Skip to main content
Log in

Modes of Adjointness

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

The fact that many modal operators are part of an adjunction is probably folklore since the discovery of adjunctions. On the other hand, the natural idea of a minimal propositional calculus extended with a pair of adjoint operators seems to have been formulated only very recently. This recent research, mainly motivated by applications in computer science, concentrates on technical issues related to the calculi and not on the significance of adjunctions in modal logic. It then seems a worthy enterprise (both for these contemporary topical pursuits and also for historical interest) to trace the concept of adjunction back to the origins of the algebraic semantics of modal logic and to make explicit its ubiquity in this branch of mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alechina, N., Mendler, M., de Paiva, V., Ritter, E. (2001). Categorical and Kripke semantics for constructive S4 modal logic. In Computer science logic (Paris, 2001). Lecture notes in comput. sci. (Vol. 2142, pp. 292–307). Berlin: Springer.

    Google Scholar 

  2. Baltag, A., Coecke, B., Sadrzadeh, M. (2007). Epistemic actions as resources. Journal of Logic and Computation, 17(3), 555–585.

    Article  Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y. (2001). Modal logic. In Cambridge tracts in theoretical computer science (Vol. 53). Cambridge: Cambridge University Press.

    Google Scholar 

  4. Blackburn, P., van Benthem, J., Wolter, F. (Eds.) (2007). Handbook of modal logic. Studies in logic and practical reasoning (Vol. 3). Amsterdam: Elsevier.

    Google Scholar 

  5. Davey, B.A., & Galati, J.C. (2003). A coalgebraic view of Heyting duality. Studia Logica, 75(3), 259–270.

    Article  Google Scholar 

  6. Dawson, R., Paré, R., Pronk, D. (2003). Adjoining adjoints. Advances in Mathematics, 178(1), 99–140.

    Article  Google Scholar 

  7. Dunn, J.M. (1991). Gaggle theory: An abstraction of Galois connections and residuation, with applications to negation, implication, and various logical operators. In Logics in AI (Amsterdam, 1990). Lecture notes in comput. sci. (Vol. 478, pp. 31–51). Berlin: Springer.

    Google Scholar 

  8. Dunn, J.M. (1995). Gaggle theory applied to intuitionistic, modal, and relevance logics. In I. Max, & W. Stelzner (Eds.), Logik und mathematik: Frege-Kolloquium Jena. Berlin: de Gruyter.

    Google Scholar 

  9. Dunn, J.M. (1995). Positive modal logic. Studica Logica, 55(2), 301–317.

    Article  Google Scholar 

  10. Dzik, W., Järvinen, J., Kondo, M. (2010). Intuitionistic propositional logic with Galois connections. Logic Journal of the IGPL, 18(6), 837–858.

    Article  Google Scholar 

  11. Elgesem, D. (1997). The modal logic of agency. Nordic Journal of Philosophical Logic, 2(2), 1–46.

    Google Scholar 

  12. Esakia, L. (2006). The modalized Heyting calculus: a conservative modal extension of the Intuitionistic Logic. Journal of Applied Non-classical Logics, 16(3–4), 349–366.

    Article  Google Scholar 

  13. Ewald, W.B. (1986). Intuitionistic tense and modal logic. Journal of Symbolic Logic, 51(1), 166–179.

    Article  Google Scholar 

  14. Gehrke, M., Nagahashi, H., Venema, Y. (2005). A Sahlqvist theorem for distributive modal logic. Annals of Pure and Applied Logic, 131(1–3), 65–102.

    Article  Google Scholar 

  15. Ghilardi, S., & Meloni, G.C. (1988). Modal and tense predicate logic: Models in presheaves and categorical conceptualization. In Categorical algebra and its applications. Lect. notes math (Vol. 1348, pp. 130–142).

  16. Givant, S., & Venema, Y. (1999). The preservation of Sahlqvist equations in completions of Boolean algebras with operators. Algebra Universalis, 41(1), 47–84.

    Article  Google Scholar 

  17. Goldblatt, R. (1976). Metamathematics of modal logic I. Reports on Mathematical Logic, 6, 41–78.

    Google Scholar 

  18. Goldblatt, R. (1981). Grothendieck topology as geometric modality. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 27, 495–529.

    Article  Google Scholar 

  19. Goldblatt, R. (1989). Varieties of complex algebras. Annals of Pure and Applied Logic, 44(3), 173–242.

    Article  Google Scholar 

  20. Goldblatt, R. (2003). Mathematical modal logic: a view of its evolution. Journal of Applied Logic, 1(5–6), 309–392.

    Article  Google Scholar 

  21. Goubault-Larrecq, J., & Goubault, É. (2003). On the geometry of intuitionistic S4 proofs. Homology, Homotopy, and Applications, 5(2), 137–209.

    Article  Google Scholar 

  22. Governatori, G., & Rotolo, A. (2005). On the axiomatisation of Elgesem’s logic of agency and ability. Journal of Philosophical Logic, 34(4), 403–431.

    Article  Google Scholar 

  23. Hermida, C. (2002). A categorical outlook on relational modalities and simulations. Presented at IMLA’02.

  24. Jarvinen, J., Kondo, M., Kortelainen, J. (2007). Modal-like operators in Boolean lattices, Galois connections and fixed points. Fundamenta Informaticae, 76(1–2), 129–145.

    Google Scholar 

  25. Johnstone, P.T. (2002). Sketches of an elephant: A topos theory compendium. In Oxford logic guides (Vols. 43–44). New York: The Clarendon Press Oxford University Press.

    Google Scholar 

  26. Jónsson, B., & Tarski, A. (1951). Boolean algebras with operators. I. American Journal of Mathematics, 73, 891–939.

    Article  Google Scholar 

  27. Kan, D.M. (1958). Adjoint functors. Transactions of the American Mathematics Society, 87, 294–329.

    Article  Google Scholar 

  28. La Palme Reyes, M., Reyes, G., Zolfaghari, H. (2004). Generic figures and their glueings (a constructive approach to functor categories). Polimetrica.

  29. Lambek, J., & Scott, P.J. (1986). Introduction to higher order categorical logic. In Cambridge studies in advanced mathematics (No. 7). Cambridge: Cambridge University Press.

    Google Scholar 

  30. Lawvere, F.W. (1971). Quantifiers and sheaves. In Actes du congrès international des mathématiciens (Nice, 1970), Tome 1 (pp. 329–334). Paris: Gauthier-Villars.

    Google Scholar 

  31. Lawvere, F.W. (1991). Intrinsic co-Heyting boundaries and the Leibniz rule in certain toposes. In Category theory (Como, 1990). Lecture notes in math (Vol. 1488, pp. 279–281). Berlin: Springer.

    Google Scholar 

  32. Lawvere, F.W. (1996). Adjoints in and among bicategories. In Logic and algebra. Proceedings of the 1994 Siena conference in memory of Roberto Magari. Lecture notes in pure and applied algebra (Vol. 180, pp. 181–189). New York: Marcel Dekker.

    Google Scholar 

  33. Lawvere, F.W. (2006). Adjointness in foundations. Reprints in Theory and applications of categories (pp. 1–16). Originally published: Dialectica, 23 (1969).

  34. Mac Lane, S. (1971). Categories for the working mathematician. In Graduate texts in mathematics. Berlin: Springer.

    Google Scholar 

  35. Mac Lane, S., & Moerdijk, I. (1992). Sheaves in geometry and logic: A first introduction to Topos Theory. In Universitext. Berlin: Springer.

    Google Scholar 

  36. Makkai, M., & Reyes, G.E. (1995). Completeness results for intuitionistic and modal logic in a categorical setting. Annals of Pure and Applied Logic, 72, 25–101.

    Article  Google Scholar 

  37. McKinsey, J.C.C., & Tarski, A. (1944). The algebra of topology. Annals of Mathematics (2), 45, 141–191.

    Article  Google Scholar 

  38. Moggi, E. (1991). Notions of computation and monads. Information and Computation, 93(1), 55–92.

    Article  Google Scholar 

  39. Möller, B., & Struth, G. (2004). Modal Kleene algebra and partial correctness. In C. Rattray, et al. (Eds.), Algebraic methodology and software technology. Lecture notes in computer science (Vol. 3116, pp. 379–393).

  40. Ore, O. (1944). Galois connexions. Transactions of the American Mathematical Society, 55(3), 493–513.

    Article  Google Scholar 

  41. Reyes, G.E. (1991). A topos-theoretic approach to reference and modality. Notre Dame Journal of Formal Logic, 32(3), 359–391.

    Article  Google Scholar 

  42. Reyes, G.E., & Zolfaghari, H. (1991). Topos-theoretic approaches to modality. In Category theory, Proc. int. conf., Como/Italy 1990, Lect. notes math. (Vol. 1488, pp. 359–378).

  43. Sadrzadeh, M. (2009). Ockham’s razor and reasoning about information flow. Synthese, 167(2), 391–408.

    Article  Google Scholar 

  44. Sadrzadeh, M., & Dyckhoff, R. (2009). Positive logic with adjoint modalities: proof theory, semantics and reasoning about information. Electronic Notes of Theoretical Computer Science, 249, 451–470.

    Article  Google Scholar 

  45. Simpson, A.K. (1994). The proof theory and semantics of intuitionistic modal logic. Ph.D. Thesis, University of Edinburgh. Available as ECS-LFCS-94-308, Department of Computer Science, University of Edinburgh.

  46. von Karger, B. (1998). Temporal algebras. Mathematical Structures in Computer Science, 8, 277–320.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Menni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menni, M., Smith, C. Modes of Adjointness. J Philos Logic 43, 365–391 (2014). https://doi.org/10.1007/s10992-012-9266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-012-9266-y

Keywords

Navigation