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The Evolution of Cooperation in the
Centipede Game with Finite

Populations*

Rory Smead†‡

The partial cooperation displayed by subjects in the Centipede Game deviates radically
from the predictions of traditional game theory. Even standard, infinite population,
evolutionary settings have failed to provide an explanation for this behavior. However,
recent work in finite population evolutionary models has shown that such settings can
produce radically different results from the standard models. This paper examines the
evolution of partial cooperation in finite populations. The results reveal a new possible
explanation that is not open to the standard models and gives us reason to be cautious
when employing these otherwise helpful idealizations.

1. Introduction. The Centipede Game, first introduced by Rosenthal
(1981), provides a setting where rational self-interest conflicts with socially
optimal cooperative behavior. Two players have to divide an increasing
sum of money; to do this, they take turns choosing between taking the
larger share of the money for themselves or passing the choice to the
other player; every time a player passes on her opportunity the sum
increases. The game ends when a player takes the larger amount of money
or after a set number of turns, in which case the money is divided in a
prearranged manner. It is set up such that if a self-interested player believes
the game will end on the next round, she should take the money and end
it on the current round. Several of the most popular solution concepts in
traditional game theory tell us that we should expect to see absolutely no

*Received January 2007; revised November 2007.

†To contact the author, please write to: Department of Logic and Philosophy of Science,
University of California, 3151 Social Science Plaza A, Irvine, CA 92697-5100; e-mail:
rsmead@uci.edu.

‡I would like to thank Brian Skyrms, Kevin Zollman, Michael McBride, two anon-
ymous referees, and the members of the Social Dynamics Seminar at UCI for their
helpful feedback on this paper. Generous financial support was provided by the School
of Social Sciences at UCI.



158 RORY SMEAD

cooperation (passing) in the Centipede Game. However, experimental re-
sults deviate wildly from these expectations; subjects seem invariably to
exhibit partial (though, not total) cooperation.

Rosenthal (1981) initially argued that we should treat Centipede-like
situations as pair of single person decision problems. And, from a decision-
theoretic standpoint, if each player in the Centipede Game has certain
views about the propensity of the other to deviate from the game-theoretic
predictions, then it will be rational to pass in early rounds (96–97). But
why should each expect the other to deviate from the game-theoretic
solution? We could augment Rosenthal’s analysis with the hypothesis that
humans simply have a natural propensity to cooperate, at least partially,
in situations like the Centipede Game. This leaves us with a puzzle: how
can we explain this propensity?

For such a question, it is natural to turn to evolutionary game theory.
However, the standard evolutionary models do not provide an answer,
yielding the same solution as the traditional game-theoretic concepts and
so do not aid us in explaining the existence of partial cooperation. How-
ever, the standard evolutionary setting assumes an infinite population,
and recent studies into finite population evolutionary dynamics have re-
vealed some important differences between these finite cases and their
infinite counterpart. For instance, Imhof, Fudenberg, and Nowak (2005)
show that stochastic evolution in finite populations need not select for a
strictly dominant strategy. And Taylor et al. (2004) show that this evo-
lutionary dynamic can even select against such strategies in games.12 # 2

I will examine the evolution of partial cooperation in finite populations
using the Moran process (Moran 1962) with frequency-dependent fitness.
Through the use of computer simulations, I find that, in finite populations,
evolutionary paths often ‘get stuck’ in states where the population is
exhibiting partial cooperation rather than the state of no cooperation, as
seen in the infinite setting. This result illustrates a new potential expla-
nation for the evolution of partial cooperation as well as providing a
striking example of how finite population evolutionary models can differ
radically from the traditional models. The frequently used and mathe-
matically useful idealizations of the infinite population setting can lead
us away from possible evolutionary explanations of partial cooperation.
More generally, this suggests that one ought to be cautious when relying
on such idealizations in evolutionary models.

1. The effect Taylor et al. (2004) notice is that since individuals in finite populations
do not interact with themselves, this creates a small degree of anti-correlation between
strategies causing the cross-strategy payoffs to be slightly more important to fitness
than same-strategy payoffs. This means that in some settings, finite populations can
favor spiteful (but dominated) strategies.
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Figure 1. A six-stage Centipede Game.

I will begin by setting out two games of partial cooperation: the Cen-
tipede Game and the Quasi-Centipede Game. In Section 3, I will examine
these games in the standard evolutionary setting using the traditional
replicator dynamic. And, in Section 4, I will explore a model of evolution
in finite populations and the effect of this finite setting on partial
cooperation.

2. The Centipede and Quasi-Centipede Games. As mentioned above, the
Centipede Game is a simple case where self-interest can interfere with
more efficient, cooperative behavior. Imagine two players sitting at a table
with a sum of money a between them, say $2. They take turns choosing
either to pass (p) or to take a significant portion, leaving the rest to the
other player (t). This continues for a fixed, and known, number of rounds
or until someone takes the money. If a player chooses to pass, the sum
increases by $2; if a player chooses to take the money, that player receives

and the other player receives the remaining moneyb p 1/2(a) � $1
( ). If no player chooses to take the money, it is divided as if thea � b

player who would have gone next takes the money. The payoffs are such
that if the game ends immediately after a player passes, then that player
would have been better off taking the money and ending the game.

In the classical example, the game continues for one hundred rounds;
hence the name. However, any game with the basic structure and payoff
ordering is a Centipede Game. Figure 1 shows a six-stage version of this
game.

This can be easily generalized. Let the strategy sets be S p1

and , where N is the length{1, 3, 5, . . . , N � 1} S p {2, 4, 6, . . . , N � 1}2

of the Centipede Game.2 And, let denote the strategy chosen bys � Si i

player i; this number corresponds to the round on which the player decides
to defect (if , then player i passes at every stage). Supposes p N � 1i

2. This is actually a reduced strategy set relative to the traditional Centipede Game.
Each strategy should include what the player would choose at every choice point,
whether or not that choice point is actually reached. However, for our purposes in this
paper this reduced strategy set will suffice.
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; then the utility function for player i is such thats p s � 1 p (s �i j i i

. In other words, if my opponent is going to defect on the2, s ) ! p (s , s )j i i j

next round, I am better off defecting now rather than passing. The payoff
functions from the above six-stage Centipede Game can be generalized
as

s � 1 if s ≤ s1 1 2p (s , s ) p ,1 1 2 {s � 1 if s 1 s2 1 2

s � 1 if s ≤ s1 1 2p (s , s ) p .2 2 1 {s � 1 if s 1 s2 1 2

The Centipede Game is often used in game theory courses to introduce
the concepts of backward induction and the iterated elimination of weakly
dominated strategies. Suppose player 2 were to find herself at the last stage
in the Centipede Game above; naturally she would prefer to take the
money. But, given that player 2 would take the money at the last stage,
player 1 should take the money on the second-to-last stage and given
player 1’s preference, player 2 should defect on the third-to-last stage.
Iterating this reasoning leads to the conclusion that player 1 should take
the money on the first stage. The unique subgame-perfect equilibrium of
this game is for each player to opt out at any chance she gets. Every Nash
equilibrium (Nash 1950) in this game will share the feature of first-stage
defection with the subgame-perfect equilibrium.3 It is this uniquely ‘ra-
tional’ (and unintuitive) solution that traditional game-theoretic wisdom
tells us to expect.

Given that the payoffs for a few rounds of cooperation (passing) are
so much better than just taking the money immediately, it seems unlikely
that people would actually conform to the ‘rational’ solution. The coun-
terintuitive nature of the backwards induction solution has lead to debate
over its rationality.4 Furthermore, in experimental settings, subjects do
tend to show some degree of cooperation. McKelvey and Palfrey (1992)
studied the behavior of subjects in both four-stage and six-stage Centipede
Games at varying stakes. They find that subjects display a substantial
amount of cooperation, typically making it more than halfway down the

3. There are actually a large number of Nash equilibria in the Centipede Game. Any
pair of (mixed) strategies where player 1 defects immediately and player 2 would choose
to defect on her first choice frequently enough to make player 1’s immediate defection
is a best-response will qualify as a Nash equilibrium. However, the only pure-strategy
Nash Equilibria is where and .s p 1 s p 21 2

4. Some papers in this debate include Binmore 1994, 1996 and Aumann 1995, 1996.
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centipede before one takes the money (808).5 They also found that higher
stakes slightly lowered the degree of cooperation, but by a relatively small
amount.6

The fact that people regularly deviate from the predictions of traditional
game theory has led many scholars to look for alternative explanations.
For instance, McKelvey and Palfrey show that if we assume that some
individuals are altruists (unconditional passers), then it may be within the
scope of ‘rational’ self-interest to pass in early rounds. McKelvey and
Palfrey also look at models with errors in action or belief and show that
partial cooperation could also arise in these settings. Nagel and Tang
(1998) look to various models of learning with the hope of providing some
insight. They find that a model of simple reinforcement learning does
fairly well in predicting partial cooperation. These explanations may cer-
tainly be part of the answer, but there may be alternative (or supplemen-
tary) explanations which do not rely on errors, preexistence of altruism,
or specific learning mechanisms. Organisms of all kinds have solved co-
operation problems, of which Centipede Games are a specific kind, and
it would be worthwhile to investigate how partial cooperation could evolve
in even the most basic settings. This is the aim of the models presented
below.

For the sake of illustration, the model that will be investigated below
will largely focus on a simultaneous move and symmetric game similar
to the Centipede Game, which I will call a ‘Quasi-Centipede Game’.7 This
game begins with a sum of money (say $4) between the players and at
each round they simultaneously declare to ‘take’ or ‘pass’. If both players
choose ‘take’ then they split the money and the game is over. If either
chooses to ‘pass’ the amount of money will increase (at $2 for each ‘pass’

5. In the Centipede Game studied by McKelvey and Palfrey, the payoffs grew expo-
nentially with the pot, doubling every time a player chose to pass rather than by a
fixed amount, as in the game in Figure 1. In the McKelvey and Palfrey game there is
more incentive to cooperate, but choosing to ‘take’ also gives a fixed proportion of
the pot so there is also greater incentive to deviate as well. The results that will be
presented in this paper will also hold for these exponentially increasing Centipedes and
they turn out to be, in some sense, easier for cooperation (see the Appendix). Here we
will focus on the Centipede Game with steady growth in payoff because it presents
the (slightly) harder case for partial cooperation.

6. For a survey of various experimental results on dominance-solvable games like the
Centipede Game see Camerer 2003, 218–236.

7. This modified game simplifies the model and, as will be shown, the qualitative results
will hold for the standard Centipede Game as well, meaning the results here are robust
across different games of similar form. Also, experimental results of subjects playing
a game that is somewhat similar to the one above closely resemble those of the standard
Centipede Game. See Van Huyck, Wildenthal, and Battalio (2002) for these results;
the term ‘Quasi-Centipede’ is used by Camerer (2003).
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TABLE 1. A THREE-STAGE QUASI-CENTIPEDE GAME

s p 02 s p 12 s p 22

s p 01 2, 2 5, 1 5, 1
s p 11 1, 5 4, 4 7, 3
s p 21 1, 5 3, 7 6, 6

action). If one chooses ‘take’ and the other ‘pass’, the taker receives the
majority ($4 more than the other player), leaving the rest to the other
and ending the game. If they both choose ‘pass’ then the sum increases
and they play again. This continues until one or both chooses ‘take’ or
for a finite and known number of rounds, at which point the money is
split equally. As with the standard Centipede Game, we will consider a
restricted strategy set where the player simply decides which round to
choose ‘take’. Table 1 shows a three-stage Quasi-Centipede Game; the
possible strategies are simply the number of rounds that each player
chooses to ‘pass’ before they ‘take’.

The payoff function in this game can easily be generalized to the N-
stage game, here is one example:

2s � 5 if s ! s1 1 2

p (s , s ) p 2s � 2 if s p s ,1 1 2 1 1 2{2s � 1 if s 1 s2 1 2

where is player i’s strategy; the payoff function for player two0 ≤ s ! Ni

is similar. This payoff function will be used in the model examined below.8

To see the relationship between the Centipede Game and Quasi-Centipede
Game, it is helpful to see the Quasi-Centipede Game in the extensive form
(Figure 2). Here represents the number of times the player choosess pi i

or ‘pass’. For the backward induction, begin at the end of the game and
notice that player 2 should choose no matter what player 1 chose, andt2

given that player 2 will choose , player 1 should choose and so on.9t t2 1

Once again, the unique solution for this game is to take the money
immediately, and this solution can be delivered by an iterated elimination
of weakly dominated strategies. But, in some sense, the force of this
solution is even stronger than in the Centipede Game since there is a
unique Nash Equilibrium at . The standard Centipede(s p 0, s p 0)1 2

Game permits some degree of cooperation from player 2 in the equilibria
of the game, since when player 1 chooses ‘take’ right away, player 2 never

8. This formulation of the Quasi-Centipede Game is similar to another game known
as the Traveler’s Dilemma, which has similar solutions and similar empirical results
(Basu 1994; Capra et al. 1999).

9. The Quasi-Centipede Game is somewhat similar to a standard Centipede Game
where the players do not know their position.
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Figure 2. A three-stage Quasi-Centipede Game in extensive form.

has the opportunity to act. In the Quasi-Centipede with the restricted
strategy set above, both players are strictly worse when they deviate from
equilibrium behavior. Furthermore, if models of the Quasi-Centipede
Game yield similar results to the Centipede Game, this can be taken as
an indication that the results are robust across different games that have
similar structures.

3. Evolution in the Centipede Game. For the evolutionary setting, we
imagine an infinite population of players that are ‘hard-wired’ to cooperate
for a certain number of rounds in the Centipede Game. Individuals are
paired randomly to play the game and receive payoffs which function as
the ‘fitness’ of using a particular strategy k. Let represent the0 ≤ x ≤ 1s

frequency of strategy s in the population ( ) and� x p 1 X pss�S

represent the state of the population. The fitness of type ′(s , s , . . .) s �0 1

(the set of individuals who use strategy ) is calculated by′S s

′f (X ) p p(s , s)x .′ �s s
s�S

Let be the average fitness of the population in state X; the distributionvX

of strategies evolves according to the standard replicator dynamic.10 The
differential equation governing the change in frequency of type s is

ẋ p x ( f (X ) � v ).s s s X

In words, types that have higher fitness increase proportionally to their

10. For details on this dynamic, see Hofbauer and Sigmund (1998).
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fitness at the expense of those with lower fitness. The replicator dynamic
is most directly interpreted as a model of biological evolution, but it can
also be interpreted in terms of imitation rather than reproduction and
hence be used to model a form of cultural evolution. For this cultural
interpretation, ‘fitness’ would refer to a propensity for a strategy to be
imitated rather than for an individual of that type to reproduce.

The replicator dynamic does not generally support the elimination of
weakly dominated strategies, a fact that can lead to interesting results.
For instance, Gale, Binmore, and Samuelson (1995) and Skyrms (1996)
show that weakly dominated ‘fair’ strategies can survive in evolutionary
models of the Ultimatum Game. Thus, there may be some hope for prom-
ising results in the Centipede Game using the replicator dynamic. How-
ever, in both the Centipede Game and Quasi-Centipede Game the repli-
cator dynamic yields a single result: a population of first-round defectors.

In the case of the three-stage Quasi-Centipede Game above, it is easy
to see that there will be a unique evolutionary outcome from the replicator
dynamic: everyone plays 0. If we suppose the population consists almost
entirely of type 2, it will be invaded by individuals of type 1 and if the
population consists of almost entirely type 1 then it will be invaded by
individuals of type 0.11 The same result holds for arbitrarily large Quasi-
Centipede Games. Figure 3 shows the global dynamics for a three-stage
Quasi-Centipede Game. It is interesting to note that the dynamics do not
necessarily carry the population directly to the unique equilibrium. In-
stead, the dynamic sometimes seems carry the population through the
stages of an elimination of dominated strategies, first to a predominance
of type 2, then to type 1, and finally to the evolutionary equilibrium at
all type 0.

As seen in Figure 3, some paths of evolution in this three-stage game
come close to a nonequilibrium edge of the simplex. The longer the N-
stage Quasi-Centipede Game, the more likely it is to have an evolutionary
path that gets close to a nonequilibrium edge of the simplex. The reason
for this is that there is no direct route from type to types p k s pi i

(for any ) and so, to evolve the unique solution as men-k � 2 N ≥ k ≥ 2
tioned above, the population must evolve through the stages of backwards
induction.

The evolutionary results for the standard Centipede Game are similar

11. This is under the assumption that every type is represented in the initial population.
The replicator dynamics will then only carry some types to extinction in the limit, a
point that will be important when we turn to finite populations.
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Figure 3. Simplex of a three-stage Quasi-Centipede Game.

to the Quasi-Centipede Game.12 In a sufficiently mixed population, types
that show a high-degree of cooperation initially outperform those that
do not and hence, increase in frequency. Then, those types that exhibit
slightly less cooperation grow at the expense of the more cooperative type;
and this process repeats until the population consists only of first-round
defectors. In general, stable states of the replicator dynamic must also be
Nash equilibria and all Nash equilibria in the Centipede Game have the
property of first-round defection.13 Ponti (2000) shows that first round
defection in the Centipede Game will be the result in a large class of
dynamics that includes the replicator dynamic; proving that these dynam-
ics will eventually carry the population to a state that is ‘outcome equiv-
alent’ to the subgame perfect equilibrium (total first-round defection).

12. The possible types have to be adjusted for the Centipede Game. Specifically, an
individuals strategy must include what the individual should do if in the role of player
1 and what to do if in the role of player 2.

13. Some weakly dominated strategies will survive in small amounts. In a population
of first-round defectors, there is no difference in payoff between strategies with regard
to the action when in the role of player 2. Thus, some strategies which are cooperative
when in the role of player 2 may survive in stable states, but there is always unanimous
first-round defection when in the role of player 1.
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Ponti also notes that populations often exhibit ‘unlearning’ of the solution
(increasing in cooperation) before converging on first-round defection and
he shows that as the length of the Centipede increases, the more likely
populations are to exhibit ‘unlearning’.

At this point we can conclude that the standard evolutionary models
(the replicator dynamic) cannot alone account for the evolution of partial
cooperation. Even mindless replicators can evolve the backwards-induc-
tion solution to the Centipede Game. However, if we include some per-
turbation in the dynamics (which could be interpreted as either mutation
in the case of biological evolution or experimentation in the case of cul-
tural evolution), we no longer see the first-round defection result. In ad-
dition to his results mentioned above, Ponti also shows that with enough
perturbation in the dynamic, a population can exhibit cycles between
higher and lower degrees of cooperation.

The cyclic dynamical picture given by mutation in the Centipede Game
provides one potential explanation for the existence and evolution of
partial cooperation. In the following section I will examine a model that
will provide another possible evolutionary explanation that does not rely
on mutation.

4. Partial Cooperation in Finite Populations. In recent years, Taylor et al.
(2004) have developed a stochastic model of evolution in finite populations
by incorporating frequency-dependent fitness into the Moran process
(Moran 1962).14 Taylor et al. have shown that this process can deliver
radically different results than the standard replicator dynamic.15 I will
use the Moran process to model the evolution of partial cooperation in
the Centipede and Quasi-Centipede Games. The frequency-dependent
Moran process provides a finite population evolutionary setting similar
in nature to the standard evolutionary setting, which allows us to examine,
in particular, the assumption of infinite populations. I find that without
any mutation (or a very small amount), resulting populations will regu-
larly exhibit partial cooperation.

On this model, the population consists of M individuals. Let tx ≤ Ms

denote the number of individuals of type s at time t; then .t� x p Mss�S

14. This process has also been studied in a series of papers by Fudenberg et al. (2004,
2006) and has been applied to the repeated prisoners dilemma by Nowak et al. (2005).

15. Others in evolutionary game theory have also explored different finite population
models with interesting philosophical results. For instance, Grim, Mar, and Denis
(1998), Alexander and Skyrms (1999), Alexander (2000), Skyrms (2004), Vanderschraaf
and Alexander (2005), and Zollman (2005) have explored the evolution of finite pop-
ulation models in local interaction settings. However, the model that will be investigated
here is an unstructured population with a different dynamic.
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And let represent the state of the population at time t.t tX p (x , x , . . .)t s s1 2

The fitness to a given type at time t in the population is′s

t ′ ′ t ′ tf (X ) p p(s , s )(x � 1) � p(s , s)x .′ ′ �s t s s′s(s

The evolution is stochastic. At each step, one individual is chosen to
reproduce with a probability proportional to her fitness and produces one
identical offspring. Then, another individual is selected randomly to die.
The probability for reproduction of type at time t is′s

t tx f′ ′s stR (X ) p ,′s t t t�x fs s
s

and the probability for a death of a type s is simply . We can alsotx /Ms

talk of selection favoring certain strategies at certain states of the pop-
ulation, we can say that selection favors in state if tx X R (X ) 1s t s t

for all .t ′R (X ) s ( s′s t

As the population size becomes very large ( ) and time is appro-M r �
priately adjusted, this process is similar, though not identical, to the stan-
dard replicator dynamic (Traulsen, Claussen, and Hauert 2005).16 But for
finite populations, a population governed by the Moran process is effec-
tively a very large finite-state Markov chain with as many absorbing states
as there are types in the population. Once for some s, that typetx p Ms

has completely overtaken the population and becomes the only type that
can reproduce ( ); hence the population stays in this state. Also, iftR p 1s

the frequency of some type s drops to , then it cannot increaset tx x p 0s s

because , and so extinction of a type is possible on this dynamic.tR p 0s

As with the replicator dynamic, the Moran process can be interpreted as
biological evolution in terms of reproduction (with a population at the
carrying capacity of the environment) or as cultural evolution in terms
of imitative behavior. I will intentionally remain ambiguous with respect
to the interpretation since the target here is traditional idealizations and
generic potential explanations rather than an explanation for a specific
case of partial cooperation. Each ‘generation’ of the Moran process is

16. Traulsen et al. (2005) give a detailed analysis of the limiting behavior of the Moran
process and how it compares to the replicator dynamic, showing that in the limit the
Moran process is identical to the adjusted replicator dynamic from Maynard Smith
1982.
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just a single change in an individual, either through death and reproduc-
tion or though imitation.17

We can now ask: what happens to partial cooperation in this evolu-
tionary setting of finite populations? Moving to finite populations com-
plicates the mathematics significantly, making analytical results difficult
to achieve. Consequently, the one very effective way to investigate these
models is through computer simulations. The advantage is a more realistic
evolutionary setting, with respect to population sizes, but we are limited
to examining the numerical results of specific models rather than the
generality of mathematical proofs.

4.1. The Quasi-Centipede in Finite Populations. To answer this ques-
tion, I will first focus on the Quasi-Centipede Game and then turn to the
Centipede Game. I will assume that the Quasi-Centipede Game being
played is the same as the generalized one mentioned above and will employ
the use of simulations. Just as in the traditional evolutionary setting, we
will not necessarily get a direct trajectory to the evolutionary equilibrium;
instead, an appropriately mixed population will take a round-about path
similar to some shown in Figure 3. However, under the Moran process
we see several differences. First, the dynamic is discrete-time rather than
continuous. Second, the step-direction is stochastic, only approximating
the force of selection on average. Third, as a result of these differences,
it is almost always possible for a type to go extinct in this setting.

The fact that extinction is possible and that the dynamic is stochastic
can now cause ‘breaks’ in the evolutionary chain that follows the iterated
elimination of dominated strategies. This can result in the population
being absorbed into a state where every member is playing a partially
cooperative strategy. Recall Figure 3; in this setting we can imagine an
evolutionary path close to the Type 2–Type 1 edge of the simplex where
Type 0 happens to go extinct.18 In this case, the population will most
likely be absorbed into a state where every individual is playing Type 1
(since Type 1 out performs Type 2 in this population). If extinction of
strategies in the Quasi-Centipede Game is possible, then a population can
‘get stuck’ along its evolutionary path and end up playing a partially
cooperative strategy. But, how likely is such an outcome?

17. There are other finite population dynamics that may be of interest as well; for the
purposes of this paper I focus only on the Moran process because it has already
generated results in other areas of game theory (Fudenberg et al. 2004, 2006; Nowak
et al. 2005) and it retains many features of the replicator dynamic.

18. For instance, there could be only one Type 0 in a population of Type 1’s and 2’s;
Type 1 could be chosen to reproduce and the lone Type 0 could be chosen to die
leaving .x p 00
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The answer to this question depends on many factors: the size of the
population, the length of the Quasi-Centipede, and the initial state of the
population. I will begin with simulations in an example case. Suppose

and suppose that each individual is given a random strategy,M p 1,000
with equal probability for each strategy (equal initial weights); for a 10-
stage Centipede Game, simulations show an overwhelming likelihood of
resulting populations ending in an absorbing state with a substantial de-
gree of cooperation. In 1,000 trials, there was not a single case of the
unique equilibrium seen in the traditional setting and most ended in partial
cooperation over the half-way point in the Centipede in an average of
just over 150,000 generations (iterations of the Moran process).

One may object that this method of assigning starting strategies is overly
biased toward the center of the population’s state-space. This can be
remedied by selecting a random point on the simplex of strategies and
assigning the weights accordingly (random initial weights).19 This modi-
fication causes more variance in terms of which absorbing state is reached,
but we still observe partial cooperation with very high frequency. Figure
4 gives a summary of the results for 1,000 trials under both styles of
random initial conditions. In each case, we can see that it is very likely
(probability greater than 0.99) that an evolving population will become
absorbed into a state where every member exhibits partial cooperation.

As mentioned above, there are other key variables that affect the re-
sulting degree of cooperation in a population: the length of the Centipede
and the size of the population.20 To gauge the degree of cooperation across
different games we can assign it a number in which is determined[0, 1]
by the number of ‘passes’ by members of a population divided by the
number of possible ‘passes’ in the game; call this the ‘level of cooperation’.
If we increase the population size M, then the average level of cooperation
seen in the resulting population decreases. The reason is that the step-
size ( ) of the evolution becomes proportionally smaller as M increases,1/M
and so the population is less likely to get extremely close to the edge of
the simplex.

If, on the other hand, the size N of the Quasi-Centipede is increased,
then we see the average level of cooperation in the resulting population
increase. The reason is that, as N increases, the number of places extinction
of strategies could occur increases. Since the evolution roughly follows

19. This is done by assigning each strategy s a random weight on the interval [0, 1]ws

and assigning an individual strategy s with probability .� ln (w )/[� � ln (w )]′′s ss �S

20. The specific values of the payoffs also make a difference in the outcome. We can,
while preserving the ordinal raking of payoffs, make things harder or easier for co-
operation to result by making the payoff for defecting larger or smaller. However, the
qualitative results are robust across such changes.
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Figure 4. The results of 1,000 simulations on a 10-stage Quasi-Centipede Game with
a population of 1,000 evolving by the frequency-dependent Moran process.

the stages of iterated elimination of weakly dominated strategies, there
will be edges of the simplex that correspond to steps in the elim-N � 1
ination of dominated strategies. And, each time the evolution comes near
an edge of the simplex, there is a chance of strategy extinction, and hence,
a chance of becoming absorbed into a partially cooperative state.

Figure 5 shows the average level of cooperation (normalized on [0,1]
where 0 corresponds to no cooperation and 1 to complete cooperation)
as a function of the population on a logarithmic scale for 5-, 7-, 10-, and
14-stage Quasi-Centipede Games. These simulations show that the larger
the population, the more the dynamics resembles the infinite case, as
expected. And, the longer the Centipede the higher the expected degree
of cooperation in the resulting population.21 Given these results, it is

21. With very small Quasi-Centipede Games (such as ) and the payoffs as inN p 3
Table 1, populations resulting in partial cooperation are rarely observed. However,
increasing the potential benefit for cooperation can increase the frequency of partial
cooperation.
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Figure 5. The average resulting levels of cooperation in 5-, 7-, 10-, and 14-stage Quasi-
Centipede Games as a function of population size.

reasonable to conjecture that for any finite population size M there will
be some N-stage Centipede Game (with payoffs as specified above) that
will result in partial cooperation with a probability arbitrarily close to 1.

4.2. The Centipede Game in Finite Populations. Thus far, I have focused
on the Quasi-Centipede Game. Simulations on the Centipede Game using
the Moran process show that the same qualitative results hold for this
game. For these results, we imagine two populations playing the Centipede
Game specified in Section 2, where members from one always take the
role of player 1 and members from the other always take the role of player
2. The fitness for a type in a population is calculated by how well they
do against the other population and the evolution within a population is
governed by the Moran process.22

22. The single population setting simply has more types, where an individual’s type
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In an eight-stage Centipede Game being played between two popula-
tions of , as in the case of the Quasi-Centipede, there were noM p 1,000
resulting populations of first-round defectors in 1,000 trials.23 And, the
average level of cooperation was over the half-way point of the Centipede
(the average node that resulting populations played ‘take’ was 6.12) with
the average time to an absorbing state was just under 200,000 generations.
We also find that the same general qualitative results hold as in the Quasi-
Centipede Game, the average level of cooperation in resulting populations
increases with the length of the Centipede and decreases as population
size M increases. As before, these changes are due to the changes in
likelihood of strategies going extinct.

Thus, in both the Centipede and Quasi-Centipede Games, the Moran
process illuminates a new possibility for the evolution of partial coop-
eration. Since the evolution tends to follow the stages of elimination of
dominated strategies, it is easy for certain strategies to become extinct.
This can cause the population to become absorbed into a partially co-
operative state, and these simulations have shown it is very likely to do
so. Thus, the only reason certain levels of cooperation persist is because
the ‘superior’ but slightly less cooperative strategies went extinct prior to
arrival at the current state of the population.24

Furthermore, given the nature of the standard infinite population rep-
licator dynamic, as long as the initial population begins in the interior of
the state-space (where every type is represented in the population), types
will go extinct only in the limit of the process. Thus, it is impossible to
observe outcomes in the Centipede or Quasi-Centipede Game similar to
those seen with the frequency-dependent Moran process. The move to
finite populations, in the case of the Centipede Game (and Quasi-Cen-
tipede Game), opens up new possibilities of explanation.

4.3. Mutation. Although the Moran process is stochastic, the models

must specify what to do in the role of player 1 and in the role of player 2. The results
for the single population are similar to the two-population case. However, single pop-
ulations often persist in awkward polymorphic mixes for prolonged periods of time
before reaching an absorbing state. In these mixes, every member defects on some
round n when in the role of player 1 but there is no consensus on which round m 1

to defect on when in the role of player 2. For this reason, only results of the two-n
population case are presented here.

23. The initial conditions for these simulations were determined by assigning each
individual a random strategy with equal probability across strategies. If strategies were
assigned with random weights, as above, the same qualitative results seen in the Quasi-
Centipede Game hold: more variety in resulting populations is observed, but an over-
whelming majority show high degrees partial cooperation.

24. It is worthwhile to note that we have been left with a purely explanatory model,
which carries no important normative lessons.
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examined so far have not included any mutation. Indeed, the lack of
mutation plays a key role in finite populations resulting in partially co-
operative states since this result relies on the extinction of certain strat-
egies. We can introduce a mutation probability m into the reproduction
process such that, with probability m, a new individual picks a random
strategy (with equal weights to each strategy) instead of adopting the
strategy of the reproduced type.

By introducing a mutation rate, the process becomes ergodic: over time
the system can reach any state from any other state. With a very small
mutation rate, simulations show the results presented above tend to break
down as the number of generations gets very large. In this setting, the
population settles into a normal partially-cooperative state but eventually
just the right mutation(s) will occur to cause a slightly less cooperative
type to take over. However, for these very small mutation rates, it may
take a very long time to reach the immediate-defection state. For instance,
simulations in a 10-stage Quasi-Centipede Game with a population of

and a mutation chance of 1-in-10,000, can take several millionM p 1,000
generations before reaching the immediate-defection state. Furthermore,
if the mutation rate is high enough (say, 0.02 in the 10-stage, M p

case), then simulations show a finite-population analogue to Ponti’s1,000
(2000) cycles of evolution seen in infinite populations with perturbation.25

Figure 6 shows the average level of cooperation over time in such a cycling
population through the first one million generations.

Given that the evolution is stochastic, and the level of cooperation
graphed in Figure 6 is an average of the members of a mixed population,
some cycles appear more well behaved than others. The increase in level
of cooperation tends to be more dramatic and the decrease in cooperation
more gradual. This is due to the fact that one population is always invaded
by any number of individuals that are slightly less cooperative, whereas
for an invasion of more cooperative individuals there has to be several
mutants that are substantially more cooperative. Increases in cooperation
require several mutants so they can benefit from one and other, and they
need to be substantially more cooperative otherwise they would benefit
the native members more than mutants of their own kind. Similar cycles
are seen in the standard Centipede Game.

Evolutionary cycles of cooperation have been seen in other games stud-
ied with the Moran process in finite populations. Imhof et al. (2005) have
examined the repeated prisoner’s dilemma in this setting and have shown
that mutation can cause cycles between cooperative, uncooperative, and
discriminatory strategies. In the Centipede and Quasi-Centipede Games,

25. If we were to interpret the Moran process here as a form of imitation (cultural
evolution), then a 2% experimentation rate may be very reasonable.
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Figure 6. Cycles of partial cooperation in an evolving population of 1,000 individuals
playing a 10-stage Quasi-Centipede Game with a mutation rate of .m p 0.02

cycles are possible with any mutation rate, but simulations show that as
the mutation rate decreases, the regularity of cycles also decreases. There
is a window of mutation that will tend to cause partial cooperation to
break down and result in populations arriving at the immediately-defect
solution (mimicking the infinite population setting without mutation). If

or is very small, then the population will get stuck in states ofm p 0
partial cooperation indefinitely or for very long periods of time. If m is
large, then we see frequent and indefinite cycles of partial cooperation in
the population. Of course, the exact place and size of this window will
vary with population size and the length of the Centipede.

5. Conclusion. Moving from infinite population models to finite popu-
lation models can have a radical effect on the results of evolution. The
possibility of extinction and the stochastic nature of finite population
models opens up new explanations for behavior in certain games. We have
seen that this is certainly the case with the Centipede and Quasi-Centipede
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Games. In these games, the evolution roughly follows the stages of iterated
elimination of weakly dominated strategies and in the standard infinite
population models results in no cooperation. However, because of the
nature of finite population evolutionary dynamics, certain strategies can
go extinct, causing the population to ‘get stuck’ in partially cooperative
states. The likelihood of establishing partial cooperation increases with
the size of the game and decreases with the size of the population.

This result illustrates a new possible explanation for the evolution of
partial cooperation: it may be that evolutionary paths, although leading
in the direction noncooperative states, become absorbed into partially
cooperative states due to the finite and stochastic nature of the evolu-
tionary process. Although this explanation has not been shown to be
more plausible than others, this result does provide a striking example of
how evolutionary processes in finite settings can deviate significantly from
those in the traditional infinite setting. The idealizations of the latter
render such evolutionary outcomes as seen in finite cases impossible, and
consequently, blind us to possible explanations for partial cooperation.

There are also several remaining questions that warrant further inves-
tigation. First, given that we see partial cooperation arise in both the
Centipede and Quasi-Centipede, perhaps these methods could be applied
to other games involving backwards induction. Second, how might dif-
ferent sorts of finite population dynamics affect the evolutionary picture
in the setting of the Centipede Game or others? For instance, agent-based
local interaction models may generate interesting results for the Centipede
Game, and such models would enable further investigation of other ide-
alizations in the traditional setting, in particular, random interaction
within the population.

Appendix

The aforementioned results of the standard Centipede Game are presented
in Table A1. The results are qualitatively similar to the Quasi-Centipede
Game presented above, but the model has some additional subtleties due
to the asymmetric nature of the game. Summarized below are 1,000 sim-
ulations of two 1,000-member populations playing an eight-legged standard
Centipede Game with the same payoff structure as in Figure 1 (Regular
Centipede) as well as an eight-legged Centipede Game with exponentially
increasing payoffs (Exponential Centipede).26 Each pair of populations

26. The payoffs for the exponential version are the same as in McKelvey and Palfry
1992, begining with a pot of 50, which doubles for each ‘pass’ and if a player chooses
to ‘take’, then that player receives of the pot while the other player receives .4/5 1/5
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gets absorbed into a single pair of strategies and we can examine where
these populations first choose to ‘take’ in the course of the game (Round
of First ‘Take’). The initial weights for strategies are given in parenthesis.
The numerical values in the table represent the total number of popu-
lations that resulted in that level of cooperation (or round of defection)
out of 1,000 simulated populations.

The move to an exponentially growing payoffs does not change the
qualitative results of the Quasi-Centipede Game either. Table A2 sum-
marizes the results for 1,000 simulations of a 1,000-member population
playing a 10-stage Quasi-Centipede Game with exponentially increasing
payoffs.

In both settings, the average level of cooperation increases (slightly)
with the change to exponential payoffs and the behavior becomes more
regular (less variance). It is in this sense that the case of exponential payoff
increase partial cooperation becomes easier.

TABLE A1. RESULTS FOR THE STANDARD CENTIPEDE GAME.

Round of First “Take” 1 2 3 4 5 6 7 8 9

Reg. Centipede (Equal) 0 0 0 0 23 831 146 0 0
Reg. Centipede (Random) 2 1 10 44 170 347 309 98 19
Exp. Centipede (Equal) 0 0 0 0 0 356 644 0 0
Exp. Centipede (Random) 0 0 0 8 57 350 529 48 8

TABLE A2. RESULTS FOR AN EXPONENTIALLY INCREASING

QUASI-CENTIPEDE GAME.

Rounds of Cooperation 0 1 2 3 4 5 6 7 8 9

Exp. Quasi (Equal) 0 0 0 0 0 0 844 156 0 0
Exp. Quasi (Random) 0 0 0 2 13 98 372 416 81 18
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