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CHAPTER 6 

Introduction to NeutroAlgebraic Structures 

and AntiAlgebraic Structures (revisited) 
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Abstract 

In all classical algebraic structures, the Laws of Compositions on a 

given set are well-defined. But this is a restrictive case, because there are 

many more situations in science and in any domain of knowledge when a 

law of composition defined on a set may be only partially-defined (or 

partially true) and partially-undefined (or partially false), that we call 

NeutroDefined, or totally undefined (totally false) that we call 

AntiDefined.  

Again, in all classical algebraic structures, the Axioms (Associativity, 

Commutativity, etc.) defined on a set are totally true, but it is again a 

restrictive case, because similarly there are numerous situations in science 

and in any domain of knowledge when an Axiom defined on a set may be 

only partially-true (and partially-false), that we call NeutroAxiom, or 

totally false that we call AntiAxiom.  

Therefore we open for the first time in 2019 new fields of research 

called NeutroStructures and AntiStructures respectively. 
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6.1. Introduction 

For the necessity to more accurately reflect our reality, Smarandache 

[1] introduced for the first time in 2019 the NeutroDefined and 

AntiDefined Laws, as well as the NeutroAxiom and AntiAxiom, inspired 

from Neutrosophy ([2], 1995), giving birth to new fields of research 

called NeutroStructures and AntiStructures. 

Let’s consider a given classical algebraic Axiom. We define for the 

first time the neutrosophic triplet corresponding to this Axiom, which is 

the following: (Axiom, NeutroAxiom, AntiAxiom); while the classical 

Axiom is 100% or totally true, the NeutroAxiom is partially true and 

partially false (the degrees of truth and falsehood are both > 0), while the 

AntiAxiom is 100% or totally false. 

For the classical algebraic structures, on a non-empty set endowed 

with well-defined binary laws, we have properties (axioms) such as: 

associativity & non-associativity, commutativity & non-commutativity, 

distributivity & non-distributivity; the set may contain a neutral element 

with respect to a given law, or may not; and so on; each set element may 

have an inverse, or some set elements may not have an inverse; and so on. 

Consequently, we construct for the first time the neutrosophic triplet 

corresponding to the Algebraic Structures, which is this: (Algebraic 

Structure, NeutroAlgebraic Structure, AntiAlbegraic Structure). 

Therefore, we now introduce for the first time the NeutroAlgebraic 

Structures & the AntiAlgebraic Structures. 

A (classical) Algebraic Structure is an algebraic structure dealing only 

with (classical) Axioms (which are totally true). 

Then a NeutroAlgebraic Structure is an algebraic structure that has at 

least one NeutroAxiom, and no AntiAxioms. 

While an AntiAlgebraic Structure is an algebraic structure that has at 

least one AntiAxiom. 
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These definitions can straightforwardly be extended from 

Axiom/NeutroAxiom/AntiAxiom  

to any  

Property/NeutroProperty/AntiProperty, 

Proposition/NeutroProposition/AntiProposition, 

Theorem/NeutroTheorem/AntiTheorem, 

Theory/NeutroTheory/AntiTheory, etc. 

and from Algebraic Structures to other Structures in any field of 

knowledge. 

6.2. Neutrosophy 

We recall that in neutrosophy we have for an item <A>, its opposite 

<antiA>, and in between them their neutral <neutA>. 

We denoted by <nonA> = <neutA>  ∪ <antiA>, where ∪  means 

union, and <nonA> means what is not <A>. 

Or <nonA> is refined/split into two parts: <neutA> and <antiA>. 

The neutrosophic triplet of <A> is:  

(〈𝐴〉, 〈𝑛𝑒𝑢𝑡𝐴〉, 〈𝑎𝑛𝑡𝑖𝐴〉), with 〈𝑛𝑒𝑢𝑡𝐴〉 ∪ 〈𝑎𝑛𝑡𝑖𝐴〉 = 〈𝑛𝑜𝑛𝐴〉. 

6.3. Definition of Neutrosophic Triplet Axioms 

Let 𝒰 be a universe of discourse, endowed with some well-defined 

laws, a non-empty set 𝒮 ⊆ 𝒰, and an Axiom α, defined on S, using these 

laws. Then: 

1) If all elements of 𝒮 verify the axiom α, we have a Classical 

Axiom, or simply we say Axiom. 

2) If some elements of 𝒮 verify the axiom α and others do not, 

we have a NeutroAxiom (which is also called NeutAxiom). 

3) If no elements of 𝒮  verify the axiom α, then we have an 

AntiAxiom. 
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The Neutrosophic Triplet Axioms are: 

(Axiom, NeutroAxiom, AntiAxiom) 

with  

NeutroAxiom ⋃ AntiAxiom = NonAxiom,  

and NeutroAxiom ⋂ AntiAxiom = φ (empty set),  

where ⋂ means intersection. 

Theorem 1 

The Axiom is 100% true, the NeutroAxiom is partially true ( its truth 

degree > 0 ) and partially false ( its falsehood degree > 0 ), and the 

AntiAxiom is 100% false. 

Proof  is obvious. 

Theorem 2 

Let  

d : {Axiom, NeutroAxiom, AntiAxiom}  [0 , 1] 

represent the degree of negation function. 

The NeutroAxiom represents a degree of partial negation { d ∊ (0, 1) } 

of the Axiom, while the AntiAxiom represents a degree of total negation 

{ d = 1 } of the Axiom.  

Proof  is also evident. 

6.4. Neutrosophic Representation 

We have: 

〈𝐴〉 = Axiom; 

〈𝑛𝑒𝑢𝑡𝐴〉 = NeutroAxiom (or NeutAxiom); 

〈𝑎𝑛𝑡𝑖𝐴〉  = AntiAxiom; 

and   〈𝑛𝑜𝑛𝐴〉  = NonAxiom. 
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Similarly as in Neutrosophy, NonAxiom is refined/split into two parts: 

NeutroAxiom and AntiAxiom. 

6.5. Application of NeutroLaws in Soft Science 

In soft sciences the laws are interpreted and re-interpreted; in social 

and political legislation the laws are flexible; the same law may be true 

from a point of view, and false from another point of view. Thus the law 

is partially true and partially false (it is a neutrosophic law).   

For example, “gun control”. There are people supporting it 

because of too many crimes and violence (and they are right), and people 

that oppose it because they want to be able to defend themselves and their 

houses (and they are right too).  

We see two opposite propositions, both of them true, but from 

different points of view (from different criteria/parameters; plithogenic 

logic may better be used herein).  How to solve this?  Going to the middle, 

in between opposites (as in neutrosophy): allow military, police, security, 

registered hunters to bear arms; prohibit mentally ill, sociopaths, 

criminals, violent people from bearing arms; and background check on 

everybody that buys arms, etc. Definition of Classical Associativity 

Let 𝒰  be a universe of discourse, and a non-empty set 𝒮 ⊆ 𝒰 , 

endowed with a well-defined binary law ∗. The law ∗ is associative on the 

set 𝒮, iff ∀ 𝑎, 𝑏, 𝑐 ∈ 𝒮, 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐. 

6.6. Definition of Classical NonAssociativity 

Let 𝒰  be a universe of discourse, and a non-empty set 𝒮 ⊆ 𝒰 , 

endowed with a well-defined binary law ∗. The law ∗ is non-associative 

on the set 𝒮, iff ∃𝑎, 𝑏, 𝑐 ∈ 𝒮, such that 𝑎 ∗ (𝑏 ∗ 𝑐) ≠ (𝑎 ∗ 𝑏) ∗ 𝑐. 

So, it is sufficient to get a single triplet 𝑎, 𝑏, 𝑐 (where 𝑎, 𝑏, 𝑐 may even 

be all three equal, or only two of them equal) that doesn’t satisfy the 

associativity axiom. 
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Yet, there may also exist some triplet 𝑑, 𝑒, 𝑓 ∈ 𝒮  that satisfies the 

associativity axiom: 𝑑 ∗ (𝑒 ∗ 𝑓) = (𝑑 ∗ 𝑒) ∗ 𝑓. 

The classical definition of NonAssociativity does not make a 

distinction between a set (𝒮1,∗) whose all triplets 𝑎, 𝑏, 𝑐 ∈ 𝒮1 verify the 

non-associativity inequality, and a set (𝒮2,∗) whose some triplets verify 

the non-associativity inequality, while others don’t. 

6.7. NeutroAssociativity & AntiAssociativity 

If 〈A〉  = (classical) Associativity, then 〈nonA〉  = (classical) 

NonAssociativity. 

But we refine/split 〈nonA〉 into two parts, as above: 

〈𝑛𝑒𝑢𝑡𝐴〉 = NeutroAssociativity; 

〈𝑎𝑛𝑡𝑖𝐴〉  = AntiAssociativity. 

Therefore,  

NonAssociativity = NeutroAssociativity ∪ AntiAssociativity. 

The Associativity’s neutrosophic triplet is: 

<Associativity, NeutroAssociativity, AntiAssociativity>. 

6.8. Definition of NeutroAssociativity 

Let 𝒰 be a universe of discourse, endowed with a well-defined binary 

law ∗, and a non-empty set 𝒮 ⊆ 𝒰. 

The set (𝒮,∗) is NeutroAssociative if and only if: 

there exists at least one triplet 𝑎1, 𝑏1, 𝑐1 ∈ 𝒮 such that: 

𝑎1 ∗ (𝑏1 ∗ 𝑐1) = (𝑎1 ∗ 𝑏1) ∗ 𝑐1; 

and there exists at least one triplet 𝑎2, 𝑏2, 𝑐2 ∈ 𝒮 such that: 

𝑎2 ∗ (𝑏2 ∗ 𝑐2) ≠ (𝑎2 ∗ 𝑏2) ∗ 𝑐2. 

Therefore, some triplets verify the associativity axiom, and others do 

not. 
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6.9. Definition of AntiAssociativity 

Let 𝒰 be a universe of discourse, endowed with a well-defined binary 

law ∗, and a non-empty set 𝒮 ⊆ 𝒰. 

The set (𝒮,∗) is AntiAssociative if and only if: 

for any triplet 𝑎, 𝑏, 𝑐 ∈ 𝒮 one has 𝑎 ∗ (𝑏 ∗ 𝑐) ≠ (𝑎 ∗ 𝑏) ∗ 𝑐. 

Therefore, none of the triplets verify the associativity axiom. 

6.10. Example of Associativity 

Let N = {0, 1, 2, …, ∞}, the set of natural numbers, be the universe of 

discourse, and the set 𝒮 = {0, 1, 2, … , 9} ⊂ N, also the binary law ∗ be the 

classical addition modulo 10 defined on N. 

Clearly the law * is well-defined on S, and associative since:  

𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 (mod 10), for all 𝑎, 𝑏, 𝑐 ∈ 𝒮. 

The degree of negation is 0%. 

6.11. Example of NeutroAssociativity 

𝒮 = {0, 1, 2, … , 9}, and the well-defined binary law ∗ constructed as 

below:  

𝑎 ∗ 𝑏 = 2𝑎 + 𝑏 (mod 10). 

Let’s check the associativity: 

𝑎 ∗ (𝑏 ∗ 𝑐) = 2𝑎 + (𝑏 ∗ 𝑐) = 2𝑎 + 2𝑏 + 𝑐  

(𝑎 ∗ 𝑏) ∗ 𝑐 = 2(𝑎 ∗ 𝑏) + 𝑐 = 2(2𝑎 + 𝑏) + 𝑐 = 4𝑎 + 2𝑏 + 𝑐  

The triplets that verify the associativity result from the below equality: 

2𝑎 + 2𝑏 + 𝑐 = 4𝑎 + 2𝑏 + 𝑐  

or 2𝑎 = 4𝑎 (mod 10) 

or 0 = 2𝑎 (mod 10), whence 𝑎 ∈ {0, 5}. 

Hence, two general triplets of the form: 



Florentin Smarandache 

248 

{(0, 𝑏, 𝑐), (5, 𝑏, 𝑐), where 𝑏, 𝑐 ∈ 𝒮}  

verify the associativity. 

The degree of associativity is 
2

10
= 20%, corresponding to the two 

numbers {0, 5} out of ten. 

While the other general triplet: 

{(𝑎, 𝑏, 𝑐), where 𝑎 ∈ 𝒮 ∖ {0, 5}, while 𝑏, 𝑐 ∈ 𝒮 }  

do not verify the associativity. 

The degree of negation of associativity is 
8

10
= 80%. 

6.12. Example of AntiAssociativity 

𝒮 = {𝑎, 𝑏}, and the binary law ∗ well-defined as in the below Cayley 

Table: 

∗ a b 

a b b 

b a a 

Theorem 1. 

For any 𝑥, 𝑦, 𝑧 ∈ 𝒮,  𝑥 ∗ (𝑦 ∗ 𝑧) ≠ (𝑥 ∗ 𝑦) ∗ 𝑧. 

Proof. 

We have 23 = 8 possible triplets on 𝒮: 

1)  (𝑎, 𝑎, 𝑎) 

𝑎 ∗ (𝑎 ∗ 𝑎) = 𝑎 ∗ 𝑏 = 𝑏  

while (𝑎 ∗ 𝑎) ∗ 𝑎 = 𝑏 ∗ 𝑎 = 𝑎 ≠ 𝑏. 

2)  (𝑎, 𝑎, 𝑏) 

𝑎 ∗ (𝑎 ∗ 𝑏) = 𝑎 ∗ 𝑏 = 𝑏  

(𝑎 ∗ 𝑎) ∗ 𝑏 = 𝑏 ∗ 𝑏 = 𝑎 ≠ 𝑏.   

3)  (𝑎, 𝑏, 𝑎) 

𝑎 ∗ (𝑏 ∗ 𝑎) = 𝑎 ∗ 𝑎 = 𝑏  
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(𝑎 ∗ 𝑏) ∗ 𝑎 = 𝑏 ∗ 𝑎 = 𝑎 ≠ 𝑏.   

4)  (𝑏, 𝑎, 𝑎) 

𝑏 ∗ (𝑎 ∗ 𝑎) = 𝑏 ∗ 𝑏 = 𝑎  

(𝑏 ∗ 𝑎) ∗ 𝑎 = 𝑎 ∗ 𝑎 = 𝑏 ≠ 𝑎.   

5)  (𝑎, 𝑏, 𝑏) 

𝑎 ∗ (𝑏 ∗ 𝑏) = 𝑎 ∗ 𝑎 = 𝑏  

(𝑎 ∗ 𝑏) ∗ 𝑏 = 𝑏 ∗ 𝑏 = 𝑎 ≠ 𝑏.   

6)  (𝑏, 𝑎, 𝑏) 

𝑏 ∗ (𝑎 ∗ 𝑏) = 𝑏 ∗ 𝑏 = 𝑎  

(𝑏 ∗ 𝑎) ∗ 𝑏 = 𝑎 ∗ 𝑏 = 𝑏 ≠ 𝑎.   

7)  (𝑏, 𝑏, 𝑎) 

𝑏 ∗ (𝑏 ∗ 𝑎) = 𝑏 ∗ 𝑎 = 𝑎  

(𝑏 ∗ 𝑏) ∗ 𝑎 = 𝑎 ∗ 𝑎 = 𝑏 ≠ 𝑎.   

8)  (𝑏, 𝑏, 𝑏) 

𝑏 ∗ (𝑏 ∗ 𝑏) = 𝑏 ∗ 𝑎 = 𝑎  

(𝑏 ∗ 𝑏) ∗ 𝑏 = 𝑎 ∗ 𝑏 = 𝑏 ≠ 𝑎.   

Therefore, there is no possible triplet on 𝒮 to satisfy the associativity. 

Whence the law is AntiAssociative. The degree of negation of 

associativity is  
8

8
= 100%. 

6.13. Definition of Classical Commutativity 

Let 𝒰 be a universe of discourse endowed with a well-defined binary 

law ∗, and a non-empty set 𝒮 ⊆ 𝒰. The law ∗ is Commutative on the set 

𝒮, iff ∀ 𝑎, 𝑏 ∈ 𝒮, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎. 
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6.14. Definition of Classical NonCommutativity 

Let 𝒰 be a universe of discourse, endowed with a well-defined binary 

law ∗, and a non-empty set 𝒮 ⊆ 𝒰. The law ∗ is NonCommutative on the 

set 𝒮, iff ∃𝑎, 𝑏 ∈ 𝒮, such that 𝑎 ∗ 𝑏 ≠ 𝑏 ∗ 𝑎. 

So, it is sufficient to get a single duplet 𝑎, 𝑏 ∈ 𝒮 that doesn’t satisfy 

the commutativity axiom. 

However, there may exist some duplet 𝑐, 𝑑 ∈ 𝒮  that satisfies the 

commutativity axiom: 𝑐 ∗ 𝑑 = 𝑑 ∗ 𝑐. 

The classical definition of NonCommutativity does not make a 

distinction between a set (𝒮1,∗) whose all duplets 𝑎, 𝑏 ∈ 𝒮1  verify the 

NonCommutativity inequality, and a set (𝒮2,∗)  whose some duplets 

verify the NonCommutativity inequality, while others don’t. 

That’s why we refine/split the NonCommutativity into 

NeutroCommutativity and AntiCommutativity. 

6.15. NeutroCommutativity & AntiCommutativity 

Similarly to Associativity we do for the Commutativity: 

If 〈A〉  = (classical) Commutativity, then 〈nonA〉  = (classical) 

NonCommutativity. 

But we refine/split 〈nonA〉 into two parts, as above: 

〈𝑛𝑒𝑢𝑡𝐴〉 = NeutroCommutativity; 

〈𝑎𝑛𝑡𝑖𝐴〉  = AntiCommutativity. 

Therefore,  

NonCommutativity =  

= NeutroCommutativity ∪ AntiCommutativity. 

The Commutativity’s neutrosophic triplet is: 

<Commutativity, NeutroCommutativity, AntiCommutativity>. 
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In the same way, Commutativity means all elements of the set 

commute with respect to a given binary law, NeutroCommutativity means 

that some elements commute while others do not, while 

AntiCommutativity means that no elements commute. 

6.16. Example of NeutroCommutativity 

𝒮 = {𝑎, 𝑏, 𝑐}, and the well-defined binary law ∗. 

∗ a b c 

a b c c 

b c b a 

c b b c 

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑐 (commutative); 

{
𝑎 ∗ 𝑐 = 𝑐

 𝑐 ∗ 𝑎 = 𝑏 ≠ 𝑐
 (not commutative); 

{ 
𝑏 ∗ 𝑐 = 𝑎

𝑐 ∗ 𝑏 = 𝑏 ≠ 𝑎
 (not commutative). 

We conclude that (𝒮,∗) is 
1 pair

3 pairs
≈ 33% commutative, and 

2 pair

3 pairs
≈

67% not commutative. 

Therefore, the degree of negation of the commutativity of (𝒮,∗) is 

67%. 

6.17. Example of AntiCommutativity 

𝒮 = {𝑎, 𝑏}, and the below binary well-defined law ∗. 

∗ a b 

a b b 

b a a 

where 𝑎 ∗ 𝑏 = 𝑏, 𝑏 ∗ 𝑎 = 𝑎 ≠ 𝑏 (not commutative) 

Other pair of different element does not exist, since we cannot take 

𝑎 ∗ 𝑎 nor 𝑏 ∗ 𝑏. The degree of negation of commutativity of this (𝒮,∗) is 

100%. 
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6.18. Definition of Classical Unit Element 

Let 𝒰 be a universe of discourse endowed with a well-defined binary 

law ∗ and a non-empty set 𝒮 ⊆ 𝒰.  

The set 𝒮 has a classical unit element 𝑒 ∈ 𝒮, iff 𝑒 is unique, and for 

any 𝑥 ∈ 𝒮 one has 𝑥 ∗ 𝑒 = 𝑒 ∗ 𝑥 = 𝑥. 

6.19. Partially Negating the Definition of Classical Unit Element 

It occurs when at least one of the below statements occurs: 

1) There exists at least one element 𝑎 ∈ 𝒮 that has no unit element. 

2) There exists at least one element 𝑏 ∈ 𝒮 that has at least two distinct 

unit elements 𝑒1, 𝑒2 ∈ 𝒮, 𝑒1 ≠ 𝑒2, such that: 

𝑏 ∗ 𝑒1 = 𝑒1 ∗ 𝑏 = 𝑏, 

𝑏 ∗ 𝑒2 = 𝑒2 ∗ 𝑏 = 𝑏. 

3) There exists at least two different elements 𝑐, 𝑑 ∈ 𝒮, 𝑐 ≠ 𝑑, such 

that they have different unit elements 𝑒𝑐 , 𝑒𝑑 ∈ 𝒮, 𝑒𝑐 ≠ 𝑒𝑑, with 𝑐 ∗ 𝑒𝑐 =

𝑒𝑐 ∗ 𝑐 = 𝑐, and 𝑑 ∗ 𝑒𝑑 = 𝑒𝑑 ∗ 𝑑 = 𝑑. 

6.20. Totally Negating the Definition of Classical Unit Element 

The set (𝒮,∗) has AntiUnitElements, if: 

1) Each element 𝑥 ∈ 𝒮 has either no unit element, or two or more unit 

elements (unicity of unit element is negated); 

2) If some elements 𝑥 ∈ 𝒮 have only one unit element each, then these 

unit elements are different two by two. 

6.21. Definition of NeutroUnitElements 

The set (𝒮,∗) has NeutroUnit Elements, if: 

1) [Degree of Truth] There exist at least an element that has a single 

unit-element. 
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2) [Degree of Falsehood] There exist at least one element that either 

has no unit-element, or has two or more unit-elements. 

6.22. Definition of AntiUnit Elements 

The set (𝒮,∗) has AntiUnit Elements, if: 

Each element 𝑥 ∈ 𝒮 has either no unit-element, or two or more distinct 

unit-elements. 

6.23. Example of NeutroUnit Elements 

𝒮 = {𝑎, 𝑏, 𝑐}, and the well-defined binary law ∗: 

∗ a b c 

a b b a 

b b b a 

c a b c 

Since, 

𝑎 ∗ 𝑐 = 𝑐 ∗ 𝑎 = 𝑎  

𝑐 ∗ 𝑐 = 𝑐  

the common unit-element of a and c is c (two distinct elements a ≠ 𝑐 

have the same unit element c). 

From 

𝑏 ∗ 𝑎 = 𝑎 ∗ 𝑏 = 𝑏  

𝑏 ∗ 𝑏 = 𝑏  

we see that the element 𝑏 has two distinct unit-elements 𝑎 and 𝑏. 

Since only one element b does not verify the classical unit axiom (i.e. 

to have a unique unit), out of 3 elements, the degree of negation of unit 

element axiom is 
1

3
≈ 33% , while 

2

3
≈ 67%  is the degree of truth 

(validation) of the unit element axiom. 

6.24. Example of AntiUnit Elements 

𝒮 = {𝑎, 𝑏, 𝑐}, endowed with the well-defined binary law ∗ as follows: 
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∗ a b c 

a a a a 

b a c b 

c a c b 

Element 𝑎 has 3 unit elements: 𝑎, 𝑏, 𝑐, because: 

𝑎 ∗ 𝑎 = 𝑎  

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑎  

and    𝑎 ∗ 𝑐 = 𝑐 ∗ 𝑎 = 𝑎.   

Element 𝑏 has no unit element, since: 

𝑏 ∗ 𝑎 = 𝑎 ≠ 𝑏  

𝑏 ∗ 𝑏 = 𝑐 ≠ 𝑏  

and     𝑏 ∗ 𝑐 = 𝑏, but 𝑐 ∗ 𝑏 ≠ 𝑏. 

Element 𝑐 has no unit element, since: 

𝑐 ∗ 𝑎 = 𝑎 ≠ 𝑐  

𝑐 ∗ 𝑏 = 𝑐, but 𝑏 ∗ 𝑐 = 𝑏 ≠ 𝑐, 

and     𝑐 ∗ 𝑐 = 𝑏 ≠ 𝑐. 

The degree of negation of the unit element axiom is 
3

3
= 100%. 

6.25. Definition of Classical Inverse Element 

Let 𝒰 be a universe of discourse endowed with a well-defined binary 

law ∗ and a non − empty set  𝒮 ⊆ 𝒰.  

Let 𝑒 ∈ 𝒮 be the classical unit element, which is unique. 

For any element 𝑥 ∈ 𝒮 , there exists a unique element, named the 

inverse of 𝑥, denoted by 𝑥−1, such that: 

𝑥 ∗ 𝑥−1 = 𝑥−1 ∗ 𝑥 = 𝑒. 

6.26. Partially Negating the Definition of Classical Inverse Element 

It occurs when at least one statement from below occurs: 
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1) There exist at least one element 𝑎 ∈ 𝒮  that has no inverse with 

respect to no ad-hoc unit-elements; 

or  

2) There exist at least one element 𝑏 ∈ 𝒮 that has two or more distinct 

inverses with respect to some ad-hoc unit-elements. 

6.27. Totally Negating the Definition of Classical Inverse Element 

Each element has either no inverse, or two or more distinct inverses 

with respect to some ad-hoc unit-elements respectively. 

6.28. Definition of NeutroInverse Elements 

The set (𝒮,∗) has NeutroInverse Elements if: 

1) [Degree of Truth] There exist at least an element that has an inverse 

with respect to some ad-hoc unit-element. 

2) [Degree of Falsehood] There exists at least one element that does 

not have any inverse with respect to no ad-hoc unit-element, or has at 

least two or more distinct inverses with respect to some ad-hoc unit-

elements. 

6.29. Definition of AntiInverse Elements 

The set (𝒮,∗) has AntiInverse Elements, if: each element has either no 

inverse with respect to no ad-hoc unit-element, or two or more distinct 

inverses with respect to some ad-hoc unit-elements. 

6.30. Example of NeutroInverse Elements 

𝑆 = {𝑎, 𝑏, 𝑐}, endowed with the binary well-defined law * as below: 

∗ a b c 

a a b c 

b b a a 

c b b b 
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Because 𝑎 ∗ 𝑎 = 𝑎, hence its ad-hoc unit/neutral element 𝑛𝑒𝑢𝑡(𝑎) =

𝑎 and correspondingly its inverse element is 𝑖𝑛𝑣(𝑎) = 𝑎. 

Because 𝑏 ∗ 𝑎 = 𝑎 ∗ 𝑏 = 𝑏, hence its ad-hoc inverse/neutral element 

𝑛𝑒𝑢𝑡(𝑏) = 𝑎; 

from 𝑏 ∗ 𝑏 = 𝑎, we get 𝑖𝑛𝑣(𝑏) = 𝑏.  

No 𝑛𝑒𝑢𝑡(𝑐), hence no 𝑖𝑛𝑣(𝑐). 

Hence a and b have ad-hoc inverses, but c doesn’t. 

6.31. Example of AntiInverse Elements 

Similarly, 𝑆 = {𝑎, 𝑏, 𝑐}, endowed with the binary well-defined law * 

as below: 

∗ a b c 

a b b c 

b a a a 

c c a a 

There is no neut(a) and no neut(b), hence: no inv(a) and no inv(b). 

𝑐 ∗ 𝑎 = 𝑎 ∗ 𝑐 = 𝑐 , hence: 𝑛𝑒𝑢𝑡(𝑐) = 𝑎. 

𝑐 ∗ 𝑏 = 𝑏 ∗ 𝑐 = 𝑎 , hence: 𝑖𝑛𝑣(𝑐) = 𝑏;  

𝑐 ∗ 𝑐 = 𝑐 ∗ 𝑐 = 𝑎,  hence: 𝑖𝑛𝑣(𝑐) = 𝑐; whence we get two inverses of 

c.  

6.32. Cases When Partial Negation (NeutroAxiom) Does Not Exist 

Let’s consider the classical geometric Axiom: 

On a plane, through a point exterior to a given line it’s possible to draw 

a single parallel to that line. 

The total negation is the following AntiAxiom: 

On a plane, through a point exterior to a given line it’s possible to draw 

either no parallel, or two or more parallels to that line. 
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The NeutroAxiom does not exist since it is not possible to partially 

deny this classical axiom. 

6.33. Connections between the neutrosophic triplet (Axiom, 

NeutroAxiom, AntiAxiom) and the S-denying an Axiom 

The S-denying of an Axiom was first defined by Smarandache [3, 4] in 

1969 when he constructed hybrid geometries (or S-geometries) [5 – 18]. 

6.34. Definition of S-denying an Axiom 

An Axiom is said S-denied [3, 4] if in the same space the axiom 

behaves differently (i.e., validated and invalided; or only invalidated but 

in at least two distinct ways).  

Therefore, we say that an axiom is partially negated (or there is a 

degree of negation of an axiom): http://fs.unm.edu/Geometries.htm.  

6.35. Definition of S-geometries 

A geometry is called S-geometry [5] if it has at least one S-denied 

axiom.  

Therefore, the Euclidean, Lobachevsky-Bolyai-Gauss, and 

Riemannian geometries were united altogether for the first time, into the 

same space, by some S-geometries. These S-geometries could be partially 

Euclidean and partially Non-Euclidean, or only Non-Euclidean but in 

multiple ways.  

  The most important contribution of the S-geometries was the 

introduction of the degree of negation of an axiom (and more general the 

degree of negation of any theorem, lemma, scientific or humanistic 

proposition, theory, etc.). 

Many geometries, such as pseudo-manifold geometries, Finsler 

geometry, combinatorial Finsler geometries, Riemann geometry, 

combinatorial Riemannian geometries, Weyl geometry, Kahler geometry 

are particular cases of S-geometries. (Linfan Mao) 

http://fs.unm.edu/Geometries.htm
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6.36. Connection between S-denying an Axiom and NeutroAxiom / 

AntiAxiom 

“Validated and invalidated” Axiom is equivalent to NeutroAxiom. 

While “only invalidated but in at least two distinct ways” Axiom is part 

of the AntiAxiom (depending on the application). 

 “Partially negated” ( or 0 < d < 1, where d is the degree of negation ) 

is referred to NeutroAxiom.  While “there is a degree of negation of an 

axiom” is referred to both NeutroAxiom ( when 0 < d < 1 ) and 

AntiAxiom ( when d = 1 ). 

6.37. Connection between NeutroAxiom and MultiSpace 

In any domain of knowledge, a S-multispace with its multistructure 

is a finite or infinite (countable or uncountable) union of many spaces that 

have various structures (Smarandache, 1969, [19]). The multi-spaces with 

their multi-structures [20, 21] may be non-disjoint. The multispace with 

multistructure form together a Theory of Everything. It can be used, for 

example, in the Unified Field Theory that tries to unite the gravitational, 

electromagnetic, weak, and strong interactions in physics. 

Therefore, a NeutroAxiom splits the set S, which it is defined upon, 

into two subspaces: one where the Axiom is true and another where the 

Axiom is false. Whence S becomes a BiSpace with BiStructure (which is 

a particular case of MultiSpace with MultiStructure). 

6.38. (Classical) WellDefined Binary Law 

Let 𝒰 be a universe of discourse, a non-empty set 𝒮 ⊆ 𝒰, and a binary 

law ∗ defined on 𝑈. For any 𝑥, 𝑦 ∈ 𝒮, one has 𝑥 ∗ 𝑦 ∈ 𝒮. 

6.39. NeutroDefined Binary Law 

There exist at least two elements (that could be equal) 𝑎, 𝑏 ∈ 𝒮 such 

that 𝑎 ∗ 𝑏 ∈ 𝒮. And there exist at least other two elements (that could be 

equal too) 𝑐, 𝑑 ∈ 𝒮 such that 𝑐, 𝑑 ∉ 𝒮. 
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6.40. Example of NeutroDefined Binary Law 

Let U = {a, b, c} be a universe of discourse, and a subset 𝒮 = {𝑎, 𝑏}, 

endowed with the below NeutroDefined Binary Law ∗ : 

 

∗ a b 

a b b 

b a c 

We see that: 𝑎 ∗ 𝑏 = 𝑏 ∊ 𝑆, 𝑏 ∗ 𝑎 = 𝑎  ∊ 𝑆,  but 𝑏 ∗ 𝑏 = c ∉ 𝑆.  

6.41. AntiDefined Binary Law 

For any 𝑥, 𝑦 ∈ 𝒮 one has 𝑥 ∗ 𝑦 ∉ 𝒮. 

6.42. Example of AntiDefined Binary Law 

Let U = {a, b, c, d} a universe of discourse, and a subset 𝒮 = {𝑎, 𝑏}, 

and the below binary well-defined law ∗. 

∗ a b 

a c d 

b d c 

where all combinations between a and b using the law * give as output c 

or d who do not belong to S. 

6.43. Theorem of the Degenerate Case 

If a set is endowed with AntiDefined Laws, all its algebraic structures 

based on them will be AntiStructures. 

6.44. WellDefined n-ary Law 

Let 𝒰 be a universe of discourse, a non-empty set 𝒮 ⊆ 𝒰, and a n-ary 

law, for n integer, 𝑛 ≥ 1, defined on 𝒰. 

𝐿:𝒰𝑛 → 𝒰. 

For any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝒮, one has 𝐿(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝒮. 
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6.45. NeutroDefined n-ary Law 

There exists at least a n-plet 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝒮  such that 

𝐿(𝑎1, 𝑎2, … , 𝑎𝑛) ∈ 𝒮 . The elements 𝑎1, 𝑎2, … , 𝑎𝑛  may be equal or not 

among themselves. 

And there exists at least a n-plet 𝑏1, 𝑏2, … , 𝑏𝑛 ∈ 𝒮  such that 

𝐿(𝑏1, 𝑏2, … , 𝑏𝑛) ∉ 𝒮 . The elements 𝑏1, 𝑏2, … , 𝑏𝑛 may be equal or not 

among themselves. 

6.46. AntiDefined n-ary Law 

For any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝒮, one has 𝐿(𝑥1, 𝑥2, … , 𝑥𝑛) ∉ 𝒮. 

6.47. WellDefined n-ary HyperLaw 

Let 𝒰 be a universe of discourse, a non-empty set 𝒮 ⊂≠ 𝒰, and a n-

ary hyperlaw, for n integer, 𝑛 ≥ 1: 

𝐻:𝒰𝑛 → 𝒫(𝒰), where 𝒫(𝒰) is the power set of 𝒰. 

For any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝒮, one has 𝐻(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝒫(𝒮). 

6.48. NeutroDefined n-ary HyperLaw 

There exists at least a n-plet 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝒮  such that 

𝐻(𝑎1, 𝑎2, … , 𝑎𝑛) ∈ 𝒫(𝒮). The elements 𝑎1, 𝑎2, … , 𝑎𝑛  may be equal or 

not among themselves. 

And there exists at least a n-plet 𝑏1, 𝑏2, … , 𝑏𝑛 ∈ 𝒮  such that 

𝐻(𝑏1, 𝑏2, … , 𝑏𝑛) ∉ 𝒫(𝒮). The elements 𝑏1, 𝑏2, … , 𝑏𝑛 may be equal or not 

among themselves. 

6.49. AntiDefined n-ary HyperLaw 

For any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝒮, one has 𝐻(𝑥1, 𝑥2, … , 𝑥𝑛) ∉ 𝒫(𝒮). 

* 
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The most interesting are the cases when the composition law(s) are 

well-defined (classical way) and neutro-defined (neutrosophic way). 

6.50. WellDefined NeutroStructures 

Are structures whose laws of compositions are well-defined, and at 

least one axiom is NeutroAxiom, and one has no AntiAxiom. 

6.51. NeutroDefined NeutroStructures 

Are structures whose at least one law of composition is NeutroDefined, 

and all other axioms are NeutroAxioms or Axioms. 

6.52. Example of NeutroDefined NeutroGroup 

Let U = {a, b, c, d} be a universe of discourse, and the subset  

𝒮 = {𝑎, 𝑏, 𝑐}, endowed with the binary law ∗: 

 

∗ a b c 

a a c b 

b c a c 

c a c d 

 

NeutroDefined Law of Composition: 

Because, for example: a*b = c ∊ S, but c*c = d ∉ S. 

NeutroAssociativity: 

Because, for example:  

b*(c*b) = b*c = c and (b*c)*b = c*b = c; 

while, for example:  

a*(a*b) = a*c = b and (a*a)*b = a*b = c ≠ b. 

NeutroCommutativity: 

Because, for example:  

a*b = b*a = c, but a*c = b while c*a = a ≠ c. 
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NeutroUnit Element: 

There exists a unit element b for c, since c*b = b*c = c; and there is a 

unit element a for a, since a*a = a. 

But there is no unit element for b, because b*x = a or c, not b, for any 

x ∊ S (according to the above Cayley Table) 

NeutroInverse Element: 

There exists an inverse element for a, which is a, because a*a = a. 

But there is no inverse element for b, since b has no unit element. 

Therefore (S, *) is a NeutroDefined NeutroCommutative 

NeutroGroup. 

6.53. WellDefined AntiStructures 

Are structures whose laws of compositions are well-defined, and have 

at least one AntiAxiom. 

6.54. NeutroDefined AntiStructures 

Are structures whose at least one law of composition is NeutroDefined 

and no law of composition is AntiDefined, and has at least one 

AntiAxiom. 

6.55. AntiDefined AntiStructures 

Are structures whose at least one law of composition is AntiDefined, 

and has at least one AntiAxiom. 

6.56. Conclusion 

The neutrosophic triplet (<A>, <neutA>, <antiA>), where <A> may 

be an “Axiom”, a “Structure”, a “Theory” and so on, <antiA> the opposite 

of <A>, while <neutA> (or <neutroA>) their neutral in between, are 

studied in this paper.  

The NeutroAlgebraic Structures and AntiAlgebraic Structures are 

introduced now for the first time, because they have been ignored by the 

classical algebraic structures. Since, in science and technology and 
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mostly in applications of our everyday life, the laws that characterize 

them are not necessarily well-defined or well-known, and the axioms / 

properties / theories etc. that govern their spaces may be only partially 

true and partially false ( as <neutA> in neutrosophy, which may be a 

blending of truth and falsehood ). 

Mostly in idealistic or imaginary or abstract or perfect spaces we have 

rigid laws and rigid axioms that totally apply (that are 100% true). But 

the laws and the axioms should be more flexible in order to comply with 

our imperfect world. 
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