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Abstract An emerging consensus in cognitive science views the biological brain
as a hierarchically-organized predictive processing system that relies on generative
models to predict the structure of sensory information. Such a view resonates with
a body of work in machine learning that has explored the problem-solving capa-
bilities of hierarchically-organized, multi-layer (i.e., deep) neural networks, many
of which acquire and deploy generative models of their training data. The present
chapter explores the extent to which the ostensible convergence on a common neuro-
computational architecture (centred on predictive processing schemes, hierarchical
organization, and generative models) might provide inroads into the problem of
digital immortality. In contrast to approaches that seek to recapitulate the physical
structure of the human brain, the present chapter advocates an approach that is rooted
in the use of machine learning algorithms. The claim is that a future form of deep
learning system could be used to acquire generative models of a given individual or
(alternatively) the sensory data that is processed by the brain of a given individual
during the course of their biological life. The differences between these two forms of
digital immortality are explored, as are some of the options for digital resurrection.

To die,—to sleep,
To sleep! perchance to dream. . .
For in that sleep of death what dreams may come. . .

—Hamlet, William Shakespeare
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1 Introduction

Do you want to live forever? If so, then the 21st century may be the perfect time to
die. Digital immortality has long been a source of fascination for the transhumanist
movement, yielding many proposals as to how a given individual might be ‘serialized’
to a digital medium and then ‘resurrected’ as part of some digital afterlife. Such
accounts have often been the target of philosophical criticism, inspiring more in the
way of philosophical invective than they have technological innovation. But is all
this about to change? Recently, there has been a renewal of interest in the notion
of digital immortality, with an increasing number of companies now offering some
form of digital afterlife. “Become virtually immortal,” reads the slogan of one such
company, Eternime.1 It is, of course, unclear whether this particular commercial
offering relates to a virtual form of immortality or a form of immortality that is
virtually possible. But notwithstanding these ambiguities, the long-term aims of the
company are relatively clear:

Eternime collects your thoughts, stories and memories, curates them and creates an intelligent
avatar that looks like you. This avatar will live forever and allow other people in the future to
access your memories.

Discussions of digital immortality typically go hand-in-hand with an appeal to
some form of mind uploading. According to Goertzel and Ikle’ (2012), mind loading
is:

. . . an informal term referring. . . to the (as yet hypothetical) process of transferring the totality
or considerable majority of the mental contents from a particular human brain into a different
substrate, most commonly an engineered substrate such as a digital, analogue or quantum
computer. (Goertzel and Ikle’, 2012, p. 1)

Perhaps unsurprisingly, there are many different proposals as to how this rather
vague objective might be realized. Most proposals advocate the use of advanced
technology to record information about the structure of an individual’s biological
brain. Hayworth (2012), for example, discusses how an advanced imaging technique
(Focused Ion Beam Scanning Electron Microscopy) might be used to map the
structure of whole brain neural circuits, yielding a more-or-less complete model
of the human connectome—i.e., the connection matrix of the human brain (Sporns
et al, 2005). Inasmuch as it is this structural description of the brain that defines who
and what we are (see Seung, 2012), then such approaches have an obvious appeal,
even if they are still recognized as being impractical or beyond the limits of current
technology.

The present chapter describes an approach to digital immortality that is similar,
at least in spirit, to many forms of mind uploading. Where it departs from previ-
ous accounts is with respect to the approach taken to model (and re-generate) the
functional dynamics of the human brain. Instead of trying to directly map the de-
tailed microstructure of the biological brain using imaging or tracing techniques,
the present approach is rooted in the use of machine learning techniques, especially

1 See http://eterni.me/ (accessed: 7th March 2018).
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those forms of machine learning whose styles of computation, representation, and
overall architecture share some similarity with recent models of brain-based (or at
any rate, cortical) processing. The inspiration for this approach is based on a recent
neurocomputational model of brain function that depicts the biological brain as a
hierarchically-organized predictive processing system, constantly engaged in the
attempt to predict its own activity2 at a variety of (increasingly abstract) spatial and
temporal scales (Clark, 2016, 2013b; Friston, 2010). This account of brain function
has been the target of considerable scientific and philosophical interest, at least in
part because the account is deemed to be relevant to a broad swath of seemingly
disparate psychological phenomena, including learning, attention, perception, action,
emotion, imagination, memory, and various forms of mental illness (Clark, 2016;
Friston et al, 2014). Beyond this, however, the vision of the brain as a hierarchically-
organized predictive processing system is one that is reflected in recent approaches
to machine learning, especially those associated with deep learning systems (Bengio,
2009; LeCun et al, 2015). Such forms of convergence are interesting given the recent
successes of deep learning on a number of Artificial Intelligence (AI) problems,
and they may even mark the beginnings of a still somewhat ill-defined path towards
experientially-potent forms of machine cognition. The aim of the present chapter is
to describe these two areas of research (i.e., predictive processing models of brain
function and deep machine learning) with a view to outlining an approach to digital
immortality that highlights the relevance of research into deep learning, virtual reality,
and big data processing. The technologies associated with these research areas are
likely to have a substantial impact on various spheres of human activity throughout
the 21st century.

The chapter is structured as follows: Section 2 outlines the broad shape of the
predictive processing (PP) framework, as discussed by Clark (2016), Friston (2010),
and others. It focuses on a key feature of the PP account, namely, the use of generative
models to construct the sensory signal ‘from the top down’. Section 3 aims to draw
attention to some of the similarities between the PP account of brain function and
deep learning systems. Section 4 then goes on to suggest that the link between
deep learning systems and PP serves as the basis for a particular approach to digital
immortality: one that is rooted in the idea that deep learning systems might be used
to recreate the generative models that are acquired by biological brains as a result
of prediction-oriented learning. Section 5 reflects a shift in focus, from machine
learning to big data. It discusses some of the problems confronting the approach to
digital immortality presented in Section 4. In particular, Section 5 raises questions
about the sort of data that ought to be collected, as well as some of the technical,
social, and ethical challenges that are likely to confront the data collection effort.
Section 6 explores the role of virtual reality technologies in establishing some sort
of digital afterlife, with a particular emphasis on the notion of embodiment. Finally,
Section 7 concludes the chapter.

2 In essence, the brain is viewed as a multi-layered prediction machine, with ‘higher’ layers
attempting to predict the activity of ‘lower’ layers. It is in this sense that the brain can be seen to
predict its own activity, i.e., to predict the activity of its constituent neural elements.



4 Paul Smart

2 Predictive Processing

Over the course of the past decade, a particular view of the brain has become
increasingly popular, both in cognitive neuroscience and the philosophy of mind.
This is a view that sees the biological brain as a hierarchically-organized system
that is constantly striving to predict its own internal activity, relative to the play
of energy across the organism’s sensory surfaces (Clark, 2016). The most popular
version of this account is known as the predictive processing account of cognition
(PP for short).

Some insight into the general flavour of PP can be gleaned by comparing the PP
approach to perception with its more traditional counterpart (see Figure 1). On the
traditional view, perception occurs via the stepwise analysis of incoming sensory
information, with more abstract features being detected at progressively higher levels
of the cortical hierarchy (see Figure 1a). The aim, in this case, is to analyse the
upward/forward-flowing stream of information to the point where action can be
coordinated with respect to abstract properties of the perceptual scene.

The PP view of perceptual processing is somewhat different (see Figure 1b).
Here, the stream of incoming sensory information is met with a downward/backward
cascade of predictions that emanate from progressively higher layers of the processing
hierarchy. The purpose of this downward-flowing stream is to predict the activity of
neural circuits at each layer in the hierarchy, with the forward/upward-flowing stream
of information being used to communicate the mismatch between actual and predicted
activity. The overall aim of the system, in this case, is to minimize prediction error
and thus suppress the forward flow of information. From an information-theoretic
standpoint, prediction error is seen to provide a measure of “free energy,” which
is defined as the “difference between an organism’s predictions about its sensory
inputs (embodied in its models of the world) and the sensations it actually encounters”
(Friston et al, 2012, p. 1). Reductions in prediction error therefore correspond to
reductions in free energy, which, over the longer term, equates to a form of entropy
minimization (see Friston, 2010). As noted by Clark (2016):

. . . good [predictive] models. . . are those that help us successfully engage the world and hence
help us to maintain our structure and organization so that we appear—over extended but finite
timescales—to resist increases in entropy and (hence) the second law of thermodynamics.
(Clark, 2016, p. 306)

The means by which predictive capabilities are acquired by the brain is often
depicted as a form of perceptual learning. In essence, prediction error is seen to
promote changes in synaptic strength that reconfigure the structure of neural circuits,
enabling higher-level neural regions to better predict the activity of lower-level
regions. Crucially, one of the upshots of this particular form of prediction-oriented
learning is the installation of a hierarchically-organized model that (by virtue of
the organism’s sensory contact with the world) tracks the hidden causes (or latent
variables) that govern the statistical structure of incoming sensory information. An
important feature of these models is that they are generative in nature. That is to
say, the models encoded by the neural circuits at each layer in the hierarchy must
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Fig. 1 Two approaches to perceptual processing. (a) The traditional approach to perceptual pro-
cessing is characterized by an upward/forward-flow of information through a succession of cortical
regions. (b) This contrasts with the PP approach, which emphasizes the role of backward/downward-
flowing predictions in suppressing the upward/forward flow of information.

be such as to allow each layer to predict activity in the layer below. This means,
in effect, that each layer is able to generate the information encoded by the lower
layer, and this extends all the way out to the lowest levels of the hierarchy, i.e., to the
point where the torrent of downward-flowing predictions meets the incoming tide of
sensory information.

It is widely assumed that the overall result of this hierarchical organization is a
multi-layer generative model that embodies the causal structure of the environment.
In particular, it is assumed that by virtue of the attempt to recapitulate the activity
of lower levels, and thus accommodate the incoming sensory signal, the brain is
attempting to model the interacting set of worldly causes that give rise to particular
kinds of sensory stimulation. In a sense, successful prediction is like a form of
‘understanding’, where the understanding in question concerns the causal forces and
factors that shape whatever bodies of sensory information exist within the organism’s
local environment (see Clark, 2013a). It is at this point that the commitment to multi-
layer, hierarchically-organized neural architectures takes on a special significance,
for it seems that such an organization is ideally suited to the kind of world in which
we humans live—a world built around a structured nexus of interacting, and often
deeply nested, causal forces. The goal of perception, according to PP, is to invert
this casual structure by using a generative model to infer the causes of sensory input
(see Figure 2). “The hierarchical structure of the real world,” Friston (2002) suggests,
“literally comes to be reflected by the hierarchical architectures trying to minimize
prediction error, not just at the level of sensory input but at all levels of the hierarchy”
(pp. 237–238).

As noted by Clark (2016), generative models may lie at heart of a number of cogni-
tive phenomena, including our capacity for hallucination, dreaming, fantasy, and the
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Fig. 2 A generative model describes how variables or causes in the environment conspire to produce
sensory input. Perception then corresponds to the inverse mapping from sensations to their causes.

potential for self-generated forms of mental imagery. In acquiring a generative model,
the brain develops a capacity to drive patterns of neural activity from the top-down,
and in doing so it is able to recreate the patterns of activity that would be instantiated
if the organism were to be confronted with a particular pattern of sensory input.
“Probabilistic generative model based systems that can learn to visually perceive a
cat,” suggests Clark (2013b), “. . . are, ipso facto, systems that can deploy a top-down
cascade to bring about many of the activity patterns that would ensue in the visual
presence of an actual cat” (p. 198). This seems to be of profound importance relative
to our understanding of many aspects of our mental lives. Generative capacities thus
seem relevant to our ability to dream the non-existent, imagine the counterfactual,
anticipate the future, and (via memory) reconstruct the past.

In addition to causing us to rethink the relationship between seemingly distinct
cognitive phenomena, the PP account also informs our view of what is perhaps the
most elusive part of our cognitive economy: conscious experience. In particular,
the appeal to generative models is sometimes seen to reinforce an approach to
consciousness that portrays it as a form of virtual reality (see Revonsuo, 1995) or
controlled hallucination. Metzinger (2003), for example, suggests that a fruitful way
of looking at the brain is to view it:

. . . as a system which, even in ordinary waking states, constantly hallucinates at the world, as
a system that constantly lets its internal autonomous simulational dynamics collide with the
ongoing flow of sensory input, vigorously dreaming at the world and thereby generating the
content of phenomenal experience. (Metzinger, 2003, p. 52)

As a means of establishing a better grip on this idea of phenomenal experience as
a form of controlled hallucination or actively constructed virtual reality, it may help
to consider a hypothetical situation in which the predictability of the environment
(or the predictive power of the brain’s generative model) is such that the activity
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at each layer in the neural processing hierarchy is perfectly predicted by the layer
above. In such a situation, the incoming flow of sensory information is met by a
cascade of downward-flowing predictions, which perfectly captures the activity at
each and every layer of the processing hierarchy. Such a state-of-affairs is interesting,
for the predictive successes of each layer eliminate any forward (or upward) flow of
information (i.e., from lower to higher layers in the hierarchy). According to the PP
account, recall, the forward flow of information corresponds to prediction error—the
mismatch between actual and predicted activity at each level in the hierarchy. But in
this particular case—let us call it the no-prediction-error-case—there is no prediction
error, and thus there is no forward/upward flow of information. What we are left
with, therefore, is a purely backward or downward flow of information, from higher
cortical regions all the way out to the point of sensory input.

Of course, actual instances of the no-prediction-error-case are unlikely to be found
in the real world. Real-world environments are seldom perfectly predictable, and the
activity of neural circuits is often characterized by the presence of neuronal noise
(e.g., Faisal et al, 2008). Thus even if organisms were to seek out a dark, unchanging
chamber as per the worries raised by the “Dark-Room Problem” (Friston et al, 2012),
it is unlikely that such organisms would be completely free of prediction error. As a
simple thought experiment, however, the no-prediction-error-case is useful in helping
us get to grips with the idea of perceptual experience (and perhaps phenomenal
experience, more generally) as something that is generated from the ‘inside out’.
Assuming that perceptual experience occurs as a consequence of the formation of
stable neural states (i.e., those that successfully predict the activity of other neural
regions and are thus unperturbed by any form of prediction error), then the no-
prediction-error-case is one in which the experience of (e.g.) seeing a scene occurs
in the absence of any forward flow of information through the brain. The result is a
view of conscious experience as something that is actively generated by the brain as
part of its attempt to model the causal structure of the sensorium and thus predict its
own (sensorially-shaped) neural activity.

The upshot of all this is a vision of the brain as a form of virtual reality generator—
the biological equivalent of technologies that render virtual objects and virtual worlds.
According to this vision, aspects of our daily conscious experience are tied to the
brain’s attempt to acquire and deploy generative models that track the causal structure
of the external environment. In particular, it seems that conscious experience might
be linked to the activation of representations corresponding to an interacting set of
external causes that are acquired as the result of the attempt to predict the structure
of incoming sensory information.

This is a compelling, although still somewhat puzzling, vision. It is a vision that
depicts our phenomenal experience as something akin to a simulation of reality, and it
is a vision that blurs the distinction between ostensibly distinct cognitive phenomena,
such as perception, imagination, dreaming, and fantasy. Relative to such a vision, it
is perhaps easy to think of life as nothing more than a dream. To echo the views of
Metzinger, what we call waking life may be nothing more than a form of “online
dreaming” (Metzinger, 2003, p. 140).
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3 Dream Machines

The PP account bears some interesting similarities to recent work in machine learn-
ing, particularly that which focuses on so-called deep learning systems (Bengio,
2009; LeCun et al, 2015). As with the PP model of brain function, deep learning
emphasizes the importance of multi-layer architectures, with ‘higher’ layers yielding
more abstract representations of the response patterns exhibited by ‘lower’ layers
(at least in some systems). The notion of generative models also marks a point of
commonality between PP and at least some strands of deep learning research. Here,
the attention of the machine learning community has shifted away from a traditional
focus on the discriminative capacities of neural networks (e.g., their ability to dis-
criminate between objects of different types) towards a better understanding of their
generative capabilities (i.e., their ability to re-create bodies of training data).

This shift in focus—from discriminative to generative capacities—is important, for
it highlights the potential relevance of deep learning systems to debates about digital
immortality. Inasmuch as deep learning systems are able to emulate the functionality
of the brain with respect to the acquisition and deployment of generative models
(and inasmuch as generative models are revealed to be a cornerstone of the human
cognitive economy), then we might wonder whether a deep learning system could be
used to re-create the generative models embodied by a biological brain. Perhaps if
we could capture the streams of sensory data against which brain-based generative
models take shape, we could then use this data to train a deep learning system and
thereby reinstate (some of) the cognitive properties of a given human individual.
This is the essence of an approach to digital immortality that highlights the potential
relevance of two key 21st century technologies—deep learning systems and big
data technologies—to issues of digital immortality.3 We will explore some of the
implications (and problems) associated with this approach in subsequent sections. For
now, however, let us direct our attention to the nature of the (putative) link between
deep learning systems and the PP account of brain function.

When it comes to deep learning systems with generative capacities, a number
of systems have been the focus of recent research attention. These include Deep
Belief Networks (DBNs) (Hinton, 2007a,b), variational autoencoders, and Generative
Adversarial Networks (GANs) (Goodfellow et al, 2014). DBNs are a particular kind
of deep learning system. They are composed of multiple layers of what are called
Restricted Boltzmann Machines (RBMs). These RBMs are a type of neural network
consisting of two layers: a visible layer and a hidden layer. The nodes within each
layer are connected to nodes in adjacent layers; however, there are no intra-layer
connections (i.e., nodes within a particular layer are not connected to nodes in the

3 It is doubtful whether the current state-of-the-art in deep learning is sufficient to achieve the sort of
digital immortality vision being proposed here. Nevertheless, it is worth bearing in mind that deep
learning research is likely to be a prominent focus of global research attention over the next 10–20
years. Given the amount of time, effort, and money that is likely to be devoted to deep learning
systems in the coming years, it is likely that we will see significant changes in their capabilities
during the course of the 21st century.
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same layer).4 The nodes in the visible layer represent the data that is presented to
the RBM, and the goal of the hidden layer is to capture higher-order correlations
between the data that is represented at the visible layer. Typically, all the nodes
in the RBM are binary, with two states represented by the digits ‘0’ and ‘1’. This
means that in cases where the RBM is presented with a black and white image, the
nodes at the visible layer will represent the image using a binary data vector whose
elements represent the individual pixel intensities of the image (e.g., ‘1’ for white
and ‘0’ for black). Relative to this case, the nodes in the hidden layer now function
as binary feature detectors that seek to model the higher-order correlations between
pixel values at the visible layer. In particular, the aim during learning is to configure
the weights associated with the top-down connections (from hidden layer to visible
layer) such that the hidden layer is able to recreate the training data represented by
the nodes of the visible layer. It is in this sense that the RBM’s model of the training
data is said to reside in its top-down connections.

Clearly, a single layer of binary feature detectors is unlikely to capture all the latent
structure that exists within a complex set of images, especially when we reflect on the
complexity of the interacting causal processes that conspire to generate individual
pixel intensities (see Horn, 1977). For this reason, additional layers are added to a
base RBM to expand its representational capabilities. It is at this point that a single,
two-layer RBM begins to morph into a multi-layer DBN (see Figure 3a). As each
layer is added, the new layer is treated as the hidden layer of a new RBM, while
the erstwhile hidden layer of the original RBM now functions as the visible layer.
In effect, the representations of the original hidden layer now become the training
data (or ‘sensory’ input) for the new layer, and the goal of the new layer is to learn a
suite of more abstract representations that capture the dynamics of the layer below.
Perhaps unsurprisingly, the addition of each new layer enhances the system’s ability
to model abstract structural regularities, thereby improving its capacity to generate
the training data at the lowest layer in the hierarchy (i.e., the visible layer of the
original RBM).

The upshot of this kind of (incrementally-oriented) learning regime is a multi-
layer neural network that is, in effect, a composite of multiple RBMs (see Figure 3b).
This system is what is typically dubbed a DBN. At this point, the system possesses a
good generative model of the target domain, as represented by the training data, but
it isn’t necessarily well-suited to other kinds of tasks, such as the classification of
images into particular classes. Nevertheless, in being forced to recreate the training
data, the network has learned a great deal about the hidden causes or latent variables
that structure the training data. What the network has learned, in effect, is a way of
‘explaining’ each input vector (each sample of sensory data) in terms of a nexus of
interacting and deeply nested (hidden) causes, where the notion of a good explanation
corresponds to “a binary state vector for each layer that is both likely to cause the
binary state vector in the layer below and likely to be caused by the binary state
vector in the layer above” (Hinton, 2010, p. 179). It turns out that this ‘explanatory’

4 This highlights one of the differences between DBNs and PP accounts of cognition. In PP, it is
typically assumed that elements within the same layer of the processing hierarchy engage in some
form of lateral processing.
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Fig. 3 Restricted Boltzmann Machines and Deep Belief Networks. (a) Two separate RBMs. The
stochastic binary variables in the hidden layer of each RBM are symmetrically connected to the
stochastic binary variables in the visible layer. There are no connections within a layer. The higher-
level RBM is trained using the hidden activities of the lower RBM as data. (b) A DBN formed from
the merger of two RBMs.

.

capability serves as the basis for enhanced performance in a variety of task contexts.
In the case of Hinton’s early work with DBNs, for example, a DBN was trained with
images of handwritten digits taken from the MNIST data set. The DBN’s subsequent
discriminative performance was tested by extending the network with a set of ‘label’
nodes corresponding to the kind of conceptual distinctions that we humans make
when dealing with the realm of handwritten digits (i.e., our ability to recognize a
particular image as representing a particular number). A variety of studies have shown
that this kind of approach—essentially treating digit classification as something of a
post-processing step relative to the primary goal of acquiring a generative model—is
able to deliver superior performance compared to networks that are trained with
conventional back propagation techniques and random initial weights (Hinton and
Salakhutdinov, 2006).

In addition to highlighting the performance benefits of DBNs when it comes to
the recognition of handwritten digits, Hinton’s work also provides a compelling
demonstration of the generative capacity of such architectures (see Hinton, 2007b).
With the addition of a set of label nodes representing digit types, Hinton was able
to selectively activate particular label nodes and then observe the data vector (the
sensory output) produced by the network at the visible layer. Figure 4a illustrates
some of the images generated using this method.

A further demonstration of the generative capacity of deep learning systems
comes from a study by Ravanbakhsh et al. (2017). The purpose of Ravanbakhsh et
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(a) Digit generation.

Real
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Fig. 4 Examples of sensory data generated by deep learning systems. (a) The output from a
generative model trained with handwritten digits. Each row shows 10 samples from the generative
model with a particular digit label clamped on. The top-level associative memory is run for 1000
iterations of alternating Gibbs sampling between samples (source: http://www.cs.toronto.
edu/˜hinton/digits.html). (b) Actual (‘Real’) versus generated (‘Gen.’) galaxy images.
Actual images are taken from the Galaxy Zoo data set; generated images were created using a
conditional generative adversarial network (source: Ravanbakhsh et al, 2017).

al.’s (2017) study was to generate images of galaxies for the purpose of calibrating
astronomical equipment. As part of the study, Ravanbakhsh et al. exposed two kinds
of deep learning system—namely, variational autoencoders and GANs—to images
of real galaxies taken from the Galaxy Zoo data set.5 As a result of training with
respect to these images, the deep learning systems acquired a generative model of the
target domain, enabling them to produce galaxy images similar to those contained
in the real-world data set (see Figure 4b). In a sense, of course, these images are
‘fakes’, since the galaxies they represent do not exist. At the same time, however,
there is surely something compelling about the generative abilities exhibited by these
systems. Their abilities remind us of our own human ability for creativity—our ability
to use our daily waking experience as the point of departure for excursions into a
realm of purely imagined objects, ideas, and other fantastical constructions. As was
mentioned above, it is here that recent work into generative models provides us with
a potential insight into what is perhaps the most elusive aspect of the human cognitive
economy—namely, our capacity to imagine, to fantasize, and to dream. We may, of

5 The Galaxy Zoo data set consists of ≈ 900,000 galaxy images, which were collected as part of
the Sloan Digital Sky Survey. The data set was originally used as part of a citizen science project
investigating the distribution of galaxies with particular morphologies (see Lintott et al, 2008). It has
since been used as the basis for a number of studies exploring the capacities of both conventional
and deep neural networks (Dieleman et al, 2015; Banerji et al, 2014).

http://www.cs.toronto.edu/~hinton/digits.html
http://www.cs.toronto.edu/~hinton/digits.html
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course, never know whether deep neural networks should count as bona fide ‘dream
factories’—systems that are genuine dreamers and imaginers—but we do know that
they (like us) are creative engines—systems capable of using high-level abstract
representations for the purpose of creating digital artefacts (e.g., images). This should
perhaps give us pause when we wonder (and sometimes worry) about the capacity of
AI to encroach on the oft cherished realm of human creativity. For perhaps the early
successes of generative deep learning systems intimate at something more profound:
an ability to emulate (and perhaps even surpass) our best intellectual triumphs and
artistic accomplishments. If a deep neural network can generate an image of a galaxy
(which is, after all, just a sequence of binary digits), then why should it not be able to
create other kinds of digital artefact, such as a 3D object, a movie, or the design for a
deep neural network capable of delivering state-of-the-art advances in machine-based
generative capabilities?

4 Generating Me

It should by now be clear that the representational and computational profile of at
least some forms of deep learning system echo those that lie at the heart of the PP
approach to cognition. There are, of course, important differences. Deep learning sys-
tems seldom feature any form of intra-layer processing and important elements of the
PP model (e.g., real-time prediction error estimation and the precision-weighted mod-
ulation of information flows) are absent (or at least under-represented) in current deep
learning systems. Nevertheless, the basic commitment to hierarchically-organized
processing schemes and the emphasis on generative capabilities has paid substantial
dividends, yielding important advances in problem areas that have long stymied the
efforts of the AI community (LeCun et al, 2015; Najafabadi et al, 2015). In addition
to notable successes in the areas of language processing and computer vision, deep
learning research has yielded interesting results in a number of more ‘niche’ areas,
helping us understand the generative mechanisms responsible for the structure of
neural circuits (Betzel et al, 2016) and providing us with predictive models of drug
molecule activity (Ma et al, 2015). The question, of course, is whether these early
successes help to reveal the beginnings of a path that makes inroads into the problem
of digital immortality.

It is at this point that I will opt to bite the bullet, so to speak, and suggest that
some form of deep learning system—specifically, a system whose computational
profile is closely aligned with the PP model—is, indeed, a technology that ought to be
considered by the proponents of digital immortality. The basic idea is that a particular
form of deep learning system—let us call it a Synthetic Predictive Processing (SPP)
system to emphasize the overlap with the PP model—is tasked with the objective
of acquiring generative models that resemble those acquired by an individual’s
biological brain. The idea, in essence, is for a SPP system to exist as a form of
constant digital companion that accompanies the individual across the course of their
life and participates in a form of lifelong learning. The ultimate goal of such a system
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is to deal with the same sort of predictive challenges that confront the biological
brain. The hope is that in dealing with these challenges, the SPP system will come
to acquire a set of probabilistic generative models whose generative capacities are
functionally similar to those acquired by its biological counterpart. Inasmuch as our
‘online dreams’ are produced by generative models in the biological case, is there
any reason to think that the general shape of those dreams could not be manufactured
by a synthetic predictive processing machine with more-or-less the same generative
capabilities?

There are multiple possible variations on this sort of idea. The proposal just
outlined is what I will dub the first-person proposal. It seeks to situate a SPP system
within the same sensory environment as that in which the biological brain is itself
embedded. An alternative proposal comes in the form of what I will call the third-
person proposal. In this case, the human agent is the primary target of prediction-
oriented learning. The goal is thus to monitor the responses of the human individual
and predict those responses relative to features of the individual’s local environment.
The upshot, perhaps, is a generative model that embodies something about the
character of an individual—their propensity to act in particular ways in certain
situations, their tendency to spend their hard-earned money on certain commodities,
and their likely linguistic responses to certain kinds of conversational context.

These two proposals differ with respect to the kind of ‘sensory’ data over which
generative models are formed. In both cases, however, we see a commitment to
uncovering the deep structuring causes or latent variables that best explain the shape
of the evolving sensory signal. Of the two proposals, the first-person proposal is
likely to be the one that best serves the interests of the digital immortality agenda.
But this does not mean that the third-person proposal is entirely without merit. It
is, indeed, the third-person proposal that probably best reflects the current interests
of the technological community in preserving some trace of an individual (e.g.,
by maintaining repositories of an individual’s social media posts). Crucially, in
thinking about the kind of data that can be used to shape the dynamical profile
of PP systems, we are provided with some insight into the shape of what might
be called the ‘morphospace of the mind’ (i.e., the universe of all possible minds)
(see Mitteroecker and Huttegger, 2009),6 as well as (perhaps) additional means of
achieving digital immortality. Consider, for example, the way in which current deep
learning systems are being used to create generative models of the human connectome
(Betzel et al, 2016), or the way in which so-called ‘brain reading’ devices are yielding
new opportunities to model the real-time response profile of the biological brain
using prediction-oriented learning and generative modelling techniques (see van
Gerven et al, 2010).

6 The general idea, here, is that different kinds of data environment provide the basis for different
kinds of mind, with phenomenological differences linked to the causal mechanisms that operate in
each environment. A generative model of the human social environment, for example, may yield a
mind of society that tracks the hidden causal structure of social mechanisms. Inasmuch as subjective
experiences are tied to the properties of generative models, then such a mind may yield a subjective
reality that is profoundly different from the sort of ‘reality’ we know (or could, perhaps, imagine).
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5 Memories For Life (And Beyond)

The form of digital immortality envisioned in the previous section relies on the avail-
ability of substantial bodies of data about the individual. From this perspective, the
process of ‘generating me’ emerges as a particular form of big data challenge—one
that dovetails with the interests and concerns of a number of research communities.
In yielding the data for prediction-oriented learning processes, it should thus be clear
that the vision of digital immortality scouted above establishes a natural point of
contact with the emerging discipline of data science (Committee on the Analysis
of Massive Data, 2013), especially when it comes to the acquisition, analysis, and
storage of big data. Of particular interest is work that seeks to use big data for the
purpose of enhanced prediction, typically by drawing on a capacity for predictive
modelling (Dhar, 2013). Another prominent point of interest concerns the application
of deep learning methods to big data assets. As noted by Najafabadi et al. (2015), the
ability to detect statistical regularities in data using unsupervised learning techniques
makes deep learning particularly well-suited to dealing with some of the analytic
challenges associated with big data science.

It has to be said, of course, that the data sets targeted by contemporary data science
are unlike those that form the basis of the aforementioned first-person proposal. For
the most part, the term “big data” is often applied to bodies of data pertaining to
scientific observations (e.g., astronomical data) or data that tracks the properties
of multiple human individuals (e.g., epidemiological data). There is, however, a
growing interest in the analysis of data that is gleaned from individual human agents.
Indeed, the analysis of individual (or personal) data forms the basis of research
into so-called personal informatics, which is being driven, at least in part, by the
availability of new digital recording devices, such as wearable cameras, smartphones,
and activity monitors. The use of technology to record or track information about
individual human subjects is also a central element of work that goes under the
heading of the quantified-self (Lupton, 2013; Swan, 2013),7 which has highlighted
the way in which self-tracking technologies can be used to record data relating to
(e.g.) body weight, energy levels, time usage, heart rate, body temperature, exercise
patterns, sleep quality, sexual activity, diet, dreams, and blood chemistry. It is at
this point, perhaps, that some of the data-oriented challenges associated with the
aforementioned vision of digital immortality—specifically those pertaining to the
acquisition of training data—look to be a little less formidable. There is no doubt a
sense in which our current modes of self-related data acquisition remain deficient
relative to the requirements of the digital immortality vision. But there is, I suggest,
no reason to doubt the overall feasibility of the data tracking effort: our current
technologies are already yielding ample data about a range of physiological and
behavioural variables, and such data is already recognized as a valuable source of
information, with the use of machine learning and other forms of big data analysis

7 A variety of other terms are sometimes used to refer to the same phenomenon. These include
“lifelogging,” “measured me,” “self-tracking,” and “self-surveillance.”
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poised to reveal hidden structure in our self-generated digital trails (Fawcett, 2015;
Phan et al, 2017; Hoogendoorn and Funk, 2018).

Future tracking technologies are likely to expand both the volume and variety of
data that can be acquired from individuals during the course of their lives, altering
the opportunities for prediction-oriented learning and the acquisition of generative
models. When it comes to our ability to monitor individual movements, for example,
research into so-called artificial skin (or e-skin) devices (Yokota et al, 2016; Someya
et al, 2004) and smart fabrics (Foroughi et al, 2016; Wang et al, 2014) is likely
to be particularly significant. In supporting the acquisition of data about physical
movement, such technologies may provide a means to track information of a proprio-
ceptive nature. This looks to be important inasmuch as we see the route to digital
immortality as predicated on the attempt to recapitulate the sorts of predictive pro-
cessing undertaken by the biological brain. From this perspective, digital recording
technologies function as a substitute for biological sensors, recreating the kind of in-
formation streams that characterize the sensorium of the biological individual. In this
respect, there seems to be ample cause for optimism. In addition to the monitoring of
information of a (broadly) proprioceptive nature, technological advances are likely to
improve our ability to record information from both the corporeal and extra-corporeal
environment (i.e., information of a broadly interoceptive and exteroceptive nature).
The advantage of this particular approach to data acquisition is that it depicts a SPP
system as in more or less the same position as the biological brain. Both the brain
and its synthetic counterpart are thus attempting to establish a predictive grip on
common bodies of sensory information, and they are thus under more-or-less the
same pressure to acquire and deploy similar generative models. It is this particular
approach—the approach mandated by the first-person proposal in Section 4—that
is perhaps best placed to deliver the most potent forms of digital immortality. For
the goal of digital immortality is not merely to learn about a specific individual as
an object of study (as per the third-person proposal); it is rather to duplicate the
generative structures that make a particular individual the person they are. Inasmuch
as we see the elements of the self—our memories, our personalities, our hopes, our
fears, and our dreams—as inhering in the structure of a complex multi-layer network
that is progressively shaped by our contact with the sensorium, then the quest for
digital immortality is perhaps best served by presenting SPP systems with the same
bodies of sensory data that confront their neurobiological counterparts.

Is any of this remotely feasible? There are, to be sure, plenty of challenges
that confront the attempt to record personal data and use it for the purpose of
recreating the functional profile of a brain-based generative model. To my mind, the
challenge of emulating the biological brain’s predictive and generative capabilities is
one of the more daunting challenges, and certainly one that is more daunting than
the challenge of acquiring large-scale bodies of personal data. Although research
into predictive processing and deep learning exhibits a degree of convergence on
hierarchical organizations, generative models, and (to a lesser extent) prediction-
oriented learning, there remains a somewhat worrying gap in our understanding of
how to emulate the representational and computational wherewithal of the biological
brain. Inasmuch as progress in this area lags behind our capacity to capture and store
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the data that will ultimately be used to train future forms of deep learning system,
perhaps there is room within the emerging discipline of data science for a program of
research devoted to data cryogenics—a field of scientific and engineering research
that seeks to preserve bodies of digital data until such times as deep learning systems
are deemed able to raise the dead. To me at least, this idea seems no less plausible,
and no more outlandish, than the forms of resurrection that are envisioned by those
advocating conventional forms of cryogenic preservation.

There is no doubt a further worry raised by all this talk of digital tracking and
data monitoring—one that is already felt by those who are ever-more intimately
connected to a surrounding penumbra of digital devices. The concern is that the PP
route to digital immortality is one that feeds directly into existing fears about digital
surveillance and privacy violation. There is clearly a sense in which such fears, at
least as they relate to the present analysis, are justified. Personally, I do not doubt that
the sort of vision outlined here will require some degree of privacy violation, and I
doubt whether technological advances will do much to assuage such fears, especially
if such data is to be ‘handed’ over to third parties for safekeeping. Perhaps this is
something that individuals will need to decide for themselves. Ultimately, it may be
the case that privacy is just the price we pay for the possibility of everlasting life.

6 The Afterlife

Your biological life has come to an end. You have done your best to weave a digital
fabric that tracks the defining moments of your existence. You have, you hope, created
some nice memories for your SPP system to capture and model, and you hope that in
the process of recreating those moments, some part of you will be preserved. There
have, of course, been ups and downs, disasters as well as triumphs, brief moments of
happiness punctuated with perhaps longer periods of despair. It does not matter now.
Your life is over. Time to die.

But is that necessarily the end of the story? Does the departure of your biological
body mean that you yourself are gone, irrevocably lost to those you loved and to
those who loved you in return? If anything I have said thus far is anywhere near the
mark, then it should be clear that the tale is not quite over. There is, it seems, space
for a few pages more.

What, then, is the final part of this vision of digital immortality? What happens
once the biological body has fulfilled its purpose and been laid to rest? Arguably,
no form of digital immortality is complete without a corresponding form of digital
resurrection. But what is the nature of this resurrection relative to the present vision
of a SPP system that seeks to emulate the generative capabilities of the biological
brain? There are, I suspect, many options available here, but I will choose to limit my
attention to the role of virtual reality technologies in supporting a digital afterlife.

Consider first the idea that advances in holographic computing could be used to
render an individual in holographic form. This idea is perhaps best exemplified by
the character, Joi, in the movie Blade Runner 2049. Joi is a virtual companion for the
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movie’s main protagonist, K, who is a replicant blade runner. Unlike K, Joi has no
substantive physical presence in the world. She is instead a being made of light; a
cinematic entity projected into an onscreen (physical, albeit fictional) world. There
are, of course, no real-world counterparts to Joi at the time of writing—for the time
being at least, she exists solely in the realms of fiction and fantasy. There are, however,
reasons to think that something akin to a Joi-like entity might be possible once we
reach the midpoint of the 21st century—once our own timeline coincides with the
timeline of the Blade Runner 2049 universe. In this respect, it is worth noting the
recent progress that has been made in the development of mixed reality devices. One
example is the Microsoft HoloLens, which renders virtual objects (called holograms)
within the local physical environment of a human user. Other research establishes an
even closer alignment with the Blade Runner 2049 vision. Consider, for example,
research into so-called volumetric displays, which render virtual objects as three-
dimensional light displays that can be viewed by multiple users (from multiple
angles) without the use of headsets or other user-worn technology (e.g., Smalley et al,
2018). Indeed, in some respects, the capabilities of today’s holographic technologies
have already surpassed that depicted in Blade Runner 2049. In the movie, Joi is a
character who can be seen but not touched; her status as a hologrammatic entity
precludes the possibility of physical contact and this complicates the nature of her
relationship with her physical companion, K. Relative to the thematic structure of the
movie, of course, Joi’s ethereality is important, for it encourages us to reflect (inter
alia) on the ‘reality’ of relationships that transcend the physical/virtual divide. In
the real world, however, our interactions with holograms may be far less intangible
affairs. Recent research has thus already demonstrated the possibility of so-called
touchable or haptic holograms—holograms that can not just be seen, but touched,
felt, and even moved (see Kugler, 2015).

Here, then, is one of the possibilities for a digital afterlife: individuals will be res-
urrected as hologrammatic entities—entities that ‘live’ among us as virtual ‘ghosts’.
These will be beings whose perceptuo-motor exchanges with the real world are driven
by whatever generative models were acquired as part of a biological life within that
very same world. Such beings will sense the world (via technological sensors) and
implement actions within that world (via changes in photonic rendering technology).
Whether they will be able to interact with us, in the sense of being able to touch
us, remains to be seen. We may, however, still be ‘moved’ by the presence of these
virtual souls, even if the more tactile elements of a human relationship should fail to
survive the transition to holographic ‘heaven’.

Of course, one way of dealing with the problems thrown up physical reality is to
retreat from it altogether. Perhaps, then, a second possibility for the digital afterlife
is to situate an individual’s SPP system within a purely virtual environment, similar
to those built around the use of contemporary game engines. This scenario will
probably require little in the way of an introduction, for the idea of a life within a
virtual (sometimes self-created) world is one that has been explored by a number
of cultural products. Movies such as The Matrix and The Thirteenth Floor deal
with the more general notion of life within a purely virtual environment, while the
post-mortem possibilities of virtual environments are explored by the movie Vanilla
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Sky and (my personal favourite) the San Junipero episode of the Black Mirror sci-fi
series.

Both these scenarios rely on the use of virtual reality technologies to address the
challenges posed by the demise of an individual’s biological body.8 The technological
challenges associated with these scenarios are no doubt immense, but the appeal
to virtual reality is also apt to raise a host of philosophical concerns and worries.
Perhaps one of the more pressing concerns comes from a consideration of what
is lost during the process of biological death. The loss of the biological body is
particularly worrisome, since there are reasons to think that the body is a crucial
component of the human cognitive system, yielding a range of opportunities for
intelligent action (Clark, 2008) and mediating our emotional responses to both actual
and counterfactual states-of-affairs (Damasio, 1996). Such insights are not lost on
those who work from within the PP camp. Seth (2013), for example, suggests that
the processing of interoceptive information deriving from the non-neural bodily
environment is relevant to some aspects of conscious experience, with a variety
of “subjective feeling states (emotions). . . arising from actively-inferred generative
(predictive) models of the causes of interoceptive afferents” (p. 565). Similarly,
Hohwy and Michael (2017) present an intricate and intriguing account of the role of
the biological body in giving rise to a sense of self.

Relative to these claims, it is far from clear that the attempt to replicate the
generative capacities of the biological brain will be enough for the digital afterlife,
especially if what we want to achieve is a state-of-affairs in which a given individual
is resurrected as a sentient being, capable of enjoying (and enduring) the rich panoply
of emotional states and conscious experiences that characterized their biological life.
It is in this sense, perhaps, that the present account of digital immortality may be seen
to be inadequate, focusing, as it does, on the biological brain at the expense of a larger,
material fabric that includes the individual’s biological body and certain aspects of
their local extra-organismic environment (see Clark, 2008). The critic will no doubt
want to highlight the indispensable role of the biological body in realizing certain
aspects of the human cognitive economy, with a disembodied form of intelligence
perhaps counting as no form of intelligence at all. They will also perhaps be inclined
to view the afterlife options listed above as failing to address this problem. Talk of
insubstantial hologrammatic ghosts and virtual world simulations are unlikely to do
justice, they will say, to the role the biological body plays in shaping (and perhaps
even realizing) the complex array of experientially-potent states that to a large extent
make our lives worth preserving in the first place. From this perspective, perhaps
the very best we could hope for would be some form of experientially-diminished
afterlife—one in which our continued existence (if we care to call it that) comes
at the expense of an ability to experience emotional states or to even have a sense
of oneself as an entity that continues to exist. Perhaps a hologrammatic ghost, for

8 These scenarios do not, of course, exhaust the possibilities for digital resurrection. In addition to
virtual reality technologies, the 21st century is likely to see significant advances in the development
of biomimetic materials, 3D printing technology, and robotic systems. These may open the door
to a more concrete form of digital afterlife, one in which the biological body is substituted with a
synthetic, but no less substantial, corporeal presence.
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example, is a prime candidate for a virtual version of what is dubbed the Cotard
delusion—a psychiatric disorder in which the affected individual holds the delusional
belief that they are dead or do not exist (Young and Leafhead, 1996). This seems
particularly likely in the wake of recent analyses of the Cotard delusion, which link
the delusion to anomalies in bodily experience (Gerrans, 2015) or aberrations in
the processing of interoceptive information (Seth, 2013). Of course, a delusion is
only a delusion if the convictions of the relevant individual do not align themselves
with reality. In this sense, it is doubtful that are any genuine cases of the Cotard
delusion in the afterlife. Believing you are dead in the afterlife is not delusional; what
is delusional is to believe that you are alive when you are, in fact, dead. (No one said
that the discipline of thanato-psychiatry would be straightforward!)

There is no doubt much here that is contentious, and I will not have the space to
cover (let alone resolve) all the issues that are likely to animate future discussions
in this area. It is worth noting, however, that nothing in the PP approach to digital
immortality seeks to deny the importance of the body in mediating our cognitive
engagements with the world, shaping our emotional responses, or, indeed, realizing
aspects of conscious experience. In this sense, the biological body remains an im-
portant aspect of the human cognitive economy and a relevant target of generative
models—hence the emphasis on tracking body-related information in Section 5.
What is perhaps more problematic is the extent to which the various forms of af-
terlife I have described—holograms, virtual characters, and so forth—are properly
characterized as lacking a body. It is here, I suggest, that it pays to make a distinction
between what Wheeler (2013) dubs implementational materiality (which involves
a commitment to the idea that the body is no more than a material realizer of func-
tionally specified cognitive roles) and vital materiality (according to which the body
makes a non-substitutable contribution to cognitive states and processes). It should
be clear that given the choice between these two options, it is only the commitment to
vital materiality that poses any real threat to the prospect of virtual forms of embodi-
ment. From a functional standpoint, therefore, I suggest that there is no real reason to
regard a holographic entity or the inhabitant of a purely virtual world as congenitally
condemned to a disembodied existence. Providing the functional contributions of the
biological body can be replicated in virtual form, a hologram, I submit, counts as just
as much an embodied entity as does an agent that has a more substantive physical
presence.

7 Conclusion

The present chapter outlines an approach to digital immortality that is rooted in
recent advances in theoretical neuroscience and machine learning. In line with other
approaches to digital immortality, the present proposal highlights the importance of
collecting and storing data about an individual, with a view to using that data for
the purpose of digital resurrection. The difference between the present proposal and
other accounts relates to the kind of data that is acquired, the way in which the data
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is analysed, and the kind of computational substructure that is deemed relevant to
the digital immortality agenda. The claim is that some hierarchically-organized PP
system—some variant of today’s deep learning systems—could engage in a form
of lifelong learning, attempting to build generative models that tackle the same sort
of predictive challenges as those confronting the biological brain. Such models, it
is suggested, will—by dint of the attempt to minimize prediction error—resemble
those acquired by the biological brain as it attempts to secure a predictive grip on the
sensorium. Inasmuch as we see these synthetic generative models as capturing the
essential elements of who and what we are—models whose generative capabilities
reflect our own biological capacity to render our realities, recall our pasts, and create
our futures—then they may provide the means by which some aspect of ourselves
is able to persist long after the biological body has withered away. The claim, in
short, is that a hierarchically-organized predictive processing machine may serve as
a vehicle that sustains our dreams as we inexorably succumb to the “sleep of death.”

And what of poor Hamlet and his post-existential woes? Hamlet wonders whether
it is better for him to die than to face up to his earthly troubles. But he worries that
his death will be occasioned by dreams that merely serve to prolong his suffering.
It is at this point, of course, that issues of technical feasibility come face-to-face
with a host of more normative concerns. Just because digital immortality is possible
(if, indeed, it is possible), does this mean that we should seek to make it actual? As
a species we have done our best to preserve human life, and we have, I suppose,
become somewhat good at it (even if many other biological species have had to pay
the price). But have we done enough to ensure that the world in which we live is one
that is worth living, as opposed to one that is worth leaving? Perhaps, then, the issue
that lies at the heart of debates about digital immortality is not so much the technical
obstacles that lie on the road ahead, as whether the route to digital immortality is one
that is itself worth pursuing. Should we rage, rage against the dying of the light and
resist the rule of the second law? Or should we accept that all dreams must end in a
darkened room? To dream? To die? To be, or not to be? Ay, there’s the rub.
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