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Abstract: In the fifth version of our response-paper [26] to Imamura’s criticism, we recall that 

NonStandard Neutrosophic Logic was never used by neutrosophic community in no application, 

that the quarter of century old neutrosophic operators (1995-1998) criticized by Imamura were never 

utilized since they were improved shortly after but he omits to tell their development, and that in 

real world applications we need to convert/approximate the NonStandard Analysis hyperreals, 

monads and binads to tiny intervals with the desired accuracy – otherwise they would be 

inapplicable.  

We point out several errors and false statements by Imamura [21] with respect to the inf/sup of 

nonstandard subsets, also Imamura’s “rigorous definition of neutrosophic logic” is wrong and the 

same for his definition of nonstandard unit interval, and we prove that there is not a total order on 

the set of hyperreals (because of the newly introduced Neutrosophic Hyperreals that are 

indeterminate), whence the Transfer Principle from R to R* is questionable. 

After his criticism, several response publications on theoretical nonstandard neutrosophics 

followed in the period 2018-2022. As such, I extended the NonStandard Analysis by adding the left 

monad closed to the right, right monad closed to the left, pierced binad (we introduced in 1998), and 

unpierced binad - all these in order to close the newly extended nonstandard space (R*) under 

nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard division, 

and nonstandard power operations [23, 24]. 

Improved definitions of NonStandard Unit Interval and NonStandard Neutrosophic Logic, together 

with NonStandard Neutrosophic Operators are presented. 

Keywords: Neutrosophic Logic; NonStandard Analysis; NonStandard Neutrosophic Logic; 

Neutrosophic Operators; Neutrosophic Hyperreals   

 

1.  Introduction 

I recall my first two answers to Imamura’s 7th Nov. 2018 critics [1] about the NonStandard 

Neutrosophic Logic [20] on 24 Nov. 2018 (version 1) and 13 Feb. 2019 (version 2), and I                  

update them after Imamura has published a third version [21] on a journal without even citing my 

previous response papers, nor making any comments or critics to them, although the paper was 

uploaded to arXiv shortly after him and also online at my UNM [20]. I find it as dishonest. 

Surely, he can recall over and over again the first neutrosophic connectives, but he has to tell the 

whole story: they were never used in no application, and they were improved several times starting 

mailto:smarand@unm.edu


Neutrosophic Sets and Systems, Vol. 51, 2022     2  

 

 

Florentin Smarandache, Improved Definition of NonStandard Neutrosophic Logic and Introduction to Neutrosophic 

Hyperreals (Fifth version) 

with the American researcher Ashbacher’s neutrosophic connectives in 2002, Rivieccio in 2008, and 

Wang, Smarandache, Zhang, and Sunderraman in 2010. Version  

The only reason I have added the nonstandard form to neutrosophic logic (and similarly to 

neutrosophic set and probability) was in order to make a distinction between Relative Truth (which is 

truth in some Worlds, according to Leibniz) and Absolute Truth (which is truth in all possible Words, 

according to Leibniz as well) that occur in philosophy.  

Another possible reason may be when the neutrosophic degrees of truth, indeterminacy, or 

falsehood are infinitesimally determined, for example: the right monad (0.8+) means a value strictly 

bigger than 0.8 but infinitely closer to 0.8. And similarly, the left monad (-0.8) means a value strictly 

smaller than 0.8 but infinitely closer to 0.8. While the binad (-0.8+) means a value different from 0.8 

but infinitely closer (from the right-hand side, or left-hand side) to 0.8. But they do not exist in our 

real world (the real set R), only in the hyperreal set R*, so we need to convert / approximate these 

hyperreal sets by tiny real intervals with the desired accuracy (  ), such as: (0.8,0.8 )+ , 

(0.8 ,0.8)− , or (0.8 ,0.8) (0.8,0.8 ) −  +  respectively [24].  

Since the beginning of the neutrosophic field, many things have been developed and evolved, 

where better definitions, operators, descriptions, and applications of the neutrosophic logic have 

been defined. The same way happens in any scientific field: starting from some initial definitions and 

operations the community improves them little by little. The reader should check the last 

development of the neutroosphics - there are thousands of papers, books, and conference 

presentations online, check for example: http://fs.unm.edu/neutrosophy.htm.  It is not fear to keep 

recalling the old definitions and operators since they have been improved in the meantime. The last 

development of the field should be revealed, not omitted.  

The general definition of the neutrosophic set used in the last years. 

Let U be a universe and a set S included in U. Then each element x S , denoted as  

x(T(x), I(x), F(x)), has a degree of membership/truth T(x) with respect to S, degree of 

indeterminate-membership I(x), and degree of nonmembership F(x), where  

T(x), I(x), F(x) are real subsets of [0, 1]. 

I was more prudent when I presented the sum of single valued standard neutrosophic 

components, saying:  

Let T, I, F be single valued numbers, T, I, F  [0, 1], such that 0 ≤ T + I + F ≤ 3. 

A friend alerted me: “If T, I, F are numbers in [0, 1], of course their sum is between 0 and 3.” “Yes, I 

responded, I afford this tautology, because if I did not mention that the sum is up to 3, readers would 

take for granted that the sum T + I + F is bounded by 1, since that is in all logics and in probability!”  

Similarly, for the Neutrosophic Logic, but instead of elements we have propositions (in the 

propositional logic). 

2.  Errors in Imamura’s paper [21]:  

2.1 Imamura’s assertation, referring to the Neutrosophic components T, I, F as subsets, that: 

“Subsets of ]-0, 1+[” may have neither infima nor suprema” is false. 

Counter-Examples of subsets that have both infima and suprema: 

Let denote the nonstandard unit interval U = ]-0, 1+[. 

Let M = ]0.2+, -0.3[, which is a subset of U, then 

inf(M) = 0.2, sup(M) = 0.3. 

In general, for any real numbers a and b, such that 0 ≤ a < b ≤ 1, one has the corresponding 

nonstandard subset S = ]a+, -b[ included in U, that has both exist: inf(S) = a, sup(S) = b. 

As a particular and interesting case, one has: ]0 , 1[ ] 0,1 [+ − − + . In general, for any finite real 

numbers ,a b R , a < b, the nonstandard subset S = ]a+, -b[ included in R*, has both: inf(S) = a, sup(S) 

= b. More generally, for any 
0 0

{ , , }x a a a
+ +

  and any 
0 0

{ , , }y b b b
− −

 the nonstandard subset ] , [x y has 
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inf( )x a= and sup( )y b= ; even the subset
0 0

] , [ [ , ]a b a b , which normally is standard, may become 

nonstandard if it contains inside at least one hyperreal. Of course, if at least one of x or y is hyperreal, 

then the subset ]x, y[ is nonstandard. 

 

2.2 Imamura’s “rigorous definition of neutrosophic logic” is wrong. 

Let K be a nonarchimedean ordered field. The ordered field K is called nonarchimedean if it has 

nonzero infinitesimals. 

He defined, for ,x y K , x and y are said to be infinitely close (denoted by x y ) if x-y is 

infinitesimal. Then x is roughly smaller than y (denoted as x y

 ) if x < y or x y . 

This is wrong. See the below Counter-Examples. 

Let  > 0 be a positive infinitesimal, also 5x = +  and 5y = − be hyperreals. 

Of course, (5 )x + , right monad of 5, and ( 5)y − , left monad of 5. 

5 +  is infinitely closer to 5, but above (strictly greater than) 5; 

while 5 − is infinitely closer to 5, but below (strictly smaller than) 5. 

Then x – y = 2 , which is infinitesimal, and, because x is infinitely close to y ( x y ), one has that 

x is roughly smaller than y (or x y

 ), according to Imamura’s definition. 

But this is false, since for 0   clearly 5 5 5 +   − , whence x > y. 

Therefore, x is not roughly smaller than y, but the opposite. 

 General Contra-Examples: 

Let  > 0 be a positive infinitesimal, and the real number a R . 

Then for x a = + and y a = − we get the same wrong result x < y, according to Imamura. 

Further on, for x a = + and y = a, one gets the wrong result x < y. 

And similarly, for x = a and y a = − , one gets the wrong result x < y. 

 

2.3 There exists no order between a and -a+ in R*. 

Let a R be a real number, and  be a positive or negative (we do not know exactly) 

infinitesimal. 

Then y a− +=  is a hyperreal number of the form y a = + , where  may be positive or 

negative infinitesimal. 

Let ( )a− +
 be the left-right binad [5] of a, defined as: 

( ) { ,a a − + =   where  is a positive infinitesimal}. 

Of course, ( )a a− + − + . 

The transfer principle [21] states that R∗ has the same first order properties as R. 

But R* has only a partial order, since there is no order between a and -a+ in R*, 

while R has a total order. 

On has 
0

a
−

N
0

a
− +

N
0

a
+

, then 
0

a
−

N  a 
N

0

a
+

, whence 
0

a
−

N
0

a
+

. 

But, similar problems of non-order relationships are between 
0

a
− +

, 
0

a
−

 respectively and a− +
. 

Hence, the Transfer Principle from R to R* is questionable… 

 

3.  Uselessness of Nonstandard Analysis in Neutrosophic Logic, Set, Probability. Statistics, et al.  

Imamura’s discussion [1] on the definition of neutrosphic logic is welcome, but it is useless, since 

from all neutrosophic papers and books published, from all conference presentations, and from all 

MSc and PhD theses defended around the world, etc. (more than two thousands) in the last two 
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decades since the first neutrosophic research started (1998-2022), and from thousands of neutrosophic 

researchers, not even a single one ever used the nonstandard form of neutrosophic logic, set, or 

probability and statistics in no occasion (extended researches or applications).   

All researchers, with no exception, have used the Standard Neutrosophic Set and Logic [so no stance 

whatsoever of Nonstandard Neutrosophic Set and Logic], where the neutrosophic components T, I, F are 

real subsets of the standard unit interval [0, 1].  

People don't even write "standard" since it is understood, because nonstandard was never used 

in no applications - it is unusable in real applications. 

 Even more, for simplifying the calculations, the majority of researchers have utilized the Single-

Valued Neutrosophic Set and Logic {when T, I, F are single real numbers from [0, 1]}, on the second place 

was Interval-Valued Neutrosophic Set and Logic {when T, I, F are intervals included in [0, 1]}, and on the 

third one the Hesitant Neutrosophic Set and Logic {when T, I, F were discrete finite subsets included in 

[0, 1]}.  

In this direction, there have been published papers on single-valued “neutrosophic standard 

sets” [12, 13, 14], where the neutrosophic components are just standard real numbers, considering the 

particular case when 0 ≤ T + I + F ≤ 1 (in the most general case 0 ≤ T + I + F ≤ 3).  

Actually, Imamura himself acknowledges on his paper [1], page 4, that:  

“neutrosophic logic does not depend on transfer, so the use of non-standard analysis is not 

essential for this logic, and can be eliminated from its definition”.  

Entire neutrosophic community has found out about this result and has ignored the nonstandard 

analysis from the beginning in the studies and applications of neutrosophic logic for two decades.  

 

4.  Applicability of Neutrosophic Logic et al. vs. Theoretical NonStandard Analysis  

       He wrote: 

“we do not discuss the theoretical significance or the applications of neutrosophic logic” 

Why doesn’t he discuss of the applications of neutrosophic logic? Because it has too many that 

brough its popularity among researchers [2], unlike the NonStandard Analysis that is a non-physical 

(idealistic, imaginary) object and it is hard to apply it in the real world. 

Neutrosophic logic, set, measure, probability, statistics and so on were designed with the 

primordial goal of being applied in practical fields, such as:  

Artificial Intelligence, Information Systems, Computer Science, Cybernetics, Theory Methods,  

Mathematical Algebraic Structures, Applied Mathematics, Automation, Control Systems,  

Big Data, Engineering, Electrical, Electronic, Philosophy, Social Science, Psychology,  

Biology, Biomedical, Engineering, Medical Informatics, Operational Research,  

Management Science, Imaging Science, Photographic Technology, Instruments,  

Instrumentation, Physics, Optics, Economics, Mechanics, Neurosciences, Radiology Nuclear,  

Medicine, Medical Imaging, Interdisciplinary Applications, Multidisciplinary Sciences etc. [2],  

while nonstandard analysis is mostly a pure mathematics.  

Since 1990, when I emigrated from a political refugee camp in Turkey to America, working as a 

software engineer for Honeywell Inc., in Phoenix, Arizona State, I was advised by American 

coworkers to do theories that have practical applications, not pure-theories and abstractizations as “art 

pour art”.  

 

5.  Theoretical Reason for the Nonstandard Form of Neutrosophic Logic  

The only reason I have added the nonstandard form to neutrosophic logic (and similarly to 

neutrosophic set and probability) was in order to make a distinction between Relative Truth (which is 

truth in some Worlds, according to Leibniz) and Absolute Truth (which is truth in all possible Words, 

according to Leibniz as well) that occur in philosophy.   
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Another possible reason may be when the neutrosophic degrees of truth, indeterminacy, or 

falsehood are infinitesimally determined, for example a value infinitesimally bigger than 0.8 (or 0.8+), 

or infinitesimally smaller than 0.8 (or -0.8). But these can easily be overcome by roughly using interval 

neutrosophic values and depending on the desired accuracy, for example (0.80, 0.81) and (0.79, 0.80) 

respectively.  

I wanted to get the neutrosophic logic as general as possible [6], extending all previous logics 

(Boolean, fuzzy, intuitionistic fuzzy logic, intuitionistic logic, paraconsistent logic, dialethism), and 

to have it able to deal with all kinds of logical propositions (including paradoxes, nonsensical 

propositions, etc.).   

That’s why in 2013 I extended the Neutrosophic Logic to Refined Neutrosophic Logic [ from 

generalizations of 2-valued Boolean logic to fuzzy logic, also from the Kleene’s and Lukasiewicz’s 

and Bochvar’s 3-symbol valued logics or Belnap’s 4-symbol valued logic to the most general n-symbol 

or n-numerical valued refined neutrosophic logic, for any integer n ≥ 1 ], the largest ever so far, when 

some or all neutrosophic components T, I, F were respectively split/refined into neutrosophic 

subcomponents: T1, T2, …; I1, I2, …; F1, F2, …;  which were deduced from our everyday life [3].   

  

6.  From Paradoxism movement to Neutrosophy – generalization of Dialectics 

I started first from Paradoxism (that I founded in 1980’s as a movement based on antitheses, 

antinomies, paradoxes, contradictions in literature, arts, and sciences), then I introduced the 

Neutrosophy (as generalization of Dialectics (studied by Hegel and Marx) and of Yin Yang (Ancient 

Chinese Philosophy), neutrosophy is a branch of philosophy studying the dynamics of triads, 

inspired from our everyday life, triads that have the form:   

<A>, its opposite <antiA>, and their neutrals <neutA>, 

where <A> is any item or entity [4].   

(Of course, we take into consideration only those triads that make sense in our real and scientific 

world.)   

The Relative Truth neutrosophic value was marked as 1, while the Absolute Truth neutrosophic 

value was marked as 1+ (a tinny bigger than the Relative Truth’s value):  

1+ >N 1, where >N  is a nonstandard inequality, meaning 1+ is nonstandardly bigger than 1.   

Similarly for Relative Falsehood / Indeterminacy (which falsehood / indeterminacy in some 

Worlds), and Absolute Falsehood / Indeterminacy (which is falsehood / indeterminacy in all possible 

worlds).  

  

7.  Introduction to Nonstandard Analysis [15, 16]  

An infinitesimal number is a number ε such that its absolute value | ε |<1/ n , for any non-null 

positive integer n. An infinitesimal is close to zero, and so small that it cannot be measured.   

The infinitesimal is a number smaller, in absolute value, than anything positive nonzero.  

Infinitesimals are used in calculus, but interpreted as tiny real numbers.  

An infinite number (ω) is a number greater than anything:   

1 + 1 + 1 + … + 1 (for any finite number terms) 

 The infinites are reciprocals of infinitesimals.  

The set of hyperreals (non-standard reals), denoted as R*, is the extension of set of the real numbers, 

denoted as R, and it comprises the infinitesimals and the infinites, that may be represented on the 

hyperreal number line   

1/ε = ω/1.                                                      

 The set of hyperreals satisfies the transfer principle, which states that the statements of first order 

in R are valid in R* as well [according to the classical NonStandard Analysis]: 
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" ‘Anything provable about a given superstructure V by passing to a nonstandard enlargement 

*V of V is also provable without doing so, and vice versa.’ It is a result of Łoś' theorem and the 

completeness theorem for first-order predicate logic.” [16] 

 

A monad (halo) of an element a ∊ R*, denoted by μ(a), is a subset of numbers infinitesimally close 

to a.  

Let’s denote by R+* the set of positive nonzero hyperreal numbers.  

7.1. First Extension of NonStandard Analysis 

We consider the left monad and right monad; afterwards we recall the pierced binad 

(Smarandache [5]) introduced in 1998:  

Left Monad {that we denote, for simplicity, by (-a)} is defined as:  

μ(-a) = (-a) = {a - x, x ∊ R+* | x is infinitesimal}.                                        

Right Monad {that we denote, for simplicity, by (a+)} is defined as:  

μ(a+) = (a+) = {a + x, x ∊ R+* | x is infinitesimal}.                         

The Pierced Binad {that we denote, for simplicity, by (-a+)} is defined as:  

μ(-a+) = (-a+) = {a - x, x ∊ R+* | x is infinitesimal} ∪ {a + x, x ∊ R+* | x is infinitesimal}  

                    = {a - x, x ∊ R* | x is positive or negative infinitesimal}.           

7.1. Second Extension of Nonstandard Analysis [23] 

For necessity of doing calculations that will be used in nonstandard neutrosophic logic in order 

to calculate the nonstandard neutrosophic logic operators (conjunction, disjunction, negation, 

implication, equivalence) and in order to have the Nonstandard Real MoBiNad Set closed under 

arithmetic operations, we extend now for the time: the left monad to the Left Monad Closed to the 

Right, the right monad to the Right Monad Closed to the Left; and the Pierced Binad to the Unpierced 

Binad, defined as follows (Smarandache, 2018-2019): 

 

• Left Monad Closed to the Right 
0 0

{ | 0,a a a x x
− −   

= = − =   
   

or 
*x R+  and x is infinitesimal} = ( ) { }a a −  . 

And by 
0

x a
−

=  we understand the hyperreal x a = − , or x = a, where  is a positive 

infinitesimal. So, x is not clearly known, { , }x a a − . 

 

• Right Monad Closed to the Left 
0 0

{ | 0,a a a x x
+ +   
= = + =   

   
or 

*x R+  and x is infinitesimal} = ( ) { }a a +  . 

And by 
0

x a
−

=  we understand the hyperreal x a = + , or x = a, where  is a positive 

infinitesimal. So, x is not clearly known, { , }x a a + . 

 

• Unpierced Binad 
0 0

{ | 0,a a a x x
− + − +   

= = + =   
   

or 
*x R where x is a positive or negative infinitesimal}=    

=
( ) ( ) { }a a a − + 

= ( ) ( ) { }a a a− +  .  
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And by 
0

x a
− +

=  we understand the hyperreal x a = − , or x = a, or x a = + , where  is a 

positive infinitesimal. So, x is not clearly known, { , , }x a a a  − + . 

The left monad, left monad closed to the right, right monad, right monad closed to the left, the 

pierced binad, and the unpierced binad are subsets of R*, while the above hyperreals are numbers 

from R*.  

Let’s define a partial order on R*. 

 

8.  Neutrosophic Strict Inequalities 

We recall the neutrosophic strict inequality which is needed for the inequalities of nonstandard 

numbers. 

Let α, β be elements in a partially ordered set M. 

We have defined the neutrosophic strict inequality 

α >N β  

and read as 

“α is neutrosophically greater than β” 

if 

α in general is greater than β, 

or α is approximately greater than β, 

or subject to some indeterminacy (unknown or unclear ordering relationship between α and β) or 

subject to some contradiction (situation when α is smaller than or equal to β) α is greater than β. 

It means that in most of the cases, on the set M, α is greater than β. 

And similarly for the opposite neutrosophic strict inequality α <N β.  

9.  Neutrosophic Equality 

We have defined the neutrosophic inequality 

α =N β  

and read as 

“α is neutrosophically equal to β” 

if 

α in general is equal to β, 

or α is approximately equal to β, 

or subject to some indeterminacy (unknown or unclear ordering relationship between α and β) or 

subject to some contradiction (situation when α is not equal to β) α is equal to β. 

It means that in most of the cases, on the set M, α is equal to β. 

 

10.  Neutrosophic (Non-Strict) Inequalities 

Combining the neutrosophic strict inequalities with neutrosophic equality, we get the ≥N 

and ≤N neutrosophic inequalities. 

Let α, β be elements in a partially ordered set M. 

The neutrosophic (non-strict) inequality 

α ≥N β  

and read as 

“α is neutrosophically greater than or equal to β” 

if 

α in general is greater than or equal to β, 

or α is approximately greater than or equal to β, 
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or subject to some indeterminacy (unknown or unclear ordering relationship between α and β) or 

subject to some contradiction (situation when α is smaller than β) α is greater than or equal to β. 

It means that in most of the cases, on the set M, α is greater than or equal to β. 

And similarly for the opposite neutrosophic (non-strict) inequality α ≤N β. 

11.  Neutrosophically Ordered Set 

Let M be a set. (M, <N) is called a neutrosophically ordered set if: 

 α, β ∊ M, one has: either α <N β, or α =N β, or α >N β. 

 

12.  Definition of Standard Part and Infinitesimal Part of a HyperReal Number 

For each hyperreal (number) 
*h R one defines its standard part  

st(h) be the real (standard) part of h, ( )st h R , 

and its infinitesimal part, that may be positive ( )+ , or zero (0), or negative ( )− , and any 

combination of two or three of them in the case of Neutrosophic Hyperreals that have alternative 

(indeterminate) values as seen below, denoted as 
*( )in h R . 

Then ( ) ( )h st h in h= + . 

Two hyperreal numbers h1 and h2 are equal, if: 

st(h1) = st(h2) and in(h1) = in(h2). 

 

• Examples 

Let  be a positive infinitesimal, and the hyperreal numbers: 

1 4 ( 4)h  −= − 
 

0

2 4 0 4
def

h R= + = 
 

3 4 (4 )h  += + 
 

4 4 { ,h = −
or 0} = {4- , or 4-0} = {4- , or 4}

0

4
− 

 
 

 

5 4 {0,h = +
or  } = {4+0, or 4+ } = {4, or 4+ }

0

4
+ 

 
 

 

6 4 { ,h = + −
or  } = {4- , or 4+ } 4

−+ 
  
 

 

7 4 { ,h = + −
or 0, or  } = {4- , or 4+0, or 4+ }= {4- , or 4, or 4+ }

0

4
− + 

 
 

 

Then, their standard parts are all the same: 

1 2 7( ) ( ) ... ( ) 4st h st h st h= = = =  

While their infinitesimal parts are different: 

1( )in h = −  

2( ) 0in h =  

3( )in h =  

 

13.  Neutrosophic Hyperreal Numbers  

The below cases are indeterminate, as in neutrosophy, that’s why they are called 

Neutrosophic Hyperreals, introduced now for the first time: 
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4( ) {in h = − , or 0}; one can also write that 
4( ) { ,0}in h  − , because we are not sure if  

 in(h4)= − , or in(h4)= 0. 

5( ) {in h = , or 0}; one can also write that 
4( ) { ,0}in h  . 

6( ) { ,in h = −  or  }, or 
6( ) { , }in h   − . 

7( ) { ,in h = −  or 0, or  }, or 
6( ) { ,0, }in h   − . 

 

14.  Nonstandard Partial Order of Hyperreals  

Let h1 and h2 be hyperreal numbers. Then h1 <N h2 if:  

either st(h1) < st(h2), or st(h1) = st(h2) and in(h1) <N in(h2). 

By in(h1) we understand all possible infinitesimals of h1, and similarly for in(h2). 

This makes a partial order on the set of hyperreals R*, because of the Neutrosophic Hyperreals 

that have indeterminate infinitesimal parts and cannot always be ordered. 

 

15.  Appurtenance of a Hyperreal number to a Nonstandard Set  

We define for the first time the appurtenance of a hyperreal number (h) to a subset S of R*, 

denoted as 
N , or an approximate appurtenance (from a Neutrosophic point of view). 

As seeing above, a hyperreal number may have one, two, or three infinitesimal parts - depending 

on its form. 

Let’s denote the standard part of h by st(h), and its infinitesimal part(s) be in(h) = in(h)1, in(h)2, 

and in(h)3. We construct three corresponding hyperreal numbers: 

h1 = st(h) + in(h)1 

h2 = st(h) + in(h)2 

h3 = st(h) + in(h)3 

If all three 
1 2 3, , Nh h h S , then 

Nh S . If at least one does not belong to S, then 
Nh S .  

(In the case when h has only one or two possible infinitesimals, of course we take only them.) 

The appurtenance of a hyperreal number to a nonstandard set may be later extended if new 

forms of Neutrosophic Hyperreals are constructed in the meantime.  

 

16.  Notations and Approximations   

Approximation is required with a desired accuracy, since the hyperreals, monads and binads do 

not exist in our real world.  They are only very abstract concepts built in some imaginary math space. 

That’s why they must be approximated by real tiny sets. 

As an example, let’s assume that the truth-value (T) of a proposition (P), in the propositional 

logic, is the hyperreal T(P) = 0.7+ that means, in nonstandard analysis, according to Imamura [22]:  

“The interpretation of T(P) = 0.7+ (right monad of 0.7 in your terminology): 

1. the truth value of P is strictly greater than and infinitely close to 0.7 (but its precise 

value is unknown); 

2. the truth value of P can be strictly greater than and infinitely close to 0.7; 

3. the truth value of P takes all hyperreals strictly greater than and infinitely close to 0.7 

simultaneously.”  

We prove by reductio ad absurdum that such a number does not exist in our real world. Let 

assume that 0.7+ = w. Then w > 0.7, but on the set of continuous real numbers, in the interval (0.7, w] 

there exists a number v such that 0.7 < v < w, therefore v is closer to 0.7 than w, and thus w is not 

infinitely close to 0.7. Contradiction. Even Imamura acknowledges about 0.7+ that “its value is 

unknown”. 
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And because they do not exist in our real world, we need to approximate/convert them with a 

given accuracy to the real world, therefore, instead of 0.7+ we may take for example the tiony interval 

(0.7, 0.7001) with four decimals, or (0.7, 0.7000001), etc.  

In the same way one can prove that, for any real number a ∊ R, its left monad, left monad closed 

to the right, right monad, right monad closed to the left, pierced binad, and unpierced binad do not 

exist in our real world.  They are just abstract concepts available in abstract/imaginary math spaces. 

 

17.  Nonstandard Unit Interval   

Imamura cites my work:  

 “by “−a” one signifies a monad, i.e., a set of hyper-real numbers in non-standard analysis: 

(−a) = { a − x ∈ R∗ | x is infinitesimal } , and similarly “b+” is a hyper monad:  

(b+) = { b + x ∈ R∗ | x is infinitesimal } . ([5] p. 141; [6] p. 9)”  

But these are inaccurate, because my exact definitions of monads, since my 1998 first world 

neutrosophic publication {see [5], page 9; and [6], pages 385 - 386}, were:  

“(−a) = { a – x: x ∈ R+∗ | x is infinitesimal }, and similarly “b+” is a hyper monad: 

(b+) = { b + x: x ∈ R+∗ | x is infinitesimal }”  

 Imamura says that:  

“The correct definitions are the following:  

(−a) = { a − x ∈ R∗ | x is positive infinitesimal },  

(b+) = { b + x ∈ R∗ | x is positive infinitesimal }.”  

I did not have a chance to see how my article was printed in Proceedings of the 3rd Conference of 

the European Society for Fuzzy Logic and Technology [7], that Imamura talks about, maybe there were 

some typos, but Imamura can check the Multiple Valued Logic / An International Journal [6], published 

in England in 2002 (ahead of the European Conference from 2003, that Imamura cites) by the 

prestigious Taylor & Francis Group Publishers, and clearly one sees that it is: R+* (so, x is a positive 

infinitesimal into the above formulas), therefore there is no error.  

Then Imamura continues:   

“Ambiguity of the definition of the nonstandard unit interval. Smarandache did not give 

any explicit definition of the notation ]−0, 1+[ in [5] (or the notation ⫦−0, 1+⫣ in [6]). He 

only said:  

Then, we call ] −0, 1+ [ a non-standard unit interval. Obviously, 0 and 1, and analogously 

non-standard numbers infinitely small but less than 0 or infinitely small but greater than 

1, belong to the non-standard unit interval. ([5] p. 141; [6] p. 9).”  

Concerning the notations I used for the nonstandard intervals, such as ⫦ ⫣ or ] [, it was 

imperative to employ notations that are different from the classical [ ] or ( ) intervals, since the 

extremes of the nonstandard unit interval were unclear, vague with respect to the real set.  

I thought it was easily understood that:   

]−0, 1+[  = (-0) ∪[0, 1] ∪ (1+).                                                                                                 

Or, using the previous neutrosophic inequalities, we may write:  

]−0, 1+[  = {x ∊ R*, -0 ≤N x ≤N 1+}.                                                                                                

Imamura says that:   

“Here −0 and 1+ are particular real numbers defined in the previous paragraph: 

 −0 = 0−ε and 1+  = 1+ ε, where ε is a fixed non-negative infinitesimal.”  

 This is untrue, I never said that “ε is a fixed non-negative infinitesimal”, ε was not fixed, I said 

that for any real numbers a and b {see again [5], page 9; and [6], pages 385 - 386}:   

“(−a) = { a – x: x ∈ R+∗ | x is infinitesimal },  (b+) = { b + x: x ∈ R+∗ | x is infinitesimal }”.  

 Therefore, once we replace a = 0 and b = 1, we get:  

 (−0) = { 0 – x: x ∈ R+
∗ | x is infinitesimal },  

 (1+) = { 1 + x: x ∈ R+
∗ | x is infinitesimal }.  
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 Thinking out of box, inspired from the real world, was the first intent, i.e. allowing neutrosophic 

components (truth / indeterminacy / falsehood) values be outside of the classical (standard) unit real 

interval [0, 1] used in all previous (Boolean, multi-valued etc.) logics if needed in applications, so 

neutrosophic component values < 0 and > 1 had to occurs due to the Relative / Absolute stuff, with:  
-0 <N 0   and   1+ >N 1. 

Later on, in 2007, I found plenty of cases and real applications in Standard Neutrosophic Logic 

and Set (therefore, not using the Nonstandard Neutrosophic Logic and Set), and it was thus possible 

the extension of the neutrosophic set to Neutrosophic Overset (when some neutrosophic component is > 1), 

and to Neutrosophic Underset (when some neutrosophic component is < 0), and to Neutrosophic Offset (when 

some neutrosophic components are off the interval [0, 1], i.e. some neutrosophic component > 1 and some 

neutrosophic component < 0).  Then, similar extensions to respectively Neutrosophic Over/Under/Off Logic, 

Measure, Probability, Statistics etc. [8, 17, 18, 19], extending the unit interval [0, 1] to  

[Ψ, Ω], with Ψ ≤ 0 < 1 ≤ Ω, 

where Ψ, Ω are standard real numbers.  

 

Imamura says, regarding the definition of neutrosophic logic that:  

“In this logic, each proposition takes a value of the form (T, I, F), where T, I, F are subsets 

of the nonstandard unit interval ]−0, 1+[ and represent all possible values of Truthness, 

Indeterminacy and Falsity of the proposition, respectively.”  

Unfortunately, this is not exactly how I defined it.  

In my first book {see [5], p. 12; or [6] pp. 386 – 387} it is stated:  

“Let T, I, F be real standard or non-standard subsets of ]-0, 1+[“  

meaning that T, I, F may also be “real standard” not only real non-standard.  

 

In The Free Online Dictionary of Computing, 1999-07-29, edited by Denis Howe from England, it is 

written:  

Neutrosophic Logic:  

<logic> (Or "Smarandache logic") A generalization of fuzzy logic based on 

Neutrosophy. A proposition is t true, i indeterminate, and f false, where t, i, and f are real 

values from the ranges T, I, F, with no restriction on T, I, F, or the sum  

n = t + i + f.  

Neutrosophic logic thus generalizes:  

• intuitionistic logic, which supports incomplete theories (for 0 < n < 100, 

 0 ≤ t,i,f ≤ 100);  

• fuzzy logic (for n = 100 and i = 0, and 0 ≤ t,i,f ≤ 100);  

• Boolean logic (for n=100 and i = 0, with t,f either 0 or 100);  

• multi-valued logic (for 0 ≤ t,i,f ≤ 100);  

• paraconsistent logic (for n > 100, with both t,f < 100);  

• dialetheism, which says that some contradictions are true  

(for t = f = 100 and i = 0; some paradoxes can be denoted this way).  

Compared with all other logics, neutrosophic logic introduces a percentage of 

"indeterminacy" - due to unexpected parameters hidden in some propositions. It also 

allows each component t,i,f to "boil over" 100 or "freeze" under 0. For example, in some 

tautologies t > 100, called "overtrue".   

["Neutrosophy / Neutrosophic probability, set, and logic", F. Smarandache, American Research Press, 1998].  

 

As Denis Howe said in 1999, the neutrosophic components t, i, f are “real values from the ranges  

T, I, F”, not nonstandard values or nonstandard intervals. And this was because nonstandard 

ones were not important for the neutrosophic logic (the Relative/Absolute plaid no role in 

technological and scientific applications and future theories).  
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 18.  Formal Notations    

In my first version of the paper, I used informal notations. Let’s see them improved. 

Hyperreal Numbers are represented without parentheses (  ) around them:  

a a a 
−

− = = −  
0

0a a= + , which coincides with the real number a. 

a a a 
+

+ = = +  

Neutrosophic Hyperreal Numbers (that are indeterminate, alternative) are represented without 

braces, or with braces {}around them for discrete sets that may have one, two, or three elements: 

0

a a 
−

= − , or a + 0 = { ,a − or 0}a+  

0

a a 
+

= + , or a + 0 = { ,a + or 0}a+  

a a 
−+

= − , or a + ={ ,a − or }a +  

0

a a 
− +

= − , or a + 0, or a + ={ ,a − or 0a+ , or }a +  

For the monads and binads one just adds the parentheses around them: 

 

Monad Sets: 
0

, ( ) , ( )a a a a a a
− +

− +     
= = =     
     

 

Binad Sets: 
0 0 0

, , ,a a a a
− + −+ − +       
       
       

 

 

19.  Improved Definition of NonStandard Unit Interval     

• Formula of NonStandard Unit Interval 

*] 0,1 [ ]0,1[ { ,0 ( ) 1a R st a
− +

− +  =    } = 

0 0 0 0

{ , , , , , , , [0,1]}a a a a a a a a
− − + −+ − + +

 . 

 

Proof of the above formula 

 

For 0 ( ) 1st a   it does not matter what in(a) is, because ( ) ( ) ]0,1[Nst a in a+  , this being a 

nonstandard interval. 

It is not necessarily to set any restriction on in(a) in this case, since a
−

 is the smallest hyperreal, 

while a
+

is the greatest hyperreal in the set of seven types of hyperreals listed above. 

 

Let  be a positive infinitesimal, 
*R  . 

Let a = 0, and 0
m

 be any possible hyperreal number associated to 0. 

For st( 0
m

) = 0, the smallest in( 0
m

) may be − , whence 0 0 ]0,1[N
− − +

− =  ; 

and if in( 0
m

) is bigger (i.e. 0, or + ), of course 
0

0 0 0 ]0,1[N

− +

+ =   and 0 0 ]0,1[N
+ − +

+ =  . 
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Then also any other nonstandard version of the number 0, such as:  
0 0 0

0, 0, 0, 0 ]0,1[N

− + −+ − + − +

 . 

Let a = 1, and 1
m

be any possible hyperreal number associate to 1. 

For st( 1
m

) = 1, the greatest in(1
m

) may be + , whence 1 1 ]0,1[N
+ − +

+ =  , 

and if in(1
m

) is smaller (i.e. 0, or − ), of course 
0

1 0 1 ]0,1[N

− +

+ =   and 1 1 ]0,1[N
− − +

− =  . 

Then also any other nonstandard version of the number 1, such as:  
0 0 0

1, 1, 1, 1 ]0,1[N

− + −+ − + − +

 . 

 

Remark: 

This formula has to be updated if new types of hyperreals / monads / binads will be introduced 

• Example of Inclusion of Nonstandard Sets 

]0,1[ ]0,1[ ]0,1[
+ − − +

   

 

• Partial Ordering on the Set of Hyperreals 

Let a R be a real number. Then there is no order between a and a
−+

, nor between a and 
0

a
− +

. 

Some nonstandard inequalities involving hyperreals: 

a
−

<N 
0

a <N a
+

 
0

a
−

≤N a
−+

≤N 
0

a
+

 ≤N a
+

 

a
−

≤N 
0

a
−

≤N a
−+

≤N

0

a
− +

 

a
−

≤N a
−+

≤N a
+

 

 

• Examples of Nonstandard Intervals 
0 0 0

] , [ { , , }a a a a a
− − −

=  
0 0 0 0

] , [ { , , , , , , }a a a a a a a a a
− + − + − + −+ − +

=  

 

20.  Improved Definition of NonStandard Neutrosophic Logic     

In the nonstandard propositional calculus, a proposition P has degrees of truth (T), 

indeterminacy (I), and falsehood (F), such that T, I, F are nonstandard subsets of the nonstandard unit 

interval ] 0,1 [− +
, or , , ] 0,1 [NT I F − + . 

As a particular case one has when T, I, F are hyperreal or neutrosophic hyperreal numbers of the 

nonstandard unit interval ] 0,1 [− +
, or , , ] 0,1 [NT I F − + . 

 

21.  NonStandard Neutrosophic Operators      

Since the Hyprereal Set R* does not have a total order, in general we cannot use connectives 

(nonstandard conjunction, nonstandard disjunction, nonstandard negation, nonstandard 

implication, nonstandard equivalence, etc.) involving the operations of min/max or inf/sup, but we 

may use connectives involving addition, subtraction, scalar multiplication, multiplication, power, 
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and division operations dealing with nonstandard subsets or hyprereals from the nonstandard unit 

interval ] 0,1 [− +
. See below operations with hyperreals, monads and binads. 

 

For any nonstandard subsets or hyperreal numbers, T1, I1, F1, T2, I2, F2, from the nonstandard unit 

interval ] 0,1 [− +
one has: 

• NonStandard Neutrosophic Conjunction 

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2) 

 

• NonStandard Neutrosophic Disjunction 

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2)     

       

• NonStandard Neutrosophic Negation 

N
(T1, I1, F1) = (F1, 11 I+ − , T1) 

 

• NonStandard Neutrosophic Implication 

(T1, I1, F1) →N (T2, I2, F2) = (F1, 11 I+ − , T1) ∨N (T2, I2, F2) = (F1 ∨F T2, ( 11 I+ −  ) ∧F I2, T1 ∧ F F2)  

 

• NonStandard Neutrosophic Equivalence 

(T1, I1, F1) ↔N (T2, I2, F2) means (T1, I1, F1) →N (T2, I2, F2) and (T2, I2, F2) →N (T1, I1, F1) 

 

Example of Fuzzy Conjunction: 

A ∧ F B = AB 

 

Example of Fuzzy Disjunction: 

A ∨F B = A + B - AB 

 

More explanations about them follow. 

 

22.  Approximations of the NonStandard Logical Operators/Connectives ∧, ∨,  , →, ↔      

Imamura’s critics of my first definition of the neutrosophic operators is history for over a quarter 

of century ago. He is attacking my paper with "errors… errors… paradoxes" etc., however my first 

operators were not kind of errors, but less accurate approximations of the aggregation with respect 

to the falsity component (F), but not with respect to the truth (T) and indeterminacy (I) ones that were 

correct. 

The representations of sets of monads and binads by tiny intervals were also approximations (  ) 

with a desired accuracy (ε > 0), from a classical (real) point of view, for the real number a R :  

( ) ( , )a a a a
−

−  
=  − 
   

( ) ( , )a a a a 
+

+  
=  + 
   

( ) ( , )a a a a 
−+

− +  
=  − + 
   

0

( , ]a a a
− 

 − 
   
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0

[ , )a a a 
+ 
 + 

   
0

( , )a a a 
− + 

 − + 
   
And by language abuse one denotes: 

0

[ , ]a a a a
 

= = 
 

 

 

The representations of hyperreal numbers ( h = st(h) + in(h) ) by tiny numbers closed to their 

standard part ( st(h) ) were also approximations (  ) with a desired accuracy  

( ε > 0 ), from a classical (real) point of view:  

a a 
−

 −  

a a 
+

 +  

a a 
−+

 − , or a +  
0

a a 
−

 − , or 0 
0

0a
+

 , or a +  
0

a a 
− +

 − , or 0, or a +  
0

a a=  

 

All aggregations in fuzzy and fuzzy-extensions (that includes neutrosophic) logics and sets are 

approximations (not exact, as in classical logic), and they depend on each specific application and on 

the experts. Some experts/authors prefer ones, others prefer different operators.  

It is NOT A UNIQUE operator of fuzzy/neutrosophic conjunction, as it is in classical logic, but a 

class of many neutrosophic operators, which is called neutrosophic t-norm; similarly for 

fuzzy/neutrosophic disjunction, called neutrosophic t-conorm, fuzzy/neutrosophic negation, 

fuzzy/neutrosophic implication, fuzzy/neutrosophic equivalence, etc. 

All fuzzy, intuitionistic fuzzy, neutrosophic (and other fuzzy-extension) logic operators are 

inferential approximations, not written in stone. They are improved from application to application.  

 

23.  Operations with monads, binads, and hyperreals       

In order to operate on them, it is easier to consider their real approximations to tiny intervals for 

the monads and binads, or to real numbers closed to the standard form of the hyperreal numbers, as 

in above section. 

For monads and binads: 

1 2 3 1 2 3 1 2 3, , , , , ,m m m m m m x x x

a b a b
     

=     
     

, where is any of the well-defined arithmetic operation 

(addition, subtraction, multiplication, scalar multiplication, power, root, division). 

Where 
1 2 3, , { ,0, }m m m  − + , but there are cases when some or all of the infinitesimal parts 

1 2 3, ,m m m may be discarded for a or for b or for both, if one has only monads, or closed monads, or 

pierced binads.  If such mi is discarded, we consider it as 
im = , for {1,2,3}.i  



Neutrosophic Sets and Systems, Vol. 51, 2022     16  

 

 

Florentin Smarandache, Improved Definition of NonStandard Neutrosophic Logic and Introduction to Neutrosophic 

Hyperreals (Fifth version) 

Always we do the classical operation a b , but the problem is: what are the infinitesimals 

corresponding to the result 
1 2 3, ,x x x

a b
 
 
 

, i.e. what are 
1 2 3, , ?x x x =  

Of course the infinitesimals
1 2 3, , { ,0, }x x x  − + , that represent respectively the left monad of 

a b , just the real number a b , or the right monad of a b . To find them, we need to move from 

R* to R using tiny approximations. 

One gets the similar result for hyperreal numbers as for monads and binads: 

1 2 3 1 2 3 1 2 3, , , , , ,m m m m m m x x x

a b a b=  

• A Monad-Binad Example 

Let 
1 2, 0    be tiny real numbers. 

Let’s prove that: 
0

a b a b
− + − +     

+ = +     
     

 

We approximate the above monads by: 

1 2 1 2( , ) ( , ) ( , )a a b b a b a b   − + + = + − + +    
0

a b
− + 
+ 

 
 

because, in the real interval 
1 2( , )a b a b + − + + , one gets values smaller than a+b (whence 

the – on the top, standing for ‘left monad of a+b’), equal to a+b (whence the 0 on the top, standing just 

for ‘the real number a+b’), and greater than a+b (whence the + on the top, standing for ‘right monad 

of a+b’). 

 

• Numerical example 
0 0

2 3 2 3 5
− + − + − +       
+ = + =       

         

because 2 3 (2 0.1,2) (3,3 0.2) (5 0.1,5 0.2)
− +   
+  − + + = − +   

   
, and this interval is a little below 5, 

a little above 5, and also includes 5. 

For hyperreal numbers the result is similar: 
0

a b a b
− + − +

+ = +  because 

1 2 1 2a b a b a b   
− +

+  − + + = + − + , where 
1 2,  are any tiny positive numbers,  

hence 
1 2a b  + − +  can be less than a+b, equal to a+b, or greater than a+b by conveniently 

choosing the tiny positive numbers 
1 and 

2 , as: 
1 2  , or 

1 2 = , or 
1 2   respectively. 

 

• More Examples of NonStandard Operations 

a b a b
− −   
+ = +   

     

a b a b
+ +   

+ = +   
     

a b a b
− − −     
+ = +     

       

a b a b
+ + +     
+ = +     

       

a b b a b
−+ −+   

+ + = +   
     
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0

a b a b
−+ −+ − +     

+ = +     
     

 

0

a b a b
− −+ − +     

+ = +     
     

 

8 2 4
+ −   

 =   
     

8 2 4
− +   

 =   
     

0 0

8 2 4
− + − +   

 =   
     

9 3
− −   

=   
   

 

2

11 121
− −   

=   
     

0

6 7 42
− + − +     
 =     

       

10 4 6
− + −     

− =     
       

10 4 6
+ − +     

− =     
       
Etc. 

 

24.  NonStandard Neutrosophic Operators (revisited)       

Let’s denote:   

∧F, ∧N, ∧P representing respectively the fuzzy conjunction, neutrosophic conjunction, and 

plithogenic conjunction; similarly   

∨F, ∨N, ∨P representing respectively the fuzzy disjunction, neutrosophic disjunction, and 

plithogenic disjunction,  

, ,F N P   representing respectively the fuzzy negation, neutrosophic negation, and 

plithogenic negation,  

→F, →N, →P representing respectively the fuzzy implication, neutrosophic implication, and 

plithogenic implication; and  

, ,F N P    representing respectively the fuzzy equivalence, neutrosophic equivalence, 

and plithogenic equivalence. 

I agree that my beginning neutrosophic operators (when I applied the same fuzzy t-norm, or the 

same fuzzy t-conorm, to all neutrosophic components T, I, F) were less accurate than others developed 

later by the neutrosophic community researchers. This was pointed out since 2002 partially corrected 

by Ashbacher [9] and confirmed in 2008 by Rivieccio [10] and fixed in 2010 by Wang, Smarandache, 

Zhang, and Sunderraman [25], much ahead of Imamura [1] in 2018. They observed that if on T1 and 

T2 one applies a fuzzy t-norm, on their opposites F1 and F2 one needs to apply the fuzzy t-conorm (the 

opposite of fuzzy t-norm), and reciprocally.  

About inferring I1 and I2, some researchers combined them in the same directions as T1 and T2.  

Then:  

 (T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1 ∧F I2, F1 ∨F F2),              

  (T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∨F I2, F1 ∧F F2),           

(T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∨F I2, T1 ∧ F F2);      
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others combined I1 and I2 in the same direction as F1 and F2 (since both I and F are negatively 

qualitative neutrosophic components), the most used one:  

 (T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2),             

  (T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2),           

(T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∧F I2, T1 ∧ F F2).          

Now, applying the neutrosophic conjunction suggested by Imamura:  

“This causes some counterintuitive phenomena. Let A be a (true) proposition with 

value ({ 1 } , { 0 } , { 0 }) and let B be a (false) proposition with value  ({ 0 } , { 0 } , { 1 }).  

Usually we expect that the falsity of the conjunction A ∧ B is { 1 }. However, its 

actual falsity is { 0 }.”  

we get:  

 (1, 0, 0) ∧N (0, 0, 1) = (0, 0, 1),              (50)  

which is correct (so the falsity is 1).  

Even more, recently, in an extension of neutrosophic set to plithogenic set [11] (which is a set 

whose each element is characterized by many attribute values), the degrees of contradiction c( , ) 

between the neutrosophic components T, I, F have been defined (in order to facilitate the design of 

the aggregation operators), as follows: c(T, F) = 1 (or 100%, because they are totally opposite), c(T, I) 

= c(F, I) = 0.5 (or 50%, because they are only half opposite), then:  

(T1, I1, F1) ∧P (T2, I2, F2) = (T1 ∧F T2, 0.5(I1∧F I2) + 0.5(I1∨F I2), F1 ∨F F2),    

(T1, I1, F1) ∨P (T2, I2, F2) = (T1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2), F1 ∧F F2).    

(T1, I1, F1) →N (T2, I2, F2) = 
N  (T1, I1, F1) ∨N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) 

  = (F1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2), T1 ∧ F F2). 

For NonStandard Neutrosophic Logic, one replace all the above neutrosophic components T1, I1, 

F1, T2, I2, F2 by hyperreal numbers, monads or binads from the nonstandard unit interval ]-0, 1+[ and 

use the previous nonstandard operations.  

 

25.  Application of NonStandard Neutrosophic Logic       

Assume two sources s1 and s2 provide information about the nonstandard truth value of a given 

proposition P: 

1 1 1 1( ) ( ( ), ( ), ( )) 1,0.4,0.2s P T P I P F P
+ −+ − 

= =  
   

0 0

2 2 2 2( ) ( ( ), ( ), ( )) 0.8,0.6,0.3s P T P I P F P
+ − 

= =  
 

 

Let’s use the below Fuzzy Conjunction: 

A ∧ F B = A∙B 

and Fuzzy Disjunction: 

A ∨F B = A + B - A∙B 

We fusion the two sources (using the nonstandard neutrosophic conjunction): 

1 2 1 2 1 2 1 2( ) ( ) ( ( ) ( ), ( ) ( ), ( ) ( ))N F F Fs P s P T P T P I P I P F P F P =   
0 0

(1 0.8,0.4 0.6,0.2 0.3)F F F

+ −+ + − −

=     = 
0 0 0

(1 0.8,0.4 0.6 0.4 0.6,0.2 0.3 0.2 0.3)
+ −+ + −+ + − − − −

 + −  + −   

0 0 0

(0.8, 1 0.24,0.5 0.06) (0.8, 1 0.24,0.5 0.06)
+ − + −+ − − + − + − + − −

= − − = − −
0 0

(0.80,0.76,0.44)
+ − + − +

= , 

which means that with respect to the two fusioned sources, the nonstandard neutrosophic 

degree of truth of the proposition P is tinnily above 0.8, its nonstandard neutrosophic degree of 

indeterminacy is tinnily below or above or equal to 0.76, and similarly its nonstandard neutrosophic 

degree of falsity is tinnily below or above or equal to 0.44. 
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Converting/approximating from hyperreal numbers to real numbers, with an accuracy  = 

0.001, one gets: 

( )

( )

1 2( ) ( ) (0.8,0.8 0.001), (0.76 0.001,0.76 0.001), (0.44 0.001,0.44 0.001)

(0.800,0.801), (0.759,0.761), (0.439,0.441)

Ns P s P  + − + − +

=
 

 

 

26. Open Statement  

In general, the Transfer Principle, from a non-neutrosophic field to a corresponding 

neutrosophic field, does not work. This conjecture is motivated by the fact that each neutrosophic 

field may have various types of indeterminacies. 

27. Conclusion  

We thank very much Dr. Takura Imamura for his interest and critics of Nonstandard Neutrosophic 

Logic, which eventually helped in improving it. {In the history of mathematics, critics on nonstandard 

analysis, in general, have been made by Paul Halmos, Errett Bishop, Alain Connes and others.} We 

hope we’ll have more dialogues on the subject in the future.  

We introduced in this paper for the first time the Neutrosophic Hyperreals (that have an 

indeterminate form), and we improved the definitions of NonStandard Unit Interval and of 

NonStandard Neutrosophic Logic. 

We pointed out several errors and false statements by Imamura [21] with respect to the inf/sup 

of nonstandard subsets, also Imamura’s “rigorous definition of neutrosophic logic” is wrong and the 

same for his definition of nonstandard unit interval, and we proved that there is not a total order on 

the set of hyperreals (because of the newly introduced Neutrosophic Hyperreals that are 

indeterminate) therefore the transfer principle is questionable. We conjectured that: In general, the 

Transfer Principle, from a non-neutrosophic field to a corresponding neutrosophic field, does not 

work. 
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