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Abstract  

In any science, a classical Theorem, defined on a given space, is a statement that is 100% true (i.e. true for 
all elements of the space). To prove that a classical theorem is false, it is sufficient to get a single counter-example 
where the statement is false. 

Therefore, the classical sciences do not leave room for partial truth of a theorem (or a statement). But, in our 
world and in our everyday life, we have many more examples of statements that are only partially true, than statements 
that are totally true. 

The NeutroTheorem and AntiTheorem are generalizations and alternatives of the classical Theorem in any 
science. 

More general, by the process of NeutroSophication, we have extended any classical Structure, in no matter 
what field of knowledge, to some NeutroStructure, and by the process of AntiSophication to some AntiStructure. 
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1. The Neutrosophic Triplet (<A>, <neutA>, <antiA>) 

Let S be a given non-empty space (or set) from a universe of discourse U. 
In neutrosophy, the general neutrosophic triplet (<A>,<neutA>,<antiA>), sometimes using the notation 

<neutroA> for the middle term, can be written as: 
(〈�(1, 0, 0)〉, 〈�(�, �, �)〉, 〈�(0, 0, 1)〉), where (�, �, �) ∉ {(1,0,0), (0,0,1)}; 
i.e. �(1, 0, 0) means that <A> is 100% true (T = 1), 0% indeterminate (I = 0), and 0% false (F = 0); 
�(�, �, �) means that <A> is T% true, I% indeterminate, and F% false, where (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}; 
and	�(0, 0, 1) means that <A> is 0% true (T = 0), 0% indeterminate (I = 0), and 100% false (F = 1), 

respectively. 
 

2. Example of Neutrosophic Triplet when <A> = Operation 

In the case when <A> is an Operation (or Operator, Function, Law), on the given space S, then <A(T, I, F)> 
means: 

Operation <A> is T% well-defined (or inner-defined, inside of S), 
                              I% indeterminate-defined (undefined, unknown), 
                       and F% outer-defined (outside of S). 
 

3. Neutrosophic Triplet Concepts 

We have the following particular neutrosophic triplets of notions defined on �: 
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(<Theorem>, <NeutroTheorem>, <AntiTheorem>), 
(<Lemma>, <NeutroLemma>, <AntiLemma>), 
(<Consequence>, <NeutroConsequence>, <AntiConsequence>), 
(<Proposition>, <NeutroProposition>, <AntiProposition>), 
(<Definition>, <NeutroDefinition>, <AntiDefinition>), 
(<Property>, <NeutroProperty>, <AntiProperty>), 
(<Function>, <NeutroFunction>, <AntiFunction>), 
(<Operation>, <NeutroOperation>, <AntiOperation>), 
(<Axiom>, <NeutroAxiom>, <AntiAxiom>), etc. 
 
These neutrosophic triplets are referred to any field of knowledge, not only to mathematics. 
 

4. Theorem, NeutroTheorem, AntiTheorem 

Let’s take the first neutrosophic triplet: 
(<Theorem>, <NeutroTheorem>, <AntiTheorem>). 
For the other neutrosophic triplets, it will be similar. 
Let �, �, � ∈ [0, 1] be single-valued numbers representing respectively the degree of truth (T), degree of 

indeterminacy (I), and degree of falsehood (F). 
 
(i) A classical Theorem is a statement that is true (T) for all elements of the space S. Therefore, (T, I, 

F) = (1, 0, 0). 
(ii) A NeutroTheorem is a statement that is partially (T), partially indeterminate (I), and partially false 

(F), where (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}; 
(iii) An AntiTheorem is a statement that is false (F) for all elements of the space S. Therefore, (T, I, F) = 

(0, 0, 1). 
 
We can rewrite this neutrosophic triplet as: 
(〈�ℎ�����(1, 0, 0)〉, 〈�ℎ�����(�, �, �)〉, 〈�ℎ�����(0, 0, 1)〉), 
where (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}. 
 
Let T, I, F be intervals (and in general any subsets) from [0, 1]. 
If a Theorem is, let’s say, between 90%-100% true, i.e. Theorem([0.9, 1], 0, 0), it does not satisfy the classical 

Theorem(1, 0, 0), since there is some uncertainty (unclearness) with respect to its degree of truth [0.9, 1] ≠ 1. So, this 
case goes under NeutroTheorem. 

 
If the Theorem is, let’s say again, between 99%-100% false, i.e. Theorem(0, 0, [0.99, 1]), it does not satisfy 

the AntiTheorem, since similarly there is some uncertainty (unclearness) with respect to its degree of falsehood [0.99, 
1] ≠ 1. This case goes also under NeutroTheorem. 

 
In conclusion, no matter if T, I, F are single-valued numbers, intervals, and in general any subsets of [0, 1], 

the neutrosophic triplet of each concept is the same. 
 
Classical Theorem = <Theorem(1, 0, 0)> 
NeutroTheorem = <Theorem(T, I, F)>, with (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}; 
AntiTheorem = <Theorem(0, 0, 1)>. 
 

5. Remark 

Let �, �, � ∈ [0,1] and an axiom 〈�(�, �, �)〉, which means that the axiom has the neutrosophic degree of 
truth T, the neutrosophic degree of indeterminacy I, and the neutrosophic degree of falsehood F. 

If � > 0 or 0 < � < 1, the 〈�〉 is a NeutroAxiom. 
 
Proof: 
If � > 0, then (�, �, �) ∉ {(1, 0, 0), (0, 0, 1)}, because the last two neutrosophic triplets have both � = 0. 
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If 0 < � < 1, then again (�, �, �) ∉ {(1, 0, 0), (0, 0, 1)} because the last two neutrosophic triplets have � =
0 and respectively � = 1. 

6. Elementary Examples of NeutroConcepts and AntiConcepts 

6.1. NeutroOperation 

Let � be the set of integers, and � the set of rational numbers that is considered the universal set, with � ⊂ �. 
Let’s define the operation of division: 

÷ :	� × � ⟶ �. 
This is a NeutroDivision because: 
(i) There exist the integers 15, 5 ∈ ℤ such that 15 ÷ 5 = 3 ∈ �; this is degree of well-defined (inner-defined); 
(ii) There exist the integers 7, 0 ∈ ℤ such that 7 ÷ 0 = undefined; this is degree of indeterminacy; 
(iii) There exist the integers 11, 2 ∈ ℤ such that 11 ÷ 2 = 5.5 ∉ � or 5.5 ∈ � ∖ ℤ; this is degree of outer-

defined. 
 
6.2. AntiOperation 
Let �� = {−1,−2,−3,… ,−∞} the set of negative integers,  

ℂ = �� + ��; �, � ∈ ℝ, � = √−1� the set of complex numbers that acts as the universal set of ��. 
Let’s define the operation of square root (√): 
√: �� ⟶ ��. 
For any negative integer – �, where � > 0 is a positive integer,  

√−� = �√� ∉ ℤ�, or √−� 	∊ � − Z-. 
Therefore the operation √ is totally outer-defined. 
 
6.3. NeutroFunction 
On the set of integers ℤ and its universe of discourse �, which is the set of rational numbers, we define the 

function: 

�: ℤ ⟶ ℤ, �(�) =
��

�
. 

 
(i) There exists the integer, for example � = 6, such that: 

�(6) =
��

�
= 2 ∈ ℤ; 

this is degree of well-defined. 
 
(ii) There exists the integer 0 ∈ ℤ, such that: 

�(0) =
��

�
= ���������; 

this is degree of indeterminacy. 
 
(iii) There exists the integer, for example 5 ∈ ℤ, such that: 

�(5) =
��

�
= 2.4 ∉ ℤ; or 2.4 ∈ � ∖ ℤ; 

this is degree of outer-defined. 
 
6.4. NeutroTheorem 
Let �� = {1, 2, 3, … ,+∞} be the set of positive integers. 
We consider the following: 
Statement 
If � and � ∈ ℤ�, then �� is a perfect square.  
 
In classical algebraic structures this statement is considered false, because it is not 100% true, and to prove 

it, it is sufficient to get a single particular counter-example. For example, if � = 2 and � = 3, then 2� = 8 which is 
not a perfect square. 

The classical algebraic structures do not leave room for partial truth of a theorem. But, in our world and in 
our everyday life, we have many more examples of statements that are only partially true, than statements that are 
totally true. 

The NeutroTheorem and AntiTheorem are generalizations and alternatives of the classical Theorem. 
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In the above statement, we have: 
(i) Degree of truth, when � = �� or � = 2�, where �, � ∈ ℤ�. Since we get �� = (��)� = (��)� and 

respectively �� = ��� = (��)�. 
Therefore we have two double-infinity many cases when the statement is true. 
� = �� means that � can be written as a perfect square. For example, if � = 3� we can re-write it as � =

(3�)� = 81�. 
And � = 2� means � is an even number. 
(ii)  Degree of indeterminacy is zero, since �� is always well-defined for non-zero �, � ∈ ℤ�. 
(iii)  Degree of falsehood, as shown above, for example when � = 2 and � = 3. 
Herein we also have infinitely many cases when the statement is false (for example when � ≠ �� and � ≠

2�). 
    

7. Structure, NeutroStructure, AntiStructure in any field of knowledge 

    In general, by NeutroSophication [1, 2, 3, 4], we have extended any classical Structure, in no matter what field of 
knowledge, to NeutroStructure, and by AntiSophication to AntiStructure. 
    A classical Structure, in any field of knowledge, is composed of: a non-empty space, populated by some elements, 
and both (the space and all elements) are characterized by some relations among themselves (such as: laws, operations, 
operators, axioms, properties, functions, theorems, lemmas, consequences, algorithms, charts, hierarchies, equations, 
inequalities, etc.), and their attributes (size, weight, color, shape, location, etc.). 

  8. Relation, NeutroRelation, AntiRelation 

     (i) A classical Relation on a given set is a relation that is true for all elements of the set (degree of truth T = 1). 
Neutrosophically we write Relation(1,0,0). 

     (ii) A NeutroRelation is a relation that is true for some of the elements (degree of truth T), indeterminate for other 
elements (degree of indeterminacy I), and false for the other elements (degree of falsehood F). Neutrosophically we 
write Relation(T,I,F), where (T,I,F) is different from (1,0,0) and from (0,0,1). 

     (iii) An AntiRelation is a relation that is false for all elements (degree of falsehood F = 1). Neutrosophically we 
write Relation(0,0,1). 

     9. Attribute, NeutroAttribute, AntiAttribute 

     (i) A classical Attribute of the elements of a given set is an attribute that is true for all elements of the set (degree 
of truth T = 1). Neutrosophically we write Attribute(1,0,0). 

     (ii) A NeutroAttribute is an attribute that is true for some of the elements (degree of truth T), indeterminate for 
other elements (degree of indeterminacy I), and false for the other elements (degree of falsehood F). Neutrosophically 
we write Attribute(T,I,F), where (T,I,F) is different from (1,0,0) and (0,0,1). 

     (iii) An AntiAttribute is an attribute that is false for all elements (degree of falsehood F = 1). Neutrosophically 
we write Attribute(0,0,1). 

    10. Definitions of Structure, NeutroStructure, AntiStructure 

     (i) A classical Structure is a structure whose all elements are characterized by the same given Relationships and 
Attributes.  
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     (ii) A NeutroStructure is a structure that has at least one NeutroRelation or one NeutroAttribute, and no 
AntiRelation nor AntiAttribute. 

     (iii) An AntiStructure is a structure that has at least one AntiRelation or one AntiAttribute. 

 11. Example of NeutroStructure 

In the Christian society the marriage is defined as the union between a male and a female (degree of truth). 
But, in the last decades, this law has become less than 100% true, since persons of the same sex were allowed 

to marry as well (degree of falsehood). 
On the other hand, there are transgender people (whose sex is not well-determined, or whose sex is 

undetermined), and people who have changed the sex by surgical procedures, and these people (and their marriage) 
cannot be included in the first two categories (degree of indeterminacy). 

Therefore, since we have a NeutroLaw (with respect to the Law of Marriage) we have a Christian 
NeutroStructure. 

 
Conclusion  

A classical Structure, in any field of knowledge, is composed of: a non-empty space, populated by some 
elements, and both (the space and all elements) are characterized by some relations among themselves, and by some 
attributes. Classical Structures are mostly in theoretical, abstract, imaginary spaces.   

Of course, when analysing a structure, it counts with respect to what relations and attributes we analyse it. 
In our everyday life almost all structures are NeutroStructures, since they are neither perfect nor uniform, and 

not all elements of the structure’s space have the same relations and same attributes in the same degree (not all elements 
behave in the same way). 
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