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Abstract—The Internet provides access to a global space of
information assets and computational services. It also, however,
serves as a platform for social interaction (e.g., Facebook) and
participatory involvement in all manner of online tasks and
activities (e.g., Wikipedia). There is a sense, therefore, that the
Internet yields an unprecedented form of access to the human
social environment: it provides insight into the dynamics of hu-
man behavior (both individual and collective), and it additionally
provides access to the digital products of human cognitive labor
(again, both individual and collective). Such access is interesting
from the standpoint of research into machine intelligence, for
the human social environment looks to be of crucial importance
when it comes to the evolutionary and developmental origins of
the human mind. In the present paper, we develop a theoretical
account that sees the Internet as providing opportunities for
online systems to function as socially-situated agents. The result
is a vision of machine intelligence in which advanced forms of
cognitive competence are seen to arise from the creation of a new
kind of digital socio-ecological niche. The present paper attempts
to detail this vision with respect to the notion of socially-scaffolded
cognition. It also describes some of the forms of machine learning
that may be required to enable online systems to press maximal
cognitive benefit from their new-found informational contact with
the human social world.

Keywords–internet; social intelligence; language; machine in-
telligence; machine learning.

I. INTRODUCTION

There can be little doubt that the Internet represents a
milestone in human technical achievement. As a technical
accomplishment, the Internet stands testament to our species’
capacity for invention, innovation and complex problem-solving.
But in this respect, it seems that our species is unique. No other
form of terrestrial life is able to build a global communication
system, observe the distant reaches of the cosmos, or plumb
the murky depths of mathematical mysteria. (Neither, for that
matter, are they able to contemplate their species-specific
cognitive character and serialize their thoughts in the form of an
academic paper!) In a cognitive sense, therefore, we humans are
clearly special, for it is only the anatomically modern human
mind that has managed to scale the lofty heights of the cognitive
mountain. But in being special, we are also very much alone.
Cetaceans, chimps and cephalopods are all capable cognizers;
but none are in a position to challenge the cognitive supremacy
of our own species. The cognitive world, it seems, is bit around
a wall that separates two ostensibly distinct cognitive kinds.
On one side of that wall we find ourselves; on the other, we
find the rest of terrestrial life.

The extent to which we will always be alone (or, indeed,
special) is, of course, a moot point. From our vantage point
in the cognitive eyrie, we are currently seeking to understand
the forces and factors that make our human minds materially
possible. And in the light of such understanding, we are
striving to build machines in our own cognitive image. It is this
undertaking—the traditional focus of Artificial Intelligence (AI)
and machine intelligence research—that is perhaps the most
difficult of our technical undertakings. Despite some notable
successes, the attempt to engineer advanced forms of machine
intelligence—machines that emulate our own distinctive forms
of cognitive competence—remains, for the most part, a work
in progress. The route to human-level intelligence, it seems,
is not straightforward. And perhaps this is why we humans
find ourselves alone atop the cognitive mountain—the solitary
surveyors of the low-lying cognitive terrain.

In the present paper, we wish to consider a particular path
up the cognitive mountain. It is a path that focuses attention
on the role of the Internet in supporting the emergence of
machines with human-like cognitive capabilities. The general
aim is perhaps best captured in the form of a question: What
impact (if any) does the Internet have on the attempt to engineer
machines with human-level intelligence?

There are, to be sure, a number of ways that we might
respond to such a question. We might, for example, point to
the way in which the Internet has yielded a superabundant
supply of widely available digital data, such as image, text
and video resources. Such resources have arguably shaped the
course of AI research, stimulating research into new forms
of machine learning (such as those being explored by Google
DeepMind). There is also a sense in which the Internet has
played something of an indirect role in advancing the cause
of AI. We might, for example, point to the way in which
the Internet has yielded a superabundant supply of money for
major technology vendors, leading to eye-watering levels of
investment in AI-related research.

A different kind of response to the question of how the
Internet relates to machine intelligence is to be found in one of
our earlier papers [1]. In the context of that paper, we suggested
that the Internet, or at least a specific component of the Internet—
namely, the Social Web—is poised to yield state-of-the-art
advances in machine intelligence. The basis for such optimism
was to be found in the (perhaps rather inchoate) claim that
the Internet provides a form of informational contact with the
human social environment, where the notion of the human social
environment was cast as the realm in which human behavior



(both individual and collective) occurs. As a result of such
contact, we suggested that the Internet provides opportunities
for machines to observe and interact with humanity, as well as
exploit the products of human cognitive and epistemic labor.
Thus construed, the Internet was seen to support the emergence
of a new kind of cognitively-potent informational ecology: a
socio-ecological niche, pregnant with cognitive opportunity.

The present paper introduces a number of extensions to our
earlier paper based on the comments and feedback we received
from the academic community. These extensions reflect both a
broadening and a narrowing of scope. The scope is broadened
in the sense that we focus on the Internet rather than just the
Social Web. This particular shift in focus is probably of little
consequence, for the term “Internet” in the present paper is
intended as a catch-all term that encompasses a multiplicity
of Internet-related technologies. This includes the World Wide
Web, as well as the Web’s more specific instantiations, such as
the Social Web.

The other shift of focus—the one involving a narrowing
of scope—is perhaps more significant. In the present paper,
we restrict our attention to a particular kind of cognition,
one that goes by the name of socially-scaffolded cognition.
The meaning of this term will become clearer throughout the
course of the paper (see Section II). For present purposes,
however, socially-scaffolded cognition can be viewed as a form
of cognition whose origins depend on the properties of a social
environment (or aspects thereof). This conception is broadly
consistent with the flavor of existing work, which links the
notion of scaffolded cognition to the acquisition of particular
forms of cognitive competence [2]. As we shall see, however,
the precise meaning of the term “scaffolded cognition,” and
its status as an independent cognitive kind, distinct from, say,
the likes of extended or embedded cognition, is still a matter
that is open to philosophical debate (and disagreement). In
this respect, the account of scaffolded cognition offered in
Section II represents an attempt to more clearly delineate the
notion of scaffolded cognition and distinguish it from other,
ostensibly similar, cognitive kinds. This reflects one of the
ways the present paper contributes to the philosophical and
cognitive scientific literature.

In addition to changes in scope—manifested as the loosen-
ing of technological constraints and the tightening of cognitive
bonds—the present paper offers a more detailed exposition
of some of the mechanisms that may allow certain kinds of
intelligent system to press maximal cognitive benefit from
Internet-mediated forms of informational contact with the
human social world. Relative to the original paper, this
particular extension corresponds to neither a constriction nor
a dilation of scope. It is, instead, an attempt to highlight the
relevance of existing research to socially-scaffolded forms of
machine intelligence. Such a move could be seen as marking
the first tentative steps towards a concrete empirical research
agenda, with perhaps potentially profound implications for the
development of (e.g.) cognitive computing systems. For the
most part, however, our aim in the present paper is to establish
the theoretical basis for research in this area. We thus focus
our attention on the following issues:

1) Why is the notion of socially-scaffolded cognition
relevant to AI research?

2) How is the Internet apt to function as a cognitively-
potent informational ecology—one that supports the

emergence of advanced forms of machine intelligence?

In addressing these issues, we attempt to draw on ideas,
insights and empirical findings that are strewn across a rich
array of academic disciplines. This is, of course, a high-risk
strategy: In taking the transdisciplinary path, one often embarks
on a treacherous journey into the intellectual wilderness—an
interdisciplinary no man’s land where the intellectual payoff is,
at best, uncertain and the reputational rewards (relative to one’s
academic career) are probably zero. So be it. Inasmuch as the
following is deemed to yield little in the way of a genuine
advance in our understanding of how to build an intelligent
machine, we will at least take comfort in the fact that we have
saved someone else the journey.

The structure of the paper is as follows: Section II
focuses on the notion of scaffolded cognition and develops a
developmentally-oriented conceptual account that distinguishes
scaffolded cognition from ostensibly similar cognitive kinds,
such as extended cognition and embedded cognition. Section III
seeks to highlight the relevance of social forces and factors to
human intelligence. It does this by describing the way in which
the human mind is shaped by the human social environment, in
both an evolutionary and an ontogenetic sense. Such insights
provide the basis for Section IV, which discusses the way in
which the Internet allows certain kinds of AI systems—dubbed
social machines—to function as socially-situated or socially-
embedded agents. Section V surveys a number of different
forms of machine learning, namely, social, active, language,
predictive and incremental learning. The aim here is to identify
some of the cognitive prerequisites for a social machine—the
capabilities that enable a social machine to press cognitive
benefit from its informational contact with the human social
environment. Finally, in Section VI, we summarize some of the
core ideas discussed throughout the paper and mention some
areas for future theoretical and empirical work.

II. SCAFFOLDED COGNITION

One way of understanding the significance of the human
social environment to the development of human cognitive
capabilities (in both a phylogenetic and an ontogenetic sense)
is via the notion of scaffolded cognition [2][3]. The term
“scaffolded cognition” is typically (although not always) used
to refer to a cognitive ability that emerges as the result of an
agent’s exposure to scaffolding resources, where the resources in
question form part of the environment of a cognitive agent and
play an active role in shaping the agent’s cognitive development.
In the case of socially-scaffolded cognition, such resources are
most obviously thought of as other human individuals, as well
as perhaps the products of human cultural innovation (i.e.,
artifacts, knowledge, norms, language, tools, practices, and so
on). It is these resources—the material elements of what we call
the human social environment—that help to shape the course
of human cognitive development and the trajectory of human
cognitive evolution. In an important sense, it is our exposure
(and response) to such resources that makes us what we are—a
species able to negotiate cognitive terrains that lie beyond the
ken of other earthly critters.

Our aim in the present paper is to apply the notion of
socially-scaffolded cognition to the realm of AI systems. In
particular, we suggest that the path to state-of-the-art advances
in machine intelligence may be revealed by a consideration
of the ways in which various forms of social scaffolding



shape the course of human cognitive development and (over
longer timescales) the course of human cognitive evolution.
Before we begin to unpack this claim, however, it will help
to have a clearer understanding of what is meant by the
notion of scaffolded cognition. This is important, because the
term “scaffolded cognition” is one that is used in different
ways within the cognitive scientific literature. The term is
perhaps most often encountered in the context of educational
or developmental psychology, but this is not always the case.
In addition, scaffolded cognition is only one among a number
of cognitively-oriented concepts that have been the focus of
cognitive scientific attention, and the relationships between
these concepts are, it has to said, not fully understood. It
is easy, for example, to think of scaffolded cognition as
denoting a particular kind of cognition, i.e., a cognitive kind.
But much the same could be said about other elements
of the cognitive scientific lexicon, including the notions of
extended [4]–[6], embedded [7], situated [8], distributed [9]
and embodied cognition [10]. Distinguishing between these
concepts and identifying their relationships to one another is a
major theoretical undertaking, and it is not one that we can hope
to achieve in the present paper. That said, there is a particular
need to understand the distinction between scaffolded cognition
and at least some other cognitive kinds, most notably extended
cognition and embedded cognition. This is important, because
the relevance of the Internet to issues of machine intelligence
has been the focus of previous work. In particular, Smart [11]
has suggested that the Internet provides opportunities for both
extended and embedded forms of machine intelligence, and
the human social environment is deemed to be relevant in both
cases. At a minimum, therefore, we need to understand how
(and to what degree) the appeal to scaffolded cognition provides
us with a novel view of the Internet and its contributions to
machine intelligence.

Perhaps the most significant obstacle to a successful
discrimination between scaffolded cognition and other cognitive
kinds lies in the fact that appeals to scaffolded cognition are
sometimes encountered outside of a developmental context.
Clark [12], for example, discusses the way in which a variety
of external scaffolds, including public language and culture,
help to “mold and orchestrate behavior” in adaptive or strategic
ways [12, pp. 32–33]. Relative to Clark’s vision of the human
mind as an extended cognitive organization—one in which
cognitive processing routines rely on a multiplicity of resources
drawn from the biological, social and technological realms—it
is perhaps easy to see scaffolded cognition as related to the
notion of extended cognition. This is especially so if scaffolding
resources are deemed to play a role that goes beyond the mere
causal dependence of cognitive processing routines on aspects
of the external environment. In fact, something along these
lines is suggested by Arnau et al. [13], as part of their attempt
to define scaffolded cognition:

Scaffolded cognition is the idea that (at least some of)
our cognitive capacities both depend on and have been
transformed by our manipulation of environmental
resources. The claim here is not about mere causal
dependence, but about integrative coupling between
internal and external elements. [13, p. 56]

What is crucial here is the claim that scaffolded cognition
involves something more than “mere causal dependence.” One
way of making sense of this claim is via an appeal to the

distinction between causal and constitutive relevance [14][15],
where the notion of constitutive relevance implies that some
resource is an intrinsic element of the physical fabric that
realizes or constitutes some phenomenon of interest. (This
contrasts with the more familiar notion of causal relevance,
where some resource is seen to cause the occurrence of some
phenomenon.) In the case of extended cognition, the claim is
that some extra-organismic resource is of constitutive relevance
to some cognitive phenomenon (e.g., a given cognitive process),
and it therefore forms part of the physical machinery that
realizes the cognitive phenomenon in question. One way of
thinking about scaffolded cognition, therefore, is to see it as
a form of cognition in which some form of extra-organismic
scaffolding resource is constitutively relevant to cognition.

The problem with this proposal is immediately obvious: By
appealing to issues of constitutive relevance, the distinction
between extended and scaffolded cognition is obscured, perhaps
to the point where the two concepts are indistinguishable. In this
sense, the appeal to “integrative coupling” in the aforementioned
quote by Arnau et al. is problematic because it resembles similar
appeals to integrative coupling made in respect of extended
cognition (see [16]).

In the interests of distinguishing scaffolded cognition from
extended cognition, we may opt to drop our allegiance to
constitutive relevance and recast the relevance relation as one of
causal relevance. In other words, when we reflect on the relation
between some scaffolding resource and a particular cognitive
capacity, it may make sense to view the relation in purely
causal terms. The problem, in this case, is that by embracing
the notion of causal relevance we are in danger of confusing
scaffolded cognition with another kind of cognition, namely,
embedded cognition [7]. Like extended cognition, embedded
cognition recognizes the dependence of cognitive properties
on elements that lie external to the cognitive system. In this
case, however, the dependence relation is best understood with
respect to the notion of causal relevance rather than constitutive
relevance.

The upshot of all this is a dilemma that turns on the
relationship between the properties of a cognitive system and the
role played by some extra-systemic resource. If we conceive of
this relationship in such a way that the resource is constitutively
relevant to the properties of a cognitive system, then scaffolded
cognition emerges as nothing more than extended cognition. On
the other hand, if we drop the appeal to constitutive relevance
and instead conceive of the relationship from the standpoint of
causal relevance, then what we are left with is nothing other
than embedded cognition. Either way, the notion of scaffolded
cognition looks to be conceptually redundant.

Our approach to the resolution of this dilemma is rooted
in an appeal to the notion of mechanistic explanation, which
is a form of explanation that focuses on the mechanisms that
are deemed to be responsible for some phenomenon of interest
(e.g., [17]). Two kinds of mechanistic explanation look to be of
particular importance when it comes to extended and embedded
cognition. These are causal mechanistic explanation, which is
tied to claims of causal relevance, and constitutive mechanistic
explanation, which is tied to claims of constitutive relevance
(see [15]). One way to think about the distinction between
embedded and extended cognition is thus to see embedded
and extended cognitive systems as the targets of different
kinds of mechanistically-oriented explanatory account: causal



mechanistic explanations are thus best suited for embedded
cognition, while constitutive mechanistic explanations are best
suited for extended cognition (see [18]).

So much for embedded and extended cognition. But what
about scaffolded cognition? Is there a particular kind of
mechanistic explanation that is apt for scaffolded cognition, and
is this form of explanation sufficiently distinct from mechanistic
explanations of the causal or constitutive stripe?

In fact, we suggest that scaffolded cognition is best ap-
proached from the perspective of what are called developmental
explanations [15][19]. Such explanations seek to trace the
historical lineage of a phenomenon, helping us understand
how the phenomenon relates to an interacting nexus of
causally-active historical forces and factors. Developmental
explanations are, in essence, an attempt to detail the causal
history of phenomena, and, in this sense, they bear much
in common with the sorts of explanations encountered in
the historical sciences [20]. (Indeed, we regard historical
explanation as a particular form of developmental explanation.)
As with causal and constitutive mechanistic explanations,
developmental explanations are typically cast as a particular
form of mechanistic explanation. In other words, developmental
explanations resemble other forms of mechanistic explanation
in that their explanatory heft inheres in the attempt to provide
a complete description of the mechanisms that are responsible
for some target phenomenon. It is perhaps tempting to refer
to such mechanisms as developmental mechanisms, although
the previous use of this term is mostly confined to the realms
of developmental biology [21]. For present purposes, we will
use the terms “developmental explanation” and “developmental
mechanism” in a generic sense to refer to explanations and
mechanisms that are encountered in a variety of disciplinary
contexts. These include developmental biology (ontogenetic
explanations), history (historical explanations), and evolutionary
biology (evolutionary explanations).

We have already seen how issues of constitutive/causal
explanation and constitutive/causal relevance can be used
to discriminate between extended and embedded cognition.
The same approach, we suggest, can be used to inform our
theoretical understanding of scaffolded cognition. Scaffolded
cognition can thus be thought of as a particular form of
cognition (i.e., a cognitive kind) that is the apt target of
a particular kind of explanatory approach. Just as constitu-
tive explanations are appropriate to extended cognition, and
causal explanations are appropriate to embedded cognition,
so developmental explanations, we suggest, are appropriate to
scaffolded cognition. As with extended and embedded cognition,
scaffolded cognition involves resources that are located external
to the boundaries of a cognitive system. In the case of
scaffolded cognition, however, these resources are deemed
to be of developmental relevance with regard to whatever
cognitive phenomenon is the target (i.e., the explananda) of
mechanistic explanation. In fact, these resources are nothing
other than what we have been calling scaffolding resources.
In essence, scaffolding resources are the material elements of
developmental mechanisms that are described by developmental
explanations. Thus construed, developmental relevance can be
regarded as a particular kind of explanatory relevance. Just
like causal and constitutive relevance (which are also forms of
explanatory relevance), developmental relevance highlights the
relevance of some extra-systemic resource for the purposes of

(developmentally-oriented) mechanistic explanations.
There is, of course, a sense in which developmental explana-

tions are similar to causal explanations, and this might be seen to
serve as a source of confusion when it comes to the distinction
between scaffolded cognition and embedded cognition. Just like
causal explanations, developmental explanations reveal the ways
in which a set of causally-active antecedent forces and factors
conspire to yield some sort of outcome. There is, however, no
reason why this should lead to confusion between the notions of
scaffolded and embedded cognition. Embedded cognition seeks
to explain cognitive phenomena with respect to causal influences
that operate in the here-and-now, and, as a result, the resources
picked out by the notion of causal relevance are always ones
that are present in the local environment of a cognitive system.
Such need not be the case with scaffolded cognition. In the
case of scaffolded cognition, the relevant resources (scaffolding
resources) need not be present in the local environment of a
cognitive system. Indeed, in some cases, such resources may
no longer exist. Issues of spatial and temporal proximity are
thus of crucial importance for embedded cognition, but they
are of relatively little importance for scaffolded cognition.

This is also, as it happens, the reason why developmental
explanation/relevance cannot be equated with constitutive expla-
nation/relevance. The resources that are relevant to constitutive
explanations are always deemed to be physically present
because they form part of the mechanism that realizes occurrent
cognitive phenomena. Such is not the case with scaffolding
resources, and it is for this reason that the concept of scaffolded
cognition cannot be equated with extended cognition.

Having said all this, it should be noted that the relationship
between the notions of causal, constitutive and developmental
relevance is still something that is up for grabs. Ylikoski [15],
for example, suggests that developmental explanations are at
times complex amalgams of constitutively and causally relevant
factors. Developmental explanations, he suggests, sometimes
involve complex forms of reciprocal causation and mutual
influence that are difficult to track with simple causal accounts.
The result, it seems, is that developmental explanations are not
purely constitutive explanations, but neither are they purely
causal explanations. Perhaps it is this inextricable entanglement
between constitutive and causal relevance, spread out over
(sometimes significant) periods of time, that best accommodates
the intuition that scaffolded cognition relies on something more
than “mere causal dependence” and involves some degree of
“integrative coupling” [13].

The result of all this is a conception of scaffolded cognition
that appeals to the notions of developmental explanation
and developmental relevance. Scaffolded cognition is, in
essence, a developmentally-oriented concept. One virtue of
this developmentally-oriented conception is that it is nicely
aligned with the bulk of research into scaffolded cognition,
most of which has been undertaken in an educational or
developmental context. The conception also, however, provides
a means of discriminating scaffolded cognition from extended
and embedded cognition, and it does so in such a way as to
(perhaps) reveal why these concepts have proved so hard to
disentangle.

III. THE SOCIAL ORIGINS OF HUMAN INTELLIGENCE

The form of scaffolded cognition that concerns in the
present paper is referred to as socially-scaffolded cognition.



This is a form of scaffolded cognition that is distinguished with
respect to the nature of the resource that does the scaffolding
(see [2]). In the case of socially-scaffolded cognition, we are
interested in situations where the social environment (or some
aspect thereof) plays a role in the developmental emergence of
cognitive capabilities.

Why should socially-scaffolded cognition be of any interest
or relevance to those interested in machine intelligence? To
answer this question, it will help to introduce two substantive
strands of empirical and theoretical research: one focused on
the evolution of the human cognitive system; the other, on the
ontogenetic development of human cognitive capabilities.

Let us first direct our attention to issues of human cognitive
evolution. There is clearly something special about human
cognition—something that makes our own species cognitively
unique. But what is it about the evolutionary history of our
species that accounts for this remarkable divergence in cognitive
power and sophistication?

One response to this question focuses on the selection
pressures arising from the physical environment—the need to
find food, ward off predators, deal with climatic changes, and
so on. The inadequacy of this account is immediately obvious:
it fails to explain what it is that gives human cognition its rather
distinctive flavor. Why is it that humans—and only humans—are
in possession of advanced cognitive capabilities? Presumably,
we humans are not alone in having to deal with a range of
ecological challenges, so why has evolution not driven other
forms of terrestrial life to evolve a similar cognitive profile?

A different (albeit related) response focuses on the chal-
lenges thrown up by a particular kind of ecological niche:
the human (or, perhaps better, hominin) social environment.
According to approaches of this ilk, the forces and factors
that account for the evolutionary emergence of the modern
human mind are not to be found in the physical environment
of our hominin ancestors. Instead, it is suggested that the
well-spring of human cognitive success is to be found in the
socio-ecological realm. The idea, in essence, is that the human
mind evolved to deal with the vagaries of an environment that
was itself constituted by other humans (and their minds). In
other words, we humans ‘created’ the specific socio-ecological
niche from which the modern human mind emerged. The human
mind, according to this view, corresponds to something of a
socially-created artifact—a device that was forged in a crucible
of our own creation.

This idea actually comes in a variety of flavors. It surfaces,
in somewhat different forms, in a number of recent evolu-
tionary hypotheses, including the social brain hypothesis [22],
the Machiavellian intelligence hypothesis [23], the cultural
intelligence hypothesis [24], the social intelligence hypothe-
sis [25], the sexual selection hypothesis [26], and the ecological
dominance-social competition hypothesis [27]. What unites
these hypotheses is a claim about the evolutionary significance
of intra-specific social competition. Flinn [28], for example,
suggests that:

...the human psyche was designed primarily to con-
tend with social relationships, whereas the physical
environment was relatively less important. Most
natural selection in regard to brain evolution was
a consequence of interactions with conspecifics, not
with food and climate...To a degree that far surpasses

that of any other species, human mental processes
must contend with a constantly changing information
environment of their own creation. (pp.73–74)

There are two aspects to this socially-oriented account of
human cognitive evolution that are worth highlighting. The first
is the emergence of a form of runaway directional selection in
which the emergence of cognitively, socially, and behaviorally
sophisticated individuals merely serves to exacerbate existing
social selection pressures, increasing the complexity of the
social environment that evolution must contend with. We
thus encounter something of a positive feedback loop, in
which individual cognitive sophistication leads to greater social
complexity, which in turn leads to ever-greater demands for
cognitive sophistication. The result is something of a red
queen situation (see [29]): cognitive sophistication begets social
complexity, which in turn intensifies the drive toward cognitive
sophistication. For the sake of convenience, let us dub this the
red queen of socio-ecological complexity.

The mechanism that lies at the heart of this particular
red queen is well-documented. Its lineage can be traced to
Humphrey [30] who cast the feedback loop as a form of ratchet,
a “self-winding watch to increase the general intellectual
standing of the species” (p. 311). This is a useful metaphor,
in the sense that it helps us see human cognitive evolution
as something of an autocatalytic process—one in which a
particular form of cognitive-evolutionary progress lays the
foundation for yet further increments in cognitive power and
sophistication [27]. The metaphor is also useful in that it draws
attention to the dynamic nature of the human social environment.
In contrast to the physical environment, whose features are,
for the most part, relatively enduring (or at least predictable
from one generation to the next), the topography of the social
terrain is riven by the tectonic forces of cognitive-evolutionary
change.

There is, however, another aspect to this theoretical account
that highlights the rather unique nature of the human social
environment. In addition to being a dynamically changing
environment—one whose complexity tracks progressive in-
creases in human cognitive sophistication—the human social
environment is also one that is shaped by the forces of
cultural evolution. This obviously adds to the unpredictability
of social environments across inter-generational timeframes;
but it also (and perhaps more importantly) lays the foundation
for the diversification of social environments within any given
generation. The upshot is that, from the standpoint of evolution,
the human socio-ecological niche is one whose features are,
at best, difficult to predict. Faced with such a situation, there
is perhaps little that evolution can do except yield organisms
that are equipped with a combination of powerful learning
mechanisms and extraordinary levels of (cognitive) phenotypic
plasticity:

Once human cultural evolution began to accelerate
and languages began to change rapidly, there would
have been strong selection for general and language-
specific increases in brain plasticity. Since the one
thing that is consistently stable in a rapidly changing
culture is the culture’s context-dependent flexibility
(which the cultural evolutionary process itself cre-
ates), there is persistent selection for increasingly
flexible and sophisticated ways of learning, including
language-learning. [31, p. 2154]



It is this particular form of phenotypic plasticity that is the
source of a second red queen, one that we will dub the red
queen of socio-ecological variability. To help us understand
this particular red queen, note that phenotypic plasticity, when
situated within the specific context of cultural innovation and
learning, is the source of a second ratchet-like mechanism
that drives the evolution of ever-greater levels of plasticity.
The reason for this is that phenotypic plasticity goes hand-in-
hand with phenotypic variability, and phenotypic variability
contributes to precisely the sorts of socio-cultural differentiation
that make the human socio-ecological niche so hard for
evolutionary processes to predict. The result is a positive
feedback loop, in which socio-ecological variability drives
the evolution of cognitive plasticity, which in turn gives rise to
ever-more opportunities for socio-ecological diversification.

It is at this point that our attention begins to switch from
phylogeny to ontogeny. For the complex and capricious nature
of the human social environment may be useful in helping
us understand some of the characteristic features of human
ontogeny. The first of these concerns the plasticity and structural
lability of the human brain, which looks to be particularly
pronounced in human infants and young adults (e.g., [32]).
The second is the protracted nature of human maturational
processes (i.e., the period of extended development known as
childhood). Both these features can be regarded as adaptations
to a complex and inconstant human social environment. The
developmental profile of the human brain, for example, may
provide the basis for extreme forms of neural plasticity, in
which the structural and functional architecture of the biological
brain adapts to the demands thrown up by a complex and
unpredictable environment [33][34]. Similarly, the functional
significance of extended development (or childhood) is typically
cashed out in terms of the opportunities for learning. In
particular, it has been suggested that an extended period of
development is required to enable human individuals to learn
the skills required in later life [35]. Interestingly, human infants
are born helpless, and they remain immature for longer than
might be expected [36]. It is easy to regard this period of
neonatal altriciality as something of a costly encumbrance that
is imposed on infants (and parents), and which hampers the
opportunities for subsequent social learning. Note, however,
that in being helpless, the human infant is totally dependent
on her human care-givers, and this establishes the basis for
particularly intimate forms of social interaction—the very stuff
that drives socially-scaffolded development. In this sense, the
altricial status of young human infants, while easily glossed
as something maladaptive and costly, can also be seen to lay
the foundation for future forms of socially-directed or socially-
inflected learning. As noted by Nelson [37], this period of
“enforced dependent sociality is both the foundation for the
social mind of humans and for the particular course of social-
cognitive development found in the human child” (p. 367).

The social environment plays an important role in shaping
human cognitive development throughout childhood, and often
well into adulthood. And it is here that we find the bulk
of research into scaffolded cognition. One of the foremost
proponents of socially-scaffolded development is the Soviet
psychologist, Lev Vygotsky. Vygotsky argued that the nature of
our interaction with socially-significant others holds the key to
understanding human cognition (see [38]). Human intelligence
is, according to Vygotsky, something that emerges as a result

of social interactions with other human beings.
The upshot of all this is a vision of the human mind that is

thoroughly social, both in origin and in orientation. We have
seen how the ever-changing topography of the social terrain
plays a crucial role in shaping the trajectory of human cognitive
evolution, and we have also seen how social interactions are
poised to play a crucial role in cognitive development. Being
social, it seems, is what makes us human. Irrespective of
whether our attention is focused on issues of phylogeny or
ontogeny, the human social environment emerges as of crucial
importance in our attempts to understand the developmental
mechanisms that give rise to that most marvelous, and yet most
mysterious, of cognitive devices: the modern human mind.

IV. SOCIAL MACHINES

Inasmuch as we see the human mind as a socially-created
artifact—or a socially-engineered cognitive machine—then
perhaps a consideration of social forces and factors is relevant
to our ongoing effort to develop AI systems. Perhaps, in other
words, a consideration of the social realm enables us to trace
a path to the top of the cognitive mountain—a path that was
followed (and in some sense forged) by our own species. It is,
no doubt, a precarious and ill-defined path, one whose course
is punctuated by soaring cliffs and gaping chasms. But it is,
nevertheless, a path. And, given our solitary status at the top
of the cognitive hierarchy, it may very well turn out to be the
only path available.

There is, of course, nothing new in the idea that a
consideration of the social environment is relevant to the effort
to build intelligent machines. The idea is, in fact, the mainstay
of the field of social and (to a lesser extent) developmental
robotics [38]–[41], both of which emphasize the role of social
interaction and engagement in the development of advanced
cognitive capabilities. Consider, for example, the following
quotes from Kerstin Dautenhahn and colleagues, both of
which appeal to ideas rehearsed in the previous section (see
Section III):

If social intelligence, in evolutionary terms, ‘came
first’ in the development of primate intelligence, and
then later was applied to other domains, then one
may extrapolate and apply this ‘evolutionary history’
to machines, too. Accordingly, from an evolutionary
perspective, then intelligent robots need to be socially
intelligent robots. [41, p. 295]

Our research is based on the assumption that in order
to study the cognitive development of robots we
have to consider the ‘robot in society’, i.e., using
Vygotsky’s approach to see social interactions as
fundamental, and as a context which can scaffold the
development of cognitively richer functionalities. [42,
p. 6]

The theoretical position proposed in the present paper
is based on precisely these sorts of assumptions. The only
significant difference is the nature of the system that is seen to
be the beneficiary of socially-scaffolded development. In the
case of social robotics, of course, the relevant system is typically
some form of robot, typically one that is implemented as a
physical entity, equipped with a real ‘body’ that serves as the
basis for robot–human and sometimes robot–robot interactions.
The systems of interest in the present paper are somewhat



different. We are interested in a class of systems that operate
in the online realm of the Internet and which typically exist
in the form of computer programs. In this sense, the kinds of
intelligent system that we are interested in would no doubt be
regarded as ‘disembodied’ and thus incapable of functioning as
socially-situated agents. While we do not wish to contest the
claim that some sort of distinction should be made between
a purely online system and a real-world robot, it is not clear
that the notion of embodiment is best placed to motivate this
distinction. A fuller discussion of this issue would take us too
far afield; however, it is worth noting that some kinds of online
system might be regarded as embodied by virtue of the forms of
real-world sensory/motor contact provided by (e.g.) the Internet
of Things (IoT) [11]. It is also worth noting that some have
questioned the extent to which issues of embodiment apply
only to the realm of real-world, physical systems, as opposed
to their purely virtual counterparts [43][44].

In any case, our primary interest in the present paper is the
extent to which the Internet enables AI systems to be embedded
or situated within the human social environment. Central to
this idea is the claim that the Internet provides a form of
informational contact with the human social environment. This
particular claim will probably require little in the way of a
detailed defense, for the Internet has undoubtedly provided
a rich array of opportunities for conventional computational
systems to engage with human agents and observe their behavior
at both an individual and collective level. The Social Web is just
one example of this. With the advent of social networking sites,
microblogging services, and media sharing systems, the online
environment affords ever-deeper insights into the dynamics of
human social behavior [45]. Additional forms of contact are
arguably provided by an ever-expanding array of mobile and
portable computing devices, Internet-enabled sensors, and IoT
devices.

It is, of course, easy to think that this notion of the
Internet providing contact with (or access to) the human social
environment should be interpreted solely in observational terms,
i.e., as the Internet enabling machines to monitor human
behavior at both the individual and collective levels. In fact, a
somewhat broader notion is in play here. We see the Internet
as providing access to an online ecology of human-generated
digital assets, some of which indirectly contribute to the (social)
shaping of machine-based capabilities. Consider, for example,
the way in which the addition of descriptive tags and annotations
to a set of image resources assists with the development of
machine vision systems [46]. Here, human contributions yield a
body of training data that is apt to support a particular kind of
machine learning. Such possibilities are explicitly recognized by
those who seek to engage human subjects in computationally-
difficult tasks. With respect to citizen science systems, for
example, Lintott and Reed [47] note that one of the limiting
factors in the development of automated processing solutions
is the availability of sufficiently well-structured training data
sets, and that one of the key advantages of citizen science
projects is the provision of such data sets. Similarly, when it
comes to a class of systems known as Games With A Purpose
(GWAPs), von Ahn and Dabbish [48] are keen to stress the role
of human contributions in giving rise to ever-more intelligent
(and human-like) forms of machine-based processing:

By leveraging the human time spent playing games
online, GWAP game developers are able to capture

large sets of training data that express uniquely human
perceptual capabilities. This data can contribute to the
goal of developing computer programs and automated
systems with advanced perceptual or intelligence
skills. [48, p. 67]

The key point, here, is that by virtue of human contributions,
a set of digital resources that were previously too ill-structured
to support machine learning are transformed into something
that is much better aligned with the requirements of machine
learning algorithms. Something along these lines also applies
to systems such as IBM Watson [49], which benefit from the
online availability of socially-generated and socially-structured
resources (e.g., Wikipedia). In these cases, advances in machine
intelligence derive from the access the Internet provides to the
human social environment, but it is not a form of access that
can be characterized solely in observational terms.

The basic vision, then, is one of the Internet providing a
form of informational access to the human social environment.
Relative to this vision, we suggest that the Internet provides
opportunities for AI systems to be embedded or situated within
the human social environment, enabling them to benefit from
various forms of socially-scaffolded development. For the
purposes of this paper, we will refer to these socially-situated
systems as social machines. A social machine is thus a particular
kind of intelligent system that benefits (in a cognitive sense)
from Internet-mediated forms of informational contact with the
human social environment. It is, in essence, a machine whose
cognitive capabilities are tied to its status as a socially-situated
agent.

V. SOCIALLY-SCAFFOLDED COGNITION AND MACHINE
LEARNING

Clearly, not every kind of intelligent system is likely to
qualify as a social machine. The status of social machines as
socially-situated or socially-embedded (see [38][50]) systems
perhaps goes some way to limning the relevant class of
systems. But even the notion of social situatedness seems
somewhat insufficient. Mere exposure to the human social
environment will not cause a socially-oriented cognitive critter
to develop human-level cognitive abilities. If it did, then we
would recognize dogs and budgies as kindred cognitive spirits.

As it stands, therefore, the notion of a social machine
remains somewhat vague. It is, in particular, unclear what kinds
of intelligent system should be counted as social machines.
What are the peculiar features of a social machine that enable
it to function as a socially-situated agent? What are the details
of its cognitive architecture? What are the ways in which a
social machine is poised to benefit from socially-scaffolded
development? What is it that enables a social machine to
press maximal cognitive benefit from its immersion in a
socio-ecological niche? And why should the human social
environment (as opposed to any other kind of environment) be
of particular relevance to the emergence of advanced cognitive
capabilities?

In the present section, we attempt to provide some initial
answers to these questions. For the most part, we restrict our
attention to the realm of learning. Obviously, there is more
to being a social machine than just learning. It may be, for
example, that only certain kinds of computational organization
are able to fully benefit from the forms of learning detailed



below. It is, in addition, at least plausible that only certain kinds
of system (e.g., neural networks) are able to exhibit the kinds
of fluid, context-sensitive response that are typically associated
with intelligent behavior—something that is nicely captured by
Clark’s [5, p. 107] notion of intrinsic suitability. Perhaps, to
extend Clark’s claims about intrinsic suitability, there is only
one kind of computational substructure (a connectionist-style
deep learning system, perhaps) that is able to grapple with
the complexity of the human social environment and yield
something vaguely reminiscent of human-level intelligence. In
the interests of space (and, to be honest, the limits of our own
intellectual horizons), we will avoid a detailed discussion of
these sorts of architectural issues (although see Section V-D
for some initial thoughts in this area).

A selective focus on learning seems particularly apt given
the developmentally-oriented conception of scaffolded cognition
that was proposed in Section II. It is also one that accommodates
the discussion in Section III concerning the role of the
human social environment in scaffolding the ontogenetic and
phylogenetic emergence of the human cognitive system. There
is clearly a sense in which learning is perhaps somewhat better
suited to accommodate ontogenetic forms of social scaffolding—
the forms of scaffolding that occur during the lifetime of a
single individual. But perhaps the appeal to learning can also
be extended to the domain of evolutionary mechanisms. As is
noted by Chalup [51], “[d]uring the time phase of evolution the
structure of the genome undergoes a process of phylogenetic
learning which is based on evolutionary concepts such as
selection and mutation” (p. 448).

In what follows we direct our attention to the following
forms of learning: social learning, active learning, language
learning, predictive learning and incremental learning. The
discussion of these forms of learning reveals what we take to
be some of the essential features of a social machine. These
include:

• Phenotypic Plasticity: Plasticity is clearly the sine
qua non of a learning system. As such, this feature is
relevant to all forms of learning. Issues of plasticity are
particularly relevant when it comes to changes in the
computational organization of a system as a result of
maturational processes. These issues are discussed in
the context of incremental learning (see Section V-E).

• Active Engagement: A recent focus of cognitive
science research is the way in which learners self-
structure their learning experiences and thus influence
their own learning experiences. These issues are tackled
in the context of research into active learning (see
Section V-B).

The ensuing discussion is also intended to highlight some
of the features of the human social environment that make it
of particular interest as both the target of learning and as a
context in which learning occurs. These features are perhaps
most clearly resolved with regard to the following forms of
learning:

• Social Learning: The human social environment
serves as a source of knowledge that, at least in
some cases, can be used to bypass other forms of
learning. Such a vision bears a close resemblance to
the apprenticeship model of human cognitive evolution,
as discussed by Sterelny [52].

• Predictive Learning: One of the features of the
human social environment is its complexity, which
is determined, at least in part, by the cognitive sophis-
tication of its human inhabitants. In negotiating the
social environment, a machine learning system must
learn to navigate a terrain whose topography is both
complex and unstable. The attempt to gain a predictive
toehold in this terrain may lead to the emergence of
a representational and computational economy that
profoundly alters the cognitive repertoire of a social
machine.

• Language Learning: Finally, we suggest that in
dealing with the human social environment, social
machines are gifted a particularly potent cognitive tool
in the form of language. Such a tool can be seen
to magnify other forms of scaffolded development,
open up new learning opportunities, and, perhaps most
importantly, lay the foundation for profound shifts in
cognitive functionality.

A. Social Learning
By virtue of the access it affords to the human social

environment, the Internet provides a number of opportunities
to observe and monitor different aspects of human behavior.
This is important, for we humans are the locus of particular
kinds of skill and expertise that reflect our experience with
particular domains. Such forms of skill and expertise are
typically driven by bodies of knowledge that we have acquired
through extensive training and experience, much of which is
itself scaffolded by the human social environment. This presents
a challenge for the machine-based emulation of human cognitive
competence. If human competence develops as a result of the
scaffolding provided by a surrounding nexus of social and
cultural resources—if, in other words, human capabilities are
the products of socially-scaffolded learning experiences—then
perhaps it should come as no surprise that human cognitive
tasks pose something of a challenge for machine-based systems.

It is here, we suggest, that the Internet provides us with an
opportunity to extend the reach of machine-based capabilities.
The basic idea is that the Internet can be used as a form
of social observatory—one that enables machines to observe
the human social environment and acquire information about
various forms of human competence. From this perspective,
the Internet can be seen to support a particular form of social
learning: it enables us to treat the human social environment as
a source of information and knowledge that can be mined and
monitored as a means of extending the cognitive and epistemic
reach of machine-based systems.

All of this no doubt sounds uncomfortably vague, so
let us consider a specific example—one that is admittedly
hypothetical yet not so remote as to lie beyond our current
technological horizons. The example concerns the effort to
develop Autonomous Road Vehicles (ARVs), such as self-
driving trucks and cars. ARVs obviously have a range of
capabilities, and not all these capabilities are ones that need
rely on social learning (at least of the sort we are discussing
here). When it comes to an ability to respond to a multitude of
driving-relevant situations, however, it looks likely that ARVs
will need to possess some of the ‘commonsense’ knowledge
that human drivers have acquired as a result of their experience
behind the wheel. Such experience underlies our ability to



anticipate the likely behavior of other road users, our ability to
behave appropriately at an intersection, our ability to adjust our
driving behavior given specific meteorological conditions, and
so on. An experienced human driver thus embodies a wealth
of knowledge and experience, at least some of which looks to
be relevant to the design of autonomous vehicles.

How do we go about building vehicles that possess the
behavioral competence and road-related savoir faire exhibited
by the typical human driver? One option is to enlist the use of
conventional knowledge elicitation techniques [53] in order to
create formal models of the relevant body of human knowledge.
The problem with this approach is that it is likely to require
substantial time and effort, especially when one considers the
complexity of the target domain, not to mention the diversity
of driving practices exhibited by both individuals and cultural
groups.

Here is another approach: track the behavior of human-
driven vehicles as they move around the road network and then
attempt to extract and formalize interesting regularities from the
resultant body of ‘experiential data’. Such data sets are likely
to be particularly valuable in cases where it is possible to track
the precise behavior of vehicles at particular locations, such
as at an intersection, a roundabout, or a notorious black spot.
Additional value comes from the ability to track other kinds of
information, such as the use of driver signaling mechanisms
(e.g., the use of indicators and headlights) and information
about prevailing meteorological conditions (e.g., the presence
of fog).

It might, of course, be suggested that human drivers are
not the most suitable role models for ARVs, especially if
one reflects on the popularity of The Fast and the Furious
movie franchise. However, even if human behavior should
fail to provide a suitable template for machine behavior, it
may still be important to learn about such behavior as the
basis for anticipating (and responding to) certain situations.
This seems particularly relevant to the ARV case, where,
in all likelihood, we will encounter a transitional era in
which autonomous vehicles are required to share the road
with human drivers. There is, in addition, no reason why
we should regard the end-product of social learning as being
solely about the acquisition of some form of purely behavioral
competence. Social learning may thus support the acquisition
of knowledge about the unwritten rules of social conduct—the
culturally-specific norms, conventions, and practices that shape
the dynamics of human social behavior. Social learning thus
provides us with a socially- and empirically-grounded approach
to what is commonly referred to as machine ethics (also
known as machine morality, artificial morality, or computational
ethics) [54]. In essence, the idea is to rely on the human social
environment to provide insight about the unwritten ‘rules’ that
govern behavior in different social situations. Such knowledge
seems particularly important in situations where machines are
required to participate in social processes or interact with
human agents. Autonomous vehicles are, of course, a case in
point. When it comes to the effort to develop ARVs, therefore,
social learning may provide a solution to Walport’s [55] worry
about the need to codify “tacitly accepted ‘rules of the road’
norms” (p. 24).

The main point of the ARV example is that it helps us
see how a particular form of (observational) access to the
human social environment can provide insight into bodies of

experientially-grounded knowledge, some of which may be
relevant to the attempt to engineer a particular kind of intelligent
system. The vision is thus one in which advanced forms of
machine intelligence come about as the result of a deliberate
attempt to learn from the human social environment. According
to this vision, machine intelligence is, in a sense, parasitic on
human experience: it relies on the experience that humans have
in order to short-circuit the acquisition of particular forms of
cognitive and behavioral competence, many of which may be
hard to acquire via other means.

There is, of course, no reason to think that social learning
is restricted to the realm of ARVs. With the advent of the
IoT, an increasing number of everyday objects are poised to
shed light on the nature of our embodied interactions with a
plethora of everyday artifacts, perhaps providing insight into
the structure of epistemic actions (see [56]) and culturally-
nuanced forms of cognitive practice (see [57]). Needless to
say, when it comes to considering the significance of such
devices, the emphasis is typically on the way in which issues
of network-enablement help or hinder human action. But in light
of the present discussion, we can perhaps begin to ask ourselves
whether there is any reason why such devices should not be used
in roughly the same manner as a network-enabled automobile,
i.e., as a source of information about the kinds of skill and
expertise that might be required to exhibit competence in some
otherwise intractable task domain. This is surely a laudable
target for machine intelligence research, irrespective of whatever
technical challenges confront the effort; for why assume that
a priori methods can always yield the level of behavioral and
cognitive complexity required to deal with domains where
human forms of competence only seem to emerge as the result
of extensive training and experience?

Based on the foregoing examples, it might be thought that
the notion of social learning only applies to situations involving
the real-time monitoring of human behavior, as provided,
perhaps, by IoT devices. Real-time monitoring, however, is not
an essential feature of social learning. What is crucial to social
learning is merely the idea of the Internet providing access to
information about the strategies, knowledge and experiences
of human agents. There is no requirement here for real-time
monitoring. Indeed, for the most part, we suspect that social
learning will be undertaken with respect to previously acquired
data sets, as opposed to real-time data streams. Such data sets
include those that are already available. As is noted by Myaeng
et al. [58], blog posts, online community services, and social
media sites track the experiences and knowledge that humans
have managed to distil from the environment and encode in
digital form. Such resources provide the basis for what a
Myaeng et al. [58] refer to as experiential knowledge mining,
which is defined as “the process of acquiring experiential
knowledge, as opposed to a priori knowledge, from a variety of
multimedia sources that describe human experiences of various
sorts” [58, p. 33].

From the standpoint of social learning, therefore, the human
social environment serves as the target of a particular kind
of knowledge acquisition. The main virtue of this vision is
that it helps to expand the horizons of efforts that seek to
emulate human-level competence in some domain of interest.
In particular, it provides us with an alternative means of
acquiring knowledge that might be difficult, costly or (perhaps)
impossible to acquire via other means. Although this is clearly



not the place to undertake a detailed analysis of the situations
in which social learning is appropriate, we suspect that it
is the nature of the target knowledge that determines the
suitability of social learning approaches. In particular, we
suggest that Internet-mediated social learning is perhaps best
suited to the acquisition of knowledge that is tacit (i.e.,
difficult to verbalize), experiential (i.e., derived from experience
and training), and socially-entrenched (i.e., socially-acquired
and socially-manifested). The knowledge associated with the
aforementioned ARV case possesses all these features. Such
knowledge is, for the most part, tacit and therefore hard to
express (at least in linguistic form). It is also knowledge that
is acquired as a result of extensive experience and training
and therefore qualifies as a form of experiential knowledge.
Finally, it is a form of knowledge that is socially entrenched.
This particular feature is difficult to describe in summary form,
but it is perhaps most easily thought of as a form of knowledge
that depends on the social environment for its acquisition or
expression. When it comes to driving-related knowledge, for
example, what we confront is a body of knowledge that is
often tied to the interactions between individual drivers. Such
knowledge is not the sort of knowledge that can be (easily)
expressed independently of other social agents, and it is thus
not the sort of knowledge that can be acquired (in a knowledge
engineering sense, at least) without the support of a suitably
rich social environment. It is this ‘social’ aspect that is perhaps
most important when it comes to social learning. Tacit and
experiential knowledge obviously present specific challenges to
knowledge engineers; however, they are not beyond the reach
of contemporary knowledge elicitation techniques (see [53]).
Socially-entrenched knowledge is somewhat different, however,
often requiring the observation and analysis of large-scale social
interactions. It is in this sense, perhaps, that we can begin to
understand the significance of the Internet from a knowledge
engineering perspective [59]. By affording access to the human
social environment, the Internet functions as a form of social
observatory, enabling machines to prospect for epistemic gold
in terrains that were previously beyond their reach.

B. Active Learning

We have seen how the Internet provides an unprecedented
form of contact with the human social environment, opening
up an array of opportunities for AI systems to observe and
monitor human behavior. And we have seen how such forms
of contact provide the basis for at least one form of machine
learning. There is, however, a risk associated with this idea of
the Internet functioning as a form of social observatory. The
risk is that we lose sight of the way in which AI systems are
able to play an active role in shaping the course of their own
(socially-scaffolded) cognitive development. When we view the
Internet as a form of observatory, there is a danger that we
see machines as merely passive observers of the human social
realm. This is, we suggest, a highly impoverished view of the
learning opportunities made available by the Internet.

There is, however, no reason why we should restrict
ourselves to this purely passive view of machine learning.
There are a number of ways in which AI systems can play a
more active role in socially-mediated learning processes. One
example of this comes from studies into so-called citizen science
systems [47]. One of the challenges confronting such systems
is the need to ensure the continued engagement of the human

community in the face of the human proclivity for boredom
and distraction. A number of studies have attempted to address
this problem by developing statistical models that predict the
likelihood of user disengagement [60], and such models can
be used to implement an array of intervention strategies that
seek to sustain human interest [61][62]. As noted by Mao et
al. [60]:

The ability to predict forthcoming disengagement
of individual workers would allow systems to make
targeted interventions, such as providing especially
interesting tasks to workers at risk of becoming bored,
directing support to struggling new workers, helping
with the timing of special auxiliary materials or
rewards, and encouraging workers to return in the
long run. (p. 1)

Needless to say, the ability to maintain user interest in a task
is a relatively weak example of a machine playing an active
role in socially-mediated learning. A better example comes
from research into what is called active learning [63][64].
Active learning is a form of machine learning in which a
machine learning system exerts some control over the learning
process, actively structuring its training experiences in a manner
that yields the best learning outcome. Such forms of control
have been shown to yield a number of benefits. For example,
active learning has been shown to improve the efficiency of the
learning process by reducing the number of training examples
that are required to reach near-optimal levels of performance
on an image processing task [65].

For the most part, active learning involves the adaptive
selection and sequencing of specific training experiences. In
the context of an image processing task, for example, an
active learning system may decide what images will be the
focus of learning efforts, as well as the order in which the
images will be processed. Such decisions are typically informed
by routines that estimate the optimality of different response
options relative to the system’s current state, previous learning
experiences, and overall learning objectives. In this sense, active
learning systems can be seen to implement something akin to a
‘metacognitive’ ability, with one form of ‘cognitive’ processing
(i.e., that associated with optimality assessments) influencing
the behavior of other parts of the cognitive economy (e.g., the
shape of specific learning routines).

A good example of active learning in an Internet context is
provided by Barrington et al. [66]. Barrington et al. describe
the use of an online game, called Herd It, in which groups of
human individuals are required to annotate a musical resource
with descriptive tags. These annotations are used to train a
supervised machine learning system that ultimately aims to
perform the annotation task independently of the human agents.
All of this is broadly in line with the general shape of machine
learning; but what makes Barrington et al.’s system of particular
interest is the way in which the machine shapes the course
of its own learning by actively selecting the resources to be
annotated by human players. This is important, because it gives
the machine an opportunity to select those forms of feedback
that are likely to be of greatest value relative to its subsequent
‘cognitive’ development. In the words of Barrington et al. [66],
“the machine learning system actively directs the annotation
games to collect new data that will most benefit future model
iterations” (p. 6411).



A consideration of active learning thus expands our under-
standing of the forms of contact that the Internet provides with
the human social environment. Rather than seeing the Internet
solely as a form of social observatory—one that permits a
largely passive form of observational contact with humanity—
we can now entertain a more active (and interactive) view of the
Internet. On this view, the Internet provides machines with an
opportunity to influence human behavior, altering the nature of
the information flows that underpin the emergence of specific
forms of cognitive proficiency.

C. Language Learning
The advent of the Internet (and especially the Web) has led

to a burgeoning of research interest into all things linguistic.
Such interest is evidenced by research into Natural Language
Processing (NLP) (e.g., [67]), information extraction [68], and
sentiment analysis [69]. Other research efforts aim to develop
various forms of language-enabled agents, i.e., computational
agents that are able to exhibit proficiency in the use of natural
language expressions. Work in this area includes research into
so-called social bots [70], chatbots [71] and conversational
agents [72].

The reason for this renewed interest in language-related
technologies is, at least in part, due to the wealth of linguistic
content that is available in the online realm. Such content
provides us with a substantive body of linguistic data that can
be used to inform large-scale analytic efforts. It should also be
clear that the Internet has transformed the incentives that drive
research and development in this area—consider, for example,
the use of Twitter feeds as a means of predicting (and perhaps
influencing!) the outcome of political elections [73]. The upshot
is that language learning has become an important focus of
attention for the machine learning community.

How does this renewed interest in linguistic analysis impact
the present discussion on machine intelligence? The most
obvious answer to this question is that machines will become
increasingly proficient in understanding human language, and
as a result of this understanding, they will be better placed to
exploit our linguaform contributions to the online realm (e.g.,
they will have an improved ability to distil information and
knowledge from resources such as Wikipedia, Twitter, Facebook
and so on). It should also be clear that enhancements in
linguistic proficiency often go hand-in-hand with improvements
in communicative ability. There can be little doubt that such
communicative abilities play an important role in extending
the cognitive reach of an agent community. Indeed, we might
be inclined to view communication as a form of networking
capability that enables agents to ‘connect’ with an array of
cognitively-potent resources. This applies as much to human
agents as it does to their synthetic counterparts. As noted
by Merlin Donald [74], when it comes to human language,
“[i]ndividuals in possession of reading, writing, and other
visuographic skills...become somewhat like computers with
networking capabilities; they are equipped to interface, to plug
into whatever network becomes available” (p. 311). Linguistic
competence can therefore be seen to work in concert with
other forms of scaffolded development, enabling machines to
distil knowledge from online textual sources and providing the
basis for communicative exchanges with human agents. Such
capacities are likely to be of crucial importance when it comes
to the social scaffolding of machine intelligence.

Communication is no doubt important when it comes to the
ability of machines to press maximal cognitive benefit from
the human social environment. But there are other ways to
think about the cognitive significance of language. Of particular
interest is what is sometimes called the supracommunicative
view of language function [75][76]. The general idea, in this
case, is that language plays a role in enhancing, transforming,
or otherwise altering the cognitive capabilities of the language-
wielding agent. There are a number of ways of unpacking
this claim; for present purposes, however, we will limit our
attention to three (not altogether distinct) manifestations of the
supracommunicative view. These are the transformative, the
augmentative and the configurative/programmatic views.

The transformative view derives from the work of the
philosopher, Daniel Dennett [77]. Dennett suggests that our
ontogenetic immersion in a linguistic environment contributes
to an effective reorganization of the human cognitive economy,
yielding a shift from parallel processing into something that
more closely resembles the information processing profile of
a conventional (symbol-manipulating) computational machine.
Interestingly, Dennett proposes that some of the most distinctive
features of human cognition (including human consciousness)
emerge as a result of our attempts to get to grips with the
linguistic domain. Inasmuch as we accept these claims, it
should be clear that a simple communicative view of language
is unlikely to do justice to the potential impact of the Internet on
future forms of machine intelligence: By immersing intelligent
systems in a linguistically-rich environment, and by forcing
such systems to assimilate linguaform representations deep
into their cognitive processing routines, we potentially endow
machines with the sorts of abilities and insights that only us
language-wielding human agents are able to grasp.

Another take on the cognitive role of language comes in
the form of the augmentative view. The most vocal proponent
of this view is Andy Clark [75][76][78]. Clark see language
as a particularly potent form of socially-derived cognitive
scaffolding that performs a variety of cognition-enhancing roles:

Embodied agents encounter language first and fore-
most as new layers of material structure in an already
complex world. They also come to produce such
structures for themselves, not just for communicative
effect but as parts of self-stimulating cycles that
scaffold their own behaviour. These layers of structure
play a variety of cognition-enhancing roles. They
act as new, perceptually simple targets that augment
the learning environment, they mediate recall and
help distribute attention, they provide a key resource
for freezing and inspecting complex thoughts and
ideas, and they seem fit to participate in truly hybrid
representational ensembles. All these benefits are
available both ‘online’ (in the presence of written
words on a page, or sounds in the air) and then
‘offline’ (thanks to covert self-stimulating cycles that
engage much of the same machinery used in the
ecologically primary case). [79, p. 373]

Empirical support for the augmentative view comes from a
variety of quarters [39][80][81]. In studies with human subjects,
language has been shown to play a productive role in category
learning [39][81], and such effects have also been observed in
computer simulations, with linguistic labels supporting category



learning in artificial neural networks [82][83]. Exposure to a
linguistic environment also appears to bolster the cognitive
performance of certain non-human animal species, such as
chimpanzees [84] and parrots [85]. Although these studies are
often seen as failures from a language learning perspective
(no one doubts, for instance, that the animals in these studies
failed to acquire human-level language abilities), the studies
are nevertheless remarkable in demonstrating that even minimal
forms of linguistic competence are able to augment the cognitive
profile of such animals, and they do so in ways that are
reminiscent of human-level cognitive achievements [84].

A final way to unpack the supracommuncative view of
language is to emphasize the way in which language can be used
to configure and control a set of cognitively-relevant resources.
This is what we will call the configurative/programmatic view
of language. Perhaps the most explicit expression of the idea
behind this view is provided by Lupyan and Bergen [81].
They see language as a tool or control system that can be
used to ‘program’ the mind. In the case of human minds, for
example, Lupyan and Bergen [81] highlight the ways in which
linguistic stimuli can be used to shape aspects of the human
cognitive economy, presumably by altering the dynamics of
neural processing. Exposure to linguistic stimuli has thus been
shown to alter certain forms of perceptual processing, boosting
the extent to which previously unseen objects enter visual
awareness [86]. Linguistic cues can also be used to activate
and reactivate certain forms of mental content. The activation of
visual images, for example, typically depends on visual input.
With language, however, we are able to exert control over our
imaginative faculties. A mental image of the Colosseum, for
example, can be evoked simply by exposing our minds to the
word “Colosseum” (see [39]).

To some extent the configurative/programmatic view bears
much in common with the transformative and augmentative
views of language. Clark, for example, has often appealed
to the idea of language as a tool that helps to tame the
restive information processing dynamics of the biological
brain. “Encounters with words and with structured linguistic
encodings,” he suggests, “act so as to anchor and discipline
intrinsically fluid and context-sensitive modes of thought and
reason” [87, p. 263]. A key difference between the augmentative
and configurative/programmatic views emerges in respect of
the nature of the resources that are controlled by linguistic
stimuli. In the case of the configurative/programmatic view, it
is not just our own minds that are controlled via language, it is
also the minds of others. And in shaping the minds of others,
we are able to exert some degree of control over the social
environment:

We can sculpt the minds of others into arbitrary
configurations through a set of instructions, without
having to go through laborious trial-and-error learning.
We can cause someone to imagine something, to recall
a memory, to do (or not do) something. [81, p. 409]

The result is a view of language as a form of generic
control system, one that can be used to configure (and thereby
shape the behavior of) a variety of disparate resources. When
applied to the social domain, the configurative/programmatic
view helps us see language as on a par with physical action,
in that it can be used to intervene in the social environment
(just as physical actions can be used to alter the structure of

the physical environment). This is an image that dovetails with
the earlier discussion of active learning (see Section V-B). For
in using language to manipulate the minds of others, there
can be little doubt that we are in possession of a tool for
structuring the nature of our contact with the human social
world. In this sense, language affords a degree of control over
socially-scaffolded forms of development.

The communicative, transformative, augmentative and con-
figurative/programmatic views thus provide us with a complex
picture of the cognitive impact of language. In directing their
learning efforts to the linguistic realm, machines are potentially
poised to exploit some of the cognitive virtues of language.
Such virtues are perhaps most easily understood with respect
to the augmentative and transformative views; however, in
developing linguistic competence, we should not forget that
language also influences the nature of the cognitive contact that
machines have with the human social environment, opening
up new arenas for scaffolded development (the communicative
view) and providing new opportunities for machines to shape
the structure of their learning experiences. Inasmuch as we
aspire to build machines that emulate the performance profile
of the human cognitive system, language learning thus looks to
be of crucial importance. It may indeed be the case that human-
level cognizing is inextricably linked to language, and that an
ability to emulate human cognition is predicated on an ability
to negotiate the linguistic domain. Something along these lines
is, in fact, suggested by Mirolli and Parisi [39]. Commenting
on the role of language in the development of robotic systems,
they suggest that it “may be impossible to develop a human-like
cognitive robotics without endowing robots with the capacity
of using language for themselves as humans do” (p. 301).

D. Predictive Learning
According to an increasingly popular theory in theoretical

neuroscience, the biological brain is a hierarchically-organized
system in which higher-level neural regions are engaged in
a continuous effort to the predict the activity of lower-level
neural regions [88][89]. This model—which we will dub
the predictive processing model—has proved attractive for a
variety of reasons. For example, it provides an explanation
for reciprocal connectivity between anatomical brain regions,
and it also promises a unified account of perception, action
and cognition [89][90]. The model has also proved attractive
with respect to the recent efflorescence of research into deep
learning [91]. Deep learning systems thus incorporate some of
the features of the predictive processing model, and this may
account for their superior performance in a number of task
domains.

The kind of learning implemented by the predictive pro-
cessing model of brain function is perhaps best characterized
as predictive learning. It is a form of learning in which higher-
levels of the predictive processing hierarchy seek to predict the
activity of lower levels. In the brain, this learning is assumed to
be driven by prediction error, reflecting the mismatch between
predicted and actual patterns of brain activity. In essence, the
goal of predictive learning is to minimize the global prediction
error that is generated by the biological brain as part of its
attempt to predict what is in effect its own activity. Given
that such activity is ultimately tied to the external environment
(via the receipt of sensory information), predictive learning
leads to structural changes that reflect the brain’s attempt to



secure a predictive grasp of the environment in which it is
embedded. This is important, for it is believed that one of
the outcomes of predictive learning is the establishment of
a generative model that reflects the causal structure of the
local learning environment. “A generative model,” Clark [89]
suggests, “...aims to capture the statistical structure of some
set of observed inputs by inferring a causal matrix able to
give rise to that very structure” (p. 41). It is in this sense
that predictive learning is sometimes seen to yield models that
embody the causal structure of mechanisms that give rise to
bodies of sensory information:

In brief, biological systems can distil structural
regularities from environmental fluctuations (like
changing concentrations of chemical attractants or
sensory signals) and embody them in their form
and internal dynamics. In essence, they become
models of causal structure in their local environment,
enabling them to predict what will happen next and
counter surprising violations of those predictions. [92,
p. 2101]

It is here that we begin to creep up on a novel, albeit
contentious, proposal regarding the role of the Internet in
supporting the emergence of advanced forms of machine
intelligence. In short, the idea is that in the attempt to form a
generative model of data that derives from the human social
environment, a hierarchically-organized predictive processing
system may come to acquire a ‘deep understanding’ of human
behavior at both the individual and collective (social) levels.
This ‘deep understanding’ is reflected in the way in which
a predictive processing system comes to embody the causal
structure of the social domain. A generative model of the
human social environment can thus be seen to lead to a deep
understanding of the causal processes that govern the shape of
human behavior, just as the operation of brain-based predictive
processing regimes are deemed to yield a deep understanding
of the causal processes that govern the structure of incoming
sensory information [90]. A good probabilistic generative model
for individual human behavior (or larger-scale patterns of social
flux) would therefore seek to capture the ways that patterns
of human behavior are generated by an inferred nexus of
interacting distal causes.

This idea is suggestive, for it may help to shed light on the
mechanisms that underlie various forms of social intelligence.
When it comes to the realms of individual human behavior, for
example, the notion of acquired generative models may help
us understand the basis for folk psychological characterizations
of the behavior of both ourselves and others. Our conventional
approach to explaining human behavior in terms of beliefs,
hopes, fears, desires and dreams may thus reflect nothing more
than our attempt to gain a predictively- and explanatory-potent
toehold on the social realm, with human psychological states
being ascribed to individual agents as part of the brain’s attempt
to make sense of complex bodies of social data. Such a view
may provide insight into some of the most mysterious elements
of our mental lives, including that ever-elusive phenomenon
we call conscious experience. Perhaps, for example, we are
aware of ourselves as psychological agents precisely because
we model our own behavior in the way we model others. If
true, the result is a view of human consciousness that appeals
to the way in which the shape of our own mental lives owes
much to the structure of the social environment in which we

are embedded. In essence, the idea is that we should understand
human consciousness as a form of socially-scaffolded cognition.

Echoes of this sort of view can, in fact, be found in the
works of Lev Vygotsky, one of the pioneers of scaffolded
cognition research:

The mechanism of social behavior and the mechanism
of consciousness are the same. We are aware of
ourselves in that we are aware of others; and in an
analogous manner, we are aware of others because
in our relationship to ourselves we are the same as
others in their relationship to us. [93, p. 29]

The view is also evident in work of a more recent nature.
Graziano and Kastner [94], for example, describe a theoretical
account of self-awareness that is rooted in an appeal to socially-
oriented predictive processes:

In the present hypothesis, the human brain evolved
mechanisms for social perception, a type of per-
ception that allows for predictive modeling of the
behavior of complex, brain-controlled agents. There
is no assumption here about whether perception
of others or perception of oneself emerged first.
Presumably they evolved at the same time. Whether
social perception is applied to oneself or to someone
else, it serves the adaptive function of a prediction
engine for human behavior. [94, p. 109]

Inasmuch as such accounts provide insight into the forces
and factors that give rise to human conscious experience,
they may help to reveal the significance of socially-oriented
predictive learning to the creation of conscious machines.

This is, to be sure, a grand claim, and no doubt many issues
need to be resolved before the idea can be taken seriously. One
of these relates to the nature of the informational contact that
machines have with the human social environment. Do the
digital traces provided by the online realm provide us with a
sufficiently rich and detailed representation of the dynamical
profile of human behavior, one that is apt to yield (via predictive
learning) a generative model that traces the causal contours of
human behavior at both the individual and collective levels? The
answer to this question is unclear at the present time, although it
should be noted that the Internet plays an increasingly important
role in a variety of human activities, and it is thus poised to
provide ever-more detailed insights into the shape of human
behavior. Crucially, the success of some predictive analytics
platforms already attests to the predictive potential of at least
some forms of online data. New predictive apps, such as Google
Now, for example, are able to make predictions based on the
analysis of various data sources, and they do so in a way that
is sometimes seen to belie an uncanny knowledge of their user
base.

This is not to say that the view of the human social
environment as provided by the Internet will be exactly the
same as that enjoyed by a human individual. There are
clearly important differences in the kind of information that
is accessible to an online machine learner as opposed to the
information that is made available to a human observer of the
social realm. It is not clear, however, that such differences
should always be seen as placing machine-based systems at
a disadvantage. Consider, for instance, the way in which the
Internet affords a panoptic view of social processes that operate



at a variety of social scales (e.g., at the level of teams, groups,
organizations, communities and societies). The application of
predictive learning to such bodies of social data may give
rise to generative models that embody the causal structure
of social mechanisms (i.e., the mechanisms that govern the
behavior of social systems). In essence, we suggest that in
the attempt to secure a predictive grasp on bodies of social
data, a machine learning system could be forced to approach
a social system in much the same way that it approaches
an individual human agent, yielding a generative model that
captures some of the hidden causal forces that operate (perhaps)
exclusively at the social or societal level. The result is a rather
unique vision of machine intelligence. It is a vision in which
social systems are themselves perceived as psychologically-rich
and complex entities. And it is a vision in which the goal of
learning is to make sense of the social world—to develop a
deep understanding of the various forces and factors that govern
the flux of social data. A social machine, it seems, is not just a
machine that is situated or embedded within society (although
that is indeed the case). Neither is it simply a machine whose
‘mind’ is, in some sense, a product of society (although that
it is also true). A social machine is a machine that is, we
suggest, poised to develop a novel kind of mind, a mind that
is specifically oriented to the social realm—a mind of society.

Some insight into the potential value of socially-oriented
predictive learning is provided by recent studies using deep
learning techniques. One such study is described by Phan et
al. [95]. They used a combination of computational ontologies
and deep learning techniques to yield a system that generated
predictions of individual human behavior in the health domain.
What is interesting about this study is that by incorporating
structured representations of domain-specific knowledge (in
the form of ontologies) into the learning regime, the resultant
system was able to not only predict human behavior, but also
generate explanations for such behavior. Such results, Phan
et al. [95] suggest, indicate a “deep understanding of...human
behavior determinants” (p. 311).

Another interesting application of deep learning techniques
concerns the attempt by Vondrick et al. [96] to predict human
action sequences from video images. This study is of particular
interest because the training corpus for the deep learning system
consisted of 600 hours of unlabeled video downloaded from
the YouTube website. Vondrick et al.’s study thus exemplifies
one of the ways in which the Internet/Web provides a form
of informational access to the human social environment in
a manner that can be used to support the development of
predictive capabilities. YouTube videos are, of course, uploaded
by human users, and they do not always afford an unfiltered
insight into what we might call ecologically-normal patterns
of human behavior. The step from YouTube to more direct
and real-time observational data streams is, however, a short
one. There is no reason, for example, why the approach of
Vondrick et al. [96] could not be applied to the data provided
by Internet-enabled video recording devices, such as webcams
and CCTV devices.

Finally, consider a study by Lv et al. [97] involving the
use of deep learning methods for the purposes of traffic flow
prediction. This study is interesting for a variety of reasons.
Firstly, Lv et al. remind us of the wealth and diversity of
information that can be used for predictive purposes. This
includes information from “inductive loops, radars, cameras,

mobile Global Positioning System, crowd sourcing, social
media, etc.” (p. 865). A second point of interest concerns
the focus of Lv et al.’s study, which is nicely aligned with the
earlier discussion of social learning (recall the discussion of
the ARV case in Section V-A). This is a useful reminder that
one form of learning (e.g., predictive learning) can be used to
support other forms of learning (e.g., social learning). Finally,
note that the target of Lv et al.’s [97] study is a ‘collective
system’ comprised of multiple elements (i.e., vehicles), each
of which is controlled by a human agent. This is, as such, a
nice example of the attempt to model the behavioral profile
of a particular form of ‘social system’. In this respect, Lv et
al.’s study provides some insight into the sorts of approaches
that might be relevant to the acquisition of socially-oriented
generative models.

E. Incremental Learning
The notion of socially-scaffolded cognition encourages us

to take a developmental perspective with respect to machine
intelligence. In particular, we are encouraged to see machine-
based cognitive capabilities as emerging from a developmental
matrix that includes (among other things) the human social
environment. In considering the opportunities for socially-
scaffolded development, however, it is easy to overlook the
fact that the cognitive wherewithal of human infants is not the
same as their adult counterparts. It is here that we encounter
a productive point of contact with work that shows how
maturational shifts in cognitive, sensory and motor capabilities
may be of crucial relevance to the emergence of advanced
forms of cognitive competence [98]–[103].

The idea that ‘immaturity’ may be of adaptive value with
regard to the ontogenetic emergence of certain capabilities was
first discussed by Turkewitz and Kenny [104]. According to
their hypothesis, immaturity alters the kind of information a
learning system can process, thereby altering what is sometimes
called the ‘effective’ structure of the learning environment.
During the initial stages of development, the complexity of
the learning environment is reduced as a result of the relative
immaturity of sensorimotor systems. As development proceeds,
however, maturational processes lead to the progressive attenu-
ation of initial processing constraints, limitations, and biases,
and this, in turn, leads to an increase in the complexity of the
training data. When all of this is applied to the cognitive domain,
the result is a proposal regarding the role of maturational
parameters in the acquisition of advanced forms of cognitive
competence. According to this proposal, various forms of
‘immaturity’ may be of crucial significance when it comes
to a cognitive system’s ability to achieve the sorts of cognitive
success that mark the end of the developmental process.

What are the implications of this proposal for socially-
scaffolded forms of machine intelligence? Perhaps the best
answer to this question comes from research into a specific
form of machine learning, known as incremental learning [51].
Incremental learning, as defined by Kirby and Hurford [105],
is:

...the idea of some learning-related resource starting at
a low value, which then gradually increases while (but
not necessarily because) the organism matures. Also
essential to incremental learning is the proposition
that the initial low (immature) value of the resource
actually facilitates, or even enables, the early stages



of learning. Later stages of learning are in turn
facilitated, or enabled, by higher-valued settings of
the resource concerned. [105, p. 4]

Some insight into the potential importance of incremental
learning is revealed by a classic study by Jeffrey Elman [99].
Elman sought to determine whether a particular kind of artificial
neural network, called a recurrent neural network, could
acquire a form of grammatical competence characterized by
an ability to learn about verb agreement and clause embedding
in sentences such as: “The girls who the teacher has picked
for the play which will be produced next month practice
every afternoon” [99, p. 4]. As part of the training regime,
the sentences were presented to the network one word at a
time, and the main objective of the network was to predict
the next word in the sentence. As Elman [99] notes, this task
“forces the network to develop internal representations which
encode the relevant grammatical information” (p.5).

Unfortunately, Elman’s initial attempts to get the network
to learn about grammatical structure were in vain. Not only did
the network fail to develop a fully generalizable performance
profile, it also failed to adequately master the data on which it
was trained. As part of the effort to account for these results,
Elman deployed an alternative training regime, one in which the
network was initially presented with examples of very simple
sentences and then progressively exposed to the more complex
ones. The aim was to isolate the precise point at which the
network’s performance broke down—at what level of sentential
complexity would the network prove to be incapable of making
further progress?

The results of this alternative training regime were surpris-
ing. Elman discovered that when presented with staged training
inputs (each increasing in complexity) the network was able to
realize its original training objectives. Indeed, what seemed to
be important to the network’s ultimate ability to learn about
grammatically complex sentences was that its training regime
was structured in such a way that it was able to learn about the
simple cases first. Once the network was proficient in handling
these simple cases, it was then able to deal with the more
complex cases. It was almost as if the network’s success with
the simple cases laid the foundation for subsequent success in
dealing with the more complex cases.

Moving on from this result, Elman explored the effect of a
further manipulation. In this case, rather than impose restrictions
on the sequential complexity of the training inputs, Elman used
an incremental memory solution in which the recurrent feedback
(provided by a layer of context units) was gradually increased
as training progressed. The effect of this manipulation was to
limit the temporal window in which linguistic inputs could
be processed, thereby forcing the network to focus (at least
initially) on the simplest training cases. Then, as the memory
provided by the recurrent units was increased over the course of
training, the network was able to deal with progressively more
complex inputs. The effect of the incremental memory solution
was thus the same as that achieved by the staged input training
case: it promoted an initial under-sampling of the training data
in such a way that the network’s long-term ability to learn
about complex grammatical regularities was enhanced.

As Elman notes, this is an important discovery, because
it may help to shed light on the functional significance of a
developmental progression in neurocognitive resources. Thus,

rather than see the working memory limitations of young
children as a computational shortcoming that needs to be
overcome in order to reveal the functional profile of adult
cognition, Elman’s findings suggest that immature cognitive
capabilities may play an important (and perhaps indispensable)
role in enabling young infant minds to acquire adult forms
of linguistic competence. Commenting on the role of memory
limitations in language learning, Elman states that:

...the early limitations on memory capacity assume
a more positive character. One might have predicted
that the more powerful the network, the greater its
ability to learn a complex domain. However, this
appears not always to be the case. If the domain is of
sufficient complexity, and if there are abundant false
solutions, then the opportunities for failure are great.
What is required is some way to artificially constrain
the solution space to just that region which contains
the true solution. The initial memory limitations fulfil
this role; they act as a filter on the input, and focus
learning on just that subset of facts which lay the
foundation for future success. [99, p. 9–10]

Here, then, is one example where a form of limited or
restricted processing may help an agent achieve success in what
could otherwise prove to be an intractable problem domain.
By imposing a set of constraints on the kinds of information
structures that can be processed, maturational processes can
be seen to support the progressive reshaping of the effective
structure of the linguistic environment, or at least the nature of
the language learning task that confronts the learning system.
Perhaps this insight goes some way toward understanding the
problems that adult humans often experience in learning a
second language [106][107]. In learning a new language, it
might be thought that adults are in a much better position than
young infants. And, at least during the early stages of language
learning, adults do indeed appear to make more progress [100].
Their early successes, however, appear to come at a substantial
cost: as time passes, the young infants quickly overtake the adult
learners and rapidly become proficient in the target language.
In this case, the early constraints in cognitive processing seem
to be playing a productive role in enabling the human infant
to approach the language learning task in the most effective
manner.

Language is not the only domain where developmentally-
significant alterations in maturational parameters have been
studied in a machine learning context. An important source of
information regarding the functional role of early limitations
in the development of advanced cognitive and behavioral
capabilities comes from recent work in developmental and
evolutionary robotics [98][102]. Gómez et al. [98], for ex-
ample, describe an intriguing set of results pertaining to
the development of sensorimotor capabilities in a real-world
robotic system. They report that a developmental profile
characterized by progressive increments in the complexity of
sensory, motor and neurocomputational subsystems results in
a profile of task performance that is superior to that of a
robot in which the relevant maturational processes are disabled.
Commenting on this developmentally-grounded dissociation in
‘adult’ performance profiles, they suggest that:

...rather than being a problem, early morphological
and cognitive limitations effectively decrease the



amount of information that infants have to deal with,
and may lead to an increase in the overall adaptivity
of the organism. [98, p. 119]

More recent studies, again using real-world robots, have
extended these results to the domain of social cognition. Nagai
et al. [108] thus demonstrate that gradual increments in the
spatiotemporal resolution of a robot’s visual system enables it
to discriminate between actions that are generated by itself and
other agents. Immature vision, Nagai et al. [108] suggest, helps
to shape the early perceptual environment of a system in such a
way as to support the subsequent emergence of socially-relevant
capabilities, such as the ability to discriminate the ‘self’ from
others and engage in imitative behavior.

The general lesson to emerge from research on incremental
learning is that early limitations in one or more parameters of
a cognitive system (human or machine) may play a productive
role in enabling that system to deal with the challenges of a
complex (and perhaps otherwise intractable) problem domain.
This seems to be of particular importance when it comes to
the sorts of challenges faced by socially-situated machines. For
such systems must learn to negotiate a highly complex domain,
characterized by linguistic expressions and digital traces of
human behavior. In tackling such domains, it may be necessary
to recapitulate some of the maturational processes that operate
in the case of human cognitive development. We have already
seen how this sort of idea might be applied to the realm
of language learning—recall the work by Elman [99]—and
extensions of this work may be relevant to the attempt to furnish
machines with more advanced natural language processing
abilities (see Section V-C). Incremental learning may also be
important when it comes to the attempt to develop predictive
models of human behavior (see Section V-D) or the attempt to
press maximal cognitive benefit from various forms of social
learning (see Section V-A). In all these cases, the target domain
concerns some aspect of human behavior, and the objective of
the learner is to achieve the sort of competence that enables
them to navigate, explore and negotiate the complexities of the
human social world. In the human case, it looks likely that
issues of development and maturation play a potentially crucial
role in enabling infant minds to develop into fully-fledged
adult cognizers. Inasmuch as this is true, is there any reason to
think that AI systems will be able to bypass a stage of relative
cognitive immaturity? One of the goals of AI is to implement
systems that exhibit the capabilities characteristic of human
adults. But inasmuch as human cognitive capabilities emerge
as the result of maturation and socially-scaffolded development,
is there any reason to think that AI systems can forgo the
equivalent of a larval stage and proceed directly to the end-stage
of the cognitive developmental process? Such an assumption
looks to be particularly precarious if we accept that the human
social environment forms part of a complex developmental
system that drives human forms of mental metamorphosis.

VI. CONCLUSION AND FUTURE WORK

There are good reasons to think that our status as social
animals and our embedding within a social environment are
of crucial importance when it comes to understanding the
distinctive features of the human cognitive system. This is the
case, irrespective of whether our attention is focused on issues
of phylogeny or ontogeny. From a phylogenetic perspective,
the human mind may have evolved to deal with the challenges

and demands of a social environment whose complexity and
variability increased across the course of human evolution.
Similarly, from an ontogenetic perspective, it seems that the
human social environment may have played a crucial role
in shaping the course of cognitive development, enabling a
cognitively altricial human infant to emerge as one of Planet
Earth’s most precocious cognizers. This is, to be sure, a
compelling image. It is an image in which the human mind
is viewed as a product of the human social environment, a
device of our own creation, a socially-manufactured cognitive
machine.

But it is not just our view of human intelligence that stands
to be transformed by this image; it is also our view of machine
intelligence. For inasmuch as we strive to build AI systems in
our own cognitive image—as machines that emulate our own,
species-specific form of intelligence—then it is surely worth
considering the extent to which the human social environment is
poised to play a productive role in yielding the next generation
of intelligent machines.

This is the idea that we have attempted to develop in
the present paper. Our claim is that the Internet provides an
unprecedented form of informational contact with the human
social environment, and that this contact occurs at multiple
levels of social organization, from individual human agents
through to teams, groups, communities, and societies. By virtue
of this contact, the Internet enables AI systems to be the
beneficiaries of various forms of socially-scaffolded cognitive
development. In short, we suggest that the Internet provides
opportunities for the implementation of what we called social
machines, i.e., machines that are able to benefit (in a cognitive
sense) from their contact with humanity. Thus construed, a
social machine is similar to a socially-situated robot [38][41].
The main difference is that a social machine operates in the
online realm, and the limits of its social ecology are thus
co-extensive with the social reach of the Internet.

Needless to say, there are various ways in which the
present work could be extended (an no doubt improved).
One area for future work concerns the kinds of systems that
are able to benefit from their contact with the human social
environment. In particular, it is unclear whether a particular
kind of computational substructure—such as a hierarchically-
organized predictive processing economy—is a prerequisite
for human-like forms of cognitive competence. In addition to
research into machine learning, therefore, future work should
aim to consider the kinds of cognitive architecture that may be
required to support socially-scaffolded development.

Another area of interest concerns the relevance of additional
forms of learning. In addition to the forms of learning discussed
in the present paper (i.e., social, active, language, predictive,
and incremental learning), it may be important to consider
learning mechanisms that bias, direct or promote interest in the
social environment. It seems likely that an ability to benefit
from social-scaffolding, and indeed the status of a system as
a socially-situated agent, may depend on the sensitization of
reward mechanisms to social feedback, or the implementation
of motivational mechanisms that encourage or enable socially-
oriented forms of learning. In this respect, it may be useful
to consider work relating to reinforcement learning, intrinsic
motivation and curiosity-driven learning [109]–[111]. There
is, of course, no reason why these forms of learning (as well
as those discussed in the present paper) should be studied



independently, and there is likely to be considerable merit in
combining different forms of learning within a single system.

A further area of work relates to the application of the
present approach to other kinds of cognition. For the most part,
we have limited our attention to scaffolded cognition. In future
work, it may be useful to extend this analysis to other cognitive
kinds, such as extended, embedded, and embodied cognition.
(See Smart [11][112] for some initial steps in this direction.)

The cognitive significance of the Internet is typically judged
relative to its impacts on human cognition [113][114]. This
is, of course, understandable. It is natural for us to wonder
(and sometimes worry) about the implications of the Internet
for our species, especially when it comes to its effects on our
cognitive capabilities. For such capabilities are the hallmark
of humanity: it is our cognitive profile that sets us apart from
other forms of terrestrial life, and it is such capabilities that
enable us (and only us) to actively shape the course of our
cognitive destiny—to engineer something like the Internet
and then worry about its cognitive consequences. But the
cognitive implications of the Internet do not end at the borders
of the human mind. In creating the Internet, our species
has established a new kind of informational ecology, one
that opens up new opportunities for research into machine
intelligence. In the present paper, we have focused on one
particular opportunity. We have suggested that the Internet
provides an unprecedented form of informational contact with
the human social environment, enabling machines to exploit
opportunities for socially scaffolded cognitive development. It
is through such forms of contact, perhaps, that we will witness
the emergence of a new kind of cognitive machine, a machine
whose mind is as much a product of society as are the human
minds it seeks to emulate.
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