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Men—Aahh Aahh Aahh Aahh Aaaahhhh!

Nicholas J.J. Smith

9.1 Introduction

There is a familiar connection between counting, ordering and cardinality. When
we have counted the elements of a collection—let’s say, for the sake of example, a
collection of brides, brothers, dwarves or wonders of the world—one, two, three,
four, five, six, seven—we have achieved two things. First, we have ordered the
collection: we have put its elements into an ordering from first through to seventh
(viz. the order in which we counted them). Second, we have determined how many
things there are in the collection—that is, the cardinality of the collection: this is
given (when we count in the standard way, as in the example above) by the last
number we state (in this case, seven).

In sum, when we have a (finite) set or collection of objects, there is a process we
can perform on the (elements of the) set: counting. When we have performed this
process, we get two things: an ordering of the elements of the set and an answer to
the question how many things are in the set.

This connection between counting, ordering and cardinality is standard fare1 in
the case of classical or ‘crisp’ collections of objects—collections where there is
never any vagueness or indeterminacy regarding whether a given object is in a given
collection. When it comes to vague collections, however, the connection has not
been kept in central focus in the literature. There have been numerous proposals for
answering the question as to how many objects there are in a vague collection—that

1For example, it is reviewed on the first page of a recent handbook article on set theory (Bagaria
2008, 616).
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is, what is its cardinality—but these proposals concerning cardinality have tended
to be discussed in isolation from the issues of counting and ordering.

In this paper, rather than focussing directly on the cardinality question for
vaguely defined collections, I want to begin with the question of how to count
vague collections. The aim will be to find a natural generalisation to the vague
case of the familiar process of counting precise collections, which then—as in
the classical case—yields both a notion of ordering and a notion of cardinality
for vague collections. I shall not be proposing any new notions of cardinality for
vague collections. What we shall see, however, is that only some of the existing
notions mesh nicely with the conception of counting to be introduced here. I take it
that a potential for coherence with an overall package of concepts analogous to the
familiar classical package—counting, ordering and cardinality—is a mark in favour
of a given notion of cardinality.

The paper proceeds as follows. Section 9.2 reviews the standard set-theoretic
reconstruction of the classical story—outlined above in an informal way—of count-
ing, ordering and cardinality. Section 9.3 introduces vaguely defined collections.
In Sect. 9.4, I tell an informal story about counting vague collections, which is
intended to generalise the classical story; in Sect. 9.5, I reconstruct this story in
set-theoretic terms. In Sect. 9.6, I examine how this picture of counting fits with
possible notions of ordering vague collections. In Sect. 9.7, I turn to cardinality: the
various subsections of Sect. 9.7 look at existing proposals concerning the cardinality
of vague collections and explore whether these proposals fit nicely with the story
about counting presented in Sects. 9.4 and 9.5.2

9.2 Ordinals and Cardinals

Note that in the standard story of the connection between counting, ordering and
cardinality, the numbers we recite when we count—one, two, three: : :—play two
different roles: they can function as ordinals, which specify the position in an
ordering of the objects to which they are assigned (first, second, third,: : :), and they
can function as cardinals, which specify how many things there are in a collection
(one, two, three,: : :).

The familiar story is standardly made more precise in the following way.
Consider the following sequence of sets, where the first set is the empty set ; and
each subsequent set is the set containing all the earlier members of the sequence:

2A word of explanation concerning my title: it is a reference to the Count, a character from the
television show Sesame Street. He loved to count things—and when he had finished doing so,
would laugh maniacally (Aahh Aahh Aahh Aahh Aaaahhhh!) to the accompaniment of thunder
and lightning.
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;
f;g

f;; f;gg
f;; f;g; f;; f;ggg

f;; f;g; f;; f;gg; f;; f;g; f;; f;gggg
:::

(A piece of terminology that we shall use later: ! is the infinite set containing all,
and only, the sets in the sequence just given.) Following von Neumann, the natural
numbers 0; 1; 2; : : : can be identified with the objects (sets) in this sequence: 0 is ;,
1 is f;g and so on:

0 W ;
1 W f;g

2 W f;; f;gg
3 W f;; f;g; f;; f;ggg

4 W f;; f;g; f;; f;gg; f;; f;g; f;; f;gggg
:::

Note that we can then also write

0 W ;
1 W f0g

2 W f0; 1g
3 W f0; 1; 2g

4 W f0; 1; 2; 3g
:::

It can now be seen clearly that the familiar ordering relation < on the natural
numbers simply becomes the membership relation 2.

We now have the objects that we use for counting (i.e. that we recite, in
order, when we count): the natural numbers. Counting itself proceeds as follows.
Informally, when we count a collection, we consider (point to, touch) its members
in turn, without missing any and without repeating any. Each time we consider an
object, we say a natural number, beginning with 1 and then proceeding in order:
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2, 3, etc. The formal analogue of counting is a bijection between the set being
counted and one of the natural numbers defined above.3 For example, suppose
we are counting dwarves: one, two, three, four, five, six, seven. The analogue of
this is a bijection between the set of dwarves and the number 7, that is, the set
f0; 1; 2; 3; 4; 5; 6g. The fact that we count every dwarf (missing none) corresponds
to the function from the set of dwarves to 7 being total (or if we are thinking of the
function as being from 7 to the set of dwarves, it corresponds to the fact that it is
onto); the fact that we do not count any dwarf more than once corresponds to its
being a function (or if we are thinking of the function as being from 7 to the set of
dwarves, it corresponds to the fact that it is one-one).

Informally, counting yields an ordering of the set being counted and a cardinality
for that set. In the formal reconstruction, this comes out as follows. If there is a
bijection between the set of dwarves and the number 7, then that number just is
the cardinal number of that set. As for ordering, the natural numbers come in a
standard, familiar order: 0; 1; 2; : : :. As we have remarked, their formal analogues
also come in a corresponding order, given by the set membership relation. Now
suppose we consider each number not simply as a set—as we do when we think
of it as a cardinal number—but as an ordered set: a set together with the ordering
relation given by 2. Then, given a bijection between a number and a set, we get a
corresponding ordering of that set. When we think of our numbers in this way—as
ordered sets—they become ordinals.

Note the difference between a particular ordering of a set and its corresponding
ordinal. There are many different ways of counting the dwarves—first Bashful, then
Doc, then Dopey, Grumpy, Happy, Sleepy and finally Sneezy; or Grumpy first, then
Sleepy, Sneezy, Doc, Dopey, Happy and then Bashful last; etc. Each of these is
represented by a different bijection between the set of dwarves and the number 7.
But when we abstract away from the particular identities of the objects in the
ordering, and just look at the type of ordering we get, we see that we get the same
type of ordering each time: one object, then another, then another, then another,
then another, then another and finally another—seven things in a row. An ordinal
represents an order type. So the multiple different orderings of the set of dwarves all
correspond to the same ordinal, 7.4

3A function f W S ! T is said to be total if it satisfies the condition that every member of S gets
sent to some member of T ; onto (aka surjective, a surjection) if it satisfies the condition that every
member of T gets hit at least once; and one-one (aka one-to-one, into, injective, an injection) if no
member of T gets hit more than once. A bijection (aka correspondence) is a function that is total,
onto and one-one. If there is a bijection f from S to T , then there is a bijection (the inverse of f )
from T to S ; hence it is common to talk nonspecifically of a bijection between S and T .
4An ordinal, as Cantor (1915) put it, results from a single act of abstraction: we ignore the particular
identity of each object in the set and simply look at the order in which these objects appear; a
cardinal results from a double act of abstraction, in which we ignore both the particular identity
of each object in the set and the order in which these objects appear, paying attention only to the
number of objects in the set.
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Note also that in the informal story, 0 plays no role—whereas in the set-theoretic
reconstruction, it does. In the informal story, we count 1; 2; 3; : : :—starting at 1—
and the cardinal number of the set we are counting is the last number stated. In the
set-theoretic reconstruction, n is the set f0; 1; 2; : : : ; n ! 1g, which has n elements:
but not the numbers 1 : : : n, rather the numbers 0 : : : n ! 1. The counting process
is represented as a bijection between the set being counted and a number n. The
bijection associates the first element in the set (i.e. first in the ordering generated
by the counting process) with 0 (not with 1) and the last with n ! 1 (not with
n). The cardinal number of the set is then the set of all the numbers associated
with objects in the set—which is the number after the last one associated with an
object in the set, rather than the last one itself. One might therefore think that if we
wish to speak strictly correctly, we need to say—for example—that the set-theoretic
story reconstructs, not the standard counting procedure itself but an equally good
alternative procedure that starts from 0 (instead of 1) and assigns as cardinal the
first number not stated (rather than the last number stated). We shall not enter into
these sorts of issues here, as they would be a distraction in the present context.
For our purposes it will be best to speak simply of the set-theoretic story as a
reconstruction of the familiar counting process (which starts from 1)—leaving it to
readers who regard any of our formulations as strictly speaking incorrect to reword
them mentally to their own satisfaction.

Summing up: In the formal version of the familiar story, we have a sequence of
sets. They play the role of numbers. If we think of them simply as sets, they are
cardinal numbers; if we think of them furthermore as ordered (by set membership),
they become ordinal numbers. Counting a set and getting the answer n corresponds
to the existence of a bijection between that set and the number n. Such a bijection
yields two things: an ordering of the set (transferred from the ordering of n, when
we consider it as an ordinal) and an answer to the question how many things are in
that set (n itself, when we think of it as a cardinal).

The classical story just told extends from crisp finite collections to crisp infinite
collections in a standard way (as explained in any introductory work on set theory).
In this paper we wish to generalise in a different direction: we shall consider only
finite sets—but sets whose membership is not precisely defined.

9.3 Vaguely Defined Collections

Given a predicate P , we can (try to) count the set of P s. How to proceed when P
is vague? For example, suppose that there are 20 men in the room: 10 professional
basketball players, 6 professional jockeys and 4 more or less borderline cases of
tallness. How to count the tall men in the room? Obviously, we count each of the
basketball players and none of the jockeys—but what about the borderline tall men?
It is unclear whether we should count them or not.
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A similar problem arises if we suppose that the identity relation can be vague.5

For example, suppose that Jane, who is 50800, and Emma, who is 60100, work at moon
base 9. One morning, Emma teletransports to base 7 for the day, returning that
evening to base 9. Suppose we wish to count the persons of 60 or more in height
who were present in base 9 that day. ‘60 or more in height’ is a precise predicate—
and yet we face a similar problem to the one we face when we wish to count the
tall men: it is unclear whether the Emma who steps out of the teletransporter in the
evening is a distinct person from the Emma who stepped into the teletransporter in
the morning; hence, having counted Emma in the morning, it is unclear whether (in
addition) to count Emma in the evening.6

Of course, if there can be cases of the two sorts just described, then there can also
be hybrid cases, involving both vague identity and vague predicates—for example,
counting the tall persons in base 9 on a given day.

I have argued elsewhere that ultimately sense cannot be made of the idea of
vague identity (Smith 2008a). I shall therefore focus entirely on cases of counting
collections whose vagueness arises from the vagueness of some predicate used to
define the set: for example, the tall men, the bald men, the heavy suitcases, the
long walks and so on. I have also argued elsewhere that vague predicates should be
analysed in terms of degrees of truth—in particular, using fuzzy sets (Smith 2008b).
I shall therefore carry out my discussion of vaguely defined collections in terms of
fuzzy sets. Nevertheless, much of what I say could be applied, mutatis mutandis,
both to other approaches to vagueness and to counting issues arising from vague
identity. Therefore, I shall often talk generally of ‘vague sets’, ‘vague collections’
and so on, rather than specifically of ‘fuzzy sets’—even though at all points at which
rigour is required, the precise technical development will be in terms of fuzzy sets.
This paper is intended as a general contribution to the literature on counting and
cardinality in the presence of vagueness, illustrated in terms of one particular source
of vagueness (vague predication, not vague identity) modelled in one particular way
(using fuzzy sets). Some readers may take vague identity seriously, or they may
model vague predication using machinery other than fuzzy sets: most of what I say
should still be relevant to such readers.

Some terminology: Œ0; 1! is the closed real unit interval, comprising all the real
numbers between 0 and 1 inclusive, that is, all real numbers x with 0 " x " 1.
.0; 1! is the set of all real numbers x with 0 < x " 1, and Œ0; 1/ is the set of all
real numbers x with 0 " x < 1. A fuzzy subset S of some background set M is a
function from M to Œ0; 1!; the number assigned to x 2 M represents x’s degree of
membership in S . The set of all things in M assigned a value strictly greater than 0
is called the support of S , here denoted S!. The set of all things in M assigned the

5See, for example, Parsons (2000, Sect. 8.1).
6The teletransporter is playing the role of a disrupter. Readers who do not like the example should
substitute their favourite case from the personal identity literature of a disruptive process where
it is unclear whether the person who enters the process is the same as the person who exits the
process.
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value 1 is called the core (or kernel) of S , here denoted S!. Note that the support
and the core of a fuzzy set are both crisp sets.

Throughout—as already foreshadowed—we shall restrict our attention to fuzzy
sets whose support is a finite set. (Note that the background set M need not be finite.)
In the classical case, things get really interesting when we move beyond the realm
of finite sets; as we shall see, in the vague case things are already rather interesting
in the finite case.

9.4 Counting: The Informal Story

Suppose then that we wish to count, say, the tall men in the room. Of course we
cannot simply count them in the usual way: the familiar procedure of intoning
1; 2; 3; : : : as we go through the members of the set—being sure not to miss any nor
to count any twice—simply ‘crashes’ if we get to an object such that it is unclear
whether or not that object is in the set. If it is in, we count it; if it is out, we do not—
but the familiar procedure assumes everything is in or out, and hence, it breaks down
when we confront a set with elements that are to some degree in and to some degree
out. Of course we can count—in the familiar way—any precise sets in the vicinity:
the set of men who are greater than 60 in height, the set of men who are members
of the set of tall men to a degree greater than 0.5 and so on. But the issue here is
whether we can go further. Can we generalise the familiar procedure of counting the
members of a crisp set, to the case of vague sets?

I can think of only one natural, satisfactory way of extending the usual counting
procedure. In the classical procedure, we intone the counting numbers in turn:
1; 2; 3; : : :. We assign one number to each object that is in the set—and no number
to any object that is not in the set. Thus, the tagging of objects with numbers is an
on/off matter: objects that are in the set get tagged with a number and those that are
not in do not get tagged. The degree of tagging—the strength of the glue with which
the tag is affixed to the object, so to speak—matches the degree of membership of
the object tagged in the set being counted: it is ‘full on’ or ‘full off’.

In the new context of vague sets, objects can be completely in a set (in it to
degree 1) and they can be completely out of a set (in it to degree 0), and objects can
also be in a set to any intermediate degree. Maintaining the idea that the degree of
tagging of an object should match the degree of membership of the object tagged
in the set being counted, we now tag objects to various degrees. That is, we attach
numbers to objects—but some are attached more firmly than others. So, the counting
procedure is this. Go through the members of the set to be counted, intoning the
counting numbers in turn: 1; 2; 3; : : :. For each object we come to, the degree of
attachment of the tag (i.e. counting number) to the object matches the degree of
membership of that object in the set being counted. We can think of this degree of
attachment as being expressed by confidence—or loudness, or what have you—of
intonation. If we come to an object that is fully in the set, we intone the next number
with full confidence; if we come to an object that is not in the set at all, we do not
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intone anything (we save the next number for the next object that is in the set to
some non-zero degree); if we come to an object that is in the set to an intermediate
degree, we intone the next counting number with a degree of hesitation—or at a
volume, or whatever—that matches the degree of membership of that object in the
set being counted.

For example, suppose that Allison, Bridget, Caroline, Diana, Eleanor, Frances,
Greta and Hazel (and no-one else) are in a room. Suppose that their degrees of
membership in the set of tall persons in the room are as follows (where x=y denotes
the degree x of membership of the person with initial y):

1=a; 0:5=b; 0:8=c; 1=d; 0=e; 0:2=f; 0:9=g; 0:3=h

Then, we might count the members of the set of tall persons in the room as follows
(where the table is to be read this way: looking at the person named in the left
column, we intone the number in the middle column with the degree of hesitation
given in the right column; or this way: to the person named in the left column, we
attach—with the degree of attachment given in the right column—the number given
in the middle column):

Allison 1 1
Bridget 2 0.5
Caroline 3 0.8
Diana 4 1
Frances 5 0.2
Greta 6 0.9
Hazel 7 0.3

Note that Eleanor does not get assigned any number—not even to a tiny degree—
because her degree of membership in the set being counted is 0.

Here’s another representation of this counting process, where this time the
strength of attachment of number to person is indicated by the density of the type in
which the number is written (with the idea being that 1 is written in 100 % black ink,
2 in 50 % greyscale, 3 in 80 % greyscale and so on down to 7 in 30 % greyscale):

Allison 1
Bridget 2
Caroline 3
Diana 4
Frances 5
Greta 6
Hazel 7

Of course, there is no reason why we should count the members of the set in the
order we just did. An equally good way of counting would be the following:
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Bridget 1 0.5
Caroline 2 0.8
Allison 3 1
Diana 4 1
Greta 5 0.9
Hazel 6 0.3
Frances 7 0.2

Bridget 1
Caroline 2
Allison 3
Diana 4
Greta 5
Hazel 6
Frances 7

as would the following:

Diana 1 1
Hazel 2 0.3
Frances 3 0.2
Bridget 4 0.5
Caroline 5 0.8
Greta 6 0.9
Allison 7 1

Diana 1
Hazel 2
Frances 3
Bridget 4
Caroline 5
Greta 6
Allison 7

and so on. Note that for each element of the set, the number assigned to that element
need not remain the same across different ways of counting the set—but the degree
to which its number (whatever number it is) is assigned does remain the same: it
corresponds to the degree of membership of that element in the set.7

9.5 Counting: The Formal Reconstruction

In the set-theoretic reconstruction of the standard picture of counting a crisp finite
set, the counting process is represented by a bijection between the set S being
counted and a natural number—which is seen as a set of objects. The standard
ordering on this natural number (i.e. on the elements of the set with which this
number is identified) yields (via the bijection) an ordering of the set being counted.
The natural number—together with the standard ordering of its elements—plays

7I said that much in this paper could be applied, mutatis mutandis, both to approaches to vagueness
that do not employ fuzzy sets and to counting issues arising from vague identity. The story that
I have just told about counting vague collections extends in an obvious way to any treatment
of vagueness wherein the extension of a vague predicate can be modelled as a function from
the domain of discourse to a set of membership values—for example, supervaluationist (or
subvaluationist) treatments and treatments employing a many-valued or gappy (or glutty) logic.
For the case of vague identity, the extent to which the next counting number is attached to the next
object in the set should reflect both the extent to which that object is a member of the set and the
extent to which it is distinct from all other objects in the set.
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the role of an ordinal (denoted NS ). It also—when considered by itself, without the
ordering of its elements—plays the role of a cardinal (denoted NNS ).8

We want to follow a similar line of thought in relation to vague collections. In the
previous section we told a story about counting the members of a vaguely defined
set. Our first task now is to give a more precise reconstruction of this story in set-
theoretic terms.

The process of counting the members of a fuzzy set S can be represented by a
function from S! to .0; 1! # ! satisfying the following conditions9:

1. The function is total
(Everything is counted.)

2. The function is one-one
(Two different things are never conflated and counted as one.)

3. Each element of NNS! appears exactly once in the image of the function10

(The image of the function, for a given set S!, is a set of pairs; the idea here
is that if we look at all the second elements of these pairs, each element of NNS!
appears exactly once. This captures the idea that we go through the elements of
the support of S one by one, assigning successive numbers to them—just as in the
classical story; the only difference, which we get to below, is that the association
of each number is now a matter of degree.)

4. For each object x in S!, the first element of the pair to which x is mapped by the
function is the same as x’s degree of membership in S

(This captures the idea that as we count the elements of the support of S ,
the degree to which we associate the next counting number with the next object
considered is the same as that object’s degree of membership in S .)

This function assigns to each x 2 S! a pair of things: the second element in the pair
is a counting number (of the ordinary classical sort); the first element represents the
degree to which that counting number is attached to x.

Let’s refer to each member of .0; 1!#!—i.e. each pair .x; n/ whose first element
x is a real in .0; 1! and whose second element n is a natural number—as a weighted
number, or more specifically a weighted version of the number n. We can then
describe the present proposal as follows: we represent the process of counting a
vague set as a function that assigns to each element of the support of that set a
weighted version of one of the numbers 1 : : : n, where n is the number of elements
in the support; furthermore, the function assigns these numbers in such a way that
a weighted version of each of the numbers 1 : : : n gets assigned to some element of
the support, no two elements get assigned a weighted version of the same number,

8The notation is Cantor’s. Each bar represents an act of abstraction: one for an ordinal, two for a
cardinal (see Footnote 4 above).
9The symbol " represents the Cartesian product. S " T is the set of all ordered pairs whose first
element is a member of the set S and whose second element is a member of the set T .
10Recall that NNS! is the number of elements in the support of S—and we may think of this number
as a set.
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and the weighting on n in the weighted number assigned to a is precisely the degree
of membership of a in S .

If we look back at the tables in the previous section, we can now see them as
pictures of counting functions of the sort just described.

9.6 Ordering

In the classical story, the process of counting the objects in a set yields an ordering of
the set: the order in which we count the elements. In the set-theoretic reconstruction,
the counting process is represented by a bijection between the set S being counted
and a natural number. This natural number—thought of as a set—comes with a
natural ordering. This ordering then yields—via the bijection—an ordering of the
set being counted.

Can we tell a similar story in the vague case? We have represented the process of
counting a vague set S as a function which assigns to each element of the support of
S a pair. The first element of the pair is a real number; the second is a natural number.
If there is a natural way of ordering these pairs, it will yield (via the counting
function—which is total and one-one) an ordering of S!.

It seems to me that there are two natural orderings on the pairs. (This is
typical: where, in the classical case, there is one natural option, there are usually
multiple equally natural options when we move to the fuzzy case.) The first
ordering puts .x1; y1/<.x2; y2/ iff y1<y2. (The ys are natural numbers, and the
most recent occurrence of < denotes the standard ordering on the natural numbers.)
The resulting ordering of S! is the one that simply takes the members in the order we
count them—ignoring any differences in the degrees to which successive counting
numbers are attached to these objects. (Note that the ordering of the pairs ignores
the xs altogether.)

The second ordering puts .x1; y1/ < .x2; y2/ iff either x1 > x2, or x1 D x2 and
y1 < y2. The resulting ordering of S! is the one that goes through the members
in order of degree of membership—starting with the degree 1 members, if there
are any, and then working down. Where there are multiple elements with the same
degree of membership, they are ordered in the order in which they were counted.11

Both of these options result in a crisp, linear ordering of S!. The order types
of these orderings are simply classical ordinals—and just as in the classical (finite)
case, the order in which we count the elements of a set does not affect the resulting
ordinal. No matter what order we count it in, and no matter whether we take the
first or the second option just discussed, the ordinal associated with a fuzzy set will
simply be the classical ordinal associated with its support. In other words, there are
different options regarding the order in which we put the objects in the set—but the

11Of course there is also a reverse version of this ordering, where we begin with the lowest degree
members and work up.
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resulting order type will, in the cases discussed so far, simply be ‘n objects in a
row’, where n is the number of objects in the support.

Another kind of possibility would be to look for a fuzzy ordering of S!: that is,
a mapping from S! # S! to Œ0; 1! (rather than to f0; 1g, as in the case of a crisp
ordering). Presumably, one would want the degree to which x comes before y to be
a function of both x’s and y’s degrees of membership in S and the order in which
they were counted—that is, a function of both which counting numbers are assigned
to objects when we count the set and the strengths of those assignments. We shall
not explore the options here any further in this paper. Suffice it to note that orderings
of this kind could be derived from the process of counting a vague set, modelled in
the way suggested here—and our concern is to preserve the connection between
the notions of counting and ordering, rather than to explore the options regarding
ordering in detail.

9.7 Cardinality

There are numerous options in the literature regarding the notion of the cardinality
of a vague set—that is, numerous proposals for how to answer the question as to
how many things there are in a vague set. Our concern here is that the answer to the
cardinality question should flow from the output of the counting process: once we
have counted a vague set, we should have sufficient resources in hand to answer the
‘how many?’ question.

This is how things go in the classical case. In the informal version of the story,
the counting process consists in tagging each object in the set with a number. The
output of this process is a list of numbers: 1 : : : n. The cardinality of the set is then
the last of these numbers. In the set-theoretic reconstruction, the counting process
is represented by a (bijective) function between the set S being counted and some
natural number n (thought of as a set). The output of this process—the image of the
set being counted under this function—is a set of numbers/sets 0 : : : n ! 1. This set
of numbers—which is itself the number n—is then the cardinality of the set being
counted.

Turning to the vague case, in the informal version of the story, the counting
process consists in tagging each object in the set with a number—with the strength
of attachment of the tag matching the level of membership of the object being tagged
in the set being counted. The output of this process is a list of numbers, 1 : : : n, with
each number said in a softer or louder voice—or written in a lighter or darker shade
of grey. In the set-theoretic reconstruction, the counting process is represented by a
function (satisfying certain constraints) from the support S! of the fuzzy set S being
counted to pairs of reals in .0; 1! and natural numbers. The output of this process—
the image of the support under this function—is a set of pairs of reals in .0; 1! and
natural numbers. The idea now is that we should be able to derive the cardinality
of S from this set of pairs—from the set of pairs that we get as output when we
count S . We should not have to return to S itself, nor draw on any other sources of
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information. Just looking at the list of numbers, written in varying shades of grey,
should be enough to answer the question as to how many objects there are in the
fuzzy set.

Here is a straightforward idea. The cardinality of a crisp set S is simply the set
that gathers together the values of the counting function that we get when we take
members of S as input: 0; 1; 2; : : : ; n ! 1 for some n. Now when we count a fuzzy
set S , the values of the counting function that we get when we take members of S!
as input are pairs: .x0; 0/, .x1; 1/, .x2; 2/, : : :, .xn#1; n ! 1/ for some n, where the
xi s are reals in .0; 1!. Such a set of pairs determines a fuzzy subset of n (where n is
conceived as the set containing 0; : : : ; n!1): the fuzzy subset that assigns as degree
of membership to each member of n, the number with which it is paired in the list
of outputs. So, can we not take this fuzzy subset of n to be the cardinality of S?

We cannot: because if we count S again in a different order, we will (in general)
get a different fuzzy subset of (the same natural number) n. (If, on one way of count-
ing, 1 is assigned to a degree 0.8 member of S , then 1 will be a degree 0.8 member
of the resulting fuzzy subset of n; if, on another way of counting, 1 is assigned to a
degree 0.3 member of S , then 1 will be a degree 0.3 member of the resulting fuzzy
subset of n; and so on.) Yet it is a fundamental constraint on the notion of cardinality
that simply changing the order in which we count the elements of a set should not
change the answer we get as to how many objects there are in the set.12

At this point, rather than trying to make up new proposals regarding the
cardinality of vague collections, we shall turn to the numerous proposals already
in the literature and ask whether these proposals fit with the account of counting
given above. We shall not consider every proposal that has been made; rather, we
shall consider some proposals that play a prominent role in the current literature on
this topic.13

9.7.1 Cardinalities as Natural Numbers

The first class of proposals holds that the form of the answer to the question ‘How
many objects are in the set?’ should be a natural number—in the vague case as well
as the classical case. The natural proposals in this area are as follows. The cardinality
of a fuzzy set S is the (classical) cardinality of:

1. The support of S
2. The core of S
3. Sx , where Sx is the (crisp) set of all elements whose degree of membership in S

is strictly greater than x, for some specified threshold x 2 Œ0; 1/

12Recall Cantor’s second act of abstraction.
13My judgements regarding prominence in the literature have been heavily influenced by Wygralak
(2003), which readers should consult for further details of—and bibliographical references
regarding—the views discussed in Sects. 9.7.1–9.7.3.
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4. Sx , where Sx is the (crisp) set of all elements whose degree of membership in S
is greater than or equal to x, for some specified threshold x 2 .0; 1!

Obviously, cardinalities of all these sorts can readily be extracted from the output
of the process of counting S in the way presented above. To find the cardinality in
sense 1, we count up (in the classical way) all the weighted numbers in the output of
the process of counting the vague set S . To find the cardinality in sense 2, we count
up the weighted numbers whose weight is 1—that is, the numbers written in 100 %
black ink. To find the cardinality in sense 3, we count up the weighted numbers
whose weight exceeds x—that is, the numbers written at a level of greyscale darker
than x % and so on.

9.7.2 Cardinalities as Real Numbers

The second class of proposals holds that the form of the answer to the question
‘How many objects are in the set?’ should be a single number—but a nonnegative
real number, not necessarily a nonnegative natural number (as in the classical case).
The most natural proposal here is that the cardinality of S is the sum, over all x in
the support of S , of the degree of membership of x in S . This is called the sigma
count of S , denoted sc.S/:

sc.S/ D
X

x2S!

S.x/

(Here, S.x/ denotes the degree of membership of x in S—i.e. the value assigned to
x by S , when we think of S as a function from some background set to Œ0; 1!.) So
when we are counting up the bald men, a degree 1 bald man adds 1 to the count, a
degree 0.3 bald man adds 0.3 to the count and in general a degree x bald man adds
x to the count.14

Obviously, the sigma count of S can be extracted from the results of counting the
members of S in the way presented above. The output of the counting process is a
bunch of weighted numbers; to get the sigma count, we simply add the weights on
these numbers.

9.7.3 Cardinalities as Fuzzy Sets of Natural Numbers

The first class of proposals held that the form of the answer to the question ‘How
many objects are in the set?’ should be a natural number—in the vague case as well

14Compare the way that universities count students for certain purposes: a full-time student adds
1 to the count; a half-time student adds 0.5 to the count; and so on. (Thanks to David Braddon-
Mitchell for this example.)
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as the classical case. The second class of proposals generalised in one direction—
maintaining that the cardinality should be a single number, but not requiring that it
be a natural number. The third class of proposals generalises in a different direction,
holding that the cardinality of a fuzzy set should be a fuzzy set of natural numbers,
rather than a single such number.

One proposal along these lines is as follows. For each natural number n, we ask
‘What is the highest level at which we can set the membership threshold x, such
that the number of things that are in S to a degree of at least x is at least n?’ The
answer—a real in Œ0; 1!—is the degree of membership of n in the fuzzy set of natural
numbers that constitutes (on this proposal) the cardinality of S . More precisely, the
cardinality of S is a fuzzy subset of the set N D f0; 1; 2; : : :g of natural numbers—
that is, a function l W N ! Œ0; 1!—defined as follows. For each n 2 N:

l.n/ D supfx 2 .0; 1! W NNSx $ ng

Note that if there is no positive threshold x such that at least n things are in S to
degree x or more, then l.n/ D 0.

Recall the example of the fuzzy set of tall persons described in Sect. 9.4, with
degrees of membership as follows (where x=y denotes the degree x of membership
of person y):

1=a; 0:5=b; 0:8=c; 1=d; 0=e; 0:2=f; 0:9=g; 0:3=h

The cardinality of this fuzzy set—on the present proposal—is the following fuzzy
subset of N (where x=n denotes the degree x of membership of the number n):

1=0; 1=1; 1=2; 0:9=3; 0:8=4; 0:5=5; 0:3=6; 0:2=7; 0=8; 0=9; 0=10; : : :

The cardinality of S in this sense is readily recoverable from the output of the
process of counting S in the way presented above. The output of the counting
process is a bunch of weighted numbers. To get the cardinality, we write out the
weights in nondecreasing order (including any repetitions)—in the present example:

1; 1; 0:9; 0:8; 0:5; 0:3; 0:2

(Note that we do not write 0 at the end of this list, because when we count we get
a weighted number for each member of the support of S—i.e. each thing that is
a member of S to some non-zero degree.) The cardinality that we seek is a fuzzy
subset of N—a function that assigns a degree of membership to each n 2 N. For
n D 0, the degree of membership of n is 1. For n greater than 0, and less than or
equal to the number of things in the list of weights that we just wrote out, the degree
of membership of n is simply the nth weight in the list. For all larger n, the degree
of membership of n is 0.
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The cardinality proposal that we just looked at sees the cardinality of S as a fuzzy
subset of N, where the degree of membership of n in this fuzzy subset is a measure
of the truth of the claim that there are at least n things in S . A second proposal
replaces ‘at least’ here with ‘at most’. On this proposal, the cardinality of S is a
function m W N ! Œ0; 1! defined as follows:

m.n/ D 1 ! l.n C 1/

A third proposal replaces ‘at least’ in the first proposal with ‘exactly’. On this
proposal, the cardinality of S is a function e W N ! Œ0; 1! defined as follows:

e.n/ D minfl.n/; m.n/g

As cardinality in the sense of l can be extracted from the output of the process of
counting a vague set, evidently so can cardinality in the senses of m and e.

9.7.4 Cardinalities via Logical Formulas

It is well known that for any finite n and any predicate P , there are formulas of first-
order logic that are true in exactly those (classical) models in which the extension
of P contains exactly n things. There are different recipes for constructing such
numerical formulas. For example—Recipe 1—we can represent ‘There are exactly
n P s’ as the conjunction of ‘There are at least n P s’ and ‘There are at most n P s’,
where the ‘at least’ claims are rendered as follows:

1. 9xP x
2. 9x9y.P x ^ Py ^ x ¤ y/
3. 9x9y9z.P x ^ Py ^ P z ^ x ¤ y ^ x ¤ z ^ y ¤ z/
:::

and the ‘at most’ claims are rendered as follows:

1. 8x8y..P x ^ Py/ ! x D y/
2. 8x8y8z..P x ^ Py ^ P z/ ! .x D y _ x D z _ y D z//
3. 8x8y8z8w..P x ^Py ^P z^P w/ ! .x D y _x D z_x D w_y D z_y D

w _ z D w//
:::

Recipe 2 is just like Recipe 1 except that the ‘at most’ claims are rendered as
follows:

1. :9x9y.P x ^ Py ^ x ¤ y/
2. :9x9y9z.P x ^ Py ^ P z ^ x ¤ y ^ x ¤ z ^ y ¤ z/
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3. :9x9y9z9w.P x ^ Py ^ P z ^ P w ^ x ¤ y ^ x ¤ z ^ x ¤ w ^ y ¤ z ^ y ¤
w ^ z ¤ w/

:::

That is, ‘There are at most n P s’ is the negation of ‘There are at least n C 1 P s’
(as rendered above). Recipe 3 does not represent ‘There are exactly n P s’ as the
conjunction of ‘There are at least n P s’ and ‘There are at most n P s’, but simply
renders the ‘exactly’ claims as follows:

1. 9x8y.Py $ y D x/
2. 9x9y.x ¤ y ^ 8z.P z $ .z D x _ z D y///
3. 9x9y9z.x ¤ y ^ x ¤ z ^ y ¤ z ^ 8w.P w $ .w D x _ w D y _ w D z///
:::

There are further options besides these three.15

Parsons’s approach to the issue of counting in the presence of vagueness is as
follows (Parsons 2000). If we want to know how many P s there are—where either
P is a vague predicate or indeterminacy of identity is involved or both—we consider
each of the numerical formulas in turn and assess its truth value. So, in our example
of the fuzzy set of tall persons with degrees of membership as follows:

1=a; 0:5=b; 0:8=c; 1=d; 0=e; 0:2=f; 0:9=g; 0:3=h

what we do is consider each numerical formula—‘There is exactly one P ’, ‘There
are exactly two P s’, etc.—and determine its degree of truth relative to a model in
which P is assigned as extension the fuzzy set just described.16

There are two ways of interpreting what is going on here. The first way—which
I take to be the sort of thing Parsons has in mind—is that the possible answers to the
cardinality question (i.e. ‘How many tall persons are there in the room?’) are natural
numbers. But it may not be that a unique answer is correct and all others incorrect.
Various answers—various numerical formulas—may each have a non-zero degree
of truth.17 On this interpretation, the present approach does not yield a single object
as cardinal number of the set of tall persons: it just yields an assessment (in the form
of a degree of truth) of each possible answer. This is unsatisfactory: our goal is to
extract a cardinality from the output of the counting process—not to deny that there

15For more details on the foregoing material see, e.g. Smith (2012, Sect. 13.5).
16Parsons does not work with fuzzy sets or degrees of truth. Here and below I adapt his ideas to
the present context, in which we use fuzzy sets to model vagueness.
17See, for example, Parsons (2000, p. 135): “It follows that the question of how many persons there
are all told has no correct answer. : : : in this case it seems clear that these are the right things to
say: any answer less than two or more than three is wrong, and either “two” or “three” is such that
it is indeterminate whether it is correct” and p. 136: “It appears that in this case any answer less
than one or more than three is definitely wrong, but the answers “one”, “two”, or “three” should
all have indeterminate truth-value.”
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is such a thing as ‘the cardinality’ of a vague set. But of course there is a second
way of developing the present idea: we take the cardinality of a fuzzy set S to be a
fuzzy subset of N: the one that assigns as degree of membership to each n 2 N the
degree of truth of the nth numerical formula on a model on which P has S as its
extension.

Evidently, once we move beyond the classical framework, numerical formulas
constructed according to different recipes—which are classically equivalent—need
not remain equivalent. Thus, we shall get different versions of the present story—
different cardinalities for vague sets—depending on which recipe we pick for
constructing our numerical formulas and depending on the truth conditions that we
adopt for the logical operators in the new nonclassical setting.

Our concern here is with whether the cardinality of a vague set can be recovered
from the output of the process of counting that set. So, if we have counted a vague
set S , and have to hand the output of the counting process—a list of weighted
numbers—can we reconstruct the truth values of the numerical formulas on a model
on which the predicate P has the set S as its extension? Note that we do not
have the set S itself to hand—we have only the list of weighted numbers. But of
course this list allows us to reconstruct how many things are in the support of S
and their degrees of membership in S—and so, given certain assumptions about
how the model theory is supposed to work in the new vague context, we can indeed
reconstruct the truth values of the numerical formulas.

But now the question arises: why should we want to go this long way around—
via the numerical formulas (and furthermore settling on a particular choice of
recipe for constructing them and a particular set of truth conditions for the logical
operators)—rather than simply extracting the desired cardinality (fuzzy set of
natural numbers) directly from the output of the counting process? (E.g. note that if
we define the truth conditions for negation and conjunction as follows—where j˛j
is the degree of truth of the formula ˛:

j:˛j D 1 ! j˛j
j˛ ^ ˇj D minfj˛j; jˇjg

and the truth condition for the existential quantifier in terms of sup, and if we
construct our numerical formulas according to Recipe 2, then the cardinality that
we arrive at for a given fuzzy set by going via the numerical formulas will turn out
to be the same as cardinality in sense e of Sect. 9.7.3.) There is only one possible
reason: we might think that this route, while lengthy, is conceptually correct. That
is, we might think that there is some special relationship between the numerical
formulas and questions of cardinality—a connection that it is important to retain.
This seems to be what Parsons thinks. He refers to the numerical formulas as
analyses of cardinality claims and writes “These analyses are natural hypotheses
about the meaning of cardinality claims” (Parsons 2000, 139). Hyde, who follows
Parsons’s approach to cardinality issues in the context of vagueness, also refers to
the numerical formulas as analyses of claims of the form ‘There are exactly n P s’
(Hyde 2008, 171). However, I think that this is the wrong attitude to numerical
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formulas. The fact that for any finite n and any predicate P there are formulas
of first-order logic that are true in exactly those (classical) models in which the
extension of P contains exactly n things is not properly seen as a fundamental fact
about what it means for there to be n P s. It is a fact about the expressive power
of (classical) first-order logic. It is a useful fact—but if it did not hold, that would
not reflect badly on the concept of cardinality: it would reflect badly on the logic.
We would still know exactly what it means for there to be n P s—it would just be
something that we could not express in a logical formula. Consider the claim ‘There
are finitely many P s’. It is well known that we cannot construct a formula—or
even a set of formulas—such that on every model on which that formula—or all the
formulas in that set—is true, the extension of P is a finite set. This does not threaten
our understanding of the notion of finitude. It simply means that first-order logic
lacks the power to express certain claims.

Given that the numerical formulas do not have any special connection to the
concept of cardinality—they do not enshrine the very notion of cardinality—there
would seem to be no good reason for approaching the issue of cardinality in the
context of vagueness along the roundabout route via the truth values of numerical
formulas. Simpler and better, it seems, to define cardinality directly from the outputs
of the counting process—for example, in the ways that cardinality in the senses of
l , m and e were defined in Sect. 9.7.3.

9.8 Conclusion

My concern in this paper has not been to add to the many existing proposals in the
literature concerning the cardinality of vague collections, but to bring some order
to the landscape—specifically, by bringing into focus the connection between the
notions of counting, ordering and cardinality—a connection that is central in the
classical case. I proposed a method for counting vague collections and discussed
the relationships between this method and various notions of ordering for vague
sets. Turning then to the notion of cardinality, we saw that not all existing views
concerning how we should answer the question as to how many things there are in a
vague collection fit equally well with my proposal about how to count the members
of such a collection. In particular, the idea that we should approach cardinality
via certain formulas of a logical language—which has been quite influential in the
recent philosophical literature—seems to me to be less attractive than other existing
proposals.18

18Thanks to Siegfried Gottwald for helpful discussion and an anonymous referee for useful
comments. Thanks also to audiences at a seminar at the Department of Philosophy at the University
of Sydney on 22 May 2013, at a workshop on Metaphysical Indeterminacy at the University
of Leeds on 12 June 2013 and at the LENLS 10 workshop (Logic and Engineering of Natural
Language Semantics) at Keio University in Kanagawa on 27 October 2013.
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