, Broumi et al. [47]
defined the concept of the interval valued neutrosophic graph as a generalization
of SVNG and analyzed some properties of it. Recently, Several extension of
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single valued neutrosophic graphs, interval valued neutrosophic graphs and their
application have been studied deeply [17-19, 21-22, 36-45, 48-49,54-56].

In [7] Smarandache initiated the idea of removal of the edge degree
restriction of fuzzy graphs, intuitionistic fuzzy graphs and single valued
neutrosophic graphs. Samanta et al [53] discussed the concept of generalized
fuzzy graphs (GFG) and studied some properties of it . The authors claim that
fuzzy graphs and their extension defined by many researches are limited to
represented for some systems such as social network. Employing the idea
initiated by smarandache [7], Broumi et al. [46, 50,51 |proposed a new structures
of neutrosophic graphs such as generalized single valued neutrosophic graph of
typel(GSVNGL1), generalized interval valued neutrosophic graph of
typel (GIVNG1), generalized bipolar neutrosophic graph of type 1, all these types
of graphs are a generalization of generalized fuzzy graph of typel[53]. In [2],
Ramot defined the concept of complex fuzzy sets as an extension of the fuzzy set
in which the range of the membership function is extended from the subset of the
real number to the unit disc. Later on, some extensions of complex fuzzy set have
been studied well in the litteratur ¢[20,23,26,28,29,58-68].In [15],Ali and
Smarandache proposed the concept of complex neutrosophic set in short CNS.
The concept of complex neutrosophic set is an extension of complex intuitionistic
fuzzy sets by adding by adding complex-valued indeterminate membership grade
to the definition of complex intuitionistic fuzzy set. The complex-valued truth
membership function, complex-valued indeterminacy membership function, and
complex-valued falsity membership function are totally independent. The
complex fuzzy set has only one extra phase term, complex intuitionistic fuzzy set
has two additional phase terms while complex neutrosophic set has three phase
terms. The complex neutrosophic sets (CNS) are used to handle the information
of uncertainty and periodicity simultaneously. When the values of the
membership function indeterminacy-membership function and the falsity-
membership function in a CNS are difficult to be expressed as exact single value
in many real-world problems, interval complex neutrosophic sets can be used to
characterize the uncertain information more sufficiently and accurately. So for
this purpose, Ali et al [16] defined the concept of interval complex neutrosophic
sets (ICNs) and examined its characteristics. Recently, Broumi et al.[52]defined
the concept of complex neutrosophic graphs of type 1 with vertex sets and edge
sets as complex neutrosophic sets.

In this paper, an extended version of complex neutrosophic graph of type
1(ICNG1) is introduced. To the best of our knowledge, there is no research on
interval complex neutrosophic graph of type 1 in literature at present.
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The remainder of this paper is organized as follows. In Section 2, some
fundamental and basic concepts regarding neutrosophic sets, single valued
neutrosophic sets, complex neutrosophic set, interval complex neutrosophic set
and complex neutrosophic graphs of type 1 are presented. In Section 3, ICNGI is
proposed and provided by a numerical example. In section 4 a representation
matrix of ICNGI is introduced and finally we draw conclusions in section 5.

2 Fundamental and Basic Concepts

In this section we give some definitions regarding neutrosophic sets, single
valued neutrosophic sets, complex neutrosophic set, interval complex
neutrosophic set and complex neutrosophic graphs of type 1

Definition 2.1 [5, 6]

Let { be a space of points and let x € {. A neutrosophic set A € { is
characterized by a truth membership function T, an indeterminacy membership
function I, and a falsity membership function F. The values of T, I, F are real
standard or nonstandard subsets of 10,17, and T, I, F: {—]70,1"[. A neutrosophic
set can therefore be represented as

A={(x, T4 (x), [ (x), F4(x)):x € Z} (1)

Since T, I, F € [0, 1], the only restriction on the sum of T, I, F is as given
below:

0<TA()+T [A(OFFA(0)<3". (2

From philosophical point of view, the NS takes on value from real standard
or non-standard subsets of 1°0,1'[. However, to deal with real life applications
such as engineering and scientific problems, it is necessary to take values from
the interval [0, 1] instead of ]70,17].

Definition 2.2 [10]

Let ¢ be a space of points (objects) with generic elements in { denoted by
x. A single valued neutrosophic set A (SVNS A) is characterized by truth-
membership function7’,(x) , an indeterminacy-membership function 7 ,(x), and
a falsity-membership function F,(x). For each point x in {, 7,(x), /,(x),
F,(x)€[0, 1]. The SVNS A can therefore be written as

A={(x, TA(x)IIA(x):FA(x)):x € (} (3)
Definition 2.3 [15]

A complex neutrosophic set A defined on a universe of discourse X, which
is characterized by a truth membership function T,(x), an indeterminacy-
membership functionl, (x), and a falsity-membership functionF, (x)that assigns
a complex-valued membership grade to T,(x), I,(x), F4(x) for any x € X. The
values of T,(x), I4(x), F4(x) and their sum may be any values within a unit circle
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in the complex plane and is therefore of the form T,(x) = p,(x)e#a™® [, (x) =
q4(x)eVa®) and F,(x) = ry(x)e!®a® All the amplitude and phase terms are
real-valued and p,(x), qa(x),r4(x) € [0,1], whereas puu(x),va(x), wy(x) €
(0, 2m],such that the condition.

0 < pa(x) +qalx) +14(x) <3 “4)

is satisfied. A complex neutrosophic set A can thus be represented in set
form as:

A= {{x,Ty(x) = ar, 1,(x) = a;, Fa(x) = ag):x € X}, (5)

WhereTA:X 4 {aT:aT € C, |aT| < 1}, IA:X d {al:al € C, |a1| <
1}, Es: X - {ap:ap € C,|ag| < 1}, and also

ITaC) + L4(x) + Fa(x)] < 3. (6)

Let A and B be two CNSs in X, which are as defined as follow A =
{(x, TA(x),IA(x),FA(x)):x € X} and B = {(x, TB(x),IB(x),FB(x)):x € X}.
Definition 2.4 [15]

Let A and B be two CNSs in X. The union, intersection and complement of
two CNSs are defined as:

The union of A and B denoted as A Uy B,is defined as:
AUy B = {(x, Taup (%), Laup (X), Faup (x)): x € X}, (7
Where,Tyup (%), [iup (X)), Faug (x) are given by

Taup(x) = maX(PA (x),pp (x)) el (RaVp(x)

Lyup(x) = min(QA (x), gz (x)) et (VA(X)UVB(X)).

Faup(x) = min(r, (x), 7 (x)) . et (@4@V@s(),

The intersection of A and B denoted as A Ny B, is defined as:

ANy B = {(x,Tynp(x), Iinp (x), Fanp (x)): x € X}, )
WhereTynp (X), 40 (X), F4np (x) are given by

Tpus () = min(pa(x), ps (1)) . ! (a6 () ©)
Lws () = max(qa(x), g5 (x)) . ! (aMVe (), (10)
Fpus (%) = max(r4 (), 75 (x)) . ¢! (2405 (), (11)

The union and the intersection of the phase terms of the complex truth,
falsity and indeterminacy membership functions can be calculated using any one
of the following operations:

Sum:
taus (x) = ua(x) + pg(x), (12)
Vaup(x) = v (x) + vp(x), (13)
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waup(X) = wa(x) + wp(x).

Max: (14
Paup(xX) = maX(.UA(x)» Up (X)),
Va0p () = max(v, (), v5 (), (1
©ap () = max(4 (), w5 (). (10
Min: {17
taup (%) = min(p,(x), up(x)),
Vs () = min(v, (0, v (), (18)
©a05 (0 = min(w,(x), w5 (). 22
“The game of winner, neutral, and loser”:
AUB(X)Z{A!A(X) lf Pa>Ps el
Ug(x) i py>p,
v, (x) if q,<qy
Vaos ):{vg(x) i oas<q, @2)
0,x) if 1<,
Zunt)= {me i< )

Definition 2.5 [16]

An interval complex neutrosophic set A defined on a universe of discourse
¢, which is characterized by an interval truth membership function T,(x) =
[T (x), TY (x)], an interval indeterminacy-membership function I,(x), and an
interval falsity-membership functionF, (x)that assigns a complex-valued
membership grade to T,(x),[,(x),F4(x) for any x €. The values of
T4 (x), [, (x), F4(x) and their sum may be any values within a unit circle in the

complex plane 'ar{d Uis therefore of the form
Ta(x) =[p5(x).pY (0)].eHa®. ra@, (24)
I (x) =[q5(x).q4 (x)).e 40 VA @) (25)
and Fy () =[rf (0).7f ()] 1940 02 @] (26)
All the amplitude and phase terms are real-valued and
pk(x), Y (x), g5 (x), q¥ (x), vt (x)and r¥ (x) € [0,1], whereas
pa(x),v4(x), ws(x) € (0, 27],such that the condition
0<pi(®)+aqf@)+r/(x) <3 (27)

is satisfied. An interval complex neutrosophic set A can thus be represented
in set form as:

A= {(x, Ty(x) = ar, 4 (x) = a;, F4(x) = ap):x € {}, (28)
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WhereTA:(.—> {aT:aT S C, |aT| < 1}'114:('_) {al:al € C, |a1| < 1},FA:(._)
{ap:ar € C,|ag| < 1}, and also |TX(x) +18(x) + Fg(x)| <3. (29)

Definition 2.6 [16]

Let A and B be two ICNSs in {. The union, intersection and complement
of two ICNSs are defined as:

The union ofA and B denoted asA Uy B,is defined as:
AUy B = {(x, Taus (%), Laup (%), Faup (x)) X E X}. (30)

Where, Ty, 5 (%), Liup (%), F4up () are given by

Tk =[5 () V Pl (x))]- &M Fave®,

TRus(O=[ (PR 0O V pY () .M Taun 31
Tus 0)=[(a% () A gl ()] eMan ™,
1205 ()=[( (0 A q¥ ()] -eHinn ), (32)
Flius (O=](rk (9 A r5(0)]. eMFavs ™,
Fus (=]t (0 A T8 (%)) €Favs® (33)

The intersection ofA and B denoted as A Ny B, is defined as:
ANy B = {(x, TAnB (x):iAnB (), F‘AnB (x)) X € X}, (34)

Where,Tynp (%), Linp (), Fanp (x) are given by

Ths (=[5 () A pl(x))]- &M Fave®,

Ths ()= (PR () A ()] Tavs® 35)
1505 0O=[ (@5 (O V g ()] aun ),
05 00000 V q§ ()] ®, (36)
Flinp CO=] (r (9 V r§ ()] e"Faus®,
Fop (O=[(r§ (0 v 1§ ()] P ® (37

The union and the intersection of the phase terms of the complex truth,
falsity and indeterminacy membership functions can be calculated using any one
of the following operations:
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Sum:

Maus () = MA) + up (%),

MRue (¥) = HE (%) + pg (%), (38)
Vius(¥) = Vi (x) + vE(x),

vaus(®) = va(x) + vp (%), (39)
wius(®) = wi(x) + wp(),

wRu(®) = W () + wp (), (40)
Max:

Maus (X) = max(ui (%), pg (%)),

uRup (%) = max(ug (x), ug (%)), (41)
Viug (¥) = max(vi(x), v (x)),

VAus () = max(v{ (x), v§ (%)), (42)
wiyp(x) = max(wj (x), wg (x)),

wayp(x) = max(wy (x), wg (x)), (43)
Min:

Wiup (X) = min(pj (%), pg(x)),

Maus (%) = min(uy (x), ug (%)), (44)
Vius (%) = min(vi (%), vi (%)),

vaus(®) = min (Vi (x), vg (x)), (45)
wiup(®) = min(wj (%), 0§ (x)),

wayp(x) = min(wj (x), wg (x)), (46)

“The game of winner, neutral, and loser”:

(x) = wy(x) i py>pg 7
Hy(x) if py>p,
_ v (x) if q,<q,
V““B(x)_{vgoo i’ oay<q,’ e
_ o, (x) if r,<n
a)AuB( )_{CUB(X) lf r <I”A. (49)

Definition 2.7 [52]

Consider V be a non-void set. Two function are considered as follows:
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p=(pr, p1, pr):V =~ [ 0,1]and
w= (w7, wy, wp):VxV - [ 0,1]3 . We suppose

A= {(pr(x).pr(¥)) | wr(x,y) 2 0}, (50)
B={(p1(x).p1(¥)) lw;(x,y) 2 0}, (51
C={(pr(x).pr (¥)) lwp(x,y) 2 0}, (52)

considered wr, w; and wg = 0 for all set A,B, C since its is possible to have
edge degree = 0 (for T, or I, or F).

The triad (V, p, w) is defined to be complex neutrosophic graph of type 1
(CNG1) if there are functions

a:A—[0,1], B:B—[0,1] and 6:C— [ 0, 1] such that

wr(x,y) = a((pr(x).pr(¥))) (53)
wy(x,y) = B(p1(x).p1(¥))) (54)
wp(x,y) = 8((pr (x),pr(¥))) wherex, ye V. (55)

For each p(x)=(pr(x), p;(x), pr(x)),,xE V are called the complex truth,
complex indeterminacy and complex falsity-membership values, respectively, of
the vertex x. likewise for each edge (X, y) : w(x, y)=(wr(x,y), 0;(X,¥), 0p(X,y))
are called the complex membership, complex indeterminacy membership and
complex falsity values of the edge.

3 Interval Complex Neutrosophic Graph of Type 1

In this section, based on the concept of complex neutrosophic graph of type 1
[52], we define the concept of interval complex neutrosophic graph of type 1 as
follows:

Definition 3.1.

Consider V be a non-void set. Two function are considered as follows:
p=([p%-p71.[pr-p1 I, [PE-PF]):V— [ 0,1]%and

w=( [u)%,wU], [co{‘,oo}l], [co{s,oog]):VxV -0, 1]3. We suppose

A= {([pF(),pE®], [PT¥).pT (] [wh(x, y) = 0

and w3(x, y) =0 }, (56)
B= {([pr (),pf ®)], [pr .7 ) lwr(x, y) = 0
and wP(x, y) =0}, (57)
C= {([pF(X)-pF X1, [PF®).pF ] lwE(x, y) = 0
and wy (X, y) =0}, (58)

We have considered wy, w; and wg = 0 for all set A,B, C, since its is
possible to have edge degree = 0 (for T, or I, or F).
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The triad (V, p, w) is defined to be an interval complex neutrosophic graph
of type 1 (ICNG1) if there are functions
a:A—[0,1], B:B—[0,1] and §:C- [ 0, 1] such that

wr(x, y)=[ 0 (x, ),

w¥ (%, 9)1= a([pF(x),pT X LIPFO).pT (] (59)
w; (%, y)=[ wf (x, ),
wf (x,y)1= B([pr (0).p7 ) ].[r 3).p1 (1) (60)
wr (%, Y)=[ wf(x,y),
wf (x, y)1= 8([pF(x).pF (X)].[PF().pE (¥)]) where x, yE V. (61)

For each p(0=([p5(.p¥COL. [pF(0.0Y COLIPK(0.PYOD.XE V are
called the interval complex truth, interval complex indeterminacy and interval
complex falsity-membership values, respectively, of the vertex x. likewise for
each edge(x, y) :w(x,y)=(wr(x,¥), wi(x,¥), wp(x,y)) are called the interval
complex membership, interval complex indeterminacy membership and interval
complex falsity values of the edge.

Example 3.2
Consider the vertex set be V={x, y, z, t} and edge set be E= {(x, y),(X,
2),(%, ,(y, O}
X y z t
[p%,p% [05, O,6]€j'"[0'8’0'9] [09 , l]ej.ﬂ[0.7,0.8] [03, 0_4]61'.7'[[0.2,0.5] [08, O_Q]ej.ﬂ[0.1,0.3]
[pk.pY [0.3, 0.4]e/m0102] [0.2, 0.3]e/m0506] [0.1, 0.2]e/™0306] | 0.5, 0.6]e/mI0-20%]
[pk.pY] [0.1, 0.2]¢/ 05071 [0.6, 0.7]/ 102031 [0.8, 0.9]e/™02041 | [0.4, 0.5]e/™10-307]

Table 1. Interval Complex truth-membership, indeterminacy-membership and
falsity-membership of the vertex set.

Given the following functions

a(m,n)=[mf(w) V nf(w), mg (w) vV ng (w)] . e/ mHaus (62)
B(m, n)=[mf (w) A nf (w), m{ (w) Anf (w)].e/ ™ a0 (63)
§(m, n)=[mf (w) A ng(w), my (u) Ang (w)] . e/ ™ avs() (64)
Here,

A={([0.5, 0.6]e/ 08091 [0.9, 1]e/m0708]) ([0.5, 0.6]e/ ™80 0.3,
0.4]e/m0-2051) ([0.5, 0.6]e/ 108091 0.8, 0.9]e/ 710-10-31) ([0.9, 1.0]e/™10-7.08],
[0.8, 0.9]e/™10-1.03]y,

B={([0.3, 0.4]e/ 101021 "10.2, 0.3]e/™0-506]) ([0.3, 0.4]e/™0-20-2] 0.1,
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th]ej.n[0.3,0.6]),

0‘4]ej.7'[[0.1,0.2] ,

0.3]6]'.71'[0.5,0.6], [05’ 0.6]6]'.71'[0.2,0.8])}>
C={([0.1, 0.2]e/ 105071 '[0.6, 0.7]e/7[0-203]) ([0.1, 0.2]e/ 7105071 '[0.8,

[0.5,

O.6]€j'n[0'2’0'8]),

Collected Papers, XIV

0.9]e/ (02041 - ([0.1, 0.2]e/ 705071 0.4, 0.5]e/mO207]) (0.6,
0.7]61'7[[0'2’0'3] , [04’ 0.5]61'7[[0'3’0'7])} .
Then
w ) (x,2) () .t
[w%,wéf] [097 l]ej.n[0.8,0.9] [05, 0.6]€j'n[0'8'0'9] [0.8,0.9]€j'n[0'8’0'9] [0951 ]ej.n[0.8,0.9]
[w1L>w1U] [0.2,0.3]81'.1[[0.5,0.6] [0.1’0.2]91'.11[0.3,0.6] [0.3,0.4]91'.7[[0.2,0.8] [02, 0.3]ej.n[0.5,0.8]
[0);’?,0);:]] [01’ 0.2]ej.n[0.5,0.7] [0.1’0.2]61'.11[0.5,0.7] [0‘1’0‘2]31’.11[0.5,0.7] [0'4’0.5]6[11[0.5,0.7]

Table 2. Interval Complex truth-membership, indeterminacy-membership
and falsity-membership of the edge set.

The figure 2 show the interval complex neutrosophic graph of type 1

Fig 2. Interval complex neutrosophicgraph of type 1.

In classical graph theory, any graph can be represented by adjacency
matrices, and incident matrices. In the following section ICNGI is represented
by adjacency matrix.

4 Representation of interval complex neutrosophic graph of

Type 1 by adjacency matrix
In this section, interval truth-membership, interval indeterminate-membership
and interval false-membership are considered independents. Based on the

representation of complex neutrosophic graph of type 1 by adjacency matrix
[52],
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we propose a matrix representation of interval complex neutrosophic graph of
type 1 as follow:

The interval complex neutrosophic graph (ICNG1) has one property that
edge membership values (T, I, F) depends on the membership values (T, I, F) of
adjacent vertices. Suppose &=V, p,w) is a ICNGI where vertex set
V={vq,v,,...,v, }. The functions

a :A- (0,1] is taken such that

Wi (%, y) = a((pf (0).p7 (1)), w7 (x,¥) = a((pf (x).p7 (¥))), where x, y€
V and

A= {([p1().p7 (], [pF ().p7 DD [0 (x, y) = 0 and wF(x,y) 2 0},
B :B— (0, 1] is taken such that

wr (x,¥) = B((pr (X).pf ), i (x,¥) = B((pf (x).pf (¥))), where x, y€
V and

B= {([pf (x).p7 ()], [pf @).pf W] lwf(x,y) = 0 and i (x,y) =0 }
and

6 :C— (0,1] is taken such that

wi (%, y) = 8((pg (X),pF (1)), wi (x,¥) = 8((pg (x).pF (1)), where x, y€
V and

C={([pF (x).pF ()], [PE).PF ] lwE(x, y) = 0 and wf (x,y) =0 }.

The ICNGI can be represented by (n+1) x (n+1) matrix Mg;I‘F=[aT" (@, j)]
as follows:

The interval complex truth membership (T), interval complex indeterminacy-
membership (I) and the interval complex falsity-membership (F) values of the
vertices are provided in the first row and first column. The (i+1, j+1)- th-entry are
the interval complex truth membership (T), interval complex indeterminacy-
membership (I) and the interval complex falsity-membership (F) values of the
edge (x;,x)), 1, j=1,...,n if i#].

The (i, i)-th entry is p(x;)=(por(x;), pi(xi), pr(x;)), where i=1,2,....n. the
interval complex truth membership (T), interval complex indeterminacy-
membership (I) and the interval complex falsity-membership (F) values of the
edge can be computed easily using the functions «, f and § which are in (1,1)-

position of the matrix. The matrix representation of ICNG1, denoted by Mgf E

can be written as three matrix representationM. " Mél and Mgl. For convenience
representation vy(pr (v;)) =[p(vo), pt (vi)1, vip;(v) =[pf (i), pf (vi)] and
vi(pr (V) =[pr(vo), pF V)], fori=1, ....n
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The M(T;1 can be therefore represented as follows
a vi(pr(v1)) vo(pr(v2)) Vn(pr (V)
v1(pr(v1)) [p% (1), p7 ()] alpr(v1).pr(v2)) | alpr(vi).pr(vn))
va(pr(v2)) a(pr(v2),pr (1)) | [pF(V2), pF (12)] a(pr (v2).pr(v2))
Vn(pr(vn)) a(pr(Vp)pr (1)) | alpr(vn).pr(v2)) | [pF(W), pT (v)]

Table 3. Matrix representation of T-ICNG1

The Mél can be therefore represented as follows
B v1(pr (V1)) V(1 (v2)) V(P (V)
vi(pi(v1)) | [oF(we), pf ()] | Bloi(w1).p1(v2)) | B(or(v1).01(vn))
V(01 (v2)) | Blo1(v2).o(v)) | [pF (v2), pf ()] | Bloi(v2).01(v2))
(o1 () | Bor(Wn)p1(v1)) | Blor(wn).0o1(v2)) | [of (vn),
pi' (vn)]

Table 4. Matrix representation of I-ICNG1

The Mél can be therefore represented as follows
§ v1(pr (V1)) v2(pr(v2)) Vn(pr (V)
vi(pr(v1) | [pF(W1), pF (v)] 8(pr(v1).pr(v2)) | 8(pr(v1).pr(V0))
va(or(v2)) | 8(0r(v2).0r(v1)) | [PE(W2). pF (13)] 8(pr (v2),pr(v2))
Va(pr () | 8(pr(Wn)spr(v1)) | 8(pr(n).pr(v2)) | [PEWn), oF (V)]

Table 5. Matrix representation of F-ICNGI

Collected Papers, XIV

Here the Interval complex neutrosophic graph of first type (ICNG1) can be
represented by the matrix representation depicted in table 9. The matrix
representation can be written as three interval complex matrices one containing
the entries as T, I, F (see table 6, 7 and 8).
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a = max(X, y)

x([0.5, 0.6] e/ T080])

¥([0.9 , 1]. e/m0708])

z([0.3,
ej.n[O.Z,O.S])

0.4].

1([0.8,
ejJ[[O.l,O.S])

0.9].

x([0.5, 0.6].e/T080])

[0.5, 0.6].e/ ™0509]

[09 , l] ejJr[O.S,O.Q]

[0.5, 0.6]_3/-11[0.8,0,9]

[0.8,0.9]. e/ 05 0]

y([0.9, 1]. e/’.n[o.7,o.8]) [0.9,1]. eJ-7(0.8,0.9] [0.9,1]. eJm[0.7,0.8] [0, 0] [0.9,1]. eJm07,08]
z([0.3, 0.4]. [0.5, 0.6].¢/m108.09] [0, 0] [03, oA T 10.0]

ej.n[o.z,o.s]) e}.n[o.z,o.s]

t([0.8, 0.9]. [0.8, 0.9]. e/-108.09] [0.9, 1]. ¢/ 707.08] [0, 0] [0.8, 0.9]. e/ 710103]

ej.n[O.l,O.S])

Table 6: Lower and upper Truth- matrix representationof ICNGI

B = min(x, y) x(103, 0.4]. /0102 [ y([02, 03] | (0.1, 02 [ (0.5, 0.6]. e/0203])
’ e jAn[oAs,er]) ¢Jm[0.3,0.6]

X([03, 04] ejJt[O.l,O.Z]) [03’ 04] ej.r[[041,042] [02’ 03] [0 1 0. 2] ej .1r[0.3,0.6] [0 3 0. 4] e} .1[0.3,0.6]
£J710.5,06]

y([oz’ 03] ejJt[O.S,O.G]) [02’ 03] ej.r[[045,046] [02’ 03] [0, 0] [0 2 0. 3] e} .1[0.5,0.8]
eJm[05,06]

Z([O 1 02] e]r[0306] [01’ 02] ej.n[OAS,OAG] [0, 0] [0 1 02] 617'[0306] [0, 0]

t([0.5, 0.6]. [0.3,0.4]. eJm10.2,0.8] [0.2, 0.3]. [0, 0] [0.5 0.6]. eJ700.2,0.8]
ejAn[OAS,OAS]

eJm10.2,08]y

Table 7: Lower and upper Indeterminacy- matrix representation of ICNG1

6= min(x, y)

x([0.1,
eJ 05,071

0.2].

y([0.6,
e/.n[o.z,o.a])

0.7].

Z([0.8,
ej.n[O.Z,OA-])

0.9].

1[04,
ej.n[0.3,0.7])

0.5].

x([0.1, 0.2].e/7[0-5.0.7]y

[0.1,0.2]. g/ m0507]

[0.1,0.2]. g/ m0507]

[0.1’ 02] ej.n[0.8,0.9]

[0.1’ 02] ej.n[0.5,0.7]

y[06, 0.7].61'.71[0.2,0.3])

[0.1,0.2]. g/ ™050.7]

[0.6, 0.7]. e/ m10203]

10, 0]

[04’ 05] ej.n[0.3,0.7]

2([0.8, 0.9].e/710-204])

[0.1,0.2]. e/m[0809]

10, 0]

[08 09] e]r[0204]

10, 0]

t[04, 05] ej.n[0A3,0A7])

[01’ 02] ej.n[0.5,0.7]

[0.4,0.5]. ¢/ 10307]

10, 0]

[0.4,0.5]. ¢/m10207]

Table 8: Lower and upper Falsity- matrix representation of ICNG1

The matrix representation of ICNGI can be represented as follows:
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(a5 ﬁ’ 6)

X(<[0.5, 0.6]. gJm[0809]

[03’ 04] ej.n[O.l,O.Z] .
[0_1’ 02] ej.n[0.5,0.7]>)

y(<[0 5 0. 6] e]TrOSOQ]
[0.3,04]. e/m0L02]
[0.1,0.2]. e/ 050715

2(<[0.5, 0.6].

j.[0.8,0.9
el 1

[03’ 04] e]'.r[[OAl,OAZ] s
[01, 02] ej.n[0.5,0.7]>)

1(<[0.5, 0.6].
2Jm[0.8,0.9]

[03’ 04] e]'.r[[OAl,OAZ] s
[01, 02] ej.n[0.5,0.7]>)

X(<[0.5, 0.6].

j.7[0.8,0.9
el 1,

[0.3,0.4]. e/ 0102
[01, 02] ei.n[0.5,0.7]>)

<[0.5, 0.6]. e/ 0801,
[03> 04] ej.n'[O.l,O.Z] s

[0.1,0.2]. e/ 05071

<[0.9, 0.1]. e/ 0801,
[02, 03] ej.n[O.S,O.G] .

[01’ 02] ej.n[0.5,0.7]>

<[0.5, 0.6]. e/ 0801,
[01’ 02] ej.n[0.3,0.6] R

[01’ 02] ej.n[OA8,0A9]>

<[0.8, 0.9]. ¢/ 08051,
[0.3, 0.4]. g/ 02081 |

[01’ 02] ej.n[OAS,OA7]>

y(<[0~5’ 06] ej.n[0.8,0.9]’

[0.3, 0.4]. e/ 01021
[0.1,0.2]. e/m[05.0.7]>)

<[0.9> 01] ej.n'[O.S,O.’;]’
[0.2,0.3]. e/ 05061,
[0.1,0.2]. g/ 05071

<[0.5, 06] ej.n[0.8,0.9]’
[0.3,0.4]. e/ 701021
[0.1,0.2]. e/m[05.0.7)>

<[o, 0],
[0, 01,
[0, 0]~

[0 9 1] e]rr0708]
[02’ 03] e]'.r[[OAS,OA8] s
[0.4,0.5]. e/m(030.7]>

2(<[0.5, 0.6]. e/ 08091,

[03, 04] ei.n[0.1,0.2] .
[0.1,0.2]. e/ ™05071>)

<[0.5, 0.6]. e/ 0801,
[0.1,0.2]. e/ 03061 |

[01 02] e]7'[0809]>

<[o, 0],
[0, 0],
[0, 0]>

<[0.5, 0.6]. e/ 0801,
[0.3,0.4]. e/ m0L02] |

[01’ 02] ej.n[OAS,OA7]>

<[o, 0],
[0, 0],
[0, 0]>

t(<[0.5, 0.6]. e/ 108091
[0.3,0.4]. e/m0L02]
[0.1,0.2]. e/m05071>)

<[0 8 09] e]7'[0809]
[0.3, 0.4]. e/ ml0208]
[0.1,0.2]. g/ 05071

<[0.9 1]. e/ 7107.08]
[0.2, 0.3]. e/ml0-508] |
[0.4, 0.5]. e/ 103071

<[0, 0],
[0, 0],
[0, 0>

<[0.5’ 06] ej.n[OAB,OA‘)]’
[03, 04] ej.n[O.l,O.Z] R
[0.1,0.2]. e/m(0507]>

Table 9: Matrix representation of ICNG1.

Remark 1

If pk (x)=p¥ (x).p} ()=pf (x)=0 and p%(x)=p¥ (x) = 0 and the interval

valued phase terms equals zero, the interval complex neutrosophic graphs type 1

is reduced to generalized fuzzy graphs type 1 (GFG1).

Remark 2

reduced to generalized single valued graphs type 1 (GSVNG1).

Remark 3

If pk(x)=p¥ (x),pf (x)=pf (x) and pk(x)=pf (x)and the interval valued

phase terms equals zero, the interval complex neutrosophic graphs type 1 is

If pk(x)=p¥ (x).pf (x)=pf (x) and pk(x)=pF (x) the interval complex

neutrosophic graphs type 1 is reduced to complex neutrosophic graphs type 1
(CNGY1).
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Remark 4

If pk(x) # p¥(x) , pE(x) # pY (x)and pk(x) # p{ (x) and the interval
valued phase terms equals zero, the interval complex neutrosophic graphs type 1
is reduced to generalized interval valued graphs type 1 (GIVNG1).

Theorem 1

Given the Mgl be matrix representation of T-ICNGI, then the degree of
vertex Dr(xy) =[X7-q jexar(k+1,j+ DX, jpat(k+1,j+ D]x €V

or

Dr(xp) =[Eitrizpar(i+ Lp+ DXL impar(+1Lp+ Dxy €V
Proof

Similar to that of theorem 1 of [52].
Theorem 2

Given the Mél be a matrix representation of I-ICNG1, then the degree of
vertex Dy(xy) =[X7-y jexar(k+1,j+ DX7, spal (k+ 1,7+ 1D]x €V

or Di(xp) =[Xitpizpar(i+1Lp+ )X, pal(+Lp+ D] x, €

V.
Proof

Similar to that of theorem 1 of [52].
Theorem 3

Given the Mgl be a matrix representation of ICNG1, then the degree of
vertex

Dp(xi) =[XF-yjexark+1,j+ DX jspap(k+1,j+ D]xe € V
or

Dp(xp) =[Eitpizp ar((+ Lp + D)X npar i+ Lp + 1] xp EV.
Proof

Similar to that of theorem 1 of [52].
Theorem 4

Given the Mgf * be a matrix representation of ICNGI, then the degree of
vertex D(xy) =(Dr (xy),D;(xy),Dp (xx)) where

Dr(xi) =[X7oq jerar(k +1,j+ 1), 5%, i pap(k+1,j + 1], x, €V.
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Dy (i) ==[X]=1 j=k ar(k+1,j + D), Y01 j#k af (k+1,j+ 1], xc €V.

Dp(xx) ::[Z?:l,j;tk ap(k+1,j+ 1), Z?zl,thk ag(k+1,j+ 1] x, €
V.

Proof

The proof is obvious.

5 Conclusion

In this article, we have introduced the concept of interval complex neutrosophic
graph of typel as generalization of the concept of single valued neutrosophic
graph type 1 (GSVNG]1), interval valued neutrosophic graph type 1 (GIVNG1)
and complex neutrosophic graph of typel(CNG1). Next, we processed to
presented a matrix representation of it. In the future works, we plan to study some
more properties and applications of ICNG type 1 define the concept of interval
complex neutrosophic graphs type 2.
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NC-Cross Entropy Based MADM Strategy

in Neutrosophic Cubic Set Environment

Surapati Pramanik, Shyamal Dalapati, Shariful Alam, Florentin Smarandache,
Tapan Kumar Roy

Surapati Pramanik, Shyamal Dalapati, Shariful Alam, Florentin Smarandache, Tapan Kumar Roy (2018).
NC-Cross Entropy Based MADM Strategy in Neutrosophic Cubic Set Environment. Mathematics 6, 67;
DOI: 10.3390/math6050067

Abstract: The objective of the paper is to introduce a new cross entropy measure in a neutrosophic
cubic set (NCS) environment, which we call NC-cross entropy measure. We prove its
basic properties. We also propose weighted NC-cross entropy and investigate its basic
properties. We develop a novel multi attribute decision-making (MADM) strategy based on a
weighted NC-cross entropy measure. To show the feasibility and applicability of the proposed
multi attribute decision-making strategy, we solve an illustrative example of the multi attribute
decision-making problem.

Keywords: single valued neutrosophic set (SVNS); interval neutrosophic set (INS); neutrosophic
cubic set (NCS); multi attribute decision-making (MADM); NC-cross entropy measure

1. Introduction

In 1998, Smarandache [1] introduced a neutrosophic set by considering membership (truth),
indeterminacy, non-membership (falsity) functions as independent components to uncertain,
inconsistent and incomplete information. In 2010, Wang et al. [2] defined a single valued
neutrosophic set (SVNS), a subclass of neutrosophic sets to deal with real and scientific and
engineering applications. In the medical domain, Ansari et al. [3] employed a neutrosophic set and
neutrosophic inference to knowledge based systems. Several researchers applied neutrosophic sets
effectively for image segmentation problems [4-9]. Neutrosophic sets are also applied for
integrating geographic information system data [10] and for binary classification problems [11].

Pramanik and Chackrabarti [12] studied the problems faced by construction workers in West
Bengal in order to find its solutions using neutrosophic cognitive maps [13]. Based on the experts’
opinion and the notion of indeterminacy, the authors formulated a neutrosophic cognitive map and
studied the effect of two instantaneous state vectors separately on a connection matrix and
neutrosophic adjacency matrix. Mondal and Pramanik [14] identified some of the problems of Hijras
(third gender), namely, absence of social security, education problems, bad habits, health problems,
stigma and discrimination, access to information and service problems, violence, issues of the Hijra
community, and sexual behavior problems. Based on the experts’ opinion and the notion of
indeterminacy, the authors formulated a neutrosophic cognitive map and presented the effect of two
instantaneous state vectors separately on a connection matrix and neutrosophic adjacency matrix.

Pramanik and Roy [15] studied the game theoretic model [16] of the Jammu and Kashmir conflict
between India and Pakistan in a SVNS environment. The authors examined the progress and the
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status of the conflict, as well as the dynamics of the relationship by focusing on the influence of United
States of America, India and China in crisis dynamics. The authors investigated the possible
solutions. The authors also explored the possibilities and developed arguments for an application of
the principle of neutrosophic game theory to present a standard 2 x 2 zero-sum game theoretic model
to identify an optimal solution.

Maria Sodenkamp applied the concept of SVNSs in multi attribute decision-making (MADM) in
her Ph. D. thesis in 2013 [17]. In 2018, Pranab Biswas [18] studied various strategies for MADM in
SVNS environment in his Ph. D. thesis. Kharal [19] presented a MADM strategy in a single valued
neutrosophic environment and presented the application of the proposed strategy for the evaluation
of university professors for tenure and promotions. Mondal and Pramanik [20] extended the teacher
selection strategy [21] in SVNS environments. Mondal and Pramanik [22] also presented MADM
strategy to school choice problems in SVNS environments. Mondal and Pramanik [23] and presented
an MADM decision-making model for clay-brick selection in a construction field based on grey
relational analysis in SVNS environments. Biswas et al. [24-26] presented several MADM strategies
in single valued neutrosophic environments such as technique for order of preference by similarity
to ideal solution (TOPSIS) [24], grey relational analysis [25], and entropy based MADM [26]. Several
studies [27-30]—using similarity measures based MADM—have been proposed in SVNS
environments. Several studies enrich the study of MADM in SVNS environments such as projection
and bidirectional projection measure based MADM [31], maximizing deviation method [32], Frank
prioritized Bonferroni mean operator based MADM [33], biparametric distance measures based
MADM [34], prospect theory based MADM [35], multi-objective optimization by ratio analysis plus
the full multiplicative form (MULTIMOORA) [36], weighted aggregated sum product assessment
(WASPAS) [37,38], complex proportional assessment (COPRAS) [39], TODIM [40], projection based
TODIM [41], outranking [42], analytic hierarchy process (AHP) [43], and VIsekriterijumska
optimizacija i KOmpromisno Resenje (VIKOR) [44].

In 2005, Wang et al. [45] introduced the interval neutrosophic set (INS) by considering
membership function, non-membership function and indeterminacy function as independent
functions that assume the values in interval form. Pramanik and Mondal [46] extended the single
valued neutrosophic grey relational analysis method to interval neutrosophic environments and
applied it to an MADM problem. The authors employed an information entropy method, which is
used to obtain the unknown attribute weights and presented a numerical example. Dey et al. [47]
investigated an extended grey relational analysis strategy for MADM problems in uncertain interval
neutrosophic linguistic environments. The authors solved a numerical example and compared the
obtained results with results obtained from the other existing strategies in the literature. Dey et al.
[48] developed two MADM strategies in INS environment based on the combination of angle cosine
and projection method. The authors presented an illustrative numerical example in the Khadi
institution to demonstrate the effectiveness of the proposed MADM strategies. Several studies enrich
the development of MADM in INS environments such as VIKOR [49], TOPSIS [50, 51], outranking
strategy [52], similarity measure [29, 53-55], weighted correlation coefficient based MADM strategy
[56], and generalized weighted aggregation operator based MADM strategy [57]. The study in recent
trends in neutrosophic theory and applications can be found in [58].

Ali et al. [59] proposed the neutrosophic cubic set (NCS) by hybridizing NS and INS.
Banerjee et al. [60] developed the grey relational analysis based MADM strategy in NCS
environments. Pramanik et al. [61] presented an Extended TOPSIS strategy for MADM in NCS
environments with neutrosophic cubic information. Zhan et al. [62] developed an MADM strategy
based on two weighted average operators in NCS environments. Lu and Ye [63] presented three
cosine measures between NCSs and established three MADM strategies in NCS environments.
Shi and Ye [64] introduced Dombi aggregation operators of NCSs and applied for an MADM
problem. Ye [65] presents operations and an aggregation method of neutrosophic cubic numbers for
MADM. For multi attribute group decision-making (MAGDM), Pramanik et al. [66] defined a
similarity measure for NCSs and proved some of its basic properties and developed a new MAGDM
strategy with linguistic variables in NCS environments. To develop TODIM, Pramanik et al. [67]
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proposed the score and accuracy functions for NCSs and proved their basic properties, and
developed a strategy for ranking of neutrosophic cubic numbers based on the score and accuracy
functions. In the same study, Pramanik et al. [67] presented a numerical example and presented a
comparison analysis. In the same study, Pramanik et al. [67] conducted a sensitivity analysis to reflect
the impact of ranking order of the alternatives for different values of attenuation factor of losses for
MAGDM strategies.

Pramanik et al. [68] proposed a new VIKOR strategy for MAGDM in NCS environments. The
authors also presented sensitivity analysis to reflect the impact of different values of the decision-
making mechanism coefficient on ranking order of the alternatives.

Cross entropy measure is an important measure to calculate the divergence of any variable from
prior one variable. In 1968, Zadeh [69] first proposed fuzzy entropy to deal with the divergence of
two fuzzy variables. Thereafter, Deluca and Termini [70] introduced some axioms of fuzzy entropy
involving Shannon’s function [71]. Szmidt and Kacprzyk [72] proposed an entropy measure for
intuitionistic fuzzy sets (IFSs) by employing a geometric interpretation of IFS. Majumder and
Samanta [73] introduced a SVNS based entropy measure and similarity measure. Furthermore,
Aydogdu [74] proposed an entropy measure for INSs. Ye and Du [75] proposed some entropy
measures for INS based on the distances as the extension of the entropy measures of interval valued
IFS. Shang and Jiang [76] defined cross entropy in a fuzzy environment between two fuzzy variables.
Vlachos and Sergiadis [77] defined intuitionistic fuzzy cross-entropy. Ye [78] employed intuitionistic
fuzzy cross entropy to multi criteria decision-making (MCDM). Maheshwari and Srivastava [79]
proposed new cross entropy in intuitionistic fuzzy environment and employed it to medical
diagnosis. Zhang et al. [80] defined entropy and cross entropy measure for interval-intuitionistic sets
and discuss their properties. Ye [81] proposed an interval intuitionistic fuzzy cross entropy measure
and employed it to solve MCDM problems.

Ye [82] defined cross entropy for SVNSs and employed it solve to MCDM problems. To remove
the drawbacks of cross entropy [82], Ye [83] proposed another cross entropy for SVNSs. In the same
study, Ye [83] also proposed new cross entropy for INSs. Tian et al. [84] proposed a cross entropy for
INS environments and employed it to MCDM problems. Sahin [85] proposed an interval
neutrosophic cross entropy measure based on fuzzy cross entropy and single valued neutrosophic
cross entropy measures and applied it to MCDM problems. Recently, Pramanik et al. [86] proposed
a novel cross entropy, namely, NS-cross entropy in SVNS environments and proved its basic
properties. In the same research, Pramanik et al. [86] also proposed weighted NS-cross entropy and
employed it to MAGDM problem. Furthermore, Dalapati et al. [87] extended NS-cross entropy in INS
environments and employed it for solving MADM problems. Pramanik et al. [88] developed two new
MADM strategies based on cross entropy measures in bipolar neutrosophic sets (BNSs) and interval
BNS environments.

1.1. Research Gap: NC-Cross Entropy-Based MADM Strategy in NCS Environments

This study answers the following research questions:

1. Isit possible to introduce an NC-cross entropy measure in NCS environments?
. Isit possible to introduce a weighted cross entropy measure in NCS environments?
3. Isit possible to develop a novel MADM strategy based on weighted NC-cross entropy?

1.2. Motivation

The studies [59-68] reveal that cross entropy measure is not proposed in NCS environments.
Since MADM strategy is not studied in the literature, we move to propose a comprehensive NC-cross
entropy-based strategy for tackling MADM in the NCS environment. This study develops a novel
NC-cross entropy-based MADM strategy.

The objectives of the paper are:

1. To introduce a NC-cross entropy measure and establish its basic properties in an NCS

environment.
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2. To introduce a weighted NC- cross measure and establish its basic properties in NCS
environments.

3. To develop a novel MADM strategy based on weighted NC-cross entropy measure in NCS
environments.

To fill the research gap, we propose NC-cross entropy-based MADM.

The remainder of the paper is presented as follows: in Section 2, we describe the basic definitions
and operation of SVNSs, INSs, and NCSs. In Section 3, we propose an NC-cross entropy measure and
a weighted NC-cross entropy measure and establish their basic properties. Section 4 is devoted to
developing MADM strategy using NC-cross entropy. Section 5 provides an illustrative numerical
example to show the applicability and validity of the proposed strategy in NCS environments.
Section 6 presents briefly the contribution of the paper. Section 7 offers conclusions and the future
scope of research.

2. Preliminaries

In this section, some basic concepts and definitions of SVNS, INS and NCS are presented that
will be utilized to develop the paper.

Definition 1. Single valued neutrosophic set (SVNS)
Assume that U is a space of points (objects) with generic elementsu € U. A SVNS [2] H in U is characterized
by a truth-membership function Ty (u), an indeterminacy-membership function [y(u), and a falsity-

membership function Fy(u), where Ty(u), Ig(u), Fu(u)€[0,1] foreach point uin U. Therefore, a SVNS

A is expressed as
H ={u, Ty (u),In (), Fu(w)|u € U}, (1)
whereas the sum of Ty (u), Iy(uw) and Fy(u) satisfies the condition:
0<Ty (u) + Iy (W) +Fu(u) <3 )

The order triplet <T,1,F> is called a single valued neutrosophic number (SVNN).

Example 1. Let H be any SVNS in U; then, H can be expressed as: H = {u,(0.7,0.3,0.5)|ue U} and SVNN
presented H=<0.7,0.3,0.5)>.

Definition 2. Inclusion of SVNS
The inclusion of any two SVNSs [2] H, and H, in U is denoted by H, cH, and defined as follows:

H, cH, iff Ty @<Ty, W), Iy, 02Ty, W), Fy, (W2Fy, ) forall uel. @)

Example 2. Let H, and H, be any two SVNNs in U presented as follows: H;=<(0.7,0.3,0.5)> and
H,=<(0.8,0.2,0.4)> for all uweU. Using the property of inclusion of two SVNNs, we conclude that
H, cH,.

Definition 3. Equality of two SVNS
The equality of any two SVNSs [2] Hi and Hz in U denoted by H, =H, is defined as:

Ta, (W) =Ty, @), Iy, W=T, (u) and By, (W=Fy, (W) forall uel. (4)

Definition 4. Complement of any SVNS
The complement of any SVNS [2] H in U denoted by H® and defined as follows:
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H® ={u,1- Ty,l- Iyy,1- Fy [ueU}. (5)

Example 3. Let H be any SVNN in U presented as follows:
H=<0.7,0.3,0.5) > . Then, the compliment of H is obtained as H®=<(0.3,0.7,0.5) >.

Definition 5. Union of two SVNSs

The union of two SVNSs [2] H, and H, is a neutrosophic set H, (say) written as Hy; =H, UH,.
Here,

Ty (W) =max{Ty, (W), Tu, (W}, Ty () =min{Jy, (1), I, (W)}, ©)
Fu, (u) =min{Fy, (u),Fy, (W)},Vuel.

Example 4. Let H,and H, be two SVNNs in U presented as follows:
Let H,=<(0.6,03,04)> and H,=<(0.7,0.3,0.6) > be two SVNNs. Then union of them is obtained using
Equation (6) as follows: H,w H, =<(0.7,0.3,0.4) >.

Definition 6. Intersection of any two SVNSs
The intersection of two SVNSs [2] H, and H, denoted by H, and definedas H, =H, "H,.

Here,

Tu, (u) =min{Ty, (w), Tu, (W}, Iy, (u) =max{Iy, (), In, (W)}, ;
Fu, (u) =max {Fy, (), Fu, (u)},YueU. @)

Example 5. Let H, and H, be two SVNNs in U presented as follows:
Hi=<(0.6,0.3,0.4)> and H, =<(0.7,0.3,0.6) >. Then, the intersection of them is obtained using Equation (7)

as follows:

HiNH,; =<(0.6,0.3,0.6) >.

Definition 7. Some operations of SVNS
Let H, and H, be any two SVNSs [2]. Then, addition and multiplication are defined as:

H, ®H, =<Ty, (u)+ Ty, (4) = Ty, (0). Ty, (W), Iy, (W) . Iy, (W), Fyy, (0). Fy, (u)>,VueU. (8)

H, ®H, =< Ty, (0). T, (W, Iy, (W) +In, (W)= Iy, (W), (W), Fryy (W) +Fu, (W) = Fiyy (). Fu, (W) >,Vuel. (9)

Example 6. Let H, and H, be two SVNSs in U presented as follows:
H:=<(0.6,0.3,0.4) > and H, =< (0.7,0.3,0.6) >.

Then, using Equations (8) and (9), we obtained H,®H, and H,®H, as follows:
1. Hi® H, =<(0.88,0.09,0.24) >.

2. Hi®H, =<(0.42,0.51,0.76) >

Definition 8. Interval neutrosophic set (INS)
Assume that U is a space of points (objects) with generic element ueU. An INS [45] | in U is characterized

by a truth-membership function T,(u), an indeterminacy-membership function 1,(u), and a falsity-

membership function F,(u), where T;w)=[T; W, Ty W], I;w=[I;W).[ W], F,w=[F; W),Fj W] for each
point u in U. Therefore, a INSs | can be expressed as

J={u [Ty (w),T7 (WL (w).I; (W1LF; (u),Fy (w)] uely, (10)
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where T (), Ty W), [; @).I; (w), Fy (u),Fj (u) <[0,1].
Definition 9. Inclusion of two INSs

Let Jy={u,[Ty, (W), Ty, (W] [T, (W), T;, WL[F5, (w), Fy, (w)]jue U} and

Jo={uw,[Ty, (W), Ty, (WLIL, (), 1}, (WLIF, (W), Fy, (wW]jue U} be any two INSs [45]
(11)
in U, then JicJ, iff Ty, W<Ty, W, Ty, W< Ty, W), @2, I w21, ),

Fy,W2F;, (W, FjW=Fj, @ forall uel.

Definition 10. Complement of an INS
The complement J° of an INS [45] J={u,[T; (), T; (WL[I; (w), Iy (W],[Fy (W), Fy (W][ue U} is defined as

follows:

JO={u, - (), 1-T; (WL1-L (W), 1-I; (W], [1-F (w),1 - Fy (w)][ueU}. 12)

Definition 11. Equality of two INSs

Let Jy={u,[Ty (w), T, (WLIL; (w),1;, WL[F;, (w),F;, (w)]jue U} and
3o ={u,[Ty, (), T}, W[, (w). T}, (W] [Fy, (), Fj, (W)]Jue U} be any two INSs [45]

_ _ _ _ : N 13
inU, then J,=, iff T;@=Tp, @, T,@=TL0, [@-I,w, [@=1,0,

Fj,W=F;, (), FjW=Fj,® forall uel.

Definition 12. Neutrosophic cubic set (NCS)
Assume that U is a space of points (objects) with generic elements u, eU. A NCS [59] Q in U is a hybrid

structure of INS and SVNS that can be expressed as follows:

Q={u;, <[Tq (u;), T (u;)],[Tq (u; ), Ig (ui)].[Fo (u;), Fo (u)], (Tg (), 1o (), Fy (u;) > u; €Uy (14)

Here, ([Tq(uihTo)], MoQuihIo@)l, [Fo@i)LFo@l) and (T, (u;),I(u;),Fy(u;) are INSs and SVNSs,
respectively, in U. NCS can be simply presented as

<[Tq (W), To (W] [To (W), g (W1 [Fo (W), Fo (W], (Tg (), Lo (w), Fo (w) > (15)
We call Equation (15) a neutrosophic cubic number (NCN).
Definition 13. Inclusion of two NCSs
Let Q,={u;,<[Tq, (u), T4, (W)L, () 1, (w)DIFg, (u,), Fy, ()], (T, (u;), Lo, (u)), Fo, (u;) >[u; €U
and

) ) . (16)
0, = (< T, Ty G ILLL 5.0 Ly o)LL 5 06 7 06 (T ), T (36, B (26) > 3, € U)

be any two NCSs [59] in U. Then, Q,cQ, iff To, (W)<Tq, (W) T, (W) < T, (W),
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To, )2, (), To, ()2 T4, (W), Fo, ()2Fo, (W), Fo )2 Fo, ) and

To, (W)<Tq, U)o, ()=Iq, (4).Fg, (u)>Fq, (w) forall u; eU.

Definition 14. Equality of two NCSs

Let q, ={u;,<[Tq, (u;), To, (u)].[Ig, (), 15, (W) [Fo, (u;), Fo, (u)], (T, (u;), 1o, (u;), Fy, (u;)>[u; €U}
and
0, = {a4, < [T, (). T, (oL LT 5 0. T, GeLLI 5 6 7 Gt ). (T (1. T (a1, o () >, €U

be any two NCSs [59] in U. Then Q=Q, iff Tq, u)=Tg,®), T, @) =Ta,u), (17)

To, ()=Tq, W), I, ()=1I4,(u) , Fo (u)=Fq, (), Fo )=Fo,() and
Toy )= Ta, ). Io, (M)=Iq, (1), Fo, (1)=Fq, (u) forall u; eU.
Definition 15. Complement of an NCS
Let Q={u;,<[Tq(u;),Tq(u;)LIg (u;), Ig (u;)1,[Fq (u;), Fo (u;)], (Tg (u;), 1o (u;), Fo (u;) >[u; €U} be any

NCS [59] in U. Then, complement Q° of Q is defined as follows:

Q° ={u;,<[1-Tg (u), 1-To ()L [1-Tg (u; ), 1-To ()] [1-Fg (u;) 1 = Fo (u;)] (1= Tg (w;). 1 = T (w; ), 1= Fy (u;) >|w; €Uy (18)

3. NC-Cross-entropy measure in NCS environment

Definition 16. NC-cross entropy measure
Let Q, and Q, be any two NCSs in U={u,,u,,us,...,u, }. Then, neutrosophic cubic cross-entropy

measure of Q1 and Qzis denoted by CE((Q,,Q,) and defined as follows:
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215 - To,w] 2/(1-T, (- Tg, (w))

CExe (QQ0) =13

2 2 2
8] ‘/1+|T§](u,-)| +\/1+|T§2(u,-)| ‘/1+|(17T5](ui»| +\/1+(1—T52

S-To,w)] 0T @n-0-To,w))

2 2 2
‘/1+|T51 (ui)| +\/l+|T52 (ui)| 1+|(1 T, (ui))| +\/1+

R 2
(1-Ty, w))|

i ) Toy )] 20T -0 To, )

2 2 I +
Tl [+ ) V- 1, @+ \/1+‘(1 I, )|
i ) o) 20T =0 T, w)) )

2 2 I 2
‘/1+|151(ui>| +‘/1+|152(ui>| 018, @) +\/1+

. 2
(=15, ()

2[Fo, ()~ Fo, () 2/1-F, (- 1= Fo, ()
2 2 ' + (19)
‘/1+|F51(ui)| +‘/1+|F52(ui)| ‘}1+|(1 FQl(u)) ‘/1+‘(1 F (u))‘

2fFo,w)-Foyw] 2fa-F;, (ui))*(lfFaz(ui))‘

+

2 2
Vel e Fas ol fiela- Ry + \/1+\<1 Py, |

To, @) -Toy ()| 2[(1-Tg, ()= (1= To, (W)

J1To, @) +1+To, (o \/1+(1 0-Tq, | + \/1+(1 TQZ(uI))\

21 () Ie, 2/1-1g () = (1= 10,w)

JH\IQ W + JH\IQ W[ \/1+\<1—IQ‘(ui» ot

2[Fo (u)=Fo (u) 2[0-F )~ Fo (u,

_\/1+\FQ,<ui>\2 +\/1+‘Foz(ui)‘z +\/1+\(1—Fql(ui>) 2

+\/1+‘(17qu(ui)) ’

Theorem 1. Let Q;,Q, be any two NCSs in U. The NC-cross entropy measure CEyc(Q[,Q,) satisfies the
following properties:
(i) CEyc(Q1.Qy)20.

(i) CEne(Q1,Q)=01ff T, ()=Tg, W) To, W) =To, W), Ig W)=Ig, W), I, u)=T5,w), Fo @)=Fg, ),
Fo, ()=Fg, (W) and Te, (u)=To, (u).Iq, () =Io, (W), Fo, (4)=Fq, () for all Vu; eU.

(iii) CExc (Q1,Qa) = CExc (@, Q)

(iv) CExc (Q1:Qp) = CEnc(Q2. Q)

Proof of Theorem 1.

(i)
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For all values of u; €U, [T, w)[20, [To,)[20, [To,w)-To, W20, y1+[Tq, ) 20, y1+|To, | >0,

‘(I—TQ] W) >0, JH‘(I—TQl(uJ)r >0, \/1+‘(1_TQ2 (ui))‘2 0.

20, [1-To,@D]20, [1-Tg, W)= 0-To,w)

Then,
|ro, ) Toyw)] 2= T, -1 To, w)) .
L/HTQ] (u,)‘2 +\/1+‘T02(u,)‘2 \/lJr‘(lfTQI (u,))‘2 +\/l+‘(l—TQ2(u,))‘z ] ' (20)
Similarly,
z|101(u;>—1Q2<ui)| . z\(1—101<u;)><11Q2(ui)>\ L o
\/1+|1Q]<ui>| +‘/1+|1Q2(u>| \/14(1—10(111»\ +\/1+\(1—IQ2<ui»\
and
2|Fo, (u)~Fo, (u) 2/(1-Fy, (w))- - Fo, ()
2 2 [ (22)
JfFor @ +{1<[Fos )] JH\(l—FQl(ui»\ +‘/1+\<1—FQ2<ui»\
Again,
For all values of u; €U, |T51(ui)|20/ |T62(ui)|20, |T51(ui)—T§2(ui)|20,
s wof 20, isfra,af =0, 1-Tg @p]o, Jo-To,@fo,
_ _ _ 2 2
‘(I—TQl(ui))—(l—TQz(ui))zo, JH0=To | =0, {i+fo-To, @[ =0 )
L frew-Taw)] 21Ty, @)~ 1= T, (w)) ,
\/1+|T51(ui)|2 +\/IJF|TQZ <ui>|2 1+|(17T51 <ui))|2 +\/1Jr (1_T52 () 2
and

n 2 2
o )| 20, \/1+|T62(ui)| >0,

+ + + 2
20, |- Tg, W]20,[A-Tg, (w))=(1=Tg, ()0, ,/1+(1—T01<ui)> >0,
+ 2 >
ViFlo-To, @[ =0 o4

T, ()~ Ta, (W)]20, ‘/1+

To ) [20, T8, w20,

=T, @

2T (0D~ Ton w) 2/1-T, (W)~ (1= T, ) ,
= + >
. 2 . 2 R 2 N 2
\/1+|Tol ()| +\/1+|To2 ()] B r )] +\/1+ (=T, (ui))‘
Similarly, we can show that
g ) Toy | 20T =015, ) . o

2 2 2 2 |
‘/1+|151(ui)| +‘/1+|152(ui)| \/1+|(1—I<31(ui))| +‘/1+‘(1—1;)2(ui))‘
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2115, () 15, (uy) 2(0-1I, (- (- T, (uy)
Q1 : Q2 | : : ‘ Q1 - 2 ‘ 2 >0 (26)
\/1+ I, (w) | +‘/1+ I, (ui)| ‘/1+|(1_151 (ui>)| +\/1+‘(1—Ig2 (ui))‘
2[Fo, (u) - Fo, (u; 2|0—-F, (u))-{1-Fo, (u;
|FQ1<1;,> Fo, (uy) . I Ql(u;) (1= Fg, ) o -
\/1+|F§1(ui)| +\/1+|F52(ui)| \/1+|(1*Fél(ui))| +‘/l+(1—F§2(ui))‘
and
2[F () Eoy (w) 2/(1-Fy, - 0- B, ) y
’ = (28)
+ 2 + 2 i 2 + 2
\/1+|F01(ui)| +J1+|FQ2(ui)| \/1+|(1—1:Q1(ui))| +\/1+‘(1—F02(ui))‘
Adding Equation (20) to Equation (28), we obtain CE. (Q;,Q,)20 .
(ii).
|ro ) To,w)]  20-To@)-0-To,)| |
2 2 I 2 2 v (29)
1+|TQ1(Ui)| + 1+|TQ2(ui)| 1+‘(1—TQ1(ui))‘ + 1+‘(1—TQ2(ui))
<:’TQI (ui)=TQ2 (uy)
Yoy @)Tos )] 0l - (T, @) |
2 2 2 2 [ (30)
\/ 1]1g, (u)| +\/ 14{lo, (w) \/ -1, ()| +\/ 14(1-Tg, (u)|
< I, (ui):IQ2 (uy)
[ ) Fo, )] 0Fg -0 Fo, w) .
2 2 2 2 | 31
J1+|Fol(ui>| +‘/1+|FQ2(ui)| ‘/1+(1—FQl(ui)) +\/l+(l—FQ2(ui))‘ D
< Fo, (w)=Fq, Wy , For all values of u;eU.
Again,
fro, ) To, ] 20-Tg @)=0-To,w)) .
_ 2 _ 2 2 _ 2
ool sl (ole-Touo] AT @

& To, (u)=Ta, W)

fro - Thw)| 20T @)=0-Tig, w)) .

\/1+|T61(ui)|2+‘/l+|T62(ui)|2 I‘{1+|(1—T(gl(ui))|2+\/1+‘(1—ng(ui))‘2 7 (33)

< T, (ui)=Tg, (w)

L] ek w)
\/1+‘I}g,(ui) ‘2 +\/1+‘Iéz ) ‘2 1+‘(1-1;)1(ui))‘2 +J1+

& To, (u) = To, (W)

-1, | (34)
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) To | 20T w)-0- T, w))

R 2
Iql(ui)| +y/1+

35)

s

2 2 2|
Top )| 14|15, (w) +‘/1+\(1—Igz(ui»\

= 161 (ui) :152 (Uj)

fFg ) Fo, )|  2J1=Fg w)-0-Fo,w))

‘/1+|1:g)1 () |2 +‘/1+|1:52 (u) |2 | ‘/1+|(1—1:g)1 (ui))|2 +\/1+‘(1—F;)2 (u) ‘2 (36)

& Fo, ()= Fg, W)

Ry By )| 2J0-Fg )-0-F, @)

(37)

e

From, Equation (29) to Equation (37), we obtain CE\(Q.Q)=0 iff Tgq, (u;)=Tgq, (u),

. 2
FQ1 (uy | +4/1+

2 2 2
Foo )| {1+]0-Fg, )| +J1+\<1—ng(ui»\

< Fo, (u)=Fo, () , for all values of u; €U.

To () =Ty (W), Ig)=Ig, @) ,  Io,W)=I5, ) , Fo)=Fo,(w) , Fo@)=Fg, ) and
To, (W)= To, (4o, (4)=1q, (1;),Fq, (4;)=Fq, (v;) forall Vu; eU.
(iii).

Using Definition (1), Definition (4) and Definition (10), we obtain the following expression:

2 Téf (U.i)_T;; (u;) 2‘(1 —T(;f (u))-(- Tég (uy)
CEe @@= 5 T F [ | — —
T | e i A= To |+ 14]0-Tgs )
2 TQf (ui)—TQg (ui) 2‘(1 _TQf (w))—-(- TQ§ (up)

+

+
2 2
+J1+

J1+
2‘(1—105 (w))-Aa-1 ég (up)

+ +

J1+ (=1 () 10T |

i+
e

2
+. 1+
I(;f (ui) _Iég (ui)

2
+,/1+

TQf (ui)

ng () a- Tg? (u) a —ng (u)

2

IQlc (u) IQ§ (ui)

2 Iglc (uy) _Igg (ui) 2‘(1 _I;]c (u))—-(- Igg (u)
2 >t 2 > |
\/1+ I (u) +\/1+ I (W) \/1+ (=15 (ui)) +\/1+ (1_I;c (u)
2 Félc (u)— Fég (ui) 2‘(1 _Fé]c (u))— (- Fég (u)
+ +

2 2

+ 1+‘(1—F;g (u)

FQf (ui)

Fog () (1= Fe ()

2 2
1+ +. 1+ 1+
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2 FQlc (ui)— FQ3 (us) N 2‘(1 _FQf (u)-(- FQZ (ui)
2 2 2
\/1+ (*) +\/1+ J1+ +J1+

F i:(ui)
2T ()~ Tag (u) 2\0 T () (1- TQz(u))‘

\/1+‘TQ (u)‘ \/1+ \/1+‘ \/1+‘

1o () Tog (u) 2t -0- 1) |
\/1+\1Q @+ @[ \/1+\(11 @y + \/1+\<11 (@)

2Fas ()~ Fos (u) 21=Fo ()~ (1 Fog (w)) m

\/1+\FQ W[ + \/ +Fos ()| \/1+‘(1 F, (u))‘ \/1+‘(1 Foe (u))‘

2

(=Fis )] |

F;E (up) (1- F;lc (u)

Taqg

OOl»—A

2/(1-Tg, ()= (1= To, (w) 2[To, (u) = Ta, (w) }

§ 1/1+|(1 To, (u) +\/1+‘(1 TQz(u))‘ \/1+|TQl(u)| \/1+|TQ2(u)|

2/(1-T5, ()= (1= T, () 2[4, (u)~ T, () .
\/1+|(1 TQI(u))| \/1+\(1 TQz(u))‘ (u)| + (u)|

20t -0, 2 ) T ()

.
_\/1+|(1—161 )| +\/1+‘(1—1(;2 )| \/1+|161 (w) [ +\/1+|152 ()| |

0 @)= @) 2 ) Ty ()

2 2 2 +
D0t ol 14015, )| 5 ) [ 1, )|
2|(1-F, (w)) - (1= Fg, (w) 2[Fo, ()~ Fon (w)
2 * 2 2 +
_J1+|(1—Fal<ui))|2+J1+\<1—F(;2(ui))\ J1+|Fal<uo| +\/1+|Faz(ui)| |
2‘(1—Fgl (u))—(-Fg, (ui))\ . 2|5, (u)— Fo, (w) N
Jea-Es @yl +\/1+\(1—Fg2 )| 61 ()| +414[Fo, (W[
2[(1-Tg, ()= (1= To, () [T, () ~Tos ()

\/1+‘(1 T, (u))‘ \/1+‘(1 T, (u))‘ \/1+|TQl(u)| \/1+|TQ2(u)|
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2‘(l—lQl(ui))—(1—IQZ(ui))‘ . 2T, ()T, (w) ]+

2 2 2 2
\/‘*‘(l‘IQl(“i))‘ +\/1+‘(1_1Q2(ui))‘ \/1+|Iol(1li)| +‘/1+|102(u)|

2/(1= Fo, (w))~ 1= Fo, () 2P T, i) ]

2 2 2 2
\/1+‘(1—Fol(ui))‘ +\/l+‘(l—FQ2(ui))‘ J1+|F01(ui)| +\/1+|FQ2(ui)|

1
81

2|Tg, (W)~ T, (W) . 2\(1—T;2](ui)>—(1—Tg)z(ui))\ %

2 2 2 2
‘/1+|T§1(ui)| +‘/1+|T62(ui)| ‘/1+|(1—T5] )| +\/1+\(1—Tg2<ui>>\

R 2
(1-T;, w))|

2T, ()~ To, (ui)| . 2‘(1—T5] (w))-01-Té, (ui))‘ )
\/1+|T61 (ui)|2 +\/1+|T62(ui)|2 \/1+|(1_T6| (ui))|2 +\/1+

o o] il w| |
‘/1+|I<31 (uy |2 +\/1+|I§2 (ui)|2 WH/H

151 (ui) *162 (ui)| 2‘(1_181 (Ui))7 (17 162 (u,))‘ ]
+ +

2
R 2
\/1+1Q1 (ui)| +‘/1+

_ 2
-1y, @)

2 2 2
16, (ui)| 1+|(1—1221 (ui))| +‘/1+a—1;2 (ui))‘

Fo, w)-Fo,w)] Z\G—Fél ()= (- Fq, <ui>>\ .
Jelea ol e oo wf +\/1+ (1-Fg, )|

ke w)Fow)  0-Fg )-0-Ff, ) )
Tl o e, o JHa-Fa [ +\/1+\(1 Fyw)|

o) Toyw)]  2J0=Tg w=0-To,w)) )
Jefra oo \/1+‘(1—TQ1 w)| +\/1+ (1-Tg, @

2o, (w) -ty ()] 2[(1-Tq, (u)~ (1= To, (w) .
_\/1+\1Q] )]+ +]1o, [ \[1+\<1—1Q1 )| +Jl+\(1—IQ2 )|

2[Fo, (w)~Fo, (w) 2[(1-Fy, ()~ (1= Fo, () -
+ =CEyc (Q1 Q)
_\/1+\FQl(ui)\2 +\/1+\FQ2 w)[ JH‘(I—FQI (u|))\2 +\{1+\(1—FQ2 (ui))\2 m ‘ ’

(iv).
Since VYu; €U, for a single valued part, we obtain:

|TQ1 (ui)—TQZ (ui)|= |TQ2 (ui)—TQl (ui)| ’ |IQ1 (ui)—qu (ui)|= |IQ2 (ui)—IQl (ui)| ’ |FQl (l.li)—FQ2 (ui)|= |FQ2 (ui)—FQI (ui)| ’

(=T, W =0=To, = 1= To, ) =(1-To, @], [1-To, ) =1-To, Q= [A- T, D ~01-To, W)
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‘(l —Fy, i) -(1-Fq, (ui))‘: |(1 ~Fo, W) -(1-Fy, (ui))| .
Then,
\/1+|TQI (us) |2 +\/1+|T02 (us) |2 = \/1+|TQ2 (ui) |2 + \/1+|TQI (us) |2

2 2 2 2 2 2 2 2
\/1+|101<ui)| +\/1+|102(ui>| :‘/1+|102<ui)| +‘/1+|101<ui)| , ‘/1+|F01<ui)| +‘/1+|FQ2(ui)| :‘/1+|F02(ui)| +‘/1+|FQl(ui)| ,

JH=T g, @[ 10 = Ty @) [ = {1}~ Toy ) + 414/ = Tg, )

2 2 2 2
\/1+|(1—1Q1<ui»| +\/1+|<1—1Q2<ui»| =\/1+|<1—1Q2<ui>>| +\/1+|(1—101(ui»| ,

,j1+|(1—FQ1<ui»|2+\/1+|(1—FQ2(ui>>|2 - - Foy @ [ +1+a-Fq @[+ ¥ui<U.

For the interval neutrosophic part, we obtain

75, )= Ta, W= [T, =T, + [l = Toy W= |loy =T |+ [Fa, (w=Fa, |- [Fo,w)-Fa,w)]

0-Tg, @D =0-To = |0-To, ) =-To @) 0-Tg, ) =0-Tg, ()] =|0-Tg, ) -0-Tg,w))
0o, () == Fg, (W)= [1-Fg, ) -0-Fg, ) -

Then, we obtain

\/1+|T51(ui) i +\/1+|T52(ui) = \/1+|T62(ui) i +\/1+|T51(ui) i

D 0 [ i, [ = 1oy [+ ) [

1 Fa, ) [+ 14t [ = 1+ o, [+ {1+]ra, o [

S 0= Ta ol o -To, @ =10 -To ) +y1+]a-To,w[
D016, 140 16, = 1|0 =1, 10— 16,

0=, o} 10— Fay [ = 10— Foy | +y1+|0-Fg @, vureu

Ty ()~ I, ()

T, (U)o, W) , 6,0~ T, (w|=

Similarly, To, (Ui)_Taz(Ui)‘:

Fo (1)~ Fo,(u) : 0T, W= =T, W] =0T, @D -0-Tf W)

[Fo, (0D~ Fo,(u)
01, ) ==L = 4L, D =01, @] [0-F ) =(-F () |0-Fo, ) --F w))], then

Pt o [ +iefren [ = v
i ol - el
\/1+‘F51(Ui) ‘2 +\/1+‘F62(ui) ‘2 - \/1+

S o= ra o o -Ta, @ = 1+a-To i +y1+a-Towf

2 2
To, ) [+ 1|8, |

2
15y (w) |

2 2
Fo, (u) | +\/1+F61(ui)‘

D=1 @l 0=, | = o= 1ol o -6,

2 2 2 2
\/1+‘(1—F61(ui)‘ +\/1+‘(1—F62(Ui)‘ :\/1+‘(1—F52(ui)‘ +\/1+‘(1—F61(u1)‘ , Vel
Thus, CExc(Q1.Q,) = CExc(Q,.Q)) .0

Definition 17. Weighted NC-cross-entropy measure
We consider the weight w; (i=1,2,3,...,n)of v (i=1,2,3, ..., n)with w,€[0,1]and iwi =1.
i=1

Then, a neutrosophic cubic weighted cross entropy measure between Q, and Q, can be defined as
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o) -Toyw|  2J0-Tg =0-To,w))

CE%C(Qsz):l iwi > > >
‘/1+|T51(ui)| +‘/1+|T(32(ui>| ‘/1+|(1—T61(u,-))| +\/1+

8\ i

+

_ 2
(1-Tq, w))|

2

To ) Toyw)|  0-To @=0-Tg, @)
‘/1+|T51 (ui)|2 +‘/1+|T52 (ui)|2 ‘/1+|(1 ~ T, () |2 +‘/1+‘(1—T52 (ui))‘2

i, w) T, 21~ (-0 g, W)

2 2 2 2
I T S TR +‘/1+\<1—Igz<ui>)\

I

+

+

2|1, (w) — 15, () ) 2/a-15, (W)= (1= 15, (W)

o @) |+ @ ot @] i+ fo-t, @

2Fo ) -Fo )] 2|(1-F¢, ()~ (1= Fa, (w))

+

_\/1+|Fal )| +\/1+|F62 ()|’ \/1+|(1—F51 )| +\/1+‘(1—ng (ui))‘2 (38)

IE

2|, ()= F, (w) 2/0-F;, () - (1= B, @)

.
Fi, ()] +\/1+ F, ()| \/1+‘(1—F5] )| +\/1+\(1—ng )|

2|Tq, ()~ Ta, (u)] 2(1-Tg, (u) = (1= To, (w)

N
_\/1+|TQ1 @ 10 @) J1fa-Ty, @[ +/t+]a-To, @ |

2o @)-Toy ) 2|(1= I, (w)) = (1= To, (W)

_\/1+|1Q1 W) +\/1+|1Qz Ol \/1+‘(1—1Q1 )| +\/1+‘(1—1Qz )|

2Fo (@) -Fopw)] 2|(1-Fg, (u) = (1= Fo, (w))|

_\/1+|FQ1 @[ +y1#[Fos @[ 1e]a=Fg, @[ +1+]0=Fo, |

Theorem 2. Let Q,,Q, be any two NCSs in U. Then, weighted NC-cross entropy measure CEYc(Q;,Q,)
satisfies the following properties:
(1) CE¥c(Q;,Qy)=0.

(i) CEyxc (Q1,Q)=0 iff To, (u;)=Tq, (W), Tg (W)= Ta, (W), Ig (u;)=Ig, (u;), Ig (W)= Ig, (W),
Fo, (4)=Fo, (), Fo, ()= Fo, () and To, ()= To, (u;).Io, (u)=lo, (u;).Fo, (4)=Fo, (u;) Vu; U.
(iii) CEXc(Q;,Q,)=CEX (Q7,Q5)

(iv) CE‘IZIC (Ql: Q2) = CE‘I)\JVC(QP Ql) .

Proof of Theorem 2.

().
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For all values of wu,eU, (ui)|20 , (ui)|20 ,

(ui)_TQz (ui)|20 ’ '\'1+|TQ| (Ui)|2 >0,

Wrgwl =0, [0-Tgwolo o |d-To,@)|20 L |0-Tg (@) - (1-To, @))[20

\/1+‘(1—TQ] )| 20, ‘/1+(1—TQ2(ui)) "0,
Then,
Z‘TQI (ui)*TQz (ui)‘ J 2‘(1 7T01 (up)-0- Taq, (ui))‘ >0 39
\/H\TQl(u,)\z +\/1+\T02<ui>\2 \/H(l—TQ](u,))‘z +\/1+\(1—qu<ui»\2 59)
Similarly,
2|Io, (W) ~To, Wy 2((1=Ty, ()= (=TIq, (u)
o] Aol [
\/1+|1Q1<ui>| +‘/1+|102<u>| \/1+\(1—1Q(ui»\ +\/1+\(1—1Q2<ui»\
and
2|Fo, (u)~Fo, ) 2/q1- FQ1<u>> (- FQZ(u))‘
2 2 (41)
JefFor @ +{1+[Fos )| \/H\a F <u»\ I+
Again,
for all values of u; €U, T (ui)|_ o (ui)|20, To, ()~ To, W20 1+|T51(ui)|2 >0,
e 20, [0=Tg @fz0, - To o, [1-Tg wn-a-Tg, w0,
Jefa=Tg @] 20, Jiefo-To,@n[ =0 @)
o -To,w| 21T, - 0= Tg, () .
‘/1+|TQl(u)| \/1+|TQ2<u>| ,/1+|<1—T51<ui»|2+\/1+ -
and
) 20, [Toy @0, [ro )~ Toy 0, J1efrs @l 20, J1efri, af 20,
~Thy w2 “To, R0, =Ty @ >0
2
(o= TG, @y 20 )
2T, ()T, (u) 2/1-T, (W)= T4, W) .
= t 2>
\/1+|T61(ui)|2 +‘/1+ p (ui)|2 1+|(1—T61(ui))|2 +\/1+‘(1—T52(ui))‘2
Similarly, we can show that
2o ) o] 2/(1-Tg, ()0~ T, () . "

2 2 2 2
‘/1+|151(ui)| +‘/1+|152(ui)| \/1+|(1—161(ui)>| +‘/1+‘(1—I§2(ui))‘
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21, () T, ) 2[1-1}, W)~ (- 1, W)
- — = — |20
11y ) [ +4f1, )| ‘/1+|(1—151(ui>)| +\/1+‘(1—Ig2(ui))‘
P w-Fow)] 20y @)-0-Fg,w)) ,
\/1+|F§1 w[ +\/1+|Fé2 Wl \/1+|<1 ~Fo )| +‘/1+ (1=Fy, () \2
and
Ry - Foy )| 2f1=Fg @)-0-Fo,w)) .

2 2 2 2
\/1+|1:51(ui)| +‘/1+|F52(ui)| ‘/1+|(1_F51(ui))| +‘/1+‘(1—ng(119>‘

Collected Papers, XIV

(45)

(46)

(47)

Adding Equation (39) to Equation (47), and using wie[O,l],iwi =1, we have CEY.(Q;.Q,)>0. Hence,
iz

this completes the proof.

(ii).
|To ) To,w)]  20=Tg )=0-To,w)) y
\/1+|TQI w) +‘/1+|TQZ w) ‘/1+‘(1 -T,, (ui))‘2 +\/1+‘(1—TQ2 (ui))‘2
(Z‘T (i) = To, ( :)‘ ! + L -
B [T @[ 1+ g \/1+\(1—TQ1 | +\/1+\(17TQ2 )|
<:’TQI (ui)=TQ2 (up)
Yoy )Ty @) 40l )-(-To )] |
o )+ 10, @ \/ 11T, ()] +\/ (-1, )|
= IQ1 (ui)=IQ2 (up
[ ) Fow)]  0-Fg -0 Fo, w) .
\/l+|FQ1 (Ili)|2 +\/l+|FQ2(ui)|2 ‘/1+ ; ’ +\/l+‘(l—FQ2 (u_i))‘2
& Fo, (w)=Fq, (), For all values of u;eU.
Again,

2ro, )-Tostw)| (1-Tg, (W)~ (=Tg,(w))|

@mmﬂ$$mdeamm)¢%Tmﬂ

& T, W)= To, W)

. 2‘(] T (ul)) (1- TJQz(ul))‘

o -t @l + R

= ()= To, (i)

momm|
m|

325

(48)

(49)

(50)

Gl

(52)



Florentin Smarandache (author and editor)

I ) Tosw) 20T (@)~ (-Tg,(u)|

Y ol il el 1l il

& To, W) = To, (W)
Py ) Tos(w)| 201, (@)= (-Tow))

2
1oy ()] 1+

I

<:>16| (ui) :162 (ui)

Jro (w)-Foulw)  J0-Fg ()~ (-Fay(uw)|

O T ()

= Fo, (u)=Fo, (W)

Prh () Fonlw)|  J0FG () (-Fa(u)|

fFa 0]+ 4Py B @+ fFo )] |

2
Fo, ||+ 14

< Fo, ()= Fo, () , for all values of u;eU.

I

Fastwd)| 1] Ry 0P|
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(53)

(54)

(55)

(56)

Using Equation (48) to Equation (56) and wie[O,l],iwi =1, w;20, we have CE}.(Q,,Q,)=0 iff

i=1

To, (W)=To, ).  To W) =Tg, ), Ig W)=Ig, W) , Io W)=Tg, M) , Fo W)=Fq, ) , Fo W)=Fg, )

and  Tg, (u)=Tg, (W) I, (W) =Io, (4),Fo, (4)=Fq, (u) forall u eU.

(iii).

Using Definition (20), Definition (4), and Definition (10), we obtain the following expression:

2

TE;;‘ (u)— T('); ()

2‘(1—Téf ()= (1= T )

w C C 1
CExc Q, Qz):g

n

i

Tglc (up) ng (ui) (1- T;)f (ui)

2 2 +
+\/1+ \/l+
2‘(1—T;c (W)= (1= T}, ()
2 + - 2 -
\/l+ +\/l+
2‘(1—%5 (w)-(- T (u)

+ +

\/1+ 01 ) i

10T )
IQ]c (uy) _IQZ (ui)

Wi
1
\/1+

T:)T (ui)— TI; (uy)
2
+\/1+
I(;lc (up) *Iég (up)
2
+\/1+ I

2

2

+

2

e
e

Ty () Ty () (=T () (=T, (@)

2

Iélc (up) 223 (ui)

2‘(1—1;0 ()= (=13 ()

+140-Tog |

+

\/1+ +J1+ \/1+ (1—Igc(ui)) +\/1+

IQf (us) IQS (up)
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2‘(1—FQIC (u))— (1= Fog (ui))‘

2 Fz)lc (ui)— FZ)% (ui) N 2‘(1_1:;)? (u))—- (- Fé; (ui)
J1+ Féf (ui) +\/1+ F(;g (ui) Jl+ (1—FE)f (ui)) +W’1+‘(1_F&3 (u) 2
2 F;f (u)- F:zg (u) . 2‘(1—1'7;? (u))-(1- Fgg (uy)

J1+ F;c (ui) +\/1+ Fgc (ui) J1+ (I_F;c (u1) +\/1+ (I_F;c (ui)
2] s (w)~Tog () Zkl T ()= (1 Tos ()
\/1+\TQ (u)‘ \/l+\TQ (u)‘ 1+ \/1+‘(1 Toe (u))2
21 ()1 (u) 2&1 m»(lmgwﬂ

+
\/1+‘1Q (u)‘ \/1+‘IQ (u)‘ 1+ 1+

2|Fog (u)- FQ2 W
\/1+‘FQ1 (u) ‘ 1+‘FQ§ (up) ‘2 \/1‘*"(1 _FQf (u) z

+\/1+\(1—FQ; w)|

JHa-To, @l + \/1+\(1 ~Tg, @) ST, @ /1o, o

2‘(1 ~Tg, (w))= (- TQz(u))‘ 2|14, ()~ Th, ()

< { 2f0-Tq @n-0-To, @) 2J7e, ()= Tayw)

D= T @ +f1+|0=T, @ \/1+ITQI(u>| 1T, )

{ 2”(1 Iy, ()~ (1— IQZ(u))H . 2|1g, (u) ~T, (w) }r

14| Tg, )| + \/1+\(1 I, ()| i, ) [ #4141, [

{ 2|11, @)= (1= 16, ()| o 2o ) ~16, () ]+

St ol +\/1+\(1—152 w)| i o [+, o [

2|a- FQI(u» (1= Fo, (w) 2|, (u)~ Fa, ()
V1= Fo @)’ \/1+‘(1 Fo, )| \/1+|Fol(u)| +\/1+|FQ2(u)|

2|(1-F, (w) = (1= Fg, (w) 2|y, (w) - Fg, (u)
Y-k @[+ \/1+\(1 Fy, )] \/1+‘FQl(u)‘ w1+ fe @

{ 2|(1=Tg, (W)= (= To, () 2[Tq, ()~ To, (w)

\/1+‘(1—TQ1(ui))‘2+\/1+‘(1—TQ2(ui))‘ \/1+|TQl(u)| \/1+|TQ2(u)|
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J0-to @)-0-to @) 2 )-tey ) |,
_\/1+‘(1—101 )| +\/1+‘(1—IQ2 )] \/1+|1Q] )| +\/1+|1(22 |’

2|(1=Fg, (u))= (1= Fo, () 2[Fq, (u)~ Fos (u)
\/1+‘(1 -F, (u))‘ \/1+‘(1 FQz(u))‘ \/1+|FQl(u)| \/1+|FQ2(u)|
s 2|, () ~Tg, () 2/(1-Tg, (W)= (1= To, (w)
8 \/1+|Tol(u)| \/1+|TQ2(u)| w/1+|(1 T, )]’ \/1+|(1 T, (u))|
2[5, (W)~ TG, (w) Jo-Ty @n-0-T ) |
S, @ i, @ \/1+(1 o )|+ \/1+|(1 T), )|
201, () ~Ta, (u) 2/(1-1g, (@)= (1= 15, (w))
\/1+|1Ql(u)| +\/1+|1Q2(u)| ,/1+|(1 Toy () +1/1+‘(1 IQZ(u))
o (W) ~ T, () 2[(1-15, ()= (1= 13, (w))|
(u)| +\/1+ )| \/1+‘(1 I )]+ \/1+‘(1—102(ui))‘2
2|, (u) ~ Fa, (u) 2[(1-Fg, ()= (1= Fg, (w)
\/1+|F61(11i)|2 +\/1+|F62(ui)|2 1+(1 Fol(u)) +V1+(1 FQz(u))
2[R, (u)~ Fi, (u) 2fa- FQl(u)) (1= Foy (w)
\/1+|FQ1(u)| \/1+|FQ2(u)| 1/1+|(1 Fo )| + \/1+‘(1 FQz(u))‘

To )T ] 20-To @)-(-To,w)| |
T @ 41T, @ 140y || +/1+]0-Tg, |

21, (u)~To, () 2|(1-14, (W)= (1= T, ()
Sy @) #4110, @] \/1+\(1 I, )| + \/1+\<1 qu(u))\
Z‘FQ,(u) FQZ(U)‘ ‘(1 Fo, (w))-(1- FQz(u))‘ ZCEY.(Q,Q,),V u, U
= Ne '\ N2 s i :
\/1+\Fol(u)\ \/1+\F02(u)\ \/1+‘(1 Fo )| + \/1+\(1 ~Fo, )|

(iv).

Since Vu; €U, for single valued parts, we obtain:

[Toy (W) ~To, W= [Ta, W)=Toy @)+ floy (@) =To, ol=[la, W) =To, )|/ [Foy w)~Fa, wo|=[Fo, w)-Fo, )] -
\(1 ~To, (W) =(-Tq, (ui))‘: [0-To, @D=(-To @]+ [0-Tg, (- To, (w|=|0- Tgy w0 To, ()
[(1=F, (=01 Fo, | |0~ Foy (W)= Fo, )]
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Then, we obtain
V1T, @ 14, = i+, i + 1o,
V1 oy @) 41410, @) = 1y @ 1410,
2 2 2 2
\/1+|FQ1(ui)| +J1+|FQ2(ui)| - \/1+|F02(ui)| +J1+|FQ1(ui)|

ST g [ #4140 Ty @) [ = 4] Ty ) #4140~ To, )

2 2 2 2
\/1+|(1—101<ui»| +‘/1+|(1—102<ui»| :‘/1+|<1—102(ui))| +\/1+|(1—1Q1<ui>)| ,

‘/1+|(1—FQl(ui))|2+\/1+|(1*Foz(ui))|2 - \/1+|(1—FQz(ui))|2 +\/1+|(1—Fol(ui))|2 , Vujel.

For interval neutrosophic part, we have

[T, =T, W)= [To, @) =Ta, ]+ [l =T, il lg,w)-Ta W]+ [Fo, () Fa, |- [Fo, w)-Fg, |

[0-Tg,u=0-Tg, = [0-To, @D -0-To @] |4-Tg, ) == To, | |1 To, W) ~1-Tg )
01, (== Fg, )| 1-Fg, u)-(1-Fg,(w) -

Then, we obtain

\/1+|Ta,(ui) i +\/1+|T52(ui) = \/1+|T52(ui) i +\/1+|T51(ui) i

D, [+ 1,0 [ = 1o, 0 |+ i, 0 |

\/1+|F51(ui) i +\/l+|F52(ui) = \/l+ IFo, () | +\/1+|F51(ui) i

N e T Y 0 e [ BY R
D=1, @ + 1=, = o= 1, 140 - @]
0= ol 10— Ry [ = 10— Ryl + 410 - @, vureu

Similarly, [T, ()T, )|=[To, @) =Té W, [le,w)~Ta, |- i, w14, w)

Fan(u)~Fo, )|  [0-T4,w-0-T4, | [1-To, @ -0-Tg, )]

[Fo, ()= F, ()|
0T, 0= 0- T4, ] =0T, D =0T, D], [(1-F, @ =0-Fg, | [1-F, ) -1-F, (), then

\/1+|T5] (ui) |2 +\/1+|T62(ui) |2 = \/1+|T52(ui) |2 +\/1+|T51(ui) |2 )

2 2 2 2
D ) [+ [ = Yo, [+ o |

2 2 2 2
\/1+|F61(ui)| +\/1+|F62(ui) | = \/1+|F62(ui)| +\/1+|F51(ui) i
J0=Ta, @ 0 -Ta, @[ =ytea-To, @ +y1+a-Taw] .
D=t @+ = Jiefa- 1, +i+a - @]
D la=rs o} 10— ps, @ = Jila- o, +y1+]a-rF5 @[, vureu
In addition, w,e[0,1], Y w; =1, w, > 0.

i=1

Thus, CEVNVC (Qp Qz): CE;IVC (Qz: Ql)

hence completing the proof.o
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4. MADM Strategy Using Proposed NC-Cross Entropy Measure in the NCS Environment

In this section, we develop an MADM strategy using the proposed NC-cross entropy measure.
Description of the MADM problem:
Let A={A,A,,A,,..,A,} and G={G,,G,,G,,....,G,} be the discrete set of alternatives and

attribute, respectively. Let W = {w,,w,,w,,..,w } be the weight vector of attributes G; (j=1,2, 3,

..., n), where w; >0 and iwjzl.
j=1

Now, we describe the steps of MADM strategy using NC-cross entropy measure.

Step: 1. Formulate the decision matrices

For MADM with neutrosophic cubic information, the rating values of the alternatives
A; (i=1,2,3,..,m) onthe basis of criterion G,(j=1,2,3,...,n) by the decision-maker can be expressed

inNCNas a;= < [Tij',Ti;],[lg,lg],[Fij',Fg], (T, I, F) > (1=1,2,3,...,m;j=1,2,3, ..., n). We present

these rating values of alternatives provided by the decision-maker in matrix form as follows:

G, G,...G,
A1 air apz--- ain
M= A2 az; axn azn (57)

Am Aml dm2-+- Amn

Step: 2. Formulate priori/ideal decision matrix

In the MADM process, the priori decision matrix is used to select the best alternative from the
set of feasible alternatives. In the decision-making situation, we use the following decision matrix as
priori decision matrix.

G, G,..G,
A1 aTl aTZ"' aTn
P=|A, ayan an (58)

* * *
Am Aml Am2:-+ Amn

where, aj= <[1,1],[0,0],[0,0]> for benefit type attributes and aj=<[0,0],[1,1],[1,1]> for cost type
attributes, (i=1,2,3, ..., m;j=1,2,3, ..., n).

Step: 3. Formulate the weighted NC-cross entropy matrix

Using Equation (38), we calculate weighted NC-cross entropy values between decision matrix
and priori matrix. The cross entropy value can be presented in matrix form as follows:

CExc (A)
CExXc (A,)
NCy W
1Y S (59)

CE \I:IIC (Am )

Step: 4. Rank the priority

Smaller value of the cross entropy reflects that an alternative is closer to the ideal alternative.
Therefore, the preference ranking order of all the alternatives can be determined according to the
increasing order of the cross entropy values CEXc(A;) (i=1,2,3, ..., m). The smallest cross entropy
value reflects the best alternative and the greatest cross entropy value reflects the worst alternative.

A conceptual model of the proposed strategy is shown in Figure 1.
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Figure 1. A flow chart of the NC-cross entropy based MADM strategy.

5. Illustrative Example

In this section, we solve an illustrative example of an MADM problem to reflect the feasibility
and efficiency of our proposed strategy in NCSs environments.

Now, we use an example [89] for cultivation and analysis. A venture capital firm intends to make
evaluation and selection to five enterprises with the investment potential:

(1) Automobile company (A1)

(2) Military manufacturing enterprise (Az)
(3) TV media company (As)

(4) Food enterprises (A4)

(5) Computer software company (As)

On the basis of four attributes namely:

(1) Social and political factor (G1)

(2) The environmental factor (Gz)

(3) Investment risk factor (Gs)

(4) The enterprise growth factor (Gs).

Weight vector of attributes is W = {.24, .25, .23, .28}.

The steps of decision-making strategy to rank alternatives are presented as follows:

Step: 1. Formulate the decision matrix
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The decision-maker represents the rating values of alternative Ai (i=1, 2, 3, 4, 5) with respect to
the attribute Gj (j=1, 2, 3, 4) in terms of NCNs and constructs the decision matrix M as follows:

(60)

G G, G,
A, <[6,81[2, 3103,41,(8,3,4) > <[.5,.6L[2,41,[4,41.(6.4.4) > <[.6,81[2,31[2.41,(8,4,.4) > <[.6,.71.[3. 4113, 4.(7. 4.5 >
Mol A <ESTL23LL3.41(7,3,4) > <[7.812.31[2.4),(8.3.4) > <[6,8[2.4113,41.(8,4.4) > <[6,8],[2,3],[2, 3],(8,.2.3)>
TIA <[6,8L12.41[3,41,(8,4,4) > <[.6,.81,[2,3,[2,31,(8,3,3) > <[.8,9], [3,.5L[3,:5L(.9,.5,.5) > <[.6,.7,[2,3L[2,4],(7,.3,4) >
A, <[5.71[4,.5103,.51(7..5.5) > <[4,6L[.L3],[3,41,(:6,3,4) > <[.5,.6L[.L, 21,[3,41,(.6,.2..4) > <[.5,.7,[3,4L[4,.5.,(7..4..5) >
A, <[7,8L0.2,41,02,3,(8,4,4) > <[4,.6],[.2,4,[.2,4],(.6,4,4) > <[.5,7,[.2,4],[3,4),(.7,4,4) ) > <[.6,8],[4,.5,[4,.5],(.8,.5,.5 >

Step: 3. Formulate priori/ideal decision matrix
Priori/ideal decision matrix

G, G, G G,

A, <[L1],[0,0],[0,0],(1,0,0) > <[L,1],[0,0],[0,0],(1,0,0) > <[L,1],[0,0],[0,0],(1,0,0) > <[L,1],[0,0],[0,0],(1,0,0) >
| Ay <[L,1],[0,01,[0,0],(1,0,0) > <[1,1],[0,01,[0,0],(1,0,0) > <[1,1],[0,0],[0,0],(1,0,0) > <[1,1],[0,0],[0,0],(1,0,0) >
A5 <[1,1],[0,0],[0,0],(1,0,0) > <[1,1],[0,0],[0,0],(1,0,0) > <[1,1],[0,0],[0,0],(1,0,0) > <[1,1],[0,0],[0,01,(1,0,0) >
A4 <[1,1],[0,0],[0,0],(1,0,0) > <[1,1],[0,0],[0,0],(1,0,0) > <[1,1],[0,0],[0,0],(1,0,0)> <[1,1],[0,0],[0,0],(1,0,0) >

(61)

As <[L1],[0,0],[0,0],(1,0,0) > <[1,1],[0,0],[0,0],(1,0,0) > <[1,1],[0,0],[0,0],(1,0,0) > <[1,1],[0,0],[0,0],(1,0,0) >

Step: 4. Calculate the weighted INS cross entropy matrix

Using Equation (38), we calculate weighted NC-cross entropy values between ideal matrixes (61)

and decision matrix (60):

0.66
0.58
NM Y = 0.60
0.74
0.71

Step: 5. Rank the priority

(62)

The position of cross entropy values of alternatives arranging in increasing order is 0.58 < 0.60 <
0.66 < 0.71 < 0.74. Since the smallest values of cross entropy indicate that the alternative is closer to
the ideal alternative, the ranking priority of alternatives is A2 > As > A1 > As > A4. Hence, military

manufacturing enterprise (Az) is the best alternative for investment.

Graphical representation of alternatives versus cross entropy is shown in Figure 2. From the

Figure 2, we see that Az is the best preference alternative and Au is the least preference alternative.

Cross entropy values

A1 A2 A3 A4 A5

Alternatives

Figure 2. Bar diagram of alternatives versus cross entropy values of alternatives.
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Figure 3 presents relation between cross entropy value and preference ranking of the alternative.

—m— Cross entropy values
—e— Ranking of alternatives

Cross entropy value and ranking of alternatives

Alternatives

Figure 3. Graphical representation of cross entropy values and ranking of alternatives.

6. Contributions of the Paper
The contributions of the paper are summarized as follows:

1. We have introduced an NC-cross entropy measure and proved its basic properties in NCS
environments.

2. We have introduced a weighted NC-cross entropy measure and proved its basic properties in
NCS environments.

3. We have developed a novel MADM strategy based on weighted NC- cross entropy to solve
MADM problems.

4.  We solved an illustrative example of MADM problem using proposed strategies.

7. Conclusions

We have introduced NC-cross entropy measure in NCS environments. We have proved the basic
properties of the proposed NC-cross entropy measure. We have also introduced weighted NC-cross
entropy measure and established its basic properties. Using the weighted NC-cross entropy measure,
we developed a novel MADM strategy. We have also solved an MADM problem to illustrate the
proposed MADM strategy. The proposed NC-cross entropy based MADM strategy can be employed
to solve a variety of problems such as logistics center selection [90,91], weaver selection [92], teacher
selection [21], brick selection [93], renewable energy selection [94], etc. The proposed NC-cross
entropy based MADM strategy can also be extended to MAGDM strategy using suitable aggregation
operators.
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On I-open sets and I-continuous functions
in ideal Bitopological spaces

M. Caldas, Saeid Jafari, Nimitha Rajesh, Florentin Smarandache

M. Caldas, Saeid Jafari, Nimitha Rajesh, Florentin Smarandache (2018). On I-open sets and I-
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Applications, Nafpaktos, Greece, 44-56

ABSTRACT. The aim of this paper is to introduce and character-
ize the concepts of Z-open sets and their related notions in ideal
bitopological spaces.

1. INTRODUCTION AND PRELIMINARIES

The concept of ideals in topological spaces has been introduced and
studied by Kuratowski [19] and Vaidyanathasamy [24]. Hamlett and
Jankovi¢ (see [12], [13], [17] and [18]) used topological ideals to gen-
eralize many notions and properties in general topology. The research
in this direction continued by many researchers such as M. E. Abd
El-Monsef, A. Al-Omari, F. G. Arenas, M. Caldas, J. Dontchev, M.
Ganster, D. N. Georgiou, T. R. Hamlett, E. Hatir, S. D. Iliadis, S.
Jafari, D. Jankovic, E. F. Lashien, M. Maheswari, , H. Maki, A. C.
Megaritis, F. I. Michael, A. A. Nasef, T. Noiri, B. K. Papadopoulos,
M. Parimala, G. A. Prinos, M. L. Puertas, M. Rajamani, N. Rajesh,
D. Rose, A. Selvakumar, Jun-Iti Umehara and many others (see [1],
2], [5], [7], [8], [9], [10], [11], [14], [15], [18], [23], [21], [22]). An ideal Z
on a topological space (X, 7) is a nonempty collection of subsets of X
which satisfies (i) A € Z and B C A implies B € 7 and (ii) A € Z and
B € T implies A U B € Z. Given a topological space (X, 7) with an
ideal Z on X and if P(X) is the set of all subsets of X, a set operator
(.)*: P(X) = P(X), called the local function [24] of A with respect to
7 and Z, is defined as follows: for A C X, A*(1,7) ={x € X|UNA¢ T
for every U € 7(x)}, where 7(z) = {U € 7|z € U}. If T is an ideal on
X, then (X, 7y, 7,7) is called an ideal bitopological space. Let A be
a subset of a bitopological space (X, 7, 7). We denote the closure of
A and the interior of A with respect to 7; by 7,-Cl(A) and 7;-Int(A),
respectively. A subset A of a bitopological space (X, 11, 72) is said to be
(i, j)-preopen [16] if A C 7;-Int(7;-ClL(A)), where 4,5 = 1,2 and i # j.
A subset S of an ideal topological space (X, 7,Z) is said to be (i, j)-pre-
Z-open [4] if S C 7-Int(7;-C1*(S)). A subset A of a bitopological space
(X, 71, 7s) is said to be (i, j)-preopen [16] (resp. (i, j)-semi-Z-open [3])
if A C 7-Int(7;-Cl(A)) (resp. S C 7;-Cl*(7;-Int(.5))), where i, j =1, 2
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and ¢ # j. The complement of an (7, j)-semi-Z-open set is called an
(1, 7)-semi-Z-closed set. A function f : (X, 7,7,Z) — (Y,01,02) is
said to be (i, j)-pre-Z-continuous [4] if the inverse image of every o;-
open set in (Y, 01, 09) is (i, j)-pre-Z-open in (X, 11,72, Z), where i # j,
i, j=1, 2.

2. (i,j)-I-OPEN SETS

Definition 2.1. A subset A of an ideal bitopological space (X, T;,72,T)
is said to be (i, j)-I-open if A C 7;-Int(A7).

The family of all (i,7)-Z-open subsets of (X, 7,72, L) is denoted by
(¢,7)-ZO(X).

Remark 2.2. [t is clear that (1,2)-Z-openness and T -openness are
independent notions.

Example 2.3. Let X = {a,b,c}, 71 = {0, {a},{a,b}, X}, o = {0, {a},{a,c}, X}
and T = {0,{a}}. Then m-Int({a,b}s) = 7-Int({0}) = 0 2 {a,b}.
Therefore {a,b} is a Ti-open set but not (1,2)-Z-open.

Example 2.4. Let X = {a,b,c}, 1 = {0,{a,b}, X}, o = {0, {a}, {a,b}, X}
and T = {0,{b}}. Then m-Int({a}}) = 7-Int(X) = X D {a}. There-
fore, {a} is (1,2)-Z-open set but not 11 -open.

Remark 2.5. Similarly (1,2)-Z-openness and Ty-openness are inde-
pendent notions.

Example 2.6. Let X = {a,b,c}, 1 = {0,{a},{c}, {a,c}, X}, n =
{0,{b},{c}, {b,c}, X} and T = {0,{c}}. Then m-Int({b,c};) = 7~
Int({a,b}) = {a} 2 {b,c}. Therefore, {b,c} is a To-open set but not
(1,2)-Z-open.

Example 2.7. Let X = {a,b,c}, nn = {0,{a},{c},{a,c}}, n» =
{0,{b},{b,c}, X} andZ = {0,{c}}. Thenr-Int({a};) = m-Int({a}) =
{a} D {a}. Therefore, {a} is an (1,2)-Z-open set but not T2-open.
Proposition 2.8. Every (i, j)-Z-open set is (i, j)-pre-Z-open.

Proof. Let A be an (i, j)-Z-open set. Then A C 7;-Int(A7) C 73-Int(AU
A%) = 7-Int(7;-CI"(A)). Therefore, A € (i, j)-PZO(X). O
Example 2.9. Let X = {a,b,c}, i = {0,{a},{c}, {a,c}, X}, » =
{0,{b,c}, X} and T = {0,{c}}. Then the set {c} is (1,2)-preopen but
not (1,2)-Z-open.

Remark 2.10. The intersection of two (i,j)-Z-open sets need not be
(,7)-Z-open as showm in the following example.

Example 2.11. Let X = {a,b,c}, 1 = {0,{a},{c},{a,c}, X}, n =
{0,{b},{b,c}, X} and T = {0,{a}}. Then {a,b}, {a,c} € (1,2)-
ZO(X) but {a,b} N{a,c} ={a} ¢ (1,2)-ZO(X).
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Theorem 2.12. For an ideal bitopological space (X, 1,73, Z) and A C
X, we have:

(1) If T = {0}, then A3(Z) = 7;-Cl(A) and hence each of (i, j)-Z-
open set and (4, j)-preopen set are coincide.

(2) If Z = P(X), then A5(Z) = 0 and hence A is (i, j)-Z-open if
and only if A = 0.

Theorem 2.13. For any (i,j)-Z-open set A of an ideal bitopological
space (X, 11,7, T), we have A} = (1;-Int(A7))j.

Proof. Since A'is (i, j)-Z-open, A C 7;-Int(A7). Then A% C (7i-Int(47))3.
Also we have 7,-Int(A) C A7, (7-Int(A7))" C (A})* C Aj. Hence we
have, A7 = (7,-Int(A3))7. O

Definition 2.14. A subset F' of an ideal bitopological space (X, 11, T2, T)
is called (i, 7)-Z-closed if its complement is (i, j)-Z-open.

Theorem 2.15. For A C (X, 71,79, T) we have ((7;-Int(A))5)¢ # 7-
Int((A°)F) in general.

Example 2.16. Let X = {a,b,c}, 71 = {0,{a},{a,b},X}, 7 =
{0,{a,c}, X} andZ = {0,{b}}. Then ((ri-Int({a,b}));)° = ({a, b}2) =
X¢ =0 (%) and 71-Int(({a, b}°)%) = 7i-Int({c}}) = 7-Int(X) = X ().
Hence from (x) and (xx), we get ((11-Int({a, b}))5)¢ # 7 -Int(({a, b}°)3).

Theorem 2.17. If A C (X, 7,7,Z) is (i,7)-Z-closed, then A D (7;-
Int(A));.

Proof. Let A be (i,j)-Z-closed. Then B = A€ is (i, j)-Z-open. Thus,
B C 7-Int(B}), B C 7-Int(7;-Cl(B)), B® D 7;-Cl(7;-Int(B°)), A D 75-
Cl(7i-Int(A)). Tha