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§ 1. Introduction
I shall attempt in what follows to show how mereology, taken together with certain
topological notions, can yield the basis for future investigations in formal ontology.2 I shall
attempt to show also how the mereological framework here advanced can allow the direct
and natural formulation of a series of theses – for example pertaining to the concept of
boundary – which can be formulated only indirectly (if at all) in set-theoretic terms.
Already Whitehead employed the instruments of mereology and topology as the basis of a
formal ontology, though in his case this ontology was restricted to events.3 The long–term
aim of the present framework, in contrast, is to serve as a basis for a formal ontology of the
common-sense world, a world which includes at least the following structures and
dimensions:

space (is located at, is at, is in)

things (organs, bodies, institutions)

time (occurs at, exists at)

events, processes, states (moves through, moves from, changes, begins, ends) 

qualities (red, hot)

species at different levels of generality (cat, molecule, run, sentence, salute)

matter, stuff, mixtures (gold, water, air).



4 There, however, it has been set–theoretical instruments which have hitherto prevailed. (See e.g.
Davis 1990, p. 248.) Those working in formal ontology in the A.I. field have in addition neglected
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can in some respects be regarded as the first definitive survey of the field.
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forming operator ‘σ’ introduced below is not always defined.

Our investigations are thus to be seen as part of the project of a formal ontology that has
been advanced of late in the field of artificial intelligence, for example in Hayes 1985.4

We shall be concerned, like the mathematician, to produce formally precise theories of
structures of certain  sorts, and in such a way that it is the structures themselves that hold
our interest and not the formal machinery that has been set up to describe them. Hence our
axioms will be chosen primarily for the sake of the light they throw on their intended
subject-matters (and not, e.g., from the perspective of logical independence). Our concerns
differ from those of the mathematician in that we shall deal not with abstract structures for
their own sake, but rather (as far as possible) with certain specific sorts of naturally
occurring structures in the real, spatio-temporal world. Like Frege, Russell and Lesniewski,
we shall evince no ‘semantic’ or ‘model-theoretic’ concerns. The world itself is the only
model in which we take a serious interest, and we shall attempt to do justice to this world as
it is given in ordinary experience. Thus for example we shall formulate a system which will
enable us to prove that every boundary is the boundary of something, that there are no
scattered ojbects (in addition to the non-scattered parts), and so on. 

§2. Formal Machinery5

Classical first order logic with identity and descriptions will be assumed without ceremony.6
Variables x, y, z, etc. will range over entities (particulars, individuals) in general. Here the
term ‘entity’ is to be understood as ranging over realia of all sorts. Our quantifiers are
otherwise unrestricted, embracing inter alia Roderick Chisholm’s left foot and the exterior
surface of my house; my present headache and the three-dimensionally extended colour of
this green glass cube. They embrace what is continuous or discontinuous, connected or
non-connected; and they embrace also volumes of space and intervals of time, as well as the
parts and moments of all of these entities.

Task: to find a semantics that is both ontologically and cognitively adequate. Set theory
is neither.

Constituency
Everything continuous is such that we are able to discern within it two basic sorts of
constituent or part: boundaries and interior parts. We shall attempt to use simple
mereological and topological notions in order to supply a more precise statement of this
intuitive idea. 



The two primitive non-logical notions adopted in what follows are: is a constituent of
and is an interior part of. The first of these notions is purely mereological in the sense of
LeÑniewski. The second represents a move from mereology into the province of topology.

We say x is a constituent of y, and write ‘x C y’, when x is any sort of part of y,
including an improper part (so x C y will be consistent with x’s being identical to y). Three
further purely mereological notions can be defined immediately:

DC1 x overlaps y: x O y := ∃z (z C x ∧ z C y) 
DC2 x is discrete from y: x D y := ¬ x O y
DC3 x is a point: Pt(x):= œy (y C x → y = x)

As axioms governing C we shall assume the universal closures of:

AC1 x C y ↔ œz (z O x → z O y)
AC2 x C y ∧ y C x .→ x = y

(Generally speaking we suppress all initial universal quantifiers in our statements of axioms
and theorems.) From AC1 and AC2 and the usual axioms of identity it follows that our
system of mereology is extensional, and in particular that x = y ↔ œz (z C x ↔ z C y). From
AC1 it follows also that

TC1 x C x C is reflexive

and

TC2 x C y ∧ y C z .→ x C z C is transitive

We say that a condition ‘φ’ in a single free variable ‘x’ is satisfied iff the sentence ‘φx’
is true for at least one value of ‘x’. Intuitively we are to suppose that each satisfied
condition ‘φ’ picks out a certain unique entity, the sum (fusion or join) of all those entities
in the world which φ, an entity which we shall represent by ‘σx(φx)’. The sum of φers is to
be distinguished from the extension of the concept φ: not everything that is in the sum of
φers need itself be such as to φ (thus my leg is in the sum of Britons, but it is not itself a
Briton).

The sum of φers can be defined as that entity y which is such that, given any entity w, w
overlaps with y if and only if w overlaps with something that φs. That is:      

DC4 σx(φx) := 4y (œw (w O y ↔ ∃v (φv ∧ w O v))) 

We can then prove

TC3 y = σx(φx) → œx (φx → x C y)



7Cf. Bunt’s definition of downward homogeneous properties (1979, p. 269).

Empty sums do not exist (they are not a part of reality). Thus if φ is a non-satisfied
condition, then ‘σx(φx)’ is undefined. The uniqueness of sums, where they are defined, is
guaranteed by AC1. We stipulate further that:
AC3 ∃x φx → ∃y ∀w (w O y ↔ ∃v (φv ∧ w O v)),
which guarantees the existence of sums for satisfied conditions. AC1-3 define a system
equivalent to classical extensional mereology as defined in Simons 1987.

From the usual axioms for identity we have ∃x (x = x), from which we can prove a
theorem to the effect that the universe exists:
TC4 ∃x ∀y (y C x)
Further:
TC5 y C σx(φx) ↔ ∀w (w C y → ∃v (φv ∧ w O v))
y is a constituent of the sum of φers if and only if all constituents of y overlap with some
φer. 

We have already noted that not all constituents of the whole σx(φx) need be such as to
φ. When y C σx(φx) iff φy, then we say that φ is a distributive condition, and we can prove
that φ(σx(φx)). Examples of distributive conditions are (for some fixed entity t): is a
constituent of t, is a boundary of t, and is an interior part of t.7 

We can prove further a theorem to the effect that we can form arbitrary finite unions in
the following sense:

TC6 ∃z ∀w (z O w ↔. z O x ∨ z O y)

We define:

1 := σx(x = x) universe
x ^ y := σz(z C x ∨ z C y) union
x ∩ y := σz(z C x ∧ z C y) intersection

³f := σx(∀y (φy → x C y)) intersection of φers
x′ := σz(z D x) complement
x ) y := σz(z C x ∧ z D y) difference

Note that all set-theoretical associations of these terms are to be resolutely suppressed. Note,
also, that intersections, complements and differences are not always defined. We can in fact
prove

TC7 x C y ∧ x =/  y. → ∃z (z = y ) x) remainder principle

There are reasons for rejecting this principle, as also the principle TC6, when the range of
our variables is restricted in certain ways, though to this end we would have to weaken the



axioms AC1 and AC2 on which the proof of these principles hinges. (To see why one might
reject the remainder principle, suppose that the range of our variables is restricted to bona
fide material things, and suppose further that the human body and the human heart are both
material things in this sense; then it is not clear that the entity which results from detaching
heart from body mereologically is also a material thing in the same sense.)

Interior Parts
The notion of interior part can be elucidated, roughly, as follows. Some entities are what we
might call tangential to, i.e. such as to touch or cross the boundaries of, other entities. Some
entities are themselves boundaries of other entities, though we note that the boundary of an
entity may be outside the entity it bounds (as for example in the case of a hole, or an open
interval in the real line). When x is a constituent of y that is off ) which is to say: shares no
parts in common with ) the boundary of y, i.e. is neither tangential nor itself a boundary, we
say that x is an interior part of y and write ‘x P y’. We then stipulate:

AP1 x P y → x C y P is a special sort of C
AP2a x P y ∧ y C z. → x P z left monotonicity
AP2b x C y ∧ y P z. → x P z right monotonicity
AP3 x P y ∧ x P z .¬ x P (y ∩ z) condition on finite intersections 
AP4 ∀x(φx ¬ x P y) ¬ σx(φx) P y condition on arbitrary unions 
AP5 ∃y(x P y)
AP6 x P y ¬ x P σt(t P y)

all of which follow from the usual axioms for a topological space. 
AP5 is very strong, and allows us to infer an initially counterintuitive-seeming theorem

to the effect that the universe is an interior part of itself:

TP1 1 P 1.

The universe is, as we might also say, ‘unbounded’. (What, indeed, would the boundaries of
the universe be, if ‘boundary’ is understood in the common-sense way as that which
separates e.g. an apple from its surroundings?) Indeed we can prove that:

TP2 ∀x (x P 1). 

Every entity is an interior part of the universe.
From AP4 it follows that P determines a distributive condition, i.e. that 

TP3 t C σx(x P y) ↔ t P y. 

Hence also we have



8Cf. Chisholm 1989, ch. 8, “Boundaries”.

t C σx(x P y) ↔ t P σx(x P y)

and:

TP4 σx(x P y) P y.

Boundaries
As a first step towards defining what it is for x to be a boundary of y, we define ‘x x y’ (x
crosses y) by:

DC5 x X y := ¬ x C y ∧ ¬ x D y

or, equivalently, for y ≠ 1,

x X y := x O y ∧ x O (1 ) y), 

i.e., x overlaps both y and its complement. From this it follows trivially that no entity
crosses itself and that the universe crosses every entity not identical with the universe itself.
We now define ‘x St y’ (x straddles y) by:

DP1 x St y := ∀z (x P z → z X y).

An entity x straddles an entity y whenever x is such that everything of which it is an interior
part crosses y. The definitions then yield immediately that x St y Ø ¬ x P y, from which we
can prove:

TP5 x C y →. x P y ∨ x St y 

Every constituent of y is either an interior part of y or such as to straddle y. This follows
from AP1, AP2a and definitions. As a theorem we also have: ¬x P x → x St x.

The entities straddling a given entity can be divided, intuitively, into two classes. On the
one hand are those which include among their constituents a boundary of the straddled
entity. On the other hand there are those ) characteristically non-connected ) which include
no such boundary. We shall refer to the first group as tangents. As an example of a
non-tangential entity straddling y, consider the sum of two points, both off the boundary of
some three-dimensional solid y, one of which is interior to y, the other exterior. If we
examine case V, where x is not merely such as to straddle y but is in fact a boundary of y,
then we see that what is characteristic of this case is that here x is such that not merely it but
also all its constituents are such as to straddle the bounded entity.8 Accordingly we can
define boundary as follows:



9This concept of boundary is unintuitive in one respect, in that it comprehends also slits: 
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where ¬ x C y. It seems to be an important mark of the pre-analytic concept of boundary, however,
that a boundary of y should divide y from something else. Considerations along these lines may be
met by  setting:

x B y := ∀z (z C x →. z St y ¸ z St (1 ) (y ^ x))

DP2 x B y := ∀z (z C x → z St y).9

We can now define what it is for x to be a tangent of y:

DP3 x T y := ∃z (z C x ∧ z B y)

i.e a tangent of y is any entity which has as part a boundary of y. From this definition we can
prove that tangents are straddlers, and also that every boundary of y is a tangent of y and is
thereby also not an interior part of y. We can prove further, by inspection of the definitions,
that

TB1 x B y ↔ ∀z (z C x → z T y),

so that, as required, all constituents of boundaries of y are not merely straddlers but in fact
tangents of y.

Closure 
We can prove further:

TB2 x B y ∧ y B z. → x B z transitivity

We also have:

TB3 x C y ∧ y B z. → x B z 
TB4 x T (y ^ z) →. x T y ∨ x T z splitting

We can prove also the following collection principle for boundaries:

TB5 ∀x (φx → x B y) → σx(φx) B y



Topology
These theorems enable us to show that the system so far established defines a topological
space in the standard sense, by defining the closure cl(x)of x ≠ 1 as the union of x with all its
boundaries:

DP4 cl(x):= x ^ σy(y B x)

Closure thus defined satisfies the usual Kuratowski axioms:

I. x C cl(x)
II. cl(cl(x)) = cl(x)
III. cl(x ^ y) = cl(x)^ cl(y)

An entity is called openif it is identical with the sum of its interior parts, closed iff it is
identical with its closure. cl(x)as defined above can be shown to be identical to the standard
topological closure defined equivalently as the union of x with its accumulation points (see
below) or as the intersection of all closed entities containing x. Except that cl( ) is a partial
function, and cl(1), in particular, is not defined. Thus the univers, while open, is not closed
(in contrast to what is the case in standard topology). A dense entity, standardly, is an entity
x for which cl(x)= 1.

The maximal boundary of x, defined by

DP5 bdy(x):= σy(y B x), 

now corresponds to the standard topological boundary, defined as the intersection of the
closure of an entity with the closure of its complement. Further our interior, defined by

DP6 int(x):= σy(y P x),

corresponds to the standard topological interior, defined as the difference between an entity
and its boundary. Both bdy( ) and int( ) are partial functions.

An entity is called open iff it is identical with its interior. From this we can prove that an
entity is open if and only if its complement is closed (use TC5). Moreover 

TT1a Every finite intersection of open entities is open.

And further:

TT1b Every arbitrary union of open entities is open.

Similarly, and no less familiarly, we can prove:



TT2a Every finite union of closed entities is closed. 
TT2b Every arbitrary intersection of closed entities is closed.

Either TT1a and TT1b or TT2a and TT2b can in turn be shown to be themselves sufficient
to serve as axioms for a topological space.

We could also however take ‘cl’ as primitive and set, for x ≠ 1:

bdy(x):= cl(x)∩ (cl(1 ) x))
int(x):= x ) bdy(x).

If we then define:

x P y := x C int(y) 
x B y := x C bdy(y)

then from the Kuratowski axioms and the axioms for ‘C’ we can prove the axioms AP1–6
set out above. 

Dependent Existence and the Brentanian Theses
The remarks above are non-controversial reformulations of standard topological ideas on a
mereological basis. Now, however, we wish to go further and capture mathematically
certain ontological intuitions pertaining to ordinary material objects, extended in three-
dimensional space and enjoying qualities of for example shape and colour. We wish to
capture, if one will, the mathematical structures characteristic of the common-sense world.
Three layers of such intuitions can be distinguished:

1. the layer corresponding to general topological notions of boundary, interior, etc.,
which has been treated above;

2. the layer corresponding to the general properties of three-dimensional space as we
conceive it; this space is ‘real’ in the sense that it is not an abstract construction; thus it
allows no space-filling curves, no objects of fractional dimension, etc.

3. the layer corresponding to the special topological properties of material objects and
their associated qualities.

What follows is a provisional attempt to formulate some of the principles underlying 3.
It is provisional not least because the definitive statement of such principles must await a
more adequate understanding of the general properties of space.

Intuitively, we wish it to be the case that every entity smaller than the universe has a
boundary:

AB1 y =/  1 → ∃x (x B y). 



10Compare the discussion of ‘slits’ above.

This does not imply that the only open entity is 1. Rather, it tells us that every open entity
smaller than the universe is bounded, as it were, on at least one side or in at least one place
(consider the case of the Western hemisphere of the universe or of the interstellar vacuum).
The boundary itself need then not necessarily be a constituent of the entity bounded, and
indeed that this should be the case in general is ruled out by:

TP6 x B y ∧ y P z .→ x B (z ) y)

From this and TP2 it follows in particular that every boundary of y is also a boundary of the
complement of y.

From TP6 it follows trivially that 

x B x ∧ x P y .→ x B (y ) x). 

Imagine x is a point in the interior of a three-dimensional solid y. Then y ) x is here the
result of deleting this point in such a way as to produce an entity which has a non-
constituent boundary within its interior.10 The opposition between exterior and interior
boundaries will receive more detailed attention in what follows.

From TP6 and TP1 it follows no less trivially that 

TP7 x B x → x B (1 ) x),

whence also we can infer that, for any x, σy(x B y) = 1, whence also we can infer that B
does not define a distributive condition in the first argument.

We can prove further that an entity x is self-bounding (i.e. that x B x) if and only if it has
no interior parts:

TP8 x B x ↔ ¬∃t(t P x) 

We can now prove that every boundary which is a constituent of that which it bounds is also
self-bounding:

TP9 x B y ∧ x C y .→ x B x.

which stands in conflict with the commonsensical intuition to the effect that that which
bounds e.g. a surface is the outer form or edge of the surface. That the surface is self-
bounding is consistent with its having as boundary in addition some proper part of itself,
including its outer form.

We shall shortly be in a position to prove that every boundary is a boundary of itself.
(Note, in this connection, that we do not have in general x B y → x B (x ^ y), from which we



11Brentano 1976, Part One; Chisholm 1984; Smith 1992.

could immediately infer that x B y → x B x by TP9. For consider, again, the case where x is
some interior point of a solid z, and y = z ) x. Then x B y, but it is not the case that x B z,
because z, by hypothesis, has no boundaries within its interior.)

From AB1 and TP8 we could then prove that boundaries have no interior parts.
From TB5 we can prove: 

TP10 x B z ∧ y B z .→ (x ^ y) B z

And we have also:

TP11 x C y →. x B y ∨ x P y ∨ ∃uv (u B y ∧ v P y ∧ u ^ v = x) 

Every constituent part is either a boundary or an interior part or the union of a boundary and
an interior part (where the disjunctions are of course exclusive). 

Variants of Brentano’s Thesis
We wish now to capture the commonsensical intuition to the effect that boundaries exist
only as boundaries, i.e. that boundaries are dependent particulars: entities which are such
that, as a matter of necessity, they do not exist independently of the entities they bound.11

This thesis ) which stands opposed to the set-theoretic conception of boundaries as,
effectively, sets of points, each one of which can exist though all around it be annihilated )
has a number of possible interpretations. One general statement of the thesis would assert
that the existence of any boundary is such as to imply the existence of some entity of higher
dimension which it bounds. Here, though, we may content ourselves with a simpler thesis,
to the effect that every boundary is such that we can find an entity which it bounds of which
it is a constituent and which is such as to have interior parts. Define first of all the predicate
is a boundary by means of:

DP7 Bd(x):= ∃y(x B y)

We can then write:

AB2 Bd(x)→ ∃zt (x B z ∧ x C z ∧ t P z) First Brentanian Thesis

From this the theorem to the effect that all boundaries are self-bounding can be inferred
immediately via TP9. AB2 is not very strong, however. For it seems that we have x B y → x
B (y ^ t) for any arbitrary t that is separate from the closure of y. Thus AB2 is satisfied by
choosing t such that t P t and setting z equal to the scattered object x ^ t. 

A Brentanian thesis of the required strength must impose on z in AB2 at least the
additional requirement of connectedness. To this end we define, for x ≠ 1 and y ≠ 1: 



12See Brentano 1976, Part One, I; Smith 1992.
13They may be the boundaries of holes, including internal cavities; see, on the wealth of possibilities
in this respect, Casati and Varzi 1994.

DCn1 x S y := cl(x)D y ∧ x D cl(y)

We then say that 1 ) (x ^ y) separates x from y. Thus bdy(x)separates int(x)from int(1–x) in
the given sense. We can then prove:

TS1 x S y ∧ w C x ∧ v C y .→ w S v

Further we know that disjoint entities are separate if either both are open or both are closed.
Define connected: 

DCn2 Cn(x):= x ≠ 1 ∧ ¬ ∃yz (y S z ∧ x = y ^ z).

We then have a new Brentanian thesis affirming, for connected boundaries, the existence of
connected wholes which they are the boundaries of:

AB3 Bd(x)∧ Cn(x). → ∃zt (x C z ∧ x B z ∧ Cn(z) ∧ t P z) 
Second Brentanian Thesis

Note that DP2 yields no guarantee that boundaries are connected in the sense here defined.

Exterior and Interior Boundaries
Intuitively, boundaries can be divided into exterior and interior.12 The exterior boundaries of
x are, as it were, boundaries which separate x from the remainder of the universe. Exterior
boundaries in this sense may or may not be constituents of the things (or other entities) they
bound, and they may or may not be on the exterior of the relevant entity in the normal
understanding of this phrase.13 We can distinguish also however interior boundaries ) the
boundaries which would result, intuitively, if interior parts of x were exposed to the light of
day by annihilation of what stands between them and x’s exterior. Interior boundaries are in
this sense potential boundaries; they are those constituents of x which are boundaries of
interior parts of x but not themselves boundaries of x in the strict sense. We define:

DIB1 x IB y := x P y ∧ x B x

We might consider also in this connection the idea of a slicing principle to the effect that, in
those cases where x B y results from the fact that x is a deleted region inside some z = y ) x,
we can slice z along x to produce one or more entities of which x is both exterior boundary
and constituent.



Points
We can prove:

TPt1 ∀y (y B x ↔ x = y) → Pt(x)

A point is that which has no parts other than itself (DC3). We can now stipulate that a point
has no boundaries other than itself (a condition which might also have been used as a
definition of ‘point’):

APt1 Pt(x)→ ∀y (y B x ↔ x = y)

This is equivalent to the proposition:

Pt(x)→ x = cl(x),
which is one (mereological) formulation of the usual condition on a T1 topological space. A
more standard formulation would be:

¬∀x ∀y (x ≠ y ∧ Pt(x)∧ Pt(y). → ∃z ((x P z ∧ ¬y P z) ∨ (y P z ∧ ¬x P z)))

From APt1 it follows further that:

TPt2 Pt(x)∧ x B y ∧ x =/  y. → ¬Pt(y)

and, by setting y = 1 ) x:

TPt3 Pt(x)→ ∃y (x ≠ y ∧ x B y). 

This goes some way towards capturing the anti-set-theoretical intution to the effect that
there are, in reality, no isolated points, though its limits are clear from the fact that it is
consistent with the thesis that the universe as a whole is an isolated point.

A neighbourhood of a point x is any entity y of which x is an interior part. A punctured
neighbourhood of x is a neighbourhood with x deleted. An accumulation point may now be
defined as follows: 

DA1 x A y := Pt(x)∧ ∀z (x P z ∧ x ≠ z. → (z ) x) O y)

i.e., an accumulation point of y is any point x which is such that any punctured
neighbourhood of x overlaps y.

We now prove:

y is closed → σx(x A y) C y



14Brentano 1976, Part One, I.

From the definitions we can prove 

TPt4 x A y →. x B y ∨ x P y.

By TP11 we can prove generally that: 

Pt(x)∧ x C y .→ x B y ∨ x P y.

TPt5 x B y ∧ x D y ∧ Pt(x). → x A y

We may now go on to define interior points and boundary points as follows:

DPt1 x IPt y := Pt(x)∧ x P y
DPt2 x BPt y := Pt(x)∧ x B y

Using axiom AP3 we can prove further that interior points are accumulation points.

TPt6 x IPt y → x A y

Exploiting an analogy with Brentano’s notion of the ‘full plerosis of an internal boundary’14

we may define further:

DA2 x FA y := Pt(x) ∧ ∀z (x B z ∧ x =/  z. → ∃t (t P y ∧ t C z ∧ x A t))

x is a full accumulation point for y iff it is an accumulation point to y in all the directions
in which x can serve as boundary (x is, as it were, the centre of a spherical ball within y).

TPt7 x FA y → x A y.(xPu → ¬(u–x)Dt)). 

Things
Return, once again, to the Second Brentanian Thesis:

AB3 Bd(x) ∧ Cn(x). → ∃zt (x C z ∧ x B z ∧ Cn(z) ∧ t P z).

This is still too weak if we wish to capture the intuition to the effect that boundaries in the
real material world are boundaries of things. For we require at least the further requirement
to the effect that the entity z in question is the object bounded and not its complement. By
TP6 each boundary behaves symmetrically in relation to the object and its complement.
From the perspective of common sense, however, the boundary (of, say, this stone) is much
more intrinsically connected to the stone than it is to the rest of the universe. To capture this
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notion formally would require (what we do not yet have) an adequate formal account of
things, which we can characterize briefly as three-dimensional material entities which are at
the same time maximally connected. Thus my arm is three-dimensional and material but it is
not a thing, and similarly the scattered whole consisting of my arm and this pen is three-
dimensional and material but it, too, is not a thing.15 To this end, and in conclusion, we shall
define the notion of a ‘component’ or maximally connected entity. For values of x such that
Cn(x)we set:

DCn3 cm(x):= σy(x C y ∧ Cn(y))

The component of x is the maximal connected entity containing x. 
We can then prove:

TCn1 z = cm(x)→ ∀y(Cn(y) ∧ z C y .→ y = z)

Components are, if one will, those natural units from out of which the world is built.16 Such
natural units can be found not only in the realm of three-dimensional materal things, but
also e.g. in the temporal dimension (salutes, weddings, lives, are natural units in the realm
of events and processes). To deal with these matters, here, however, as also with the
concepts of dimension (edge, surface) and with the relations between natural units and their
underlying stuffs, all of this would lead us too far.
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