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Abstract
The degrees of belief of rational agents should be guided by the evidence available to
them. This paper takes as a starting point the view—argued elsewhere—that the
formal model best able to capture this idea is one that represents degrees of belief
using Dempster–Shafer belief functions. However, degrees of belief should not only
respect evidence; they also guide decision and action. Whatever formal model of
degrees of belief we adopt, we need a decision theory that works with it: that takes as
input degrees of belief so represented. The task of this paper is to develop such a
decision theory for the belief function model of degrees of belief. This is not the first
paper to attempt that task, but compared to the existing literature it takes a more
abstract route to its destination, via a consideration of the very idea of rational
decision making in light of one’s beliefs and desires. After presenting the new
decision theory and comparing it to existing views, the paper goes on to consider
diachronic decision situations.

Keywords Degree of belief · Dempster–Shafer belief function · Decision
theory · Expected utility · Diachronic Dutch book

1 Introduction

The received model of degrees of belief represents them as probabilities. One of the
attractive features of this model is that it integrates with a powerful theory of decision
making: expected utility theory. Pretheoretically, degrees of belief feed into
behaviour. For example, the greater your degree of belief that Fido is vicious, the
wider a berth you will give him. As Ramsey puts it:

the degree of a belief is a causal property of it, which we can express vaguely as
the extent to which we are prepared to act on it. ...the difference between
believing more firmly and believing less firmly...seems to me to lie in how far
we should act on these beliefs (Ramsey, 1931, 169, 170)
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Expected utility theory gives a formal model of exactly how degrees of belief,
represented as probabilities, feed into rational decision and action.

However, there is another side to degrees of belief. Pretheoretically, as well as
feeding into behaviour, degrees of belief are also responsive to evidence. For
example, as the number of credible, independent witnesses who claim P increases, so
(other things being equal, and up to a point) should your degree of belief that P. This
second guiding idea about degrees of belief is found in comments such as:

the degree of support a body of evidence provides for a proposition—i.e., the
degree of belief one should accord the proposition on the basis of the evidence
(Shafer, 1976, 3)
Epistemic probabilities...depend on the available evidence (Walley, 1991, 14)
One’s confidence should adequately reflect one’s evidence (White, 2010, 171)

When it comes to this second idea, the model of degrees of belief as probabilities is
less attractive. It seems to many authors that frequently the available evidence does
not warrant probabilistic degrees of belief. This thought has led these authors to
argue that degrees of belief should be formally represented as imprecise probabilities
rather than precise probabilities.1

However, there is little glory in avoiding one problem if one thereby runs
headlong into an equally difficult problem—and this is precisely what other authors
think the move from precise to imprecise probabilities involves. Specifically, if we
model degrees of belief as imprecise probabilities, we need (at least) to modify
traditional expected utility theory, or (more radically) to replace it with a quite
different account of how degrees of belief feed into rational decision and action—and
these authors think that imprecise probabilists have not been able to do this in a
satisfactory way.2 Thus, while imprecise probabilists may have an advantage when it
comes to the link between degrees of belief and evidence, they are at a disadvantage
when it comes to the link between degrees of belief and rational action.

The present paper fits into this dialectic as follows. Personally, I am convinced by
the arguments that the traditional precise probabilistic model cannot provide a

1 See e.g. Levi (1985, 396) (cf. also Levi (1974, 394–5)), Kaplan (1996, 27–8 (cf. also 24, 29)), Joyce (2010,
283, 285), Walley (1991, 34, 246 (cf. also 7)) and Sturgeon (2008, 159). On terminology: In the philosophical
literature, the term ‘imprecise probability’ is generally used in connection with a particular kind of model of
belief states: one which models them as sets of probability functions. (See e.g. the opening sentence of
Bradley and Steele (2014b): “Imprecise probabilism—the view that your belief or credal state is best
represented by a set of probability functions—has received a lot of attention recently.”) In the literature in
computer science, artificial intelligence, expert systems, engineering, statistics and elsewhere, the term
‘imprecise probability’ is used as an umbrella term for non-probabilistic models of uncertainty, in which
uncertainty is modelled by something other than a single probability function. (See e.g. Walley (2006, 3353):
“Imprecise probability is used as a generic term to cover all mathematical models which measure chance or
uncertainty without sharp numerical probabilities.”) There are many such models, including (to name just
some, and to cite only a few key works) upper and lower probabilities (Smith, 1961), Dempster–Shafer belief
functions (Dempster, 1967, 1968; Shafer, 1976), sets of probability functions (i.e. imprecise probabilities in
the first sense noted above) (Levi, 1974, 1980; Kaplan, 1983, 1996; van Fraassen, 1990; Joyce, 2010), upper
and lower previsions (Walley, 1991; Troffaes & de Cooman, 2014), and probability intervals (Kyburg &
Teng, 2001). In this paper, I use ‘imprecise probability’ in the first of these two senses.
2 See e.g. Elga (2010), White (2010) and Bradley (2019).
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satisfactory account of the link between degrees of belief and evidence, but I am not
convinced that imprecise probabilities are the best alternative. In Smith (2022), I
present a model of degrees of belief based on Dempster–Shafer belief functions and
argue that it provides a superior account of how degrees of belief can respect the
evidence.3 This means that I need an account of how degrees of belief, represented as
belief functions, feed into rational decision and action. The purpose of the present
paper is to provide such an account. So the immediate aim of the paper is to present
and argue for a decision theory in which degrees of belief are represented as belief
functions. As for the wider significance of the paper, there are two ways of viewing
it. First, in accordance with the above account of the surrounding dialectic and my
own motivations, one could regard this paper as one part of a larger case for
representing degrees of belief using belief functions. Second, one could view the paper as
a contribution not to the discussion of how degrees of belief should be represented
formally, but to a more abstract discussion of how belief and desire relate to rational
decision and action. For my approach will not be to dive straight into the low-level
details and try to modify the formalism of expected utility theory so that it can take belief
functions (rather than probability functions) as inputs.4 Rather, I shall start at a higher
level of abstraction, with the very idea of rational decision in light of one’s beliefs and
desires. I shall then find an implementation in the setting of belief functions that stands to
this abstract idea in the sort of way that expected utility theory stands to the abstract idea
in the setting of probability functions. If you think of the abstract idea of decision-making
as lying at the apex of a triangle, and expected utility theory at the bottom left corner,
then I shall get to a decision theory for belief functions at the bottom right corner, not by
going directly across the base, but by going back to the abstract idea of decision making
and moving down through the belief function representation of degrees of belief to a
decision theory, in a way analogous to the move from this abstract idea, through the
probabilistic representation of degrees of belief, to expected utility theory. This relatively
abstract approach should be of interest even to those who have no particular sympathy
for belief functions. Furthermore, when it comes to comparing the new decision theory to
existing views, I shall consider theories that have arisen not only in the literature on belief
functions, but also in the literatures on decisions under ambiguity, and on imprecise
probabilities.

The paper proceeds as follows. In Sect. 2, I introduce belief functions: not just the
formal details but also a way of picturing belief functions that should make them
more accessible to intuition. I then turn to the core issue: an account of how the belief
function representation of degrees of belief connects up with decision and action.
Section 3 presents a first proposal and then shows how it fails. Section 4 presents a
better proposal and then Sect. 5 discusses its relationships to existing views.
Section 6 replies to a possible objection from a proponent of the traditional model of

3 If, in the present paper, I appear in places simply to assume that degrees of belief need to respect the
evidence and that in some situations the evidence does not warrant a probabilistic belief state but does
warrant a belief state modelled by a belief function, it should be understood that supporting arguments can
be found in the paper just cited.
4 Probability functions are special cases of belief functions, so the idea is that the decision theory assumes
only that beliefs are represented as belief functions: it works in the case where these belief functions are
furthermore probability functions, and in the case where they are not.
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degrees of belief as probabilities. Section 7 notes that the proposed link between
belief functions and decisions provides criteria for distinguishing different degrees of
belief. Section 8 explains how the view of this paper yields a clear and unified
conception of the traditional distinction between decisions under risk and decisions
under uncertainty. Section 9 replies to two possible objections concerning sequential
decisions—including the objection that an agent who makes decisions in the way
proposed in Sect. 4 will be subject to diachronic Dutch book.

2 Belief functions

Van Fraassen (1989, 161) writes:

To depict your state of opinion, you can use a model which I call the Muddy
Venn Diagram. Just represent the propositions you have an opinion about by
areas on the usual Venn diagram, and represent your personal probability by
means of some quantity of mud heaped on them...Call the total mud present
one unit always; the proportion of mud on an area equals the probability of the
proposition represented by that area.

We can picture degrees of belief modelled by belief functions in a similar way but
with one crucial difference: instead of a Venn diagram we picture what I’ll call an
exploded Venn diagram. Where van Fraassen has us spread our unit of belief over a
Venn diagram such as the one at the centre of Fig. 1, the new picture involves our
apportioning our unit of belief to its non-empty subsets considered individually—that
is, the black shaded regions.5 When we move to exploded Venn diagrams, the idea of
representing the unit of belief by something spreadable like mud loses much of its
point. We may just as well think of it as something rigid like a metal rod of unit mass
which can be crosscut into sections of arbitrary length, each of which is then like a
weight of the kind used on pan balances. The image then is that we distribute slices
of the rod to the exploded black regions. Indeed you can even picture the lines
connecting the black regions to the central Venn diagram as scale arms, and the black
regions as pans, so that the exploded Venn diagram is like a set of scales with one pan
per nonempty subset.6 You distribute a rod of unit mass—cut into cross-sections of
whatever length you please—to these pans. You can put the whole rod (or, if you still
prefer, all of the mud) on one region—or a bit here and a bit there.7

Venn diagrams are useful when the space of possible outcomes is generated by a
finite set of basic (logically atomic) propositions (or propositional variables). n such
propositions generate 2n state descriptions: one per assignment of truth values to the

5 It is because I consider the subsets individually, rather than fitted together into the Venn diagram, that I
use the term ‘exploded’—by analogy with exploded parts diagrams of the kind found in technical manuals.
6 This might seem purely metaphorical—but the idea of mass or weight of belief will be given a more
concrete meaning below by the role it plays in decision-making: rational choice involves weighting your
desire for an outcome by your degree of belief that an action will lead to that outcome.
7 If preferred, you can also vary the image slightly: instead of starting with a rod and cutting it up, you just
start by putting whatever weights you like on some or all pans, and then (following van Fraassen) we deem
the total of these weights to be one unit.
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basic propositions. These constitute the cells of a partition of the space: they
correspond to the simple (not further subdividable) regions shown in the Venn
diagram.8 But the core idea also applies when the space of possible outcomes is
given in some other way: for example, when it is partitioned into six cells, each
corresponding to one of the possible ways a die could fall; or three cells, each
corresponding to one of the suspects in a case being considered by a detective. In the
latter case, van Fraassen’s idea would extend to having us spread mud over the (non-
Venn) diagram at the centre of Fig. 2, while the new proposal would have us place
weights on the black shaded regions.

The reader may object that it would be too mentally taxing to have to consider
(say) the 63 separate nonempty subsets of a six-element sample space and apportion
weight to each of them—whereas one can easily spread mental mud over a six-
section grid. But this is a mistake. Suppose the evidence warrants assigning a certain

Fig. 1 An exploded Venn diagram

8 E.g. in the Venn diagram at the centre of Fig. 1, if the left and right circles represent the propositions
A and B then the four simple regions are the outer ‘binocular view surroundings’ (A and B both false), the
central ‘convex lens’ (A and B both true), the left ‘moon’ (A true and B false) and the right ‘moon’ (A false
and B true).
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weight to each specific outcome: say 1
6 to each section of the six-section grid.9 Then

one assigns 1
6 to each one-element subset and 0 to everything else: this is just as easy

in the exploded case as it is in the unexploded case. In general, if the evidence
warrants a particular probabilistic spreading of mud with amount ai going to outcome
Ai, then in the exploded case, one simply places weight ai on each singleton subset
fAig and places nothing on any other subset.10 But suppose the evidence tells us
only, say, that the perpetrator is twice as likely to be male than female. Then in the
exploded case, one can just assign 2

3 of the weight to the subset containing male

suspects and 1
3 to the subset containing female suspects: simple! Whereas in the

probability case, you cannot assign 2
3 to the set of males without also assigning a

specific amount to each male (and similarly for females). But you may have no
evidence at all that tells you how to do that. So it is never harder, and often easier, to
place weights on the pans in the exploded diagram than to spread mud over the
unexploded diagram.

The story about distributing parts of a unit weight to an exploded diagram gives an
intuitive picture of belief functions. Now for the formal details. We begin with a
space X of mutually exclusive and jointly exhaustive possible outcomes. I shall take
X to be finite. This is not mathematically essential (see e.g. Shafer (1979)) although it
is simpler. But simplicity is not my reason for assuming finitude. Rather, it seems to
me that X must be finite when it is supposed—as it is in this paper—to distinguish
possible outcomes insofar as you could have evidence for one but not the other, or
would potentially act differently if you took one rather than the other to be the case.
The argument for this conclusion is essentially the same as Turing’s (1936, Sects. 1,
9) argument that a person engaged in mechanical computation can make use of only
finitely many symbols and can be in one of only finitely many different internal
states. While from a metaphysical point of view, there are presumably infinitely many
possible worlds, from the point of view of an agent gathering and weighting evidence
and deciding how to act, the relevant space X of possible outcomes will be only

Fig. 2 An exploded non-Venn diagram

9 E.g. each section represents one face of a die and the evidence is that the die is fair.
10 Cf. the discussion of Bayesian belief functions below.
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finitely differentiable. If, for example, the agent is offered an infinite lottery, or faces
a decision situation in which the outcomes vary according to the value of a real-
valued variable such as temperature, the relevant sample space will be an (extremely
large) finite one that ‘chunks’ the possibilities at a point where the agent is no longer
able to tell which one has occurred (she cannot measure temperature with infinite
precision) or to care which one has occurred (she does not have the mental capacity
to desire differently every one of an infinite number of possible dollar amounts of
prize money).11 Following Shafer (1976, 36), I call X the frame of discernment.

A basic mass assignment,12 is a function m : 2X ! ½0; 1� satisfying two
conditions13:

1: mð£Þ ¼ 0

2:
X
A�X

mðAÞ ¼ 1 ð1Þ

The exploded diagram image depicts m. m(A) is the amount of mass placed on subset
A and the entire unit mass (= condition 2) must be distributed among the nonempty
(= condition 1) subsets.14

Given a basic mass assignment m, the corresponding belief function Bel : 2X !
½0; 1� is defined as follows (for all A � X):

BelðAÞ ¼
X
B�A

mðBÞ ð2Þ

Bel is the proposed model of the agent’s degrees of belief. The degree of belief in a
subset A of the frame of discernment is the sum of the basic masses assigned to all
subsets of A (including A itself). In terms of the exploded diagram image, it is the
sum of the masses assigned to shapes that do not protrude outside the A shape when
the exploded pieces are assembled.15

The sets to which m assigns a nonzero value are called the focal sets of m. If the
focal sets of m are all singletons, the belief function Bel corresponding to m is a
probability function—that is:

11 I acknowledge that some readers may find this contentious—and in response, note again that the
finitude assumption is not essential.
12 Terms used in the literature include ‘basic probability assignment’ (Shafer, 1976, 38), ‘basic probability
number’ (Smets, 1981), ‘basic belief assignment’ (Smets & Kennes, 1994, 196) and ‘mass function’
(Denoeux, 2019, 93).
13 2X denotes the set of all subsets of X. It can also be denoted }ðXÞ.
14 Condition 1 can be dropped: see Smets (1988). I shall not explore this route here.
15 It is common to define also the plausibility function Pl. It can be defined from m as PlðAÞ ¼P

B\A6¼£ mðBÞ or equivalently from Bel as PlðAÞ ¼ 1� Belð�AÞ. As Smets and Kennes (1994, 198) write,

the plausibility function “is in one-to-one correspondence with belief functions. It is just another way of
presenting the same information and could be forgotten, except inasmuch as it provides a convenient
alternate representation of our beliefs.” I find it clearer to think in terms of a single kind of attitude—degree
of belief or Bel—to different propositions (e.g. A and its negation), rather than two kinds of attitude—
degree of belief and degree of plausibility—to a single proposition (A). Hence, plausibility functions play
no role in this paper (except as required in the discussion of views of other authors in Sect. 5).
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1: Belð£Þ ¼ 0

2: BelðXÞ ¼ 1

3: BelðA [ BÞ ¼ BelðAÞ þ BelðBÞ whenever A;B � X and A \ B ¼ £

ð3Þ

A belief function that satisfies these three conditions is called Bayesian.
The difference between the probability and belief function frameworks is thus as

follows. In both cases, one assigns a number between 0 and 1 to each subset A of the
sample space, representing one’s degree of belief that the true outcome is in A. In the
probability case, these assignments are all determined by an assignment of portions
of a unit of mass to singleton subsets (or equivalently elements) of the sample space.
The degree of belief of an arbitrary subset A is then the sum of the masses assigned to
A’s singleton subsets (or members). The belief function approach can be described by
removing the word ‘singleton’. We start with an assignment of portions of a unit of
belief mass to subsets of the sample space. The final or overall degree of belief in a
subset A is then the sum of the masses assigned to A’s subsets. Both the probability
and belief function frameworks thus involve a distinction between fundamental and
derived quantities. The fundamental probabilities are the assignments to singleton
sets (or equivalently elements). The derived probabilities are the assignments to
arbitrary subsets (derived from the fundamental probabilities by addition). In the
belief function framework, the values of the basic mass assignment m are the
fundamental assignments. The degrees of belief (the values of the belief function Bel)
are the derived assignments (derived from the basic masses by equation (2)).16

The idea is that a basic mass assignment is warranted or induced by a body of
evidence. For example, if X is a set of suspects {Alice, Bob, Carol, Dave, Edwina,
Frank}, then the testimony of a witness that a woman left the building will warrant a
basic mass assignment that assigns some positive mass p to {Alice, Carol, Edwina}
and the rest (i.e. 1� p) to X:17 The testimony of a witness that Alice left the building
will warrant an assignment of q to {Alice} and 1� q to X. The discovery that the
suspects rolled a fair die to determine who would commit the crime leads to an
assignment of 1

6 to each singleton subset of X (which induces a Bayesian belief
function). A completely empty body of evidence induces the assignment of 1 to X;
and so on. The belief function generated from the mass function then represents
overall degree of belief. The overall degree of belief that the perpetrator was a
woman, say, will be not only the mass assigned to {Alice, Carol, Edwina} directly on
the basis of a given body of evidence, but also the masses so assigned to {Alice} and
all other subsets of the set of women. This is because if Alice did it, then a woman
did it: so direct evidence for Alice increases the overall degree of belief that the
perpetrator was a woman. If we think of subsets of the frame of discernment as
propositions, then the idea is that the overall degree of belief in A is the sum of all the

16 Equation (2) involves addition (we add m values to get Bel values) but note that, unlike probability
functions, belief functions are not (in general) additive (in the sense of condition 3 in (3)). See below for
further discussion of additivity and the relationship between probability functions and belief functions.
17 What number p is will depend on the details of the case (how trustworthy the witness is taken to be, how
good a view she had, etc.); cf. Sect. 7. For discussion of the idea that 1� p is assigned to X rather than to
{Bob, Dave, Frank} see Smith (2022, §5).
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masses assigned to propositions that imply A: propositions such that if any of them is
true, then A is true.

Now what happens when we want to combine evidence from different sources—
say from independent witnesses? Different mass assignments, induced by distinct
bodies of evidence, are combined by Dempster’s rule of combination. Suppose that
mass assignment m1 has focal sets A1; . . .;Ak and mass assignment m2 has focal sets
B1; . . .;Bl (and—this will be explained shortly—supposeP

i;j:Ai\Bj¼£ m1ðAiÞm2ðBjÞ\1). Then their combination is the mass assignment m

defined by mð£Þ ¼ 0 and for all nonempty A � X:

mðAÞ ¼
P

i;j:Ai\Bj¼A m1ðAiÞm2ðBjÞ
1�Pi;j:Ai\Bj¼£ m1ðAiÞm2ðBjÞ ð4Þ

The core idea here is that the combination of the evidence that induces m1 and the
evidence that induces m2 warrants assigning mass to a set A if m1 and m2 assign mass
to sets whose intersection is A. Specifically, it warrants assigning the product of the
masses assigned to these sets by m1 and m2. Of course there may be more than one
pair of focal sets of m1 and m2 whose intersection is A, so we sum across all such
pairs. That gives the numerator of (4). The reason for the inclusion of the denomi-
nator is that there may be pairs of focal sets of m1 and m2 whose intersection is the
empty set. But one of the defining conditions of a basic mass assignment (1 in (1)) is
that the empty set be assigned 0. So we ‘confiscate’ this mass from the empty set and
then—in order that the assignments made by m should sum to 1 (this being the other
defining condition of a basic mass assignment: 2 in (1))—add it to the assignments to
non-empty sets. Specifically, we renormalise by dividing each such assignment by 1
minus the total amount that would have gone to the empty set—the denominator of
(4)—thus proportionally inflating each assignment so that together they sum to 1.
The reason for the parenthetical condition above can now be seen. If it is not met,
then (4) is mathematically undefined (it involves division by 0). In this case, m1 and
m2 flatly contradict each other and cannot be combined.18

We have seen how a basic mass assignment generates a belief function via
equation (2). The notion of a belief function can also be defined abstractly (i.e.
conditions given such that any function that meets them is called a ‘belief function’)
and any such function Bel can then be shown to induce a function m that satisfies the
defining conditions in (1) of a basic mass assignment (which in turn generates Bel
again via (2)). Talk in terms of basic mass assignments and talk in terms of belief
functions is thus intertranslatable.19 For example, I presented Dempster’s rule of
combination as a way of combining basic mass assignments, but it can also be
presented in a translated form as a way of combining belief functions. Nevertheless,
belief functions that come from nowhere are of no real interest to us here. As
mentioned in Sect. 1, the motivation for considering belief functions is that they
provide a good account of how degrees of belief can be responsive to evidence.

18 But see n.14. In Smets’s treatment, the denominator of (4) is omitted (Smets, 1988, Sect. 3.3 and p.267).
19 See Shafer (1976, ch.2–3) for details.
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Accordingly, our chief concern is with belief functions that come from a mass
function m that is induced by a body of evidence.

To conclude this section, consider two ways of characterising belief functions that,
while not incorrect, in my view fail to get to the heart of the matter. First, it is
common to characterise the difference between probability functions and belief
functions in terms of additivity: probability functions are additive and (in general)
belief functions are not. This difference is a genuine one—but I see it as a symptom
of the really crucial difference. Both the probability model and the belief function
model of degrees of belief share a common starting point. Evidence can warrant
greater or lesser degrees of belief in different propositions. We model this with the
idea of a ‘mass’ of belief which is to be distributed among propositions (or subsets of
the sample space) with the proportion of the mass assigned to P representing the
degree to which the evidence supports P (specifically). We then calculate final
credence values for sets by summing the assignments to their subsets. The crucial
difference is that in the probability model, the initial mass must be fully distributed
amongst singleton subsets—it is part of the setup that the force of the evidence must
ultimately bear on maximally specific propositions—whereas in the belief function
model this need not be the case. This then generates additivity of final values in the
probability model, but not in the belief function model. In both frameworks, belief
mass accumulates up the food chain (so to speak) as we ascend from subsets to
supersets. The crucial difference is that in the belief function model, mass can be
attached directly to higher-level sets—thus generating super-additive behaviour—
whereas in the probability model, basic masses must all be attached at the bottom
level. So additivity is but a symptom: the heart of the matter is whether evidence can
warrant attaching some mass of belief directly to a non-singleton subset of outcomes.

In order to discuss the second characterisation of belief functions, I first need to
introduce the following injective mapping from belief functions to sets of
probabilities. A belief function Bel generated by a basic mass assignment m is
mapped to the set of Bayesian belief functions—i.e. probability functions—where
each Bayesian belief function in the set is generated by a mass assignment m0 that
arises from m by dividing basic masses assigned by m to non-singleton focal sets,
amongst the singleton subsets of those focal sets. In more detail, suppose the frame of
discernment X is fS1; . . .; Sng and the focal sets of m are S1; . . .; Sk . Recall that each
focal set is a subset of X, i.e. each Sp (1� p� k) is a collection of Sj ’s (1� j� n), i.e.
Sp ¼ fSp1 ; . . .; Splp g.20 Consider ways of taking the assignments of masses made by

m to non-singleton focal sets, and dividing them up amongst the singleton subsets of
those focal sets. What we are doing is giving to each singleton subset of Sp a
proportion (from 0% to 100%) of the mass originally assigned to Sp (where the
proportions add up to 100%). So we can associate each possible way of doing this
with a way of proportioning the focal sets. Let a proportioning of a set S � X be a
function Pr : S ! ½0; 1� such thatPS2S PrðSÞ ¼ 1.21 Let a proportioning of the focal

20 The reason for having lp here—rather than just l—is that different Sp’s can contain different numbers of
Sj’s.
21 [0, 1] is the real unit interval. You can think of its members as percentage values between 0% (i.e. 0) and
100% (i.e. 1).
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sets of a basic mass assignment m be a family of proportionings Pr1; . . .;Prk , one for
each of the focal sets S1; . . .;Sk of m. Given a proportioning of the focal sets of m, we
can specify a corresponding way of dividing masses assigned by m to non-singleton
focal sets amongst their singleton subsets. Let mp;j ¼ PrpðSjÞ:mðSpÞ. The idea is that
mp;j is the part of mðSpÞ that gets assigned to fSjg.22 Given this way of dividing
masses assigned by m to non-singleton focal sets amongst their singleton subsets, we

can then define m0ðfSjgÞ ¼
Pk

p¼1 mp;j.
23 The idea is that m0ðfSjgÞ is the sum of

fSjg’s inheritances from all the divisions of masses assigned to focal sets of which
fSjg is a subset. m0 is then a basic mass assignment and it assigns positive mass only
to singleton subsets of the sample space: so it generates a Bayesian belief function,
i.e. a probability function. Thus each way of dividing up m’s assignments to non-
singleton focal sets—each of which corresponds to a way of proportioning the focal
sets—yields a probability function. (For future reference, we call these the
probability functions that are compatible with the belief function.) The original
belief function (generated by m) is then mapped to the set of all probability functions
that can be obtained in this way (i.e. to the set of all probability functions that are
compatible with it).24

We can now discuss the second characterisation of belief functions. As we just
saw, each belief function Bel can be mapped to a set of probability functions. The
lower envelope of this set of probability functions (i.e. the function that assigns to
each subset S of the sample space, the infimum of the assignments made to S by the
probability functions in the set) is then Bel itself (Halpern, 2017, 37). This means that
it is not incorrect to think of a belief function as a lower bound on a set of
probabilities.25 Nevertheless this should not be our sole or even primary way of
thinking about belief functions.26 For thinking this way makes belief functions seem
(conceptually) derivative from and more complex than probability functions: we go
from one probability function, to a set of them, to a belief function as lower bound.
However, there is a clear sense in which belief functions are (conceptually) simpler

22 Note that mp;j is undefined in case Sj 62 Sp (because Prp is defined only on Sp). If you prefer, you could
instead define a proportioning of S � X to be a function Pr : X ! ½0; 1� (i.e. define it on X, not on S) and
require that PrðSÞ ¼ 0 if S 62 S.
23 Here we sum the mp;j that are indeed defined. In case mp;j is undefined for all p, we set m0ðfSjgÞ ¼ 0.
Note that mp;j will be undefined for all p if Sj is not in any focal set of m—but this is not the only way in
which m0ðfSjgÞ can equal 0: that will also happen if Sj is in one or more focal sets but is assigned zero
proportion of each of those sets.
24 Note that the same set of probability functions can also be arrived at by a different route: it is the set of
all probability functions P such that for all subsets S of the sample space, PðSÞ�BelðSÞ. See Denoeux
(2019, 94).
25 Walley (1991, 11, 47) e.g. sees them this way.
26 Cf. Shafer (1976, ix): “This essay...offers a reinterpretation of Dempster’s work...that identifies his
“lower probabilities” as epistemic probabilities or degrees of belief...and abandons the idea that they arise
as lower bounds over classes of Bayesian probabilities.” Also Walley (1996, 10): “Every belief function
can be represented as a lower envelope of a set of probability measures. This is merely a mathematical
representation, however; it is misleading and unnecessary to regard a belief function as a lower bound for
some unknown probability measure.” And Halpern (2017, 37): “while belief functions can be understood
(to some extent) in terms of lower probability, this is not the only way of understanding them.” Cf. also
Wasserman (1990, 455) and Smets and Kennes (1994, 192).
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and more fundamental than probability functions. A probability function is
determined by an assignment of a unit of mass subject to the constraint that positive
mass may be assigned only to singleton subsets of the sample space. A belief
function is determined by an assignment that removes this constraint and is subject
only to the minimal requirement that £ be assigned 0. We may therefore regard a
belief function as a more or less minimal formal representation of the very idea of
degree of belief: an assignment of numbers to propositions or subsets—directly
modelling strength of belief in them—determined by an assignment of a unit of belief
mass subject only to more or less minimal structural conditions.27 This idea is
conceptually prior to—not derivative from—the idea of a probability function. We
get from belief functions to probability functions by adding constraints and (in that
sense) increasing complexity.

3 Degrees of belief and decisions

My goal is to explain how the belief function representation of degrees of belief
connects up with decision and action: how belief functions guide the choices of
rational agents. This section presents a first proposal and then shows how it fails.
Section 4 presents my positive proposal. Section 5 discusses alternative approaches.
Before getting to the first proposal we need to discuss three issues.

First, as foreshadowed in Sect. 1, let us consider the abstract idea of rational
decision in light of one’s beliefs and desires. Certainly, one way of making irrational
decisions is to focus entirely on how much one desires certain outcomes and fail to
factor in how likely one is to achieve them. Building on this insight, I take the
fundamental guiding idea of rational decision making (henceforth FGI) to be that
(a) one should choose between courses of action by considering how much one
would like each of the possible outcomes to which they might lead, and (b) in this
process one should weight how much one would like each outcome—one should
factor it to a greater or lesser extent into one’s decision whether to perform a certain
action—according to the strength of one’s belief that performing that action would
lead to that outcome. So one does not simply throw the possible outcomes in together
and consider which of them one would like best: one also tempers one’s liking for
each outcome according to the strength of one’s belief that performing the action
under consideration would lead to that outcome. This sort of idea goes right back to
the origins of decision theory. It is a major theme of the final chapter of the Port-
Royal Logic—for example:

in order to decide what we ought to do to obtain some good or avoid some
harm, it is necessary to consider not only the good or harm in itself, but also the
probability that it will or will not occur, and to view geometrically the

27 There do exist notions subject to even more minimal conditions than belief functions, e.g. the
plausibility measures of Halpern (2017, §2.10), of which belief functions and probability functions are
instances.
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proportion all these things have when taken together. (Arnauld & Nicole, 1996,
273–4)28

Second, consider the distinction between picking and choosing as sub-types of the
general act of selection [Ullmann-Margalit and Morgenbesser (henceforth UMM),
1977]. Choosing occurs when your reasons—your beliefs and desires—guide you to
the item you select. For example, you choose to buy oats rather than frosted flakes
because you believe they are cheaper and healthier and these considerations
outweight the fact that you prefer the taste of frosted flakes. Picking occurs when you
have reason to select one of a group of items but no reason to select one particular
member of the group rather than any of the others. For example, you have reason to
buy a single box (that is all you can afford and all you can eat before they spoil) of a
certain brand (your preferred brand) of oats but no reason to select any particular box
from the shelf (that contains numerous boxes, all equally accessible, undamaged and
with the same use-by date). In this case, you pick a box. The fact that we often find
ourselves needing to pick is not a problem—for (as UMM make clear) we can pick.
And while it is evident from the above explanation of what picking is that picking is
in a clear sense arbitrary, we should be careful to strip this word of the negative
connotations that it often carries, because (as UMM [768, 771] also make clear)
picking is not unreasonable. The very fact that one has reason to pick A or B (rather
than C or D) but no reason to pick A over B (or B over A) means that one is immune
from regret if one picks A (or B).

Third, we need to consider utility. Specifically, I shall suppose that we can
measure utility on (at least) an interval scale. That is, we have a numerical function
representing an agent’s desires for outcomes and it is (at least) unique up to positive
linear transformation. This assumption is standard in the context of precise
probability models—and it becomes no more problematic when we move to belief
functions. Utilities could—for example—be identified with dollar values, or—better
—derived by the method of von Neumann and Morgenstern (1953). The latter
method makes use of the notion of combinations of events with given probabilities.
For example, the 50–50 combination of B and C “is the prospect of seeing B occur
with a probability of 50% and (if B does not occur) C with the (remaining)
probability of 50%” [p.18].29 This poses no problem in the context of a belief
function representation of degrees of belief because precise probabilities are special
cases of belief functions. The required assumption is that an agent’s degree of belief
that she will get B in the event of choosing an x–y combination of B and C is x—and
her degree of belief that she will get C is y. In a precise probability framework, this
means that the agent’s probabilities for the outcomes of lotteries cannot be taken to
be freely chosen or entirely subjective30: they are taken to match the values that
define the lottery. In a belief function framework, the required assumption is

28 Note that the first three (comma-separated) parts of this quotation begin laying out the general idea of
rational decision-making in light of one’s beliefs and desires, while the fourth part not only finishes laying
out this general idea, but also begins setting out the specific form this idea takes in a context in which
beliefs are represented as probabilities—i.e. expected utility theory (see further n.31 below).
29 These combinations are often called ‘lotteries’ in the literature. See e.g. Resnik (1987).
30 Cf. von Neumann and Morgenstern (1953, 19).
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essentially the same: that an agent’s degrees of belief regarding whether she will
ultimately obtain B or C in the event of choosing a certain combination of them are
modelled by a Bayesian belief function whose values match the probabilities that
define that combination. This is as unproblematic in the context of a belief function
model of degrees of belief as it is in the context of a probabilistic model.

With the preliminaries dealt with, the question now arises how to implement FGI
in the context of belief functions. In the classical context involving probabilities, and
utilities of the sort just discussed, FGI is implemented by multiplying utilities by
probabilities, and then adding the results.31 This is the familiar calculation of
expected utility. In the belief function context, given utilities of the sort just
discussed, the most straightforward way to (try to) implement FGI would be to go
through an exactly analogous calculation, with the belief function in place of the
probability function. So suppose we have mutually exclusive and jointly exhaustive
states S1; . . .; Sn and available acts A1; . . .;Aq, where performing act Ai in state Sj
leads to outcome Oi;j. We have utilities UðOi;jÞ assigned to each outcome and we
have a belief function Bel over the frame of discernment fS1; . . .; Sng. We then assign
each act Ai an expected value EðAiÞ as follows32:

EðAiÞ ¼
Xn
j¼1

BelðfSjgÞ:UðOi;jÞ ð5Þ

We then pick an act so as to maximise this value. In the special case where the belief
function is Bayesian, this just is the familiar process of maximising expected utility.

This decision method seems not to have been considered in the literature on
decision-making with belief functions. Technically it works, in the sense that setting
Ai<Ar iff EðAiÞ�EðArÞ yields a complete preorder of the available acts (one that is
invariant under positive linear transformations of the utilities) and a complete
preorder is guaranteed to have at least one maximal element.33 One then picks a
maximal act. Nevertheless, the proposal cannot be accepted. Note for a start that this
decision method disallows acts that from an intuitive point of view seem manifestly
rational. Suppose that you are playing a cup game involving three cups, under one of
which there is a ball. We can represent the frame of discernment as fC1;C2;C3g,
where Ci represents the possibility that the ball is under cup i. Suppose that your
evidence warrants a basic mass assignment of 0.01 to fC1g and 0.99 to fC2;C3g. So
you’re nearly certain the ball is under cup 2 or 3 but have no further information
regarding which of these cups it is specifically. Now suppose that you have available
four acts, or bets (Table 1). Bet 1 pays $1 on C1 and nothing otherwise; bet 2 pays $1
on each outcome; bet 3 pays $1 on C1 and $10 on each of C2 and C3; and bet 4 pays
99¢ on C1 and $100 on each of C2 and C3. By (5), bets 1, 2 and 3 have the same

31 I take it that this mode of combination is what is meant by ‘geometrically’ in the quotation from the
Port-Royal Logic above—hence my comment in n.28 that the quotation covers both the abstract idea of
rational decision in light of beliefs and desires and its particular implementation in a probabilistic context.
32 I think ‘expected value’ is the most useful term to use here but note that this value is not in general (as in
the precise probability case) the expectation of a random variable.
33 A binary relation < is a preorder iff it is reflexive and transitive. It is complete iff for all x and y, x<y or
y<x. A maximal element x is one such that for every y, x<y.
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expected value, and it is greater than that of bet 4.34 Intuitively however it would be
acceptable—if not mandatory—to prefer bet 2 to bet 1, bet 3 to bet 2, and bet 4 to bet
1.

Moving from intuitions about a case to a more theoretical level, the problem is that
the decision method simply ignores some of your beliefs. It attends only to degrees of
belief in singleton subsets of the frame of discernment. The strong evidence, and
corresponding strong degree of belief you have for the (non-singleton) subset
fC2;C3g, never comes into play. The decision method is ranking bets entirely
according to their utilities on outcome C1, because that is the only outcome for which
you have a non-zero degree of belief. It is thereby ignoring the fact that you have
strong evidence and a corresponding high degree of belief that the outcome will in
fact be C2 or C3.

Indeed, I want to argue further that this decision method does not accord with FGI.
On the one hand, FGI is, as its name suggests, a guiding idea. It is not supposed to
equate to a specific mathematical procedure, such as maximising expected utility.
Rather, maximising expected utility is supposed to be a way of implementing FGI in
a context in which beliefs are formally modelled using probability functions (and
desires using utility functions)—a way of making an abstract, guiding idea concrete
in that setting. On the other hand, FGI is not supposed to be an empty metaphor. Not
just any decision method that takes two inputs—one representing beliefs and one
representing desires—should automatically count as an implementation of FGI. And
I shall now argue that the method currently under consideration does not—even
though it does indeed have two inputs: a belief function, modelling belief; and a
utility function, modelling desire. The problem with the method is that it does not
appropriately weight desires by degrees of belief. To see this, consider a series of
variations on the cup game (Table 2). Bet 1 pays out $x on cup 1 and nothing
otherwise. Bet 2 pays a prize $y—bigger than $x—if the ball is under cup 2 or 3, and
a consolation prize $z—slightly smaller than $x—if the ball is under cup 1. Suppose
that your evidence warrants a basic mass assignment of some degree of belief k to
fC1g with 1� k going to fC2;C3g. Now suppose we gradually lower x (but keep it
greater than 0), raise y, lower z to keep it just under but ever closer to x, and lower
k (but keep it non-zero). My claim is that a decision method is not according with
FGI if, in this process, it never stops deeming bet 1 to be superior to bet 2. If the
method just fixates on bet 1 and deems it the best act for you to choose, no matter
how low x and k go nor how high y goes, then it is not appropriately factoring in just

Table 1 Cup game mark I

34 Sometimes, for ease of presentation, I assume—inessentially—that utilities match monetary values.
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how much you like the prize y—how much more you like it than x—and how
unlikely you think the ball is to be under cup 1. It is not appropriately weighting your
desires by your degrees of belief. And the decision method currently under
consideration fails this test. In all these cases it assigns bet 1 expected value $kx and
bet 2 a strictly lower expected value $kz.

4 Deciding with belief functions

As mentioned in Sect. 2, for probability functions, assignments to singleton subsets
(or equivalently elements) of the frame of discernment determine the entire function,
but this is not the case for belief functions. So really it is not surprising that copying
the probabilistic expected utility calculation—where degrees of belief in singleton
subsets of the frame are multiplied by utilities of corresponding outcomes—yields a
poor result. The analogues of the singleton sets in the belief function case are the
focal sets: mass assignments to these do determine the entire belief function. But if
we try to implement FGI by multiplying basic mass assignments by utilities, we face
a correlative problem. The utility function assigns values to outcomes determined by
acts together with particular states in the frame of discernment—not whole sets of
states. The problem, then, is that FGI requires us to weight desires by beliefs—but in
general the two do not mesh. Generally speaking, beliefs are clump-like: the
evidence can warrant attaching positive belief only to non-singleton subsets of the
frame of discernment. Desires, on the other hand, are finely individuated: utilities
attach to particular outcomes, determined by actions together with individual
elements (or equivalently singleton subsets) of the frame of discernment.35 To see our

Table 2 Cup game mark II

35 I am assuming a framework in which utilities are assigned to particular outcomes. Such a framework is
found in Savage (1972). There is a different kind of framework, found in Jeffrey (1983), in which utilities
are assigned to propositions. I could argue for the preferability of the Savage-style approach in general, but
that is beyond the scope of this paper. In the present context in particular, however, it might seem that the
Jeffrey-style approach would avoid the problem outlined above, because it involves assigning utilities to all
propositions, including the ‘clumpy’ (nonspecific) ones corresponding to the focal sets of the belief
function. When we look closely, however, there is no advantage here. Jeffrey’s desirabilities of nonspecific
propositions are really (as he notes himself on pp. 86–7) expected desirabilities, determined by the
desirabilities and probabilities of the more specific ways in which they can come true. But the present
problem is precisely that we can have positive degrees of belief in certain subsets of the sample space
without having non-zero degrees of belief in any of their subsets. For Jeffrey, if the probabilities of X and Y
are zero, then the desirability of X _ Y will also have to be zero (see his axiom (5–2) on p.80).
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way to a general solution to this problem, let’s start by considering two special cases
where things work straightforwardly.

The first case is where the belief function is Bayesian. In this case, focal sets are
singletons: so beliefs are not clumpy—they are as finely individuated as utilities—
and we can weight desires by beliefs by multiplying utilities by degrees of belief in
the classical way. The second case is where the utility function assigns the same
value to all outcomes of an act determined by states within the same focal set. For
example, suppose that you are considering a die roll—the frame of discernment is
f1; 2; 3; 4; 5; 6g—and your evidence (a report, with some pages missing, of the
methods used to produce trick dice at a games factory) leads you to assign mass 0.3
to f2; 4; 6g and 0.7 to f1; 3; 5g. But suppose that the bet you are considering pays out
the same amount (say $1) for all even rolls and the same amount (say $2) for all odd
rolls. In that case, you can proceed as if ‘even’ is a state that, together with the act of
accepting the bet, leads to an outcome—getting $1—to which you assign a particular
utility; and similarly for ‘odd’. The point is that as far as you care—as far as your
utility function is concerned—there is no difference between 2, 4 and 6. So you can
proceed as if the utility of $1 attaches to ‘even’ itself (in concert with the act of
accepting the bet)—i.e. to the event about which you have a positive degree of belief
—not to the individual states (2, 4 and 6) about which you have no evidence and
hence no positive degree of belief. And then you can weight desires by beliefs by
multiplying these utilities (of ‘even’ and ‘odd’) by your degrees of belief in those
(non-singleton) events (and summing the results)—i.e. performing something like an
expected utility calculation, but at the level of focal sets rather than elements (or
singleton subsets) of the sample space. In the current example, your expected value
for the bet will be 0:3� 1þ 0:7� 2 ¼ 1:7, that is the sum of your degree of belief in
‘even’ multiplied by its utility, and your degree of belief in ‘odd’ multiplied by its
utility.

So things work out nicely when your utilities and your degrees of belief have the
same granularity: either your beliefs distinguish as finely as your finely cut utilities
(as in the first case above); or your utilities do not differentiate any more finely than
your clumpy degrees of belief (as in the second case above). So what to do in the
general case? For example, suppose your evidence about the die is as above, but the
bet pays out differently on 2, 4 and 6 (and on 1, 3 and 5). How to decide whether to
take the bet (at a certain price)? You have beliefs (modelled by a belief function) and
desires (modelled by a utility function) and FGI tells you to decide by weighting your
desires by your beliefs. However, you cannot do this because your beliefs and desires
do not mesh. So first, you have to get them to mesh: you have to connect them up to
one another. I propose that you do this via a proportioning of the focal sets of your
belief function.36 With a proportioning in hand, there are two ways to proceed: divide
up your beliefs; or pool your utilities. These two approaches should, in my view, be
regarded as two ways of spelling out the same process—meshing your beliefs and
desires so as to be able to weight the latter by the former—rather than two
fundamentally different processes. As we shall see, for each way of doing one, there

36 The idea of a proportioning was introduced in Sect. 2.
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is a way of doing the other that leads to the same assignments of expected values to
actions.

The first approach is to use the proportioning to divide basic masses attached to
non-singleton sets amongst their singleton subsets. As discussed in Sect. 2, this
generates a Bayesian belief function—a probability function. You then assign an
expected value to each act Ai by performing a standard expected utility calculation
(using this probability function).

The second approach is to use the proportioning to pool your utilities for outcomes
generated by an act together with states in the same focal set, to generate a utility
value for the entire focal set (together with the act in question). Suppose (as
previously) the frame of discernment is fS1; . . .; Sng, the focal sets of your basic mass
assignment m are S1; . . .; Sk , and the utility assigned to the outcome Oi;j of act Ai in
state Sj is UðOi;jÞ. Given a proportioning Pr1; . . .;Prk of the focal sets S1; . . .; Sk , you
attach a utility Ui

Sp
to each pair of an act Ai and a focal set Sp as follows:

Ui
Sp ¼

X
Sj2Sp

PrpðSjÞ:UðOi;jÞ ð6Þ

The general idea here is (as mentioned) to obtain a utility for the focal set (together
with the act under consideration) by pooling the utilities of outcomes determined by
states in the focal set (together with the act under consideration)—and the particular
method of pooling is that each state contributes its own proportion (of the focal set in
question, as given by the proportioning under consideration) of the utility of the
outcome to which it (together with the act under consideration) would lead. Less
precisely, but more simply: each state in the focal set contributes its proportion of its
utility; adding these together gives a utility for the focal set as a whole. With utilities
for focal sets in hand, you assign an expected value to each act Ai using the basic idea
already illustrated above (in the case of the bet that pays out the same amount for all
even rolls and the same amount for all odd rolls):

EðAiÞ ¼
Xk
p¼1

mðSpÞ:Ui
Sp ð7Þ

The two approaches just presented yield the same expected values for acts
(provided the same proportioning is used). Consider the first approach. As explained
in Sect. 2, a division of basic masses among singleton subsets of the focal sets
generates the following probabilities for singletons37:

PðfSjgÞ ¼
Xk
p¼1

PrpðSjÞ:mðSpÞ ð8Þ

We then calculate expected values for acts by taking the standard classical equation
for the expected utility of Ai:

37 In Sect. 2 this was presented in two steps: first we defined mp;j ¼ PrpðSjÞ:mðSpÞ; second (using the

notation m0, which in (8) has been replaced with P) we defined m0ðfSjgÞ ¼
Pk

p¼1 mp;j.
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EðAiÞ ¼
Xn
j¼1

PðfSjgÞ:UðOi;jÞ ð9Þ

and plugging in the probabilities from (8):

EðAiÞ ¼
Xn
j¼1

Xk
p¼1

PrpðSjÞ:mðSpÞ
 !

UðOi;jÞ ð10Þ

Now consider the second approach. Plugging (6) into (7) we see that it assigns the
following expected values:

EðAiÞ ¼
Xk
p¼1

mðSpÞ
X
Sj2Sp

PrpðSjÞ:UðOi;jÞ
0
@

1
A ð11Þ

To facilitate comparison between this and (10), note that it wouldn’t make any
difference to (6) if instead of summing over all Sj in Sp, we summed over all Sj in the
frame of discernment, provided we define PrpðSjÞ ¼ 0 when Sj 62 Sp (cf. n.22). This
gives us the following version of (6)38:

Ui
Sp

¼
Xn
j¼1

PrpðSjÞ:UðOi;jÞ ð12Þ

If we plug (12) (instead of (6)) into (7), we get the following (instead of (11)):

EðAiÞ ¼
Xk
p¼1

mðSpÞ
Xn
j¼1

PrpðSjÞ:UðOi;jÞ
 !

ð13Þ

We can now easily compare (13) and (10) and see that they are equivalent: we get
from one to the other by expanding, commuting and factorising.39

My proposal, then, is this. To make a decision in light of your beliefs—
represented by a belief function—and your desires—represented by a utility function
—you first pick a way of getting them to mesh—a proportioning of the focal sets of
the belief function—and then maximise expected value. There are two equivalent
ways of calculating the expected values of acts: use the proportioning to generate a
probability function from your belief function, and then maximise expected utility in
the classical way; or use the proportioning to pool your utilities (for outcomes
determined by the act under consideration) into utilities for focal sets, and then do
something analogous to the classical calculation of expected utility, except that it
involves a basic mass assignment (not a probability function) and utilities determined

38 It also means that in (8), we can drop the qualification that we sum the PrpðSjÞ:mðSpÞ that are indeed
defined (see n.23): if we set PrpðSjÞ ¼ 0 when Sj 62 Sp then they are all defined.
39 Evidently one could also specify intermediate or hybrid ways of proceeding that yield the same results.
Instead of dividing the belief masses assigned to focal sets among their singleton subsets, one could divide
them among (not necessarily singleton) subsets and then pool utilities to determine utility values for these
subsets.
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by (the act under consideration and) sets of states—i.e. focal sets—rather than
individual states in the frame of discernment.

Two things are worth noting about the first step—picking a proportioning. First,
given FGI, it cannot be a matter of rational decision. Rational decision involves
weighting your desires by your beliefs. The proportioning is required in order for you
to do this weighting: it is a necessary precursor. It has to come first and then you can
weight things up. So there can be no question of which proportioning you should
rationally choose: you have to pick one. Second, the proportioning should not be seen
as a third element in decision-making, in addition to belief and desire. It is a way of
linking the two elements in decision-making—belief and desire—so that the former
can be used to weight the latter, in accordance with FGI. Consider the process of
calculating expected utility in a classical context where beliefs are represented by
probabilities. We multiply probabilities by utilities and then add the results. In my
view, we should not ask what multiplication and addition mean in this context or
what psychological processes they model (and indeed these questions are not asked,
as far as I am aware). Rather, I view the situation as follows. FGI tells us to weight
our desires by our degrees of belief. We should be more (less) attracted to an act the
more (less) we like the outcomes to which it might lead—but this is not all: we
should factor in our liking for these outcomes more or less according to the strength
of our belief that performing the act will lead to them. Now the point here is not to
get fixated on the idea of ‘weighting’ and then think that this means multiplying and
adding. Rather, the key point is that when we stand back and observe the results, it
seems clear that calculating expected utility in the classical way does cohere with
FGI: it is indeed a way of rating actions more (less) highly if we believe more (less)
strongly that they will lead to outcomes that we desire more (less). Now in the
situation where beliefs are modelled by belief functions, we can—mathematically
speaking—perform an analogous calculation, in which we multiply beliefs by desires
and add these products. However when we stand back and observe the results it
seems clear that they do not (in this new setting) cohere with FGI. That was the point
made at the end of Sect. 3. So we need to use different mathematical machinery. My
proposal is that we first use a proportioning—and then multiply and add. The point
that I am making now is that the proportioning should be seen alongside the
multiplication and the addition, not alongside the belief and desire. It is not a third
ingredient in rational decision-making but part of the mathematical machinery (the
other parts being multiplication and addition) needed to bring the two ingredients
(belief and desire) together in a way that coheres with FGI.

To make sure that the proposal is clear, let us run through it again, but this time in
a less abstract way: focusing specifically on the first method of proceeding, where
you generate a probability function from your belief function (and then maximise
expected utility). In this setting, the essential line of thought is as follows. You don’t
have enough evidence to warrant a probabilistic belief state. That is why your beliefs
are represented by a (non-Bayesian) belief function. But to implement FGI by
maximising expected utility (in the classical way), you need probabilistic degrees of
belief: we saw in Sect. 3 what goes wrong if you try to do it with the belief function
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directly.40 If you had more evidence—enough to warrant a Bayesian belief function
—you could implement FGI by maximising expected utility. So you need to proceed
as if you have further information or evidence: enough to determine a probabilistic
belief state. However, there is no particular piece of further evidence—no particular
probabilistic belief state—you should act as if you have. After all, the whole point is
that your evidence does not warrant a probabilistic belief state: it is modelled by a
belief function that is not a probability function and with which many probability
functions are compatible. So you have to pick a compatible probability function—
and then maximise expected utility. In accordance with FGI, you are using your
beliefs to weight your desires. You are not throwing them away and acting as if you
had completely different beliefs. You are augmenting them with further detail—you
are picking a compatible probability function. You use the beliefs you have by
pretending they are more detailed than they really are—so that they mesh with your
desires in a way that enables an expected utility calculation. Recall from Sect. 2 the
idea of seeing the lines connecting the black regions to the central (non-)Venn
diagram as scale arms, and the black regions as pans, over which you distribute a unit
of belief mass. Relative to each possible act that you might perform, an outcome
appears on each pan that represents a singleton subset of the frame of discernment: if
you perform that act, and the state in that singleton is the one that turns out to be
actual, then that is the outcome you will obtain. You have utilities for each of these
outcomes. To choose an act, FGI tells you not just to consider these utilities—how
much you would like each outcome—but to weight them according to your degrees
of belief. Your problem is that you do not necessarily have a belief mass associated
with each singleton subset: sometimes you have a chunk of belief mass sitting on a
pan representing a larger set, with nothing on any of the pans representing its
singleton subsets. My proposal is that you proceed by breaking this chunk into parts
and distributing them to the pans representing the singleton subsets—i.e. in effect
you reassemble the exploded Venn diagram. How you do this cannot be rationally
mandated by FGI because it is a precursor to the kind of weighting that FGI
demands. You can do it however you like: you pick a way of dividing the mass
amongst the singletons. But note that you are still using your beliefs to weight your
desires. All you may do is break the belief mass into chunks and distribute them
amongst singleton subsets. You may not add any mass; you may not discard any; and
you may not distribute any to non-subsets. Within these limits, there is no particular
mandated way for you to proceed: but proceeding in any of these ways is still using
your beliefs to weight your desires. While at the formal level you derive a probability
function from the belief function, it is crucial that what is going on at the conceptual
level is that you are using your non-probabilistic degrees of belief (to weight your
desires, in accordance with FGI)—not changing them. You can be described as
bringing your degrees of belief to bear by acting as if they are probabilistic and you
are maximising expected utility—but the beliefs themselves remain non-probabilis-
tic. Your degrees of belief are (still) represented by a (non-Bayesian) belief function

40 In Sect. 5 we’ll see why a second possible way of using the belief function directly also fails.
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because that is what the evidence warrants (and in general the fact that you need to
decide and then act provides no new evidence).41

5 Comparison with other views

In this section, I consider alternatives to the proposal of the previous section. These
views are drawn not only from the literature on belief functions, but also from the
literatures on decisions under ambiguity, and on imprecise probabilities.42 The reason
for this wide scope is that—as discussed in Sect. 2—a belief function determines a
set of compatible probability functions, so methods for deciding in light of a set of
probability functions are also relevant.

First consider the Transferable Belief Model (TBM): a two-level model
comprising “a credal level where beliefs are entertained and a pignistic level where
beliefs are used to make decisions” (Smets & Kennes, 1994, 192). The credal level is
modelled by a belief function. The pignistic level is modelled by a probability
function that is obtained from the belief function by a pignistic transformation, when
a decision needs to be made. Specifically, this probability function is what we may
call the Laplacean probability: in the terms of this paper, it is obtained from the
proportioning which gives an equal share of each focal set to each of the set’s
members.43 The agent then makes a decision by maximising expected utility relative
to this probability function. The proposal presented in Sect. 4 is that one picks a
proportioning, which can then be used to generate a probability function or to pool
utilities, with the resulting expected values of acts being the same either way—and
then maximises expected value. However, here (and in other places below), it will
facilitate comparison if we present the view in a more simplistic way: pick a
compatible probability function and then maximise expected utility. The TBM differs
in that it requires us always to use the Laplacean probability: it replaces the picking
step in my approach with a mandated choice of a particular probability function.
Obviously decisions recommended by the TBM will be allowable on my view—but
the converse need not hold. That is, the TBM deems unacceptable some decisions
allowed on my view: certain decisions made by maximising expected utility after
picking a probability other than the Laplacean one. But why think they are
unacceptable? Why think that when we generate a probability function from our
belief function, for purposes of making a decision, we must choose the Laplacean
probability, rather than picking any compatible probability? I have already argued
that this does not follow from FGI. But if a mandated choice of probability function

41 My view is thus different from that of Moss (2015), who—in the context of imprecise probabilities (and
incommensurable values)—writes that “any rational agent with this sort of imprecise mental state identifies
with some precise mental state for purposes of action” (p.673; cf. also p. 675). In my view, the agent acts
as if she has probabilistic beliefs but she does not identify with any precise probabilistic belief state.
42 For overviews, see Denœux (2019), Etner et al. (2012), and Troffaes (2007) and Huntley et al. (2014).
43 See e.g. Williams (1982, 342), Dubois and Prade (1986, 214) and Smets and Kennes (1994, 201–2). Cf.
Laplace (1951, 6): “We know that of three or a greater number of events a single one ought to occur; but
nothing induces us to believe that one of them will occur rather than the others. ...The theory of chance
consists in reducing all the events of the same kind to a certain number of cases equally possible, that is to
say, to such as we may be equally undecided about in regard to their existence”.
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doesn’t follow from FGI—from considerations of pure rationality—then the
requirement must be a pragmatic one. However by their nature, pragmatic
requirements are local and context-dependant: they are tuned to practical consid-
erations, and these vary from context to context. I can certainly accept that when
considering decisions made in a specific kind of context, someone might want to bolt
on to the view of this paper the further requirement that one choose a certain
probability function (or more generally, a certain proportioning)—rather than picking
any compatible one. Indeed I consider it a strength of my proposal that while in
general the first step—selecting a proportioning—is an act of picking, it can in
certain contexts be replaced by a mandated choice of a particular proportioning (or
compatible probability function), for local pragmatic reasons. For example, decisions
made in certain public organisations, or decisions made in similar contexts across
multiple sites within an organisation, might need to be systematic, predictable and
repeatable. Or in another kind of context, it could be that certain mathematical
properties are important. For example, where m1 and m2 are basic mass assignments
and F is a transformation of basic mass assignments into probability functions, F is
said to be linear iff for any a 2 ½0; 1�:

Fða:m1 þ ð1� aÞ:m2Þ ¼ a:Fðm1Þ þ ð1� aÞ:Fðm2Þ
Smets (2005) shows that the only transformation F that is linear is the Laplacean
transformation (and that the Laplacean probability it yields corresponds to the
Shapley (1953) value in cooperative game theory)—and I can certainly accept that
this property could be important in certain contexts. However, at a more abstract
level—at the level of giving a general decision theory for belief functions that
respects requirements of pure rationality and does not impose any further restrictions,
which might be relevant in particular contexts but cannot be justified in general—
there is no good reason for replacing the picking step of my decision procedure with
a mandated choice of one particular probability function.44

Second consider a view that, like the TBM, mandates a particular choice of
probability function—but a different one: not the Laplacean probability, but the
plausibility probability defined by assigning to each singleton subset its plausibility
Pl (see n.15) divided by a normalisation constant equal to the sum of the plausibility
values of all singleton subsets of the frame of discernment (Cobb & Shenoy,
2003, 2006). The problem with this proposal, from my point of view, is that the
plausibility probability need not be compatible with the belief function. For example,
suppose that in a cup game of the sort considered above your evidence warrants a
basic mass assignment of 0.5 to fC1g and 0.5 to fC2;C3g. In this case, PlðfC1gÞ ¼
PlðfC2gÞ ¼ PlðfC3gÞ ¼ 0:5 and the total sum of plausibility values of singleton
subsets of the frame of discernment is 1.5. Hence, the plausibility probability assigns
1
3 to each of the possibilities C1, C2 and C3. This is not compatible with the original
belief function, which demands that C1 get probability 0.5. If you decide by

44 In particular, while Smets and Kennes (1994, 202–3) derive their pignistic probability from certain
axioms, these axioms are not (and, to be clear, are not claimed to be) all compelling as general rationality
requirements.
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maximising expected utility relative to the plausibility probability, you will be under-
weighting possibility C1 and departing from FGI.

Similar comments apply to any other view that mandates a choice of a single
probability function. If the probability function is compatible with the belief function,
then the proposal is guilty of overreach: of mandating a choice where FGI leaves the
agent in a picking situation. If the probability function is not compatible with the
belief function, then the proposal violates FGI.

The views to consider next can all be presented in terms of one or both of the
lower and upper expectations of an act. Instead of first picking a probability and then
maximising expected utility, for each act Ai we consider all the expected utility
values one could derive for Ai by picking a compatible probability function and then
calculating Ai’s expected utility (relative to that probability function). The infimum of
these values is the lower expectation of the act Ai, denoted EðAiÞ, and the supremum
of these values is the upper expectation of Ai, denoted EðAiÞ. These lower and upper
expectations can equivalently be defined without reference to compatible probability
functions:

EðAiÞ ¼
Xk
p¼1

mðSpÞ:minfUðOi; p1Þ; . . .;UðOi; plp Þg ð14Þ

EðAiÞ ¼
Xk
p¼1

mðSpÞ:maxfUðOi; p1Þ; . . .;UðOi; plp Þg ð15Þ

Note the similarity and the difference between (14) and (15), and the second way of
presenting my approach in Sect. 4, where we use the proportioning of the focal sets
to pool utilities into a utility value for the entire focal set and then calculate an
expected value using (7). The similarity is that (7), and (14) and (15), all fit the
format:

EðAiÞ ¼
Xk
p¼1

mðSpÞ:USp ð16Þ

where USp is a function of UðOi;p1Þ; . . .;UðOi;plp Þ. In (14) USp is min. In (15) USp is

max. In (7) USp is U
i
Sp as defined in (6). The difference is that Ui

Sp , unlike min and

max, does not operate directly on the utilities UðOi;p1Þ; . . .;UðOi;plp Þ: it also takes as

input the proportions of Sp assigned to each Sj 2 Sp.
45

With the lower and upper expectations in hand, we can specify a number of
different decision methods. The first is (generalised) maximin: pick an act that
maximises E.46 My criticism of this view runs along similar lines to my criticism of
the view considered in Sect. 3 and reaches the same conclusion: the view does not
cohere with FGI. Consider another series of variations on the cup game (Table 3).

45 See further the discussion of the OWA view below.
46 See Gärdenfors and Sahlin (1982), Berger (1985, Sect. 4.7.6) and Gilboa and Schmeidler (1989). Cf. the
maximin method for decisions under ignorance (Wald, 1945).
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Suppose we gradually lower x (but keep it greater than 0), raise y, and lower k (but
keep it non-zero). My claim is that a decision method is not according with FGI
unless, in this process, it at some point deems bet 2 or 3 acceptable. If it just fixates
on bet 1 and deems it the best act for you to choose, no matter how low x and k go
nor how high y goes (imagine for example that k is 0.0001, bet 1 pays out one cent,
and bets 2 and 3 pay out one million dollars), then it is not appropriately factoring in
just how much you like the prize y—how much more you like it than x—and how
incredibly unlikely you think the ball is to be under cup 1. It is not appropriately
weighting your desires—your increasingly strong desire for y and increasingly weak
desire for x—by your degrees of belief—your increasingly strong degree of belief
that the ball is not under cup 1 and is under cup 2 or cup 3. But maximin does not do
this: it always tells you to pick bet 1 over bets 2 and 3. This is because the former
always has non-zero worst-case expected value ($kx), whereas the latter both have
zero worst-case expected value (when all the 1� k belief originally accorded to
fC2;C3g is applied to fC2g, bet 3 has expected value 0; and when it is all applied to
fC3g, bet 2 has expected value 0).47

Another option is (generalised) maximax: pick an act that maximises E. The
problem with this approach is that it too fails to cohere with FGI. Again consider a
series of variations on the cup game (Table 4). There are n cups. You have degree of
belief 0.5 that the ball is under cup 1, and 0.5 that it is under one of the remaining
cups. Bet 1 pays out on cup 1 (only), and bet 2 pays out slightly more on cup
n (only). Now suppose we gradually increase the number of cups and reduce the
difference between bet 2’s payout and bet 1’s payout. My claim is that a decision
method is not according with FGI unless, in this process, it at some point deems bet 1
acceptable. (Imagine for example that n is 1000, bet 1 pays out one million dollars,
and bet 2 pays out one cent more.) For note that as the number of cups increases,
your 0.5 degree of belief that the ball is not under cup 1 becomes increasingly
indefinite, in the sense that it leaves open more and more possibilities (more and
more options as to where the ball is—more and more cups it could be under). Yet
maximax completely ignores this: no matter how many cups there are, it proceeds as
if the 0.5 rests on cup n (the cup on which bet 2 pays out) and demands that you
prefer bet 2 to bet 1. My view allows you to assign the 0.5 to cup n and hence prefer
bet 2, but it does not demand this: it also allows you to distribute the 0.5 evenly over

Table 3 Cup game mark III

47 See below for further discussion.
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all of cups 2 through n and hence prefer bet 1 when there are three (or more) cups
(assuming bet 2’s payoff is less than twice that of bet 1).

A third option is (generalised) Hurwicz or a-maximin: decide by maximising
aE þ ð1� aÞE for some a 2 ½0; 1�.48 I have already argued against this in the cases
where a is 1 (which gives us maximin) or 0 (which gives us maximax)—but even
setting a at 0.5 does not guarantee satisfactory results. Consider another series of
variations on the cup game (Table 5). a-maximin demands that you prefer bet 2
(where E is 50¢ and E is $1.52 and hence aE þ ð1� aÞE is $1.01 when a ¼ 0:5)
over bet 1 (where aE þ ð1� aÞE is $1). This is the case no matter how many cups
there are. But as already discussed, the more cups there are, the more indefinite your
0.5 degree of belief that the ball is not under cup 1 becomes. The present view just
fixates on your desire for $2.54 and does not allow any room for your increasingly
indefinite degrees of belief to alter your decision. (Imagine for example that there are
a billion cups—and note that bet 2 pays out $2.54 on only a single one of them.) The
view does not involve appropriately weighting your desire by your degree of belief: it
fails to implement FGI. (My view allows you to prefer bet 2 but unlike the current
view does not require you to: for example, if there are four cups, and you divide your
0.5 belief that the ball is not under cup 1 evenly over the three open possibilities, then
my view will recommend bet 1.)

The next class of views to consider comprises those that assign an expected value
to each act in accordance with (16) where USp in an ordered weighted averaging
(OWA) operator, i.e. a function

Table 4 Cup game mark IV

Table 5 Cup game mark V

48 See Jaffray (1988) and Strat (1990). Cf. the Hurwicz (1951) method for decisions under ignorance.
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FhUðOi;p1Þ; . . .;UðOi;plp Þi ¼
Xlp
q¼1

wqUðqÞ ð17Þ

where w1; . . .;wlp are non-negative weights that sum to 1 and UðqÞ is the qth largest of
the utilities UðOi;p1Þ; . . .;UðOi;plp Þ.49 That is, relative to an act Ai one assigns a utility

to the focal set Sp by ordering, from largest to smallest, the utilities determined by act
Ai together with elements of the focal set, applying a weight to each one, and then
summing the results. Depending on the choice of weights, this framework can yield
decision recommendations equivalent to those of views already discussed:

Weights View

1
lp
; . . .; 1lp

TBM

0; . . .; 0; 1 Maximin

1; 0; . . .; 0 Maximax

1� a; 0; . . .; 0; a a-maximin

From my point of view, then, some instances of the OWA view constitute
unacceptable decision theories, while some yield acceptable (but not mandatory)
recommendations. From a conceptual point of view, the problem (as I see it) with the
OWA view is that if we first order the utilities by size, and then assign each a
proportion or weight, we can end up in effect weighting desires by desires—not by
beliefs, as FGI requires. This happens for example when we set weights so as to end
up with recommendations equivalent to maximin, or maximax, which (respectively)
allow outcomes you desire least, or most, to hold undue sway over your decision-
making. Recall for example the version of the cup game in Table 3. Your evidence
points you strongly towards cup 2 or 3. Yet maximin in effect has you proceed as if
the ball will not be under cup 2 when you are considering bet 2, and as if it will not
be under cup 3 when you are considering bet 3. Your dislike of getting nothing plays
too much of a role here, and ends up washing out your strong belief that the ball will
be under cup 2 or 3. The view of this paper, by contrast, is blind to any utilities
associated with elements of the focal set, at the point at which it assigns each element
a proportion: it only later multiplies the element’s proportion by a utility. It is
therefore not possible, on my view, to gerrymander the proportions so that the least-
desired (or most-desired) element of the focal set invariably gets the greatest
proportion.

The next view to consider is (generalised) minimax regret.50 For each act Ai and

each state Sj in the frame of discernment, we define the regret value Rj
i of that act

relative to that state as the difference between the utility of the outcome determined
by that act in that state, and the utility of the best outcome you could have got in that
state by performing one of the available acts. Where A is the set of all available acts:

49 See Yager (1992).
50 See Yager (2004).
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Rj
i ¼ max

Ar2A
UðOr;jÞ � UðOi;jÞ ð18Þ

We now define the regret value of act Ai relative to a set S of states by taking the
maximum of its regret values relative to each of the states in the set:

RS
i ¼ max

Sj2S
Rj
i ð19Þ

We can now assign to each act Ai an expected regret value RðAiÞ:

RðAiÞ ¼
Xk
p¼1

mðSpÞ:RSp
i ð20Þ

The idea is then to pick an act so as to minimise this value. My criticism of this view
runs runs along similar lines to my criticism of maximin. Recall the cup game from
Table 3. My claim was that a decision method is not according with FGI unless it at
some point deems bet 2 or 3 acceptable. Minimax regret fails this test. Table 6 shows
the regret values for each act, obtained by subtracting each payoff in Table 3 from the
highest payoff in its row. The regret value for each act relative to the set fC2;C3g is
its maximum regret across rows 2 and 3: so y for each bet. Thus bet 1’s expected
regret is k:0þ ð1� kÞy ¼ ð1� kÞy and bet 2 and bet 3 each have expected regret
k:xþ ð1� kÞy. So minimax regret always demands that one prefer bet 1, because bet
1’s expected regret is always k.x less than the expected regrets of bets 2 and 3.

All the views considered so far follow this pattern: assign a number to each act
and then maximise (or in the last case minimise) this number. Now we consider three
views that fit a different pattern. First, we define a relation between acts. Then we
define the choice set—i.e. the set of choiceworthy or acceptable acts (from which the
decision-maker is to pick one, if the choice set contains more than one act)—as the
set of all nondominated acts (with respect to this relation): i.e. act Ai is choiceworthy
iff there is no available act Ar such that Ar stands in the relation to Ai but not vice
versa. The first two views that fit this pattern define their relations as follows (using
the notions of lower and upper expectations)51:

Table 6 Regret values for cup game mark III

51 For the first view see Satia and Lave (1973), Kyburg (1983), Ramoni and Sebastiani (2001) and
Zaffalon et al. (2003); for the second view see Destercke (2010).
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ð21Þ

ð22Þ
w is called the strong dominance (or interval dominance) relation and is called the
interval bound dominance relation.52 Clearly the choice set defined from will be a
subset of that defined from w. My criticism of both these views runs along similar lines
to my criticism of certain earlier views and reaches the same conclusion: the views do
not cohere with FGI. Recall the version of the cup game in Table 3. My claim was that a
decision method is not according with FGI unless at some point in the process of
lowering x and k (but keeping them greater than 0) and raising y, the method deems bet 2
or 3 acceptable. But FGI actually demands more than this: furthermore, a decision
method must at some point in this process (not necessarily the same point) stop deeming
bet 1 acceptable. Otherwise, the method is not appropriately weighting your desires—
your increasingly strong desire for the prize of bets 2 and 3 and increasingly weak desire
for the prize of bet 1—by your degrees of belief—your increasingly strong degree of
belief that bet 1 will not pay off and one of bets 2 or 3 will. But neither of the decision
methods currently under consideration ever stops deeming bet 1 choiceworthy (not even,
for example, when k is one in a million, x is one thousandth of one cent, and y is one
billion dollars). The lower expectations of bets 2 and 3 are always 0 while the lower
expectation of bet 1 is always positive (k.x), so the lower expectation of bet 2 (likewise
bet 3) can never be greater than or equal to the lower expectation of bet 1, and a fortiori
can never be greater than or equal to the upper expectation of bet 1. Hence bet 2
(likewise bet 3) can never stand in either relation or relation w to bet 1, and a fortiori
bet 1 can never be dominated by bet 2 (likewise bet 3) relative to either of these relations.
So bet 1 is always in the choice set, on both views currently under consideration. Thus,
both views still allow you to pick bet 1, even when you are arbitrarily close to certain that
bet 1 will not pay off—and even if it does you will win an arbitrarily small amount of
money—and you are arbitrarily close to certain that one of bets 2 or 3 will pay off an
arbitrarily large amount of money. No increase in your confidence, or decrease in payout
x, or increase in payout y can possibly change this: and that contravenes FGI. (My view
does stop deeming bet 1 acceptable at some point. You have to distribute the 1� k belief
mass applied to fC2;C3g over fC2g and fC3g. If you give more to the former, bet 2 will
be preferable to bet 3—and vice versa; if you distribute the mass evenly, bets 2 and 3 will
have the same expected value. But you cannot throw any of the mass away, and however
you distribute it, at least one of bets 2 and 3 will be preferable to bet 1—provided x and k
are low enough and y is high enough.53 For higher values of k, or lower values of y that

52 It is important to distinguish the use of the term ‘dominance’ in the names of these relations from its use
in the recipe described above for getting from some relation (regardless of whether ‘dominance’ appears in
its name) to a choice set comprising the acts that are nondominated with respect to that relation.
53 For a concrete example, suppose that k ¼ 0:01, x ¼ 1 and y ¼ 10. Then bet 1’s expected payoff is one
cent. Bet 2’s expected payoff could be anywhere from 0 to $9.90, and similarly for bet 3—but they cannot
vary independently: there is no way for both of them to be less than one cent.
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bring y closer to x, bet 1 will be acceptable—or even mandated—on my view.54 That is
exactly the kind of sensitivity to belief and desire that FGI requires.)

The third view that fits the present pattern is the maximality view. Let the set of all
probability functions compatible with your belief function be P and let the expected
utility (in the classical sense) of act Ai relative to probability function P be EPðAiÞ.
Now define the following relation between acts:

Ai � Ar , 8P 2 P½EPðAiÞ�EPðArÞ� ð23Þ
and then (following the pattern under consideration) define the choice set as the set of
all nondominated acts with respect to this relation.55 Again my criticism of this view
is that it does not cohere with FGI, as can be seen by considering the cup game just
discussed, where the view never stops deeming bet 1 acceptable. Bet 2 has a lower
expected value than bet 1 relative to the probability function that assigns all of the
1� k belief mass to cup 3, and bet 3 has a lower expected value than bet 1 relative to
the probability function that assigns all of the 1� k belief mass to cup 2—so bet 1 is
nondominated and hence choiceworthy on this view.

The next view to be considered—the E-admissibility view—defines a choice set
directly, rather than going via a relation between acts. Where A is the set of all
available acts, define the choice set A0 � A as follows:

Ai 2 A0 , 9P 2 P8Ar 2 A½EPðAiÞ�EPðArÞ� ð24Þ
In other words, Ai is choiceworthy iff there exists a compatible probability function
relative to which Ai maximises expected utility.56 Note that an act will be in the
choice set just defined if and only if it could be recommended by my view—by first
picking a proportioning and then maximising expected value. So I have no objection
to this view along the lines of my objections to the views just considered. But note
that my view and the E-admissibility view are not the same. Consider for example
bets 2 and 3 in the version of the cup game in Table 3 (where x and k are low enough
and y high enough to rule out bet 1, on my view and the E-admissibility view). On
the E-admissibility view they are both in the choice set and so the only rationally
admissible attitude towards them is indifference: if the agent has to select a single bet
she will just have to pick one of them. On my view however the agent is allowed to
pick a proportioning relative to which bet 2 (say) has a higher expected value than
bet 3—and if she does so then she will prefer bet 2 to bet 3. Thus on my view an
agent is allowed to prefer bet 2 to bet 3, whereas on the E-admissibility view this is
not allowed. This seems to me the correct position, given FGI. Your beliefs are
completely silent on which of cups 2 or 3 specifically the ball will be under. This is
quite different from a situation in which your degrees of belief are split evenly

54 For a concrete example, suppose that k ¼ 0:6, x ¼ 10 and y ¼ 11. Then bet 1’s expected payoff is $6.
Bet 2’s expected payoff could be anywhere from 0 to $4.40, and similarly for bet 3—but however you
divide up the 0.4 degree of belief applied to fC2;C3g, bet 1 will have a higher expected payoff than both
bets 2 and 3.
55 See Bewley (2002) and Walley (1991, Sect. 3.9).
56 See Levi (1980, 96).
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between cups 2 and 3. In the former situation, you are not failing to weight your
desires by your beliefs if you break up your belief mass unevenly between cups 2 and
3. As I have argued, any way of breaking up your belief mass is acceptable from the
point of view of FGI: you can only pick one. And once you pick one, it could be that
one or other of bets 2 and 3 becomes preferable to you. A second advantage of my
two-part view (first pick a proportioning, and then maximise expected value) over the
one-part E-admissibility view (which simply defines a choice set) is that it naturally
makes room for systematisation in local contexts in which consistency is a
desideratum: as already discussed, the initial free picking step can (if desired, in a
certain kind of setting) be locked into place with a mandated choice of a particular
proportioning.

In Sect. 3, I presented a way of directly bringing together beliefs (modelled by
belief functions) and desires (modelled in the standard way by utility functions) in
order to (try to) implement FGI. I then criticised this view (arguing that it in fact fails
to implement FGI) and in Sect. 4 introduced proportionings as a way of getting
beliefs and desires to mesh, as a precursor to maximising expected value. The final
view I want to consider involves a different way of bringing beliefs and desires
together directly. Given a utility function U, each act Ai induces a real-valued
function ui which maps each Sj in the frame of discernment fS1; . . .; Sng to UðOi;jÞ
(i.e. to the utility assigned to the outcome Oi;j of act Ai in state Sj). Relative to an act
Ai, we can order the states in the frame of discernment as Si1; . . .; S

i
n in such a way

that uiðSi1Þ� . . .� uiðSinÞ.57 We also define uiðSi0Þ as 0 (so as to be able to write (25)
below, rather than a lengthier expression). The proposal is that we assign act Ai an
expected value expðAiÞ equal to the Choquet integral of ui with respect to the belief
function Bel (and then pick an act with maximal expected value)58:

expðAiÞ ¼
Z
Ch

uidBel ¼
Xn
j¼1

ðuiðSijÞ � uiðSij�1ÞÞBelðfSij ; . . .; SingÞ ð25Þ

We may think of what is going on here is as follows. We have an act Ai and we want
to calculate an expected value for it. (Given Ai, we may for simplicity of presentation
refer to the utility of the outcome of Ai relative to a certain state as the utility of that
state.) We do this by summing a sequence of things—by, as it were, adding numbers
into a pot. To get this sequence, we first order the states by their utilities, in a non-
decreasing order. Now the first thing we throw into the pot is the utility of the first
state—because we are bound to get at least that much utility (if we perform act Ai).

59

Then we look at the increment to the utility of the next state, Si2. We will gain that
extra bit of utility (and maybe more, but that will be accounted for later in the
process) if one of states Si2; . . .; S

i
n is actual, so we multiply the increment by our

degree of belief in that set of states, and add the result to the pot. (In case the

57 If there are multiple ways of doing this—because multiple states lead to outcomes with the same utility
—which one we choose makes no difference to the expected value defined below.
58 See Gilboa (1987) and Schmeidler (1989).
59 Note that the first summand in (25) is simply uiðSi1Þ because we set uiðSi0Þ ¼ 0, and fSi1; . . .; Sing is the
entire frame of discernment so BelðfSi1; . . .; SingÞ ¼ 1.
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increment is in fact zero, we are adding nothing; cf. n.57.) Then we again look at the
increment to the utility of the next state, Si3. We will gain that extra bit of utility
(which is the first bit of the ‘maybe more’ mentioned above, for which we are now
starting to account, as promised) if one of states Si3; . . .; S

i
n is actual, so we multiply

the increment by our degree of belief in that set of states, and add the result to the pot
—and so on until we have come to the last state. Now it turns out that expðAiÞ ¼
EðAiÞ (Gilboa & Schmeidler, 1994, 51). Therefore, from my point of view, the
present proposal suffers from the same flaws as maximin.

6 Precise probabilities redux

On one way of presenting the decision method proposed in Sect. 4, the way to make
a decision when one’s degrees of belief are represented by a belief function is to pick
a proportioning, which generates a probability function compatible with one’s belief
function, and then maximise expected utility. The probability function does not
represent one’s degrees of belief—the belief function still does that—but one acts as
if one has probabilistic degrees of belief and is maximising expected utility. The
objection might therefore arise: why the pointless detour through belief functions? If
the end result is that one acts as if one has probabilistic degrees of belief and
maximises expected utility, surely we should just adopt the traditional model in
which your degrees of belief are probabilistic and you maximise expected utility.60 If
the probability is all that matters when it comes to action, shouldn’t we just drop the
belief function from the picture?

We should not: the move via belief functions is not a pointless detour. First, on my
view, the probability function is an inessential theoretical construct. The core point—
FGI—is to decide in light of one’s beliefs and desires. The probability function is one
way of linking evidence-based beliefs residing at the level of non-singleton sets of
states, with utilities residing at the level of particular outcomes. There is an
alternative way of forging this link—pooling utilities—that does not involve a
probability function at all.

Second, there is the crucial conceptual point that we cannot say that the
probability function represents your degrees of belief because degrees of belief need
to respect the evidence and the probability function does not do so. The belief
function that models your degrees of belief is non-Bayesian precisely because that is
what the evidence warrants. The belief function cannot be dropped because without
it, the picture would lack anything representing degrees of belief (which must respect
the evidence).

Still, the objector may press, that’s all very well, but if, in the final analysis, you
behave as if you have probabilistic degrees of belief and maximise expected utility,
what content can we really give to the claim that your degrees of belief are not
probabilistic? This brings us to my third point which is that the behaviour of a person
Awhose degrees of belief are modelled by a belief function (and who acts by picking
a probability and then maximising expected utility) will not in general be the same as

60 Elga (2010, 6) and White (2010, 180, n.19) argue in this sort of way against certain proposals about
decision-making with imprecise probabilities.
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the behaviour of a person B whose degrees of belief are probabilistic (and who acts
by maximising expected utility). Consider the following case from White (2010,
175)61:

You haven’t a clue as to whether p. But you know that I know whether p. I
agree to write ‘p’ on one side of a fair coin, and ‘:p’ on the other, with
whichever one is true going on the heads side (I paint over the coin so that you
can’t see which sides are heads and tails). We toss the coin and observe that it
happens to land on ‘p’.

Here’s how the belief function model handles this case. The frame of discernment is
fph; pt; �ph; �ptg.62 Before the toss, your good evidence about the fairness of the coin
(and complete lack of evidence about p) warrants a basic mass assignment m1 that
assigns 0.5 to h (i.e. fph; �phg) and 0.5 to t (i.e. fpt; �ptg). Now the coin is tossed and
you observe that it lands with ‘p’ showing. Given that ‘p’ is showing and that the true
claim was written on the heads side, out of the original four possibilities
(ph; pt; �ph; �pt) there are now two left open (ph; �pt). So observing the coin land
with ‘p’ showing gives you conclusive evidence that the actual situation is ph or �pt.
This evidence warrants a basic mass assignment m2 that assigns 1 to fph; �ptg.
Combining m1 and m2 using Dempster’s rule gives a basic mass assignment m3 that
assigns 0.5 to fphg and 0.5 to f�ptg. m3—like the initial m1—generates a belief
function that assigns 0.5 to h and 0.5 to t.63

Now suppose we are asked to consider two bets: first a bet on p before the toss,
and second a bet on h after the toss has been observed to come up ‘p’. Prior to the
toss, as just discussed, agent A has a belief function determined by a basic mass
assignment of 0.5 to fph; �phg (i.e. heads) and 0.5 to fpt; �ptg (i.e. tails). From this, for
purposes of deciding what to do in relation to the first bet, she generates a probability
function by distributing the first 0.5 between fphg and f�phg and the second 0.5
between fptg and f�ptg. The probability assigned to p will then be the sum of
whatever gets assigned to fphg and whatever gets assigned to fptg. This could be
anything between 0 and 1. Suppose for the sake of example (nothing depends on this)
that A distributes the first 0.5 so that 0.15 goes to fphg and 0.35 goes to f�phg, and the
second 0.5 so that 0.15 goes to fptg and 0.35 goes to f�ptg. Her probability for p is
then 0.3. Now suppose that B is an agent with probabilistic degrees of belief and that
the probability function that represents his beliefs is exactly the one that A just
generated. So B’s probability for p is 0.3. A and B act in the same way in relation to
the first bet (they set the same betting ratio; or decline to pay 50¢ for a bet that pays
out $1 if p; etc.). Now the coin is tossed and seen to come up showing ‘p’. As just

61 The original lacks a negation symbol but that is clearly a typo so I have added one.
62 Note that p in ph (etc.) represents p being the case, i.e. the claim ‘p’ being true (as opposed to the coin
landing with ‘p’ showing). We could instead use a sample space with eight outcomes of the form ph‘p’
(representing the situation in which p is the case, the coin lands heads, and the coin lands with ‘p’
showing), pt‘p’ etc. This would add some surface complexity but would make no essential difference to
what follows.
63 Note that there is thus no loss of determinacy in your degrees of belief in heads and tails. This contrasts
with the treatment of this case using imprecise probabilities which, notoriously, involves dilation. For
further discussion see Smith (2022, §8).
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discussed, A’s degree of belief in ‘heads’ remains 0.5—whereas B (after condition-
alising on fph; �ptg) now assigns ‘heads’ probability 0.3. So A and B behave
differently with regards to the second bet (they set different betting ratios; or A agrees
to pay 40¢ for a bet that pays out $1 if h but B declines; etc.).

What is going on here is that the key conceptual point made above does in fact
manifest in behaviour. A carries around a belief function that represents her degrees
of belief and this is what she updates when new evidence comes in. (She updates by
combining her original basic mass assignment with the basic mass assignment
warranted by the new evidence, using Dempster’s rule.) She generates a probability
from her belief function when she needs one for decision purposes but the belief
function is still there representing her degrees of belief. The belief function is what
gets updated in light of new evidence—and then a new probability is generated when
she next needs to act. The old probability is not directly updated in light of
evidence.64 B, by contrast, has only the probability function to work with. It is being
forced to do double duty of determining action (via the calculation of expected
utility) and responding to evidence. So B updates the probability function when he
sees the coin land with ‘p’ showing—and this causes him to act differently from A
with regards to the second bet.

The point can actually be pressed further: A is not only different from B but is in
fact more reasonable. Given the setup of the case, the coin’s landing ‘p’ does not
provide any evidence to shift one’s view of h. If one was sure that p (or not p), then
seeing ‘p’ come up would tell one for sure that the coin landed heads (or tails). If one
thought that p was quite/very un/likely, then seeing ‘p’ come up would tell one that
heads is quite/very un/likely (and so on). But the whole point is that one has no
evidence at all about p: not that it is very or a little bit likely or unlikely or anything
else. And in that situation, seeing the coin land ‘p’ tells one nothing about whether it
landed heads. This is exactly the result that the belief function story gives. Whereas
B, who has only the probability function to work with, cannot avoid taking the initial
probability assigned to p as a judgement that p is very (a little bit) un/likely or
whatever—depending on whether the probability is very (a little bit) low/high, etc.
And so B cannot avoid taking the observation of ‘p’ as evidence for or against h.
(Even when the initial probability for p is 0.5, the observation of ‘p’ is still taken as
evidence regarding h: just evidence that points equally for and against h.)65

7 Criteria of mass assignments

In Sect. 2, I presented a picture in which a given body of evidence warrants a basic
mass assignment which then determines (by Eq. (2)) a belief function which models
degrees of belief. There is a debate in epistemology over whether (a) a given body of

64 This might lead someone to object that my approach leaves the agent open to diachronic Dutch book:
see Sect. 9.
65 Furthermore, this is the root cause of the dilation problem for imprecise probabilities: it is because each
member of the credal committee (that, according to imprecise probabilists, represents the agent’s belief
state) does what B does that the set of probabilities for h dilates from 0.5 to the entire unit interval. See
n.63.

123

608 N. J. J. Smith



evidence warrants a particular doxastic attitude towards any proposition (the
uniqueness view), or (b) different fully rational agents might adopt distinct doxastic
attitudes towards a given proposition, on the basis of the same evidence (the
permissive view).66 For purposes of this paper I shall remain neutral on this question
—but I shall address a prior issue: what does it mean for an agent to assign mass 0.3
(say), rather than some other mass such as 0.2, to a particular set of outcomes?67

Shafer (1976, 20) writes:

I merely suppose that an individual can make a judgment. Having surveyed the
sometimes vague and sometimes confused perception and understanding that
constitutes a given body of evidence, he can announce a number that represents
the degree to which he judges that evidence to support a given proposition and,
hence, the degree of belief he wishes to accord the proposition

Shafer goes on explicitly to deny that the number is objectively determined by the
evidence (in the terms above, he advocates permissiveness). He also distances
himself from the views of those Bayesians who “have followed Frank Plumpton
Ramsey and Bruno de Finetti in choosing to analyze degrees of belief as
psychological facts, facts which can be discovered by observing an individual’s
preferences among bets or risks but which may not bear any particular relation to any
particular evidence” (p.21). This however means that Shafer leaves us in the dark
about the significance, if any, of the agent’s choice of numbers: about what difference
it would make if the agent announced 0.3 instead of 0.4—and hence about what these
numbers really mean.68

I face no such problem because when it comes to degrees of belief I do not take
connections to evidence and connections to preferences among bets to be an either/or
matter. As I argue elsewhere, degrees of belief have both kinds of connection. So we
can indeed get a handle on what it means for a detective to assign (say) mass 0.3
rather than 0.4 to the set of male suspects (with the remainder being assigned to the
frame of discernment) on the basis of a given body of evidence. It means (for
example, among other things) that she may regard it as rationally permissible to pay
65¢ for a bet that pays $1 if the perpetrator turns out not to be male.69 In general, the
connection between degrees of belief and decision-making described in Sect. 4
means that differences in mass assignments show up as differences in betting
behaviour. Thus, on the belief function model advocated in this paper, while insisting
that degrees of belief are constrained by evidence, we can also retain the traditional
idea of understanding strength of belief by reference to betting behaviour. The
precise nature of the connection is different—e.g. assigning mass 0.3 to the set of

66 See e.g. Feldman (2007) and White (2005).
67 An answer to this question could force a stance on the uniqueness issue—but my answer will leave the
issue open.
68 To be accurate, I should note that Shafer does address this issue in a later work where he notes that the
lack of a “betting interpretation” of belief functions raises the question of what such degrees of belief mean
(Shafer, 1981, 1–2) and goes on to offer an answer to the question.
69 When generating a probability function for purposes of considering this bet, the maximum probability
she can assign to ‘not male’ is 0.7 (allowing her to regard the bet favourably). It would be only 0.6 if she
had assigned 0.4 to the set of males.
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male suspects no longer equates to setting a betting ratio of precisely 0.3 on a bet that
the perpetrator is male—but connections remain, and give us a concrete handle on
the difference between distinct mass assignments.

8 Decisions under uncertainty vs risk

The view proposed in this paper yields a clear and unified picture of decision theory.
On the traditional probabilistic picture, there is a distinction between decisions under
risk—where there is a probability function that models the agent’s degrees of belief
—and decisions under uncertainty—where there is no such probability function,
because the agent has so little information that not only does he not know what will
happen, he cannot even assign probabilities to the various possibilities. In the present
picture, both kinds of situation are encompassed under the one umbrella and handled
by the same decision theory. Traditional decisions under risk are cases where the
belief function is Bayesian—i.e. a probability function. Traditional decisions under
uncertainty are cases where the agent has so little information that the only focal set
is the entire frame of discernment (which is assigned 1). In between there are
intermediate cases where the focal sets are neither all singletons nor identical to the
frame of discernment. All these cases are covered by the decision theory presented in
Sect. 4. On the present picture, then, there are not two fundamentally different kinds
of decision situation (risk and uncertainty). There is only one kind of case—but
within it there are gradations, as the focal sets vary in size between singletons and the
entire frame.

9 Sequential decisions

An agent whose evidence warrants degrees of belief represented by a non-Bayesian
belief function and who follows the decision method proposed in Sect. 4 will not be
subject to Dutch book—because in any given (synchronic) betting situation she will
be acting as if she has probabilistic degrees of belief. For all that has been said,
however, she could face a diachronic Dutch book. In this section, I consider
diachronic Dutch books—and another kind of sequential decision problem, which
has been argued by Elga (2010) to pose difficulties for imprecise probability views.
While Elga did not consider belief functions, his case is relevant to my view too.

First let’s consider diachronic Dutch books. If an agent has degrees of belief
represented by a non-Bayesian belief function Bel1 at time t1 and picks a compatible
probability function P1 for purposes of selecting bets, then learns E and updates (by
Dempster’s rule) to a non-Bayesian belief function Bel2 at time t2 and then picks a
compatible probability function P2 for purposes of selecting bets, P2 need not be the
conditionalisation of P1 on E. For example, suppose the sample space is
X ¼ fS1; S2; S3; S4g. Let Bel1 assign 0.5 each to fS1; S2g and X. Let P1 assign 0.3
each to fS1g and fS4g and 0.2 each to fS2g and fS3g. Let E be—or warrant an
assignment of 1 to—fS2; S4g. Then Bel2 assigns 0.5 each to fS2g and fS2; S4g. Now
let P2 assign 0.5 each to fS2g and fS4g. Then P2 is not the same as the
conditionalisation of P1 on E, for the latter assigns 0.4 to fS2g and 0.6 to fS4g. This
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does not however mean that the agent is open to a diachronic Dutch book. Although
it is often claimed in conversation that failure to update by conditionalisation leaves
one open to Dutch book, in fact—as careful presentations in the literature make clear
—susceptibility to diachronic Dutch book requires not merely that P2 isn’t the
conditionalisation of P1 on E. It requires furthermore that the bookie knows at t1
what P2 will be. Only then can the bookie know whether to buy or sell a certain bet at
t1—in order to sell or buy it back (as the case may be) at t2—and thus inflict a sure
loss.70 So if you pick a probability on the fly when you need to act, you will not be
susceptible to a diachronic Dutch book.

Earlier I said that it is allowable and perhaps desirable in certain contexts to bolt
on to my view a fixed selection method—for example the TBM’s Laplacean method
—rather than picking a probability when one faces a decision. Now if one does do
this—and makes it known that one has done so—then the point made in the previous
paragraph would seem no longer to apply. Furthermore, the Laplacean method in
particular can generate a later probability that is not the conditionalisation, on the
intervening evidence, of the probability it generated earlier.71 None of this poses a
problem for the views of this paper. The point simply becomes this: while it might be
convenient in certain contexts to adopt the Laplacean method, contexts in which
there are diachronic Dutch bookies lurking around are probably not among them
(unless the benefit, in the context, of adopting the method outweighs the risk of
losing money to a bookie).72

Now let’s consider Elga’s scenario, which involves a proposition H—regarding
which you lack the kind of evidence that would warrant probabilistic degrees of
belief—and two bets: bet A sees you lose $10 if H is true and win $15 otherwise; bet
B sees you win $15 if H is true and lose $10 otherwise. Your choices regarding these
two bets can be depicted as in Fig. 3. Here’s how to interpret this sort of diagram.
After a node representing an opportunity which the agent may accept or reject (i.e.
bet A, bet B), the up track represents acceptance and the down track represents
rejection. After a node containing a proposition (i.e. H), the up track represents the
proposition’s being true and the down track represents its being false. Nodes
containing numbers represent outcomes (dollar amounts). So looking at the top part
of Fig. 3, the idea is that if you accept bet A, then if H is true you lose $10 and if H is
false you gain $15; while if you reject bet A, then you gain (and lose) nothing (the

70 The classic presentation of the diachronic Dutch book argument for conditionalisation is Teller (1973)/
(1976). Note in particular: “if at time 0 the agent knows...what his new belief function...will be...then a
bookie who knows no more nor less than the agent can induce the agent to buy and sell bets on which he
will have a net loss whatever happens. ...No explicitly formulated plan for changing beliefs in the face of
new evidence is reasonable unless...the plan calls for changing beliefs by conditionalization” (p. 223
1973/p. 210 1976, my emphases) and “In this case, the bookie cannot inflict sure loss because he cannot
tell for sure whether he should buy or sell the initial bets” (p. 225/p.212).
71 See Smets (1993, Sect. 2.2) for an example in which this occurs. Note that Smets argues that the
diachronic Dutch book argument in fact fails against the TBM.
72 Compare: if you have a choice of ways of walking home from the station, you can pick one each time,
or you can instead lay out a timetable: route A on Monday, B on Tuesday, etc. Either approach is fine in
general—but if you live in a high crime area then it might be better to randomise your movements than to
follow a fixed plan.
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status quo is maintained). Similarly for the bottom part of the diagram and for further
such diagrams below.

Elga is going to offer you bet A and then—so soon afterwards that you will not
have lost, gained or reconsidered any evidence—offer you B. You know in advance
that this will happen. Elga claims:

Any perfectly rational agent who is sequentially offered bets A and B in the
above circumstances (full disclosure in advance about the whole setup, no
change of belief in H during the whole process, utilities linear in dollars) will
accept at least one of the bets. (Elga, 2010, 4)

On the view proposed in this paper, however, you could end up rejecting both bets.
Suppose that your degrees of belief about H are represented by a non-Bayesian belief
function generated by a mass assignment of x to fHg, y to f:Hg, and 1� x� y to
fH ;:Hg. To decide whether or not to take bet A, you divide the 1� x� y assigned
to fH ;:Hg between fHg and f:Hg—generating a probability function—and then
maximise expected utility. If fHg gets a probability more than 0.6, then the expected
utility of accepting bet A will be less then zero—which is the expected utility of
rejecting the bet—and so you will reject it. To decide whether or not to take bet B,
you proceed in the same kind of way. If fHg gets a probability less than 0.4, then the
expected utility of accepting bet B will be less then zero—which is the expected
utility of rejecting the bet—and so you will reject it. So on my view, you are
rationally permitted to reject bet A and then reject bet B. Note that this will not
happen if you use the same proportioning of fH ;:Hg for both decisions.73 However
I have already argued that while it might make sense to replace the picking part of my
decision process with a fixed selection mechanism in certain contexts for pragmatic
reasons, this is not a requirement of rationality.

My basic position on Elga’s scenario is that (for all the reasons given above in
support of my proposal) my view gives the correct result—and that Elga’s claim that

bet A
0

H

15

-10

bet B
0

H

-10

15

Fig. 3 Bets A and B: version I

73 It is part of the setup that your belief in H stays the same—i.e. in my terms, the belief function
representing your degrees of belief does not change. If you divide up your degree of belief in fH ;:Hg in
the same way both times, then fHg gets the same probability both times. Hence, it does not get probability
more than 0.6 one time and less than 0.4 the other.
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a perfectly rational agent may not end up having rejected both bets is incorrect. Other
authors agree that Elga is incorrect.74 So we could leave the matter here. However
taking the discussion a couple of steps further will shed light on how an agent would
employ the decision theory presented in this paper in scenarios in which future
decisions need to be factored into present ones.

The first point to discuss is that the above account of how one would decide in
Elga’s case would be exactly the same if one were offered bet A with no knowledge
that bet B was coming—and then later happened to be offered bet B. Yet Elga
stresses that full disclosure in advance is an important part of the setup of his case. He
does not think an agent is irrational if she does not know bet B is coming when she
rejects bet A—and then, when bet B is presented, goes on to reject it. Rather, he
claims that a perfectly rational agent who knows both bets are coming—in quick
enough succession that she won’t get any new evidence relevant to H after bet A and
before bet B—will accept at least one of the bets. Elga claims:

The bets are great because if you accept both of them, you’ll be sure to win $15
on one, lose $10 on the other, and so gain $5 overall. In other words, bets A and
B together guarantee a sure gain, just as a Dutch Book guarantees a sure loss.
(Elga, 2010, 4)

To build in the idea that when you consider bet A, you also know bet B is coming,
we can depict the situation as in Fig. 4. Note that the lower version of bet B is the
same as in Fig. 3—but the upper version is different. The point here is that if you
have accepted bet A, then the overall outcome of accepting, or rejecting, bet B will
be different from what it would have been had you rejected bet A: now your final
position, when the truth or falsity of H is revealed and the bets are settled, will be the
sum of your payouts on bets A and B. As you have full disclosure in advance, you
can already envisage all this at the point of considering bet A.

Even with this more complex setup, the view proposed in this paper allows a rational
agent to reject A and then go on to reject B (and this is the right result). Suppose you are
standing at the bet A node, deciding whether to go up or down. In the distance, you see the
possibleoutcomes. Inbetween, you seeyour future decisiononbetB, and thequestionofH.
Your degrees of belief concerning how likely you are to get the various payoffs therefore
depend on your degrees of belief concerning H, and concerning what you will do when
faced with bet B. So let’s consider the latter. (The idea is that this sort of consideration is
precisely what you yourself engage in, while deliberating over bet A.) Suppose you are
weighting up bet B. At that point, the only thing standing between your decision and the
outcomes is the question ofH. So your decision onBwill depend on your degrees of belief
(at that point) concerningH. More specifically, you will pick a proportioning of fH ;:Hg.
This will generate a probability p forH. You then calculate the expected utility of accepting
and rejecting. At the top version of bet B, these expected utilities are (respectively) 5 and
p:�10þ ð1� pÞ15 ¼ 15� 25p. You will accept if the former exceeds the latter, i.e. if
p[ 0:4. At the bottom version of bet B, the expected utilities are p:15þ ð1� pÞ:�10 ¼

74 For a compelling rebuttal of Elga, see Bradley and Steele (2014a); also e.g. see Hedden (2015) and cf.
Chandler (2014, 1281–2). Earlier, Levi (1985, §3) had (as Elga notes) anticipated this sort of case and
argued against the kind of position that Elga adopts.
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25p� 10 and 0. Youwill accept if the former exceeds the latter, i.e. if p[ 0:4. Now return
to the bet A node. As we saw, your degrees of belief concerning whether you will end up
with each of the possible payoffs depend on your degrees of belief concerning H, and
concerning what you will do when faced with bet B. Regarding the latter, you’ve just
worked out that (whether you accept or reject bet A) you’ll accept bet B if, at the point of
considering bet B, you assign H a probability greater than 0.4. The view proposed in this
paper says that at bet B, you assignH a probability by picking a proportioning of fH ;:Hg.
This (in itself) determinesabsolutelynothing aboutwhat beliefs you shouldhave in advance
about whether you will pick this or that proportioning—and hence assign H this or that
probability. Your beliefs about this will depend (as always) on your evidence. Maybe you
have noticed that in the past you tend to make certain kinds of pickings—but maybe you
have discerned no pattern. Or maybe you have adopted the Laplaceanmethod of picking a
proportioningand feel certain that youwill continue touse it in the future.All of this is up for
grabs. Now however you form your degrees of belief at the time of considering bet A, and
however youproportion focal sets to arrive at probabilistic degrees of belief, youwill assign
probabilities to eachof the four cells in thepartitiongeneratedby the twopropositionsH and
‘whenconsideringbetB,youwill assignHaprobabilitygreater than0.4’ (BPH for short)75:

BPH H Probability

1 1 a

1 0 b

0 1 c

0 0 1� a� b� c

bet A

bet B
0

H

-10

15

bet B

H

15

-10

H

5

5

Fig. 4 Bets A and B: version II

75 In the table, 1’s and 0’s are truth values. So the first cell in the partition is the one where BPH and H are
both true—and so on.
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So now you can assign the following expected utility to the act of accepting bet A76:

a:5þ b:5þ c:�10þ ð1� a� b� cÞ15 ¼ 15� 10a� 10b� 25c ð26Þ
and the following expected utility to the act of rejecting bet A:

a:15þ b:�10 ¼ 15a� 10b ð27Þ
You will accept A iff (26) exceeds (27). A bit of calculation shows that this occurs
just in case aþ c\0:6. This could fail to occur—in which case you will reject A. So
even in this more complex setup, it is possible for your degrees of belief at the point
of considering bet A—your degrees of belief about H, and about the probability you
will assign H when it comes to considering bet B—to lead you to reject bet A. And
then of course it is possible that when you come to consider bet B, you assign a
probability to H that leads you to reject bet B. So you could end up having rejected
bets A and B (and there is nothing irrational about this).

But what of Elga’s claim that bets A and B together guarantee a sure gain? There
is no point in Fig. 4 at which you can choose bets A and B together. You only get to
choose bet A (or not)—and then bet B (or not). There is no choice point at which you
turn down a sure gain in favour of a sure zero dollars—and no point at which you
choose irrationally (even if you end up with zero dollars). However—and this is the
second point to discuss—there is in fact a third, even more complex way of looking
at the situation, in which you can at the outset choose a sure $5. For you can see in
advance that if you accept bet A and accept bet B, then you will get $5. So—if you
think of this as a real-world scenario—you do in fact have the option of bypassing
the decision-making process altogether. You have the option of deciding at the outset
that you will not even weight up the options when offered bet A, or when offered bet
B—you will simply say ‘I accept’ on both occasions. We can depict the situation as
in Fig. 5. At the outset you now have a new, initial choice: take the decision theory
route (the down track, which from that point on is just the same as in Fig. 4); or
bypass it (the up track). The idea of the up track is not that you somehow try to bind
your decisions in advance: it is that you do not make any (further) decisions at all.
Decision theory tells you how to make decisions. It does not tell you which real-
world scenarios are decisions. You give decision theory a decision as input and it
gives you as output a choice set. You do not give it as input a real-world three- or
four-dimensional scene or scenario involving people with cash and so on. You can

76 I am here making a harmless assumption, for the sake of simplicity of presentation. You know that
you’ll accept bet B if you assign H a probability greater than 0.4. Note ‘if’ here—not ‘if and only if’. You
can see that if you assign H probability 0.4, the expected utilities of accepting and rejecting bet B will be
the same, and you will pick a course of action (this is what happens when there are multiple options that all
maximise expected utility). I’ll now assume that (for whatever reason) you feel certain that if you are made
an offer, and accepting and declining both maximise expected utility, then you will decline. This
assumption turns the ‘if’ into ‘if and only if’. The assumption need not be true in general, of all agents—
but making it here simplifies the presentation, and has no impact on my argument (below) that there exist
circumstances under which a rational agent may reject A and then reject B. It has no impact because there
are certainly circumstances in which it is rational for a particular agent to be certain in this sort of way
about what he will do if he has to pick one out of multiple options that all maximise expected utility.
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treat such a scene as a decision—abstract away the choices you have, the outcomes
you will get, and so on—and then feed these into your decision theory. My point now
is that faced with Elga’s real-world scenario, you actually have a prior option which
is not to treat it as a decision situation at all. (Compare: your theory of etiquette
directs you not to put your feet on the table. But it does not tell you which real-world
objects are tables. If you set up camp in the woods, then once you deem a certain flat
rock to be the camp table and start using it as such, your theory of etiquette kicks in
and directs everyone not to put their feet on it. But the theory of etiquette does not
itself tell you that that rock must be treated as a table in the first place.) You could just
view Elga’s scenario as a way of getting $5. Saying ‘I accept’ to bet A and then
saying ‘I accept’ to bet B would not then be deciding to accept bet A and then
deciding to accept B: it would just be a procedure that leads to $5. It would be
analogous to the procedure of putting a bank card into the ATM, entering the PIN,
and withdrawing $5. On this way of approaching Elga’s real-world scenario,
‘accepting bet A’ would not be a decision but a step in a sequence of moves leading
to $5: analogous to pushing a certain button on the ATM—one of a sequence of
buttons you need to push to get your $5. And note that while you may decide to go to
the ATM and withdraw $5, typically you do not then decide whether or not to press
each button—weighting up the pros and cons of pressing and not pressing. You could
in certain (atypical) circumstances do this—but usually you do not. My point is that
you could take a similar approach to bets A and B. (Of course you could decide on
the up track and then find yourself getting sucked into the decision-making process
later on—but this need not happen. You could successfully take the up track and
make no further decisions.)

On this picture, the initial ‘bypass’ node is a decision. So the question arises,
should you take the up track—bypassing any further use of decision theory and
treating the bets as you would an ATM? Or should you take the down track—in
which case you will then have two further decisions to make later? The decision
theory proposed in this paper allows you (in certain possible circumstances) to take
the down track. Even though the up track definitely leads to $5, you might
(depending on your beliefs) value the down track higher than this and hence choose
to take it. To value the down track, you consider the possible outcomes at the end of
it. In between you and these outcomes lie three things: the decision you will make on

bypass
bet A

bet B
0

H

-10

15

bet B

H

15

-10

H

5

5

5

Fig. 5 Bets A and B: version III
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A; the decision you will make on B; and the question of H. Whatever your beliefs are
about these things (cf. the discussion above)—and however you proportion focal sets
to arrive at probabilistic degrees of belief (for purposes of deciding whether to
bypass)—you will assign probabilities to each of the eight cells in the partition
generated by the three propositions H, BPH and ‘when considering bet A, you will
assign probabilities in such a way that aþ c\0:6’ (APBH for short):

APBH BPH H Probability

1 1 1 d

1 1 0 e

1 0 1 f

1 0 0 g

0 1 1 h

0 1 0 i

0 0 1 j

0 0 0 1� d � e� f � g � h� i� j

So now you can assign the following expected utility to the act of declining the
bypass:

d:5þ e:5þ f :�10þ g:15þ h:15þ i:�10
¼ 5d þ 5e� 10f þ 15g þ 15h� 10i

ð28Þ

You will decline the bypass if (28) exceeds 5. Clearly that could occur (e.g. if
d ¼ e ¼ j ¼ 0:125, f ¼ i ¼ 0:07 and g ¼ h ¼ 0:18, then (28) equals 5.25). And then
of course you could go on to reject bet A, and then to reject B. And this is the right
result: given certain beliefs on your part about H and about the probabilities you will
assign in the future (when you need to make decisions on A, and then on B), such
behaviour is entirely rationally acceptable. In rejecting the bypass option, you are
turning down $5. But you are doing so in the expectation (relative, as always, to your
own degrees of belief) of even greater gain. At every choice point, you take the
option that looks better to you. Things may work out badly for you, but that does not
mean you acted irrationally. (They might also work out well, and you end up with
$15.) The key point is that although you may turn down $5, and later end up with
nothing, you never turn down $5 in favour of a sure $0. We could add a third track to
the initial node in Fig. 5, leading directly to $0. (For future reference, call this the
‘middle track’—with the up and down tracks being as shown in Fig. 5.) For clearly,
in just the way that saying ‘I accept’ to bet A and then saying ‘I accept’ to bet B is a
procedure that leads to $5, saying ‘no thank you’ to bet A and then saying ‘no thank
you’ to bet B is a procedure that leads to $0. However, the decision theory proposed
in this paper would not allow you to take this middle track. Whatever your beliefs
about what might happen on the down track, you value the middle track strictly lower
than the up track. Thus you will always choose the up track or the down track—never
the middle track. The decision theory proposed in this paper potentially (depending
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on your beliefs) allows you to make choices that could result in $0 in the end—even
when you could at the outset make a choice that guarantees you $5. It does not allow
you to make a choice that guarantees you $0 when you could make a choice that
guarantees you $5. All of this is just as it should be.77
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