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Abstract

How can we model behavior on complex, real-world tasks with
a large range of possible strategies that may vary along multi-
ple dimensions? In this paper, we show show how an emerg-
ing approach to cognitive modeling, cognitively bounded ratio-
nal analysis, can be applied to efficiently specify large, multi-
dimensional strategy spaces, and to predict which strategies
within the space are followed. The approach also supports
a novel way of analyzing error control strategies, by directly
modeling error recovery procedures and factoring these into
strategy prediction. We apply this approach in a model of a
typing task exemplifying three dimensions of strategic vari-
ability: decomposition of tasks into subtasks, parallel vs. se-
rial processing of subtasks, and control of errors. We present
empirical results showing the strategies people adopted on the
task. The model successfully predicts the strategies used, by
optimizing over the strategy space for a utility function defined
as the performance-based payoff used in the experiment.

Keywords: Cognitive architectures; cognitively bounded ra-
tional analysis; HCI; strategies; errors

Introduction
To understand how people interact with a device, one needs
to know which strategies people follow, out of the many pos-
sible strategies for accomplishing their task. However, for a
real-world task, the space of possible strategies may be very
large. For example, in the simple task of transcribing a string
of digits on a computer, strategies may vary along several di-
mensions including:

(a) How tasks are decomposed into subtasks, e.g., whether
the entire string is read and then typed, or whether the
string is broken into groups;

(b) How subtasks are parallelized or interleaved, e.g.,
whether reading and typing processes overlap or occur in
serial;

(c) How the incidence and costs of errors are controlled, e.g.,
how often people choose to check what they’ve typed for
errors.

The entire strategy space for transcribing a digit string will be
the combination of (at least) these three dimensions of strate-
gic variability.

Current modeling approaches, including cognitive archi-
tectures such as ACT-R (Anderson et al., 2004) and EPIC
(Meyer & Kieras, 1997), can be used for modeling behav-
ior given a strategy, but do not directly support prediction of
strategies used, relying on the modeler to identify or hypoth-
esize the strategy through fitting to data or task analysis (see
Howes, Lewis, and Vera (in revision) for a complete discus-
sion). In previous work (Howes et al., in revision; Howes,
Vera, Lewis, & McCurdy, 2004) we presented the cognitively
bounded rational analysis approach which supports genera-
tion of strategy spaces and prediction of strategy selection.
In this paper we report data from an experiment involving a
typing task, and we apply cognitively bounded rational anal-
ysis to produce a model of the task that captures three types
of strategic variability exhibited by subjects: adaptation in
grouping the characters to be typed, in parallelizing encoding
and typing processes, and in controlling error correction costs
through error monitoring. The model breaks new ground
in incorporating multiple dimensions simultaneously and in
supporting reasoning about interactions between the dimen-
sions. Furthermore, it represents a novel approach to model-
ing adaptation to error, in that error recovery is directly incor-
porated into the model and is taken into account in strategy
prediction.



Cognitively Bounded Rational Analysis
Cognitively bounded rational analysis is an approach to mod-
eling skilled task performance in which a space of possible
strategies is generated subject to architectural and task con-
straints, and an optimal strategy relative to a given utility
function is identified. Specifically, it consists of four compo-
nents: strategy space specification, architecture specification,
utility function specification, and strategy selection.

We support cognitively bounded rational analysis in the
CORE modeling tool (Howes et al., in revision, 2004). CORE
(for Constraint-based Optimizing Reasoning Engine) sup-
ports generation of strategies through the Information Re-
quirements Grammar (IRG) formalism (Howes, Lewis, Vera,
& Richardson, 2005). IRG is a generative grammar through
which the modeler specifies a set of rules for successively
decomposing tasks into component subtasks (an example is
shown in Figure 3). The modeler may specify multiple rules
to decompose the same task or subtask to reflect strategic
variation in how that task may be accomplished. In the task
hierarchy there may be many such subtasks with variable
decompositions, allowing multiple dimensions of strategic
variability to be explored simultaneously. Also, within the
task rules the modeler may specify branches contingent on
stochastic events (e.g. whether a typing error is detected).
Finally, the task rules contain constraints on the order of sub-
tasks, which limit the space of possible strategies.

The modeler specifies the architecture by defining the low-
level processes (e.g. eye fixations, action selections) in which
the task expansions bottom out, and by specifying the cogni-
tive resources (e.g. vision, central executive) used by these
processes. The resources used by the low-level processes de-
termine which processes can run in parallel and which must
be serialized.

The strategies are instantiated in schedules of the task’s
component processes generated by CORE (see Figure 4 for
examples), and then evaluated according to a utility function
specified by the modeler. The modeler can then compare the
utilities of different strategies of interest, and identify the op-
timal strategy in the strategy space. For instance, the utility
function could optimize for speed, accuracy, working mem-
ory load, bonus points (if modeling an experiment with a
performance-based payoff), or a combination of such factors.

The Task
We modeled and collected data on a task that was studied
in Nielsen and Phillips (1993), and subsequently modeled
in John (1994), Salvucci and Lee (2003), and John, Prevas,
Salvucci, and Koedinger (2004). In the task, subjects inter-
act with a simulation of a database program (shown in Fig-
ure 1). The task involves querying the database for one to
three seven-digit telephone numbers. The task includes many
steps involving selection from menus and mousing on wid-
gets (see Nielsen and Phillips (1993) for details) but in the
present paper we focus on part of the task in which the sub-
ject transcribes a number shown on the screen into a text box.

Figure 1: Screenshot of the database inquiry task, as the user
transcribes a number from the list at left into the text box.

Dimensions of Strategic Variability
The task illustrates three types of strategic variability which
occur generally in skilled behavior: variability in task decom-
position, variability in parallelization of subtasks, and vari-
able adaptation to error correction costs.

Task Decomposition In transcribing the seven digits, peo-
ple have a choice of how to break up the task: they may en-
code all seven digits and then type them from memory, or
they may break the number into groups and switch between
encoding and typing each group. Grouping incurs a task-
switching cost in that the subject will have to switch their
attention and their eyes more frequently between typing and
encoding. Given the task-switching cost, it would never make
sense for people to group—unless there are countervailing
costs of not grouping. One possibility is that not grouping
may incur a cost in working memory load. The modeling
work presented in this paper suggests an alternative possibil-
ity, that by not grouping people would forfeit opportunities to
parallelize components of the task.

Strategic variation in task decomposition is found in a wide
range of tasks; for example, Brumby, Howes, and Salvucci
(2007), Gray, Sims, Fu, and Schoelles (2006), and Salvucci,
Taatgen, and Kushleyeva (2006) have also modeled strategic
tradeoffs involved in grouping.

Parallelization of Subtasks If the digits are grouped, then
people have the option of typing a group in parallel with en-
coding the following group. Parallelizing processes may save
time, but may incur costs: for instance, processes may in-
terfere with each other, or scheduling processes early may
cause responses to be made out of order (Meyer and Kieras
(1997) contains a detailed account of strategic variation in
parallelization).

Strategic Adaptation to Error Correction Costs In the
task, people will sometimes make typing errors, and will
either have to detect and correct the errors, or incur some
cost from leaving them uncorrected. People have a strategic
choice of how frequently to check what they’ve typed, which



●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

0.20 0.25 0.30

1.
5

2.
0

2.
5

3.
0

Grouping strategy vs.
switching costs, by subject

Mean switch time / mean typing time

M
ea

n 
nu

m
be

r 
of

 g
ro

up
s

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

Distribution of
parallelization strategies

Parallelization index (proportion of
typing time spent encoding)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8

0
20

0
40

0
60

0

Distribution of
checking strategies

Checking strategy
(number of checks)

F
re

qu
en

cy

0 2 4 6

0
50

0
15

00

Figure 2: Observed strategic variation in typing task, along three dimensions: grouping, parallelization, and checking.

is subject to a tradeoff: the more frequently one checks for
errors, the sooner errors will be caught and the less time will
be required for correcting them; however, one incurs a cost in
time for each check performed.

Other modeling work that has included strategic adapta-
tion to error includes Meyer and Kieras (1997), Salvucci et al.
(2006), and Sperling and Dosher (1986). However, our model
distinguishes itself from previous approaches in that it both
directly incorporates error recovery routines (e.g. backspac-
ing and retyping) and factors these into strategy prediction.

The Experiment
Method
We collected eyetracking, mousing, and keystroke data on
this task from 22 subjects. The experiment consisted of two
sessions, each of which contained 81 trials divided into nine
blocks. Each block contained an equal number of one-, two-,
and three-number query tasks. Subjects were awarded bonus
points for each trial depending on their speed and accuracy in
completing the task: 150− 15(RT − 4)/Q points for correct
trials, where RT is the time to complete the task and Q is the
number of queries; or−150 points for incorrect trials (e.g. an
error in the phone number entered).

Results
For each phone number typed we used the eyetracking data to
compute the number of groups into which the subject broke
the phone number. Each look at the phone number that was
followed by a look at the hands or text box and the typing of
at least one digit was counted as a group. For each subject
we computed the mean number of groups the subject used, to
get a measure of the subject’s grouping strategy preference.
Subjects’ mean grouping strategies ranged from 1.3 groups
to 3.1 groups, with an overall mean of 2.2 groups.

In addition to variations in typing speed, subjects varied
in the time they took to initiate typing after encoding. (See
Larochelle (1983) for a study of variations in typing with
skill level). Our preliminary work on the model presented
in this paper suggested the hypothesis that subjects’ grouping
preferences might be affected by the cost of switching be-
tween encoding and typing: subjects with high switch costs

would be expected to use fewer groups so as to switch less
frequently. (Gray et al. (2006) report a related study of the
effects of switch costs on grouping.) To test this hypothesis,
for each subject we calculated the average time between the
end of encoding and the beginning of typing of each group.
We then normalized these mean switch times by the subjects’
mean typing time. Subjects’ grouping preferences were sig-
nificantly correlated with their normalized mean switch time
(p < 0.005); the relationship is shown in the left panel of Fig-
ure 2.

For each phone number typed, we computed a paralleliza-
tion index defined as the time encoding and typing were oc-
curring in parallel divided by the time spent typing. The
distribution of this parallelization index across all subjects is
shown in the center panel in Figure 2. For 10% of the phone
numbers typed, there was no parallelization; for the remain-
der, the mean parallelization index was 0.27.

For each phone number typed we also recorded the error
monitoring strategy employed: how many of the seven digits
typed were accompanied by a look at the text box (presum-
ably to monitor the accuracy of what had been typed). Most
often, subjects monitored the number once (usually at the end
of the number). The distribution of error monitoring strate-
gies is shown in the right panel of Figure 2.

Model Description
Architecture specification
The model incorporated low-level cognitive processes, and
cognitive resources occupied by those processes, based on the
ACT-R cognitive architecture (Anderson et al., 2004). The ar-
chitecture specification duplicated that of earlier CORE mod-
els which emulated ACT-R (Howes et al., in revision, 2004).
Cognitive resources in the architecture included separate mo-
tor and visual resources, allowing visual and motor processes
to occur in parallel, and a cognition resource whose capacity
was limited to a single process at a time.

In addition to the ACT-R processes, we defined some pro-
cesses specialized for the typing task, whose durations were
estimated from the data. These included a visual encoding
process, a cognition process for initiating a new group of
keystrokes, and a cognition process for initiating individual



transcribe STRING - CURSOR - DONE
-->
encode STRING - ENCODED,
type STRING after ENCODED and CURSOR - DONE.

transcribe STRING - CURSOR - DONE
-->
parameter(concatenate(GROUP1 GROUP2) STRING),
encode GROUP1 - ENCODED1,
type GROUP1 after ENCODED1 and CURSOR - DONE1,
transcribe GROUP2 - DONE1 - DONE.

Figure 3: IRG rules specifying the strategy space for group-
ing digits to be transcribed.

keystrokes within groups. We varied the duration of the cog-
nition group-initiation process to model the variability in sub-
jects’ encoding-to-typing task switching times (seen in Fig-
ure 2, left panel) and to explore the effects of this variation on
strategy selection. The distinction between group-initiation
and keystroke-initiation processes, and the between-subject
variability in group-initiation times, were also suggested by
Larochelle (1983). Finally, a parameter representing fre-
quency of typing errors per keystroke was also estimated from
the data.

Strategy generation
Our model of the task sought to capture all combinations of
grouping, parallelizing, and checking strategies.

Grouping The model assumed that subjects may either fol-
low a strategy of encoding the entire number and then typing
it, or may follow strategies involving breaking the number
into any number of groups of any size, and encoding and typ-
ing each group individually. To specify this strategy space in
CORE, we used recursive IRG rules, shown in Figure 3. (For
clarity, these rules are simplified from the actual code used
in the model.) These rules specify the possible expansions of
transcribe into encode and type subtasks. Each possible
expansion of transcribe corresponds to a different strategy
for grouping the digits. For instance, expanding transcribe
directly into encode and type by the first rule corresponds
to a strategy of not breaking the number into groups; ex-
panding transcribe into encode, type, and transcribe
(second rule) and then expanding the second transcribe
into encode and type (first rule) corresponds to a strategy
of breaking the number into two groups; and so forth. (The
parameter keyword in the second rule is used to establish
constraints, in this case that two substrings must add up to the
string being transcribed.)

Parallelization The model assumed that if a number was
broken into groups, subjects may follow a range of strategies
for parallelizing, serializing, or interleaving the processes
comprising the encoding and typing of each group. In CORE,
this flexibility emerged from the composition of the encode
and type subtasks partly from low-level processes which use
separate vision and motor resources by our architectural as-

sumptions. CORE is free to schedule such processes at over-
lapping times, or not, depending on what is optimal relative
to the objective function. The strategy space for paralleliza-
tion is not totally unconstrained however: some of component
processes of the type and encode subtasks share the cogni-
tion resource, and cannot execute in parallel.

In addition to such architectural constraints, there are con-
straints imposed by the task: for instance, typing of a group
cannot begin before encoding of that group is completed, or
before typing of the previous group is completed. Such task
constraints are enforced by specifying information flows, rep-
resented by variables (distinguished by capital letters) passed
between subtasks as arguments. For example, in the first rule,
passing the last argument of encode, ENCODED, to type as its
second argument will constrain typing to begin after encod-
ing is finished. Arguments of subtasks are, through the sub-
tasks’ expansions, grounded in the inputs and outputs of spe-
cific low-level processes, so that passing the last argument of
encode to the second argument of type has the concrete ef-
fect of binding the output of a component process of encode
to the input of a component process of type, constraining the
second process to follow the first. On the other hand, the rules
in Figure 3 contain no constraints on when the component
processes of encode begin, leaving CORE free to schedule
encoding of a group before the completion of typing of the
preceding group.

Error monitoring Our model assumed that after each of
the seven digits typed, subjects may either check what they’ve
typed up to that point, or not check, resulting in a space of 27

or 128 strategies for checking, ranging from not checking at
all to checking after each digit is typed. To implement this in
IRG, the task expansion of the type tasks included a monitor
task for each digit typed, which had two possible expansions.
One expansion was trivial, ”do nothing”. The other expansion
involved looking at the digits typed on the screen and then
branching: if an error was committed, press the backspace
key until the error is reached, and then retype; if no error was
committed, do nothing further. In this way, the costs incurred
by errors was implicitly included in the task specification.

Utility function specification
We set the utility function to be equal to the bonus point pay-
off function used in the experiment. The strategies in the
space described above were then evaluated by CORE accord-
ing to this utility function.

Model Results
Predicted strategy The optimal strategy predicted by the
model is shown in the top panel of Figure 4. The horizon-
tal bars in the figure show the cognitive processes compris-
ing task execution, with the component processes of encode,
type, and error monitoring subtasks shown in green, blue, and
red, respectively. The optimal strategy had the following fea-
tures:

(a) Numbers were broken into two groups;
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(b) The typing of the second group occurred in parallel with
encoding of the first group;

(c) The number was checked once, at the end.

(a), (b) and (c) were in agreement with the strategies most
commonly followed by subjects, as shown in the left, center,
and right panels, respectively, of Figure 2.

Interactions between grouping, parallelization, and
checking The bottom panel of Figure 4 shows the best of
the one-group strategies considered by CORE. The contrast
between the one- and two- group strategies illustrates how the
two-group strategy saves time through the parallelization of
encoding processes (blue) with typing processes (green); this
benefit outweighs extra costs incurred by switching between
encoding and typing. On the other hand, for the three-group
strategy (not shown), diminishing returns from parallelization
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lag times in the model.

of smaller groups are outweighed by the extra switch costs.
If the model was restricted to only consider serial strategies,
then the one-group strategy became optimal. In contrast to
the parallelization dimension, the checking dimension of the
strategy space was independent of the grouping dimension in
that the grouping strategies retained the same utilities relative
to each other if checking was omitted from the model; also,
the check-once strategy was optimal regardless of how the
number was grouped.

Varying switch costs The optimal strategy remained con-
sistently optimal when we varied the duration of the pro-
cess for initiating typing of a new group (thereby varying the
encoding-to-typing switch cost). However, the utility of the
different grouping strategies varied depending on this group
initiation time parameter; Figure 5 shows the expected payoff
for each grouping strategy for different values of the parame-
ter. The graph shows the one-, two- and three-group strategies
with the highest utility. At lower group initiation times, the
three-group strategy becomes less suboptimal relative to the
two-group strategy, whereas at higher typing initiation times,
the one-group strategy becomes less suboptimal compared to
the two-group strategy. If the model’s group initiation time
is taken to include the variable task switching processes ob-
served in subjects, then the predicted effect of group initia-
tion time on the relative utility of strategies can explain the
observed variation in subject’s strategy preferences as a func-
tion of their switch times, as shown in Figure 2 (left panel).

Varying error correction costs The model’s prediction of
a check-once strategy emerged from a tradeoff between costs
of checking for errors, and costs of recovering from errors or
of failing to detect errors. To further explore the role of the
error recovery routines in strategy selection, we ran variations
of the model in which we varied the time necessary to execute
each backspace (i.e., adding lag to the backspace key). Fig-
ure 6 shows the predicted payoff for each checking strategy
for different values of the lag parameter. The best one-check,
two-check, three-check, four-check, and no-check strategies



at each level of lag are shown. A lag of 0 corresponds to the
original model of the experiment described above. At higher
levels of lag, the strategy involving one check loses in utility
relative to the strategies involving more checks, with the two-
check strategy becoming optimal when the lag is greater than
one second. This is because under the multiple-check strate-
gies, errors are caught sooner on average than they are under
the one-check strategy, so that the backspace key needs to be
used less.

Conclusion
In this paper we have demonstrated the application of cog-
nitively bounded rational analysis to the problem of model-
ing and predicting behavior on tasks with large, multidimen-
sional strategy spaces. The approach was applied to mod-
eling experimental data from a typing task, with a focus on
three dimensions of strategic variability: decomposition of
tasks into subtasks, parallel vs. serial processing of subtasks,
and control of errors. The model used a generative gram-
mar formalism, IRG, to efficiently specify the strategy space,
and the actual strategies employed were predicted by optimiz-
ing over the strategy space with respect to a utility function
identical to the payoff used in the experiment. The model
predicted a strategy consistent with the grouping, paralleliza-
tion, and error monitoring strategies used by subjects, as well
as predicting interactions among these dimensions; in partic-
ular, observed grouping strategy preferences were explained
as emerging from a tradeoff between task switching costs and
parallelization benefits.

In addition, we have demonstrated a new way of produc-
ing models which directly incorporate error recovery rou-
tines, and which predict strategic adaptation under the costs
incurred by error recovery. One immediate goal for future
work is to validate this capability by running experiments to
observe strategy choices under varying error correction costs.
However, this same approach can be applied to modeling any
kind of stochasticity internal or external to the subject. In par-
ticular we are currently applying this approach to modeling
strategic adaptation to task interruptions, and to rare emer-
gencies.
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