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ABSTRACT. This paper presents a new theory of vagueness, which is designed to retain
the virtues of the fuzzy theory, while avoiding the problem of higher-order vagueness.
The theory presented here accommodates the idea that for any statement S1 to the effect
that ‘Bob is bald’ is x true, for x in [0, 1], there should be a further statement S2 which
tells us how true S1 is, and so on – that is, it accommodates higher-order vagueness –
without resorting to the claim that the metalanguage in which the semantics of vagueness
is presented is itself vague, and without requiring us to abandon the idea that the logic – as
opposed to the semantics – of vague discourse is classical. I model the extension of a vague
predicate P as a blurry set, this being a function which assigns a degree of membership
or degree function to each object o, where a degree function in turn assigns an element of
[0, 1] to each finite sequence of elements of [0, 1]. The idea is that the assignment to the
sequence 〈0.3, 0.2〉, for example, represents the degree to which it is true to say that it is
0.2 true that o is P to degree 0.3. The philosophical merits of my theory are discussed in
detail, and the theory is compared with other extensions and generalisations of fuzzy logic
in the literature.

KEY WORDS: blurry sets, degree functions, degrees of truth, fuzzy logic, fuzzy sets,
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1. INTRODUCTION

In this paper I present a new theory of vagueness. By a ‘theory of vague-
ness’ I mean a semantics or model theory for a formal language, which
is intended to explain and illuminate the relationship between ordinary
vague language and the world. At the present stage in the debate about
vagueness – at which there is a large number of competing theories in
the literature – it is important that one properly motivate any new theory.
This is, indeed, such an important task that it ended up taking me a whole
paper to do it properly (Smith, 2003). Thus I shall here present only a brief
summary of the claims which serve as the background to, and motivation
for, the present paper (for detailed presentations of, and arguments for,
these claims, see the paper just mentioned, and (Smith, 2001)):

(1) The vagueness literature contains no adequate definition or charac-
terisation of vagueness. We can remedy this situation, and obtain a uniquely
useful and attractive way of thinking about vagueness, if we characterise
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vagueness as follows. A predicate ‘F ’ is vague if and only if it satisfies the
following condition (for any objects a and b):

Closeness If a and b are very similar in F -relevant respects, then ‘Fa’
and ‘Fb’ are very similar in respect of truth.

The basic idea here is that if a and b are very similar in the respects that
determine whether an object possesses the property F , then they are very
similar in respect of possession of F itself. By way of illustration of this
characterisation, consider the two predicates ‘is at least six feet in height’
and ‘is tall’. The former predicate is precise and the latter is vague. Sup-
pose that Bill is exactly six feet tall, and Ben is just under six feet tall –
say one zeptometre under. Bill and Ben are very close in respects relevant
to whether a thing is at least six feet in height; yet ‘Bill is at least six feet
in height’ is true, while ‘Ben is at least six feet in height’ is false; hence
these two sentences are not very similar in respect of truth. Closeness is
violated here – and this seems right. Now consider the vague predicate ‘is
tall’. Suppose you take two persons who are not very similar in respects
relevant to whether a thing is tall: for example Bob and Bill, who differ
in height by two feet. Might it be the case that the claims that Bob is
tall and that Bill is tall are not similar in respect of truth? Certainly it
might: a significant difference in height can make a significant difference
to whether a person is tall. What if Bob and Bill are very close in height:
for example if they differ by less than one millimetre? Could it be that the
claims that Bob is tall and that Bill is tall are not very similar in respect of
truth? Intuitively not: an insignificant difference in height cannot make a
significant difference to whether a person is tall. The smaller the difference
in height between Bob and Bill, the stronger the intuition: if Bill is only a
nanometre shorter than Bill (let alone a picometre, femtometre, attometre,
zeptometre or yoctometre shorter), then the claims that Bob is tall and that
Bill is tall must, it seems, be very similar in respect of truth.

(2) In order to accommodate vagueness as characterised in terms of
Closeness, a theory of vagueness must countenance degrees of truth.

(3) Almost all of the objections in the literature against theories of
vagueness based on fuzzy logic and fuzzy set theory carry no weight. How-
ever two objections do carry weight; and indeed one of them is decisive.

The first problem concerns the linear ordering of the fuzzy truth values.
Intuitively, given any two vague statements, it need not be the case that
one is strictly more true than the other, or else that they have exactly the
same degree of truth. The fuzzy view cannot accommodate this idea: on
this view, degrees of truth are represented by real numbers in the closed
interval [0, 1], and they inherit their truth-ordering from the usual ordering
of the reals (which is linear).
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The second (and decisive) problem is as follows. There is nothing wrong
with representing (for example) Bob’s degree of baldness as an element of
[0, 1] – as long as the representation is understood to be merely approx-
imate. Intuitively, it is not correct to say that there is one unique element
of [0, 1] that correctly represents Bob’s degree of baldness, with all other
choices being incorrect. Rather, there are better and worse choices, but
none is uniquely correct. Hence, if you say that ‘Bob is bald’ is true to
degree x, for some x in [0, 1], it will not in general be the case that your
statement is true simpliciter or false simpliciter: rather, it will be more
or less true, according to whether x is a better or worse approximation
to Bob’s degree of baldness. Now the fuzzy view cannot accommodate
this idea: it assigns a unique element of [0, 1] to each sentence, and it
is true simpliciter that this element is the truth value of that sentence,
and false simpliciter that any other element is the truth value of that sen-
tence. It is fairly standard to refer to this as the problem of higher-order
vagueness.1

It is important to be clear as to what the higher-order vagueness prob-
lem is, and what it is not. There are only two options for a semantics of
vagueness: a semantics which exploits the base phenomenon of vague-
ness by presenting its account of vague language in vague language, or
a semantics which illuminates the base phenomenon by giving us a clear
understanding – in non-vague terms – of what vagueness involves. There
are those who think that there is something wrong with the very idea
of assigning a particular semantic status to a vague sentence (whether
this status be the possession of a unique classical truth value, a unique
fuzzy truth value, a unique set of admissible interpretations, or whatever).
These people think that no non-vague theory of vagueness can be correct.
But these people are mistaken. We should not abandon the search for a
non-vague theory of vagueness. There is no problem with the very idea
of associating each vague sentence with one unique truth value. Rather,
the higher-order vagueness problem specifically concerns the fuzzy truth
values: the objection is that we do not get an accurate model of vague lan-
guage by associating vague predicates with fuzzy sets, and vague sentences
with fuzzy truth values.

Consider an analogy. If one repeatedly measures the length of a piece of
coastline, using a shorter measuring stick each time, the measured length
does not approach a limit. No ordinary curve of Euclidean geometry has
this property, and thus it was thought by Mandelbrot that coastlines are
not ordinary Euclidean curves. Now the lesson was not that we should not
assign any particular object to a land-mass as its boundary – it was that
we should not assign any object as simple as an ordinary Euclidean curve.
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Instead, we should say that coastlines are fractals. The problem was not in
the very idea of assigning a single curve to a land-mass as its boundary –
it was in the assignment of a curve of too simple a sort. Assigning a single
fractal is perfectly all right.2

Similarly in the case of vagueness: there is nothing inherently wrong
with the idea of a vague sentence having a unique truth value; there is
something wrong with the idea that these truth values may be thought of as
points between 0 and 1 on the real line. The problems mentioned above are
problems with the fuzzy theorist’s specific formal proposal for capturing
the intuitive idea that properties (including the property of truth) come in
degrees. We have no good reason to reject the intuitive idea itself, nor to
think that this idea cannot be captured in some other way.

(4) There is no way of avoiding these problems with the fuzzy view
while retaining [0, 1] as our set of truth values. Specifically, three proposals
along these lines fail: (fuzzy) epistemicism; the idea of a hierarchy of fuzzy
metalanguages; and the idea of truth being measured on an ordinal (as
opposed to absolute) scale.

The upshot of (1)–(4) is as follows. We need degrees of truth, but the
real interval [0, 1] cannot play the role of these degrees. Thus we need
to find a different set of degrees of truth: a set which is such that we
can feel happy with the idea that each vague sentence is mapped to a
unique member of this set. What we need is a non-fuzzy degree-theoretic
treatment of vagueness: a treatment which countenances degrees of truth,
but which does not identify these with the real numbers between 0 and 1
inclusive. The purpose of the present paper is to provide such a treatment
of vagueness.

The abstract picture is as follows. A formal model of the intuitive idea
of property-possession to an intermediate degree models properties as sets,
where these are functions which assign degrees of membership to objects.3

Then, if Bob is assigned a certain degree of baldness by the set of bald
things, the sentence ‘Bob is bald’ is assigned that same degree as its truth
value – that is, the degree of truth of ‘Bob is bald’ is the same as Bob’s
degree of baldness. The fuzzy picture and the picture to be presented in
this paper are the same at this abstract level; where they differ is over
the formalisation of the intuitive notion of a degree. The fuzzy theorist
models properties as fuzzy sets and degrees as numbers in [0, 1]. I model
properties as what I call blurry sets and degrees as what I call degree
functions.

The rough idea behind my view is that when faced with a vague state-
ment, such as ‘Bob is bald’, we may say that it is x true, where x is some
real number between 0 and 1, but this will just be a first approximation to
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the actual truth value of the vague statement. For any statement S1 to the
effect that ‘Bob is bald’ is x true, there will be a further statement S2 which
tells us how true S1 is, and so on and on. Thus, while we may say:

‘Bob is bald’ is 0.6 true(1)

we can then go on to state:

Claim (1) is only 0.7 true(2)

and then further:

Claim (2) is itself only 0.5 true(3)

and so on. Thus we have a hierarchy of statements, none of which tells
us the full and final story of the degree of truth of ‘Bob is bald’. Now
what is really distinctive about the approach in this paper is that the hier-
archy is not implemented by giving a semantics for vague language which
assigns vague sentences real numbers as truth values, and then saying
that the metalanguage in which these assignments were made is itself
subject to a semantics of the same sort. I regard this approach as both
misguided and unworkable (Smith, 2003, §2.5). Rather, the truth values
of the system are not real numbers: they are degree functions, and the
hierarchical structure alluded to above is embedded inside each degree
function. Each vague sentence is assigned a unique degree function as its
truth value, and these assignments can be described in a metalanguage
whose semantics is classical. Thus, instead of a hierarchy of assignments
of simple truth values, we have a single assignment of a complex truth
value which has an internal hierarchical structure. This approach enables
me to avoid the higher-order vagueness problem for the fuzzy view without
encountering the (to my mind devastating) problems engendered by having
a non-classical metalanguage.

The first step in presenting the new theory of vagueness will be to
examine these degree functions (or DF’s for short): these are the mem-
bership/truth values of the system. With an understanding of what they are
(Sections 2–4), and of the algebraic properties of the set of all them (Sec-
tion 5), in hand, we can move on to a development of the theory of blurry
sets (Section 6), and from there to a model theory4 which employs blurry
sets and the algebra of degree functions where classical model theory em-
ploys ordinary ‘crisp’ sets and the Boolean algebra of classical truth values
(Section 7). This model theory is the core of my theory of vagueness. In
Section 8 I define a relation of logical consequence with reference to the
models introduced in Section 7, and prove that this relation is identical to
the classical consequence relation: thus while the semantics for vagueness
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presented here is non-classical, it yields a classical logic of vagueness. In
Section 9 I make good on the informal idea which I use to motivate my
view: the idea that while, for example, we may say that ‘Bob is bald’ is
0.6 true, we can then go on to state that our previous claim was only 0.7
true, and then further that this most recent statement was itself only 0.5
true, and so on. I do this by showing that we can consistently introduce
infinitely many truth predicates into the formal language discussed in the
paper, and that these predicates will behave in the desired ways. On the
basis of this section, I go on in Section 10 to respond to an argument of
Timothy Williamson which is designed to show that anyone who denies
bivalence (as I do in this paper) is committed to asserting a contradiction;
I show where Williamson’s argument goes wrong. In Section 11 I show
that the view presented here really does make room for higher-order vague-
ness, and thus solves the main problem with the fuzzy view which it was
designed to solve; and in Section 12 I show how my view deals with
sorites paradoxes. In Section 13 I show how my view can be extended to
accommodate multiple admissible interpretations (i.e. semantic vagueness
or ambiguity). Finally in Section 14 I compare my view to various other
extensions and generalisations of fuzzy logic in the literature. I show that
my theory is different from existing views both in its formal details, and –
more importantly – in its conceptual foundations.

2. DEGREE FUNCTIONS

Two ideas emerge naturally from the higher-order vagueness problem for
the fuzzy account, and the motivation behind my account is to accommo-
date these ideas.

The first idea is that while it would be fine to give a fuzzy degree (i.e.
a real number between 0 and 1) as a rough approximation to Bob’s degree
of baldness, or to the degree of truth of some vague statement, a fuzzy
degree cannot tell the full story of Bob’s degree of baldness (or any other
vague matter), hence nor can such a number tell the full story of the degree
of truth of ‘Bob is bald’. For any statement S1 to the effect that ‘Bob is
bald’ is x true, for x in [0, 1], it seems there should be a further statement
S2 which tells us how true S1 is, and so on (perhaps for ever, or perhaps
not). We should have a hierarchy of statements: a first-order statement
assigning a fuzzy degree of baldness to Bob; second-order statements as-
signing fuzzy degrees of truth to each possible first-order statement; and
so on.

The second idea is that there is something right about modelling vague-
ness in terms of the closed interval [0, 1], but the fuzzy approach develops
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Figure 1. Bob’s degree of baldness – first approximation.

this idea in too simple-minded a way. Bob’s degree of baldness is not well
modelled by a point in this interval. Rather, it would be better to model
his degree of baldness by a blurry or cloudy region stretching somewhere
between 0 and 1, with a higher density in some areas than in others. Bob’s
degree of baldness cannot be said to be 0.6, or any other number, exactly –
but, the idea goes, it can be said to cluster around 0.6, trailing off on each
side. The idea is that Bob’s degree of baldness may be in between complete
(i.e. 1) and non-existent (i.e. 0), without being at any particular point in
between. There is no unique point which provides the correct answer to the
question ‘What is Bob’s degree of baldness?’, but some points are better
choices than others.

My model of the notion of a degree is based on the idea that a degree
– say, Bob’s degree of baldness – can be specified by giving a sequence
of better and better approximations, each approximation taking the form
of a fuzzy degree. It will thus be important to distinguish three things: the
intuitive notion of a degree; my formalisation of this notion, which is a
DF (degree function); and a fuzzy degree, or real number in [0, 1], which
is the fuzzy theorists’ (failed) attempt at a formalisation of the intuitive
notion. In my account, degrees are modelled or represented by DF’s, and
are approximated by fuzzy degrees.

The picture is as follows. I can say that Bob is, say, 0.5 bald (or bald
to degree 0.5), but this will only be a first approximation to the full story
of his degree of baldness (Figure 1). If I am to give more detail about
Bob’s degree of baldness, I will need to tell you the degree to which Bob
is 0.5 bald, and also the degree to which he is x bald, for other values of x
in [0, 1]. Just as I initially approximated Bob’s degree of baldness with a
fuzzy degree, I shall initially approximate these further degrees in the same
way. Thus, at the second stage of my account of Bob’s degree of baldness
I give you one number in [0, 1] for each number in [0, 1]. We may think of
all these numbers as plotting out a curve: the graph of a function from [0, 1]
to [0, 1], as in Figure 2.5 The idea here is that the degree to which Bob is
bald to degree 0.5 is 0.7 and the degree to which Bob is bald to degree 0.3
is 0.5. In terms of degrees of truth, the idea is that the sentence ‘ ‘Bob is
bald’ is 0.5 true’ is 0.7 true, while the sentence ‘ ‘Bob is bald’ is 0.3 true’
is 0.5 true. Thus what we are given at this second stage of approximation
is an assessment of the different possible first approximations of Bob’s
degree of baldness: the higher the number assigned to x, the better a first
approximation x is – and the important point is that it will not in general
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Figure 2. Bob’s degree of baldness – second approximation.

be the case that one number x in [0, 1] is assigned 1 while all the others
are assigned 0.

The second idea mentioned above was that Bob’s degree of baldness
should be represented as a blurry region stretching somewhere between 0
and 1, rather than as a single point. This idea is accommodated by regard-
ing the curve just described as the graph of a density function: the higher
the curve is over point x, the greater the density of Bob’s degree of baldness
at that point. Bob’s degree of baldness will not, in general, be located all
at one point; rather, how much of it is located in any sub-interval [a, b]
of [0, 1] is given by the area under the curve between a and b. Letting
f (x) : [0, 1] → [0, 1] be the function of which the curve is the graph, this
area is

∫ b

a
f (x) dx. Thus we will want to suppose that the function f (x) is

integrable. We will also want to suppose that it is normalised: that is, the
area under the entire curve is 1, i.e.

∫ 1
0 f (x) dx = 1. The idea here is that

Bob’s degree of baldness is entirely confined within the interval [0, 1]: it
may not all be at one point therein, but none of it is anywhere outside the
interval.

Now the only functions f (x) : [0, 1] → [0, 1] which bound a region of
area 1 are the constant function which takes the value 1 for every argument
(Figure 3), and functions which differ from it at no more than countably
many points. In order to allow for a greater variety of density functions
– while still restricting ourselves to functions from [0, 1] to [0, 1], rather
than from [0, 1] to the set P of non-negative reals (this restriction will
be important later) – we may simply regard the function from [0, 1] to
[0, 1] of which the curve described above is the graph as an encoded
density function, as follows. There are as many numbers in P as there
are in [0, 1), and there are many ways of specifying an isomorphism be-
tween these two sets. Any homeomorphism (i.e. continuous isomorphism)
f : [0, 1) → P will serve our purposes – for example, the canonical
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Figure 3. A normalised density function [0, 1] → [0, 1].

Figure 4. The canonical homeomorphism [0, 1) → P.

Figure 5. The density function encoded by the second approximation.

homeomorphism, which takes x ∈ [0, 1) to tan(90x)◦ (Figure 4).6 Now,
given f, which translates talk of [0, 1) into talk of P, we may regard our
function f (x) : [0, 1] → [0, 1] as an encoded version of the function
(f◦f )(x) : [0, 1] → P, and we may suppose that the latter is a normalised
density function over [0, 1]. Figure 5 shows the function f ◦ f , where f

is the function shown in Figure 2. In Figure 5, the area under the entire
curve is 1. Thus, if we ask how much of Bob’s degree of baldness is lo-
cated between 0 and 1, the answer will be 100% – but unlike in the fuzzy
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account, where Bob’s degree of baldness is identified with a single point,
in the present account it might be that 90% of Bob’s degree of baldness
is between 0.2 and 0.8, 50% between 0.3 and 0.7, 10% between 0.48 and
0.52, and so on. For example, if the area under the curve between 0.3 and
0.5 is 0.4, then 40% of Bob’s degree of baldness is distributed between 0.3
and 0.5.

The story so far: In describing Bob’s degree of baldness, we may begin
with an approximation: a fuzzy degree, or real number between 0 and 1.
We may then proceed to a more detailed approximation, by associating one
number in [0, 1] with each number in [0, 1] – that is, by giving a function
f (x) : [0, 1] → [0, 1]. The first intuitive idea is captured as follows:
suppose the number associated with 0.3 is 0.4; then the idea is that it is
0.4 true that Bob’s degree of baldness is 0.3. The second intuitive idea is
captured as follows: f encodes a density function f ◦ f , which tells us
the density of Bob’s degree of baldness at every point between 0 and 1,
and hence allows us to calculate the amount of Bob’s degree of baldness
located in any sub-region [a, b] of [0, 1]. Finally, I impose one additional
requirement: the initial approximation to Bob’s degree of baldness is the
same as the centre of mass of the density function specified at the second
level of approximation. This ensures that the second level of approximation
really can be thought of as an improvement on the initial approximation:
rather than being totally unrelated to the initial approximation, the second
level of approximation simply provides a further level of detail which was
ignored at the initial level of approximation.

A word of warning is required at this point concerning the interpretation
of the numbers given at the second stage of approximation. These numbers
should be thought of as densities, not as masses. Thus, nothing has gone
wrong if I tell you that it is 0.3 true that Bob is bald to degree 0.2, 0.4
true that Bob is bald to degree 0.3, 0.5 true that Bob is bald to degree
0.4, 0.4 true that Bob is bald to degree 0.5, 0.3 true that Bob is bald to
degree 0.6, and so on – that is, there is no requirement that the numbers
assigned to the elements of [0, 1] at the second level of approximation sum
to 1. Rather, what must equal 1 is the area under the graph of the density
function that all these numbers encode. The area under any segment of this
curve (unlike the height of the curve at any point) should be thought of
as a mass, not as a density. This is why I reserved the use of percentages
for talk of such areas. It would sound very odd to say that it is 50% true
that Bob’s degree of baldness is between 0 and 0.3, and 60% true that it is
between 0.3 and 0.5: if we divide the curve into disjoint segments, then the
areas under these segments should sum to 1.7 Thus it does not matter that
the encoding function f is arbitrarily chosen. For different choices of f, the
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numbers assigned at the second level of approximation will be different:
for one choice it might be 0.4 true that Bob is 0.3 bald, for another choice
it might be 0.3 true that Bob is 0.3 bald. But this does not matter, because
these numbers were never particularly meaningful in isolation anyway:
what matters is the density function which, taken together, they encode.
It is significant that 20%, rather than 30%, of Bob’s degree of baldness is
between 0.2 and 0.3; it is not significant that, considered in isolation, the
value assigned to 0.2 at the second level of approximation is 0.2, rather
than 0.3. Thus, if you ask to what degree Bob is bald, and I say 0.3, and
then you ask how true my previous statement was, and I say 0.4, this latter
number does not tell you very much by itself – but given the answers to all
questions of the form ‘How true is it to say that Bob is bald to degree x’,
for x in [0, 1], you do indeed have significantly more information about
Bob’s degree of baldness than you had when I simply said he was bald to
degree 0.3: you know that Bob’s degree of baldness is distributed thus and
so between 0 and 1, with the centre of mass of the distribution being at 0.3,
and for any subregion [a, b] of [0, 1], you can determine what proportion
of Bob’s degree of baldness is in that region.8

In describing Bob’s degree of baldness, we have now seen two lev-
els of approximation. This is not the end of the story. Each of the fuzzy
degrees that I gave at the second level of approximation is itself a first
approximation to the degree to which Bob is bald to degree x, for each x

in [0, 1]. Thus we may progress to a third stage of approximation, at which
we fill out the approximations given at the second stage. No new ideas
are involved in this further step: because we have restricted ourselves to
functions from [0, 1] to [0, 1], we can simply iterate the picture presented
above. Just as the initial approximation turned out, at the next level of
approximation, to be the centre of mass of a density function, so too each
of the fuzzy degrees which together specified that function turns out, at the
next level of approximation, to be the centre of mass of a further density
function: one such function for each such fuzzy degree. In Figure 6, one
such further density function is shown: the one associated with the point
(0.5, 0.7) on the curve given at the second level of approximation. This
is just for ease of illustration: it is to be understood that at the third level
of approximation, each point on the second-level curve is associated with
a further density function, of which that point is the centre of mass. The
idea is that (for example) the degree to which (the degree to which Bob is
bald to degree 0.5 is 0.7) is 0.8 – or in terms of degrees of truth, the idea is
that the sentence ‘ ‘ ‘Bob is bald’ is 0.5 true’ is 0.7 true’ is 0.8 true. Thus
what we are given at this third stage of approximation is an assessment of
the different possible second approximations of Bob’s degree of baldness.
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Figure 6. Bob’s degree of baldness – third approximation (part view).

At the first stage we were given a number, and at the second stage each
possible first-stage number was given a number. At the third stage, each
possible second-stage number that could have been given to some first-
stage number is itself given a number, indicating how good a choice it
would have been at the second stage – and as before, it will not in general
be the case that for any fixed first-stage number, one possible second-stage
number x in [0, 1] is assigned 1 at the third stage, while all the others are
assigned 0.

Now I still haven’t finished telling you about Bob’s degree of baldness.
The latest level of approximation may be filled out by a further level of
approximation, which may be filled out by a further level, and so on and
on. Bob’s degree of baldness (or any other degree) is thus thought of as
an infinite hierarchy of better and better approximations, where these ap-
proximations consist of fuzzy degrees, or numbers in [0, 1]; the move from
one level of approximation to the next consists in the replacement of each
number x in [0, 1] by a density function over [0, 1], with centre of mass
at x. At any level, what I need to do to finish the story is tell you the degree
to which . . . (the degree to which Bob’s degree of baldness is x is y) . . .
is z, but all I actually do is approximate these degrees by further fuzzy
degrees. However, after ω stages of approximation, all the approximations
have been filled out, and we then have the full story of Bob’s degree of
baldness. One way of picturing such a degree is as a region of varying
shades of grey spread between 0 and 1 on the real line. If you focus on any
point in this region, you see that what appeared to be a point of a particular
shade of grey is in fact just the centre of a further such grey region. The
same thing happens if you focus on a point in this further region, and so on.
The region is blurry all the way down: no matter how much you increase
the magnification, it will not come into sharp focus.
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3. FORMALISATION

I have now presented a relatively informal account of how we might model
the intuitive notion of a degree, and it is time to make these ideas more
precise. Formally, a degree will be represented by a function which I call a
degree function, or DF. Each DF is a function f : [0, 1]∗ → [0, 1], where
[0, 1]∗ is the set of words on the alphabet [0, 1] (i.e. the set of all finite
sequences of elements of [0, 1], including the empty or null sequence).
The assignment to the empty sequence 〈〉 is the initial approximation. The
assignments to sequences of length 1 together constitute the second level of
approximation: for example, where f is object x’s degree of property X,
if f (〈0.3〉) = 0.4, then it is is 0.4 true that x is X to degree 0.3; the
assignments to sequences of length 2 together constitute the third level of
approximation: for example if f (〈0.3, 0.4〉) = 0.5, then it is 0.5 true that
it is 0.4 true that x is X to degree 0.3; and so on.

Let F be the set of all functions f : [0, 1]∗ → [0, 1], i.e. F =
[0, 1]([0,1]∗). Let DF be the set of all DF’s. Every DF is in F , but not vice
versa. The members of DF are of three distinct types.

Type I (Basic). The first type of DF corresponds to the idea of a degree
developed in the previous section. For any f ∈ F , consider the values
assigned by f to the sequences 〈a1, . . . , an, x〉, for fixed a1, . . . , an and
variable x ∈ [0, 1]. These values determine a function from [0, 1] to [0, 1],
which we shall denote f〈a1,...,an〉:

f〈a1,...,an〉(x) = f (〈a1, . . . , an, x〉).
(In the special case n = 0, we have f〈〉(x) = f (〈x〉).) In a Type I DF f , we
require that for every sequence 〈a1, . . . , an〉, f ◦ f〈a1,...,an〉 is an integrable
function with the property that

∫ 1

0
(f ◦ f〈a1,...,an〉)(x) dx = 1.

This ensures that we may regard each f〈a1,...,an〉 as an encoded normalised
density function over [0, 1].9 We also require that

f (〈a1, . . . , an〉) =
∫ 1

0
x(f ◦ f〈a1,...,an〉)(x) dx.

This is the centre of mass requirement discussed above.10 This requirement
ensures that there is a suitable relationship between the successive levels of
approximation: if, at the third level of approximation, f (〈0.3, 0.4〉) = 0.5
– that is, it is 0.5 true that it is 0.4 true that x is X to degree 0.3 – then at the
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fourth level of approximation, f〈0.3,0.4〉 encodes a density function whose
centre of mass is 0.5.

There are some situations which we would like to accommodate, which
are not captured by any Type I DF. Thus we introduce two further types
of DF.

Type II. If Bob is a definite, clear case of a bald man, then to a first
approximation, he should be bald to degree 1; to a second approximation,
it should be 1 true that he is bald to degree 1 and 0 true that he is bald to
any degree other than 1; to a third approximation, it should be 1 true that
it is 1 true that he is bald to degree 1, 0 true that it is x true that he is bald
to degree 1 for x �= 1, 1 true that it is 0 true that he is bald to any degree
other than 1, and so on. Similarly, if Bob is a definite, clear countercase of
a bald man, then to a first approximation, he should be bald to degree 0; to
a second approximation, it should be 1 true that he is bald to degree 0 and
0 true that he is bald to any degree other than 0; to a third approximation,
it should be 1 true that it is 1 true that he is bald to degree 0, 0 true that it
is x true that he is bald to degree 0 for x �= 1, 1 true that it is 0 true that he
is bald to any degree other than 0, and so on. Thus we introduce two DF’s
T and F:11

− T(〈〉) = 1.
− If T(〈x1, . . . , xn〉) = k, then T(〈x1, . . . , xn, k〉) = 1 and ∀j �= k,

T(〈x1, . . . , xn, j〉) = 0.
− F(〈〉) = 0.
− If F(〈x1, . . . , xn〉) = k, then F(〈x1, . . . , xn, k〉) = 1 and ∀j �= k,

F(〈x1, . . . , xn, j〉) = 0.

These are the analogues of the classical The True and The False: if x is X
to degree T, then x is utterly X, and if x is X to degree F, then x is not X
at all.

Type III. We want to allow for the following sort of possibility: to a
first approximation Bob is bald to degree 0.5; to a second approximation
it is 0.6 true that Bob is bald to degree 0.5, 0.5 true that Bob is bald to
degree 0.6, and so on; but at the third level of approximation the second
level approximations are simply ratified: it is 1 true that it is 0.6 true that
Bob is bald to degree 0.5, and 0 true that it is x true that Bob is bald to
degree 0.5 for x �= 0.6; it is 1 true that it is 0.5 true that Bob is bald to
degree 0.6, and 0 true that it is x true that Bob is bald to degree 0.6 for
x �= 0.5, and so on. Likewise, the third level approximations are simply
ratified at the fourth level, and so on. (In general, we want to allow for the
possibility that at the nth level of approximation, for any n ≥ 2, and then at
all higher levels of approximation as well, the lower-level approximations
are simply ratified.) To accommodate this sort of possibility, we introduce
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a family {fn} of Type III DF’s (one for each non-negative integer n) for
each Type I DF. The idea is that where f is a Type I DF, fn makes the
same assignments as f to sequences of lengths up to n, and then for longer
sequences – that is, at subsequent levels of approximation – fn simply
ratifies the assignments it has made at lower levels. Thus:

− For i ≤ n, fn(〈x1, . . . , xi〉) = f (〈x1, . . . , xi〉).
− For i ≥ n, if fn(〈x1, . . . , xi〉) = k, then fn(〈x1, . . . , xi, k〉) = 1 and

∀j �= k, fn(〈x1, . . . , xi, j〉) = 0.

4. RESTRICTIONS

A basic set of DF’s would contain all and only the members of F of
Types I, II and III just specified. I have been very liberal, however, and
admitted far more members of F than I needed to in order to accommodate
the intuitive picture of a degree sketched out in Section 2. In fact I have
admitted 2c members of F .12 I shall consider two ways in which we might
further restrict membership in DF. Both restrictions focus on Type I DF’s:
the definitions of Types II and III are left unchanged. However, it is to
be understood that because Type III is defined parasitically on Type I (we
define a family of Type III DF’s for each Type I DF), as the membership
of Type I changes, so does the membership of Type III. (The membership
of Type II remains constant.)

Type I (Continuous). We retain the conditions on Type I (Basic) DF’s,
and add two more. First, where we required that for every sequence 〈a1,

. . . , an〉, f ◦ f〈a1,...,an〉 must be an integrable function, we now furthermore
require that it must be a continuous function. Second, for each f ∈ F and
each positive integer n, let the n-place function f n be defined as follows:

f n(x1, . . . , xn) = f (〈x1, . . . , xn〉).
Then we require that for a Type II (Continuous) DF f , f n is continuous
for every positive integer n.

Intuitively, there is no object x and property X such that the degree to
which x possesses X corresponds to a member of F ruled out by these
continuity requirements – that is, the excluded DF’s do not meet any in-
tuitive need (unlike, for example, T and F, which were therefore added to
the original Type I (Basic) DF’s). Furthermore, these requirements render
the set of DF’s more manageable by reducing its cardinality to c.13

Just as the properties of classical set theory and logic follow in a natural
way from the properties of the Boolean algebra of classical truth values
(and the properties of fuzzy set theory and logic follow in a natural way
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from the properties of the Kleene algebra of fuzzy truth values), so the
properties of blurry set theory and logic will follow in a natural way from
the properties of the algebra of degree functions – once we determine what
that algebra is. We have a set DF of degree functions, and the question will
be: are there any natural operations ∨, ∧ and ′ on this set which can be used
to define union, intersection and complementation for blurry sets, and the
truth conditions of disjunctive (and existentially quantified), conjunctive
(and universally quantified) and negated sentences? One attractive idea is
that if we take notice only of first approximations – that is, if we ignore
everything about a DF except what it assigns to the empty sequence – then
things should work just as they do in ordinary fuzzy logic. That is, where
f and g are DF’s:

f ′(〈〉) = 1 − f (〈〉)
(f ∨ g)(〈〉) = max{f (〈〉), g(〈〉)}
(f ∧ g)(〈〉) = min{f (〈〉), g(〈〉)}.

But even with this restriction in place, there is still a huge range of pos-
sible operations on DF: for given two DF’s f and g, all we have fixed
about f ∨ g, f ∧ g and f ′ is what they assign to the empty sequence,
and this leaves an enormous amount open. Given f and g, what should
f ∨ g, f ∧ g and f ′ look like, above the first level of approximation?
Various ideas can be explored here, but the problem is that there does
not seem to be a unique best idea: for any proposed way of fixing the
upper levels, there seem to be plenty of other ways that are just as de-
serving of the titles ‘disjunction’/‘union’, ‘conjunction’/‘intersection’, and
‘negation’/‘complementation’. Thus there are two options which we might
consider. One approach is to work at a relatively abstract level, allowing at
each stage for the full range of possible algebraic operations on DF. The
second approach is to place further constraints on the membership of DF
itself, in such a way that there is only one natural choice of operations on
the reduced set of degree functions. The first approach proves to be more
tractable than one might imagine, but it is really less interesting than the
second approach, which I shall therefore pursue now.14

As things currently stand, any (encoded) continuous normalised density
function is admissible as the second level of approximation to x’s degree
of X. This leaves open an enormous range of possibilities, most of which
have no intuitive content; for example, see Figure 7. Of course we can in-
terpret this picture, in accordance with the explanations given earlier in this
paper. The point is not that this (encoded) density function is meaningless,
rather that it is useless: we cannot think of a sentence and a situation such
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Figure 7. A density function with no intuitive content.

Figure 8. Bob’s degree of baldness (second approximation).

that in that situation, the sentence would (to a second approximation) have
this truth value.

One distinction amongst density functions that does have intuitive con-
tent is that between ‘tall and skinny’ and ‘short and fat’. If Bob’s degree of
baldness is (to a second level of approximation) as in Figure 8 and Bill’s
degree of baldness is (to a second level of approximation) as in Figure 9,
then while each man’s degree of baldness is evenly distributed around 0.5,
Bob’s is more localised. The following terminology is natural. Where f is
the DF of sentence S, S is first-order vague if f (〈〉) ∈ (0, 1), that is, if (to
a first approximation) S has an intermediate degree of truth; S is second-
order vague if f (〈x〉) ∈ (0, 1), for some x ∈ [0, 1], that is if, at the second
level of approximation, some sentence of the form ‘S is x true’ has an
intermediate degree of truth; S is third-order vague if f (〈x, y〉) ∈ (0, 1),
for some x, y ∈ [0, 1], that is if, at the third level of approximation, some
sentence of the form ‘ ‘S is x true’ is y true’ has an intermediate degree
of truth; and so on.15 Furthermore, it is natural to distinguish grades of
higher-order (sentence) vagueness: in the case of Bob and Bill, both ‘Bob
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Figure 9. Bill’s degree of baldness (second approximation).

is bald’ and ‘Bill is bald’ are first-order vague and second-order vague –
and it seems natural to say that the latter is more second-order vague than
the former.

We thus want to be able to make at least the following distinctions
amongst DF’s. First, two DF’s f and g may be distinguished by the as-
signments they make to the empty sequence. Second, they may be dis-
tinguished according to whether the density functions encoded by the as-
signments they make to sequences of length 1 are more or less ‘tall and
skinny’ or ‘short and fat’. Now consider sequences of length 2, and distin-
guish two different scenarios. In the first, for every x and y, f〈x〉 and f〈y〉
have the same degree of spread (i.e. of ‘shortness and fatness’/‘tallness
and skinniness’). In this case, the measure of spread16 serves as a measure
of third-order vagueness. Thus this scenario has intuitive content. In the
second case, there are x and y such that f〈x〉 is relatively tall and skinny
while f〈y〉 is relatively short and fat. Although, as above, we can interpret
this case in light of the explanations I gave of degree functions, it does not
seem to be a case that is intuitively useful – and thus is not a scenario for
which we need to allow. Similarly, when it comes to sequences of length
3, we want to allow for the cases in which, for every x, y, z,w, f〈x,y〉 and
f〈z,w〉 have the same degree of spread, but we do not need to allow for the
cases in which, for some x, y, z,w, f〈x,y〉 is relatively tall and skinny while
f〈z,w〉 is relatively short and fat – and so on for longer sequences.

Do we need to make any further distinctions amongst DF’s than the
ones just mentioned? I cannot see that we do – but I can think of a reason
why someone might mistakenly think so. Suppose that Bob does not have
very much hair, but that what he has evenly covers his scalp. On the one
hand it seems that Bob’s degree of baldness is quite high (low hair count),
while on the other hand it seems quite low (even scalp coverage). Thus
one might think that to a second approximation, Bob’s degree of baldness
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Figure 10. A density function with two local maxima.

should be as in Figure 10. The idea would be that to a first approximation,
we ‘average out’ all the relevant factors (hair count and scalp coverage),
coming to the conclusion that Bob is 0.5 bald. At the second level of ap-
proximation, however, we are more subtle: we say that there is a good deal
of truth in the claim that Bob is 0.25 bald or thereabouts (because he has
even scalp coverage) and also a good deal of truth in the claim that Bob is
0.75 bald or thereabouts (because he has a low hair count), but there is not
a good deal of truth in the claim that Bob is 0.5 bald or thereabouts: saying
that Bob is 0.5 bald is the right thing to do at the first, roughest level of
approximation, but not so at this more subtle level.

There are two possible thoughts behind this suggestion. First, the idea
might be that the case in question is one of ambiguity or semantic vague-
ness. The situation is not that Bob has one particular property, baldness;
rather, there are two senses of ‘bald’: the ‘few hairs’ sense and the ‘low
scalp coverage’ sense. In one sense Bob is fairly bald (that is, he possesses
to a fairly high degree the property picked out by this sense of ‘bald’),
in the other sense fairly non-bald (that is, he possesses to a fairly low
degree the property picked out by this other sense of ‘bald’). If this is the
idea, however, then it is not properly captured in the way just indicated.
Degree functions are meant to help us model worldly vagueness: if ‘Bob is
bald’ has a particular DF f as its degree of truth, then there is a particular
property (blurry set) picked out by ‘is bald’, and the degree to which Bob
possesses this property is f . Semantic vagueness can be accommodated
within an extension of the framework outlined in this paper – as I shall
explain in Section 13 – but it is not properly accommodated in the way
indicated above.17

Second, the idea might be that ‘bald’ does indeed pick out a unique
property, but that this property is multi-dimensional: whether or not (or to
what degree) an object possesses it is determined by a number of factors –



184 NICHOLAS J. J. SMITH

in this case hair count and scalp coverage. Now this may very well be so
– indeed it seems to me to be a better analysis of ‘bald’ than the one just
considered, according to which ‘bald’ is ambiguous. Nevertheless, there is
no good reason to treat multi-dimensional vagueness within the framework
presented in this paper in the way suggested above. A better idea is as fol-
lows. Suppose that x’s degree of X is a function of x’s position on various
scales. Distinguish the case in which x is halfway along each scale, from
the case in which x is high on some scales and low on others. In both cases,
it seems natural to say that x’s degree of X is about 0.5 (to a first approxi-
mation); however it seems that the statement ‘x is X’ is more second- (and
perhaps higher-) order vague in the latter case than in the former. Thus, in
the second case we want the DF of the sentence ‘x is X’ to encode, at the
second level of approximation, a density function which is relatively short
and fat. Thus, in order to capture the phenomenon at issue, we do not need
to appeal to DF’s of the sort pictured in Figure 10: the ‘tall and skinny’
versus ‘short and fat’ distinction is enough. The thought that we need the
more elaborate DF’s seems to me to derive from a conflation of multi-
dimensionality and ambiguity, combined with a wrongheaded idea about
how to accommodate ambiguity within the semantic framework presented
in this paper.

So we want to allow ourselves enough DF’s to make the ‘tall and
skinny’ versus ‘short and fat’ distinction, and no more. A natural thought is
to say that for every sequence 〈a1, . . . , an〉 (including the empty sequence),
f ◦f〈a1,...,an〉 is a normal density function18 – that is, there are µ and σ such
that:

(f ◦ f〈a1,...,an〉)(x) =
1

σ
√

2π
e

−(x−µ)2

2σ2 .

The normal distribution crops up frequently in probability theory: its graph
is the familiar bell curve (Figure 11). Why, then, is it natural to use a

Figure 11. The normal distribution.
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curve of this shape in the present context, where the interpretation is not
probabilistic? Well, it should first be said that I am not deeply committed
to the normal distribution. I need to be able to distinguish amongst den-
sity functions according to their centres of mass, and according to how
spread out they are (‘tall and skinny’ versus ‘short and fat’), and the nor-
mal distribution is a well-known type of function that allows us to make
precisely these distinctions. A normal density function is determined by
two numbers, µ and σ . In the probabilistic interpretation, µ is the mean
and σ is the standard deviation; in the present context, µ is the centre
of mass, and σ is a measure of spread. This said, however, the normal
distribution also seems a natural choice for a further reason. Suppose that
Bob is a borderline case for ‘bald’, and suppose we ask a group of people
to rate Bob’s degree of baldness on a scale from 0 to 100 (or equivalently,
from 0.00 to 1.00), where 0 is what one would assign to Fabio and 100
is what one would assign to Yul Brynner.19 We would expect the results
to be normally distributed. Now the normal distribution often crops up in
connection with the distribution of random errors – it was studied by Gauss
in this context, and indeed is also known as the Gaussian or error curve.
In the present case, however, we do not think that there is one correct
answer to the question of where Bob’s degree of baldness belongs on a
scale from 0 to 100. Rather, we think that if forced (as in this case) to
assign a particular number, there are better and worse options, but none
is uniquely correct. Thus it is natural for us to interpret the mean of the
distribution as a first approximation to Bob’s degree of baldness, and to
take the standard deviation as a measure of the second-order vagueness
of the claim that Bob is bald – that is, as a measure of how much weight
we can put on the initial approximation (say 70), to the exclusion of other
possible values (such as 65 and 75). We thus want to take the shape of
the normal distribution, but not also take on board its usual probabilistic
connotations.

Now we cannot say simply that for all sequences 〈a1, . . . , an〉,
f ◦ f〈a1,...,an〉 is a normal density function, because while for any such
function f (x),

∫ ∞
−∞ f (x) dx = 1, the ‘tails’ of the normal distribution

never reach the horizontal axis (see Figure 11), so for any finite a and b,∫ b

a
f (x) dx < 1, whereas we want

∫ 1
0 (f◦f〈a1,...,an〉)(x) dx = 1. Rather than

abandon the normal distribution, however, we may simply stipulate that for
each f◦f〈a1,...,an〉, there is a unique normal density function N(f◦f〈a1,...,an〉)
associated with it, which it resembles extremely closely: they are not iden-
tical, but they are close enough that we may (for almost all purposes)
think of the graph of f ◦ f〈a1,...,an〉 as simply being a bell curve. One of
the properties of the normal distribution is that 99.99% of observations fall
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within ±4 standard deviations from the mean. Thus, if a normal density
function f (x) has mean 0 < µ < 1 and standard deviation

0 < σ ≤ 1

4
min{µ, 1 − µ}

then
∫ 1

0 f (x) dx > 0.9999. Hence to be a very close approximation to
some function f ◦f〈a1,...,an〉, a normal density function must have mean and
standard deviation within the ranges just specified.20

Suppose we have a normal density function f with mean and standard
deviation within these ranges. Define f ’s precision π as follows:

π = 1 − σ
1
4 min{µ, 1 − µ}

0 ≤ π < 1. If f ’s standard deviation is as large as it can be, namely equal
to 1

4 min{µ, 1−µ}, then f ’s precision is 0; the smaller f ’s standard devia-
tion, the greater its precision. The idea behind this definition of precision is
to make precise the earlier distinction between ‘tall and skinny’ and ‘short
and fat’: the greater the precision of N(f ◦ f〈a1,...,an〉), the less spread out –
the more tall and skinny – is its graph. π will be our measure of spread.

We can now state a new definition of Type I DF’s.
Type I (Normal). In a Type I DF f , we require that for every sequence

〈a1, . . . , an〉, f ◦ f〈a1,...,an〉 is associated with a unique normal density func-
tion N(f ◦ f〈a1,...,an〉) which approximates f ◦ f〈a1,...,an〉 extremely closely,
and has mean 0 < µ < 1 and standard deviation 0 < σ ≤ 1

4 min{µ, 1−µ}.
We also impose the familiar ‘centre of mass’ requirement:

f (〈a1, . . . , an〉) =
∫ 1

0
x(f ◦ f〈a1,...,an〉)(x) dx.

Finally, we require that for any sequences 〈a1, . . . , ai〉 and 〈b1, . . . , bj 〉, if
i = j (i.e. the sequences are the same length) then N(f ◦ f〈a1,...,ai〉) and
N(f ◦ f〈b1,...,bj 〉) have the same precision.21

As before, the membership of Type II remains the same (T and F), and
the membership of Type III changes in line with the change to Type I: for
each Type I DF f and each non-negative integer n there is a Type III DF
fn, which makes the same assignments as f to sequences of lengths up
to n, and then for longer sequences simply ratifies the assignments it has
made at lower levels (see the definition on p. 179).

Our set DF is now much more manageable than it was before we im-
posed our latest restriction on Type I DF’s. Each DF can now be repre-
sented as an infinite sequence of elements of [0, 1].22 For a Type I DF f ,
the representation is as follows: the first member of the sequence corre-
sponding to f is the value assigned by f to the empty sequence; for i > 1,
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the ith member of the sequence is the precision of any and all functions
N(f ◦ f〈a1,...,aj 〉), for i = j + 2.23 For Type III DF’s, the representa-
tion is as follows: where f is a Type I DF represented by the sequence
〈f1, f2, f3, . . .〉, the corresponding Type III DF fn (which makes the same
assignments as f to sequences of lengths up to n, and then for longer
sequences, simply ratifies its own lower-level assignments) is represented
by the sequence 〈f1, . . . , fn+1, 1, 1, 1, . . .〉. For Type II DF’s, T is repre-
sented by the sequence 〈1, 1, 1, . . .〉 and F is represented by the sequence
〈0, 0, 0, . . .〉.

5. ALGEBRA OF DEGREE FUNCTIONS

Given the intuitive idea behind the (final, most restrictive) definition of the
DF’s, there is one very natural choice of algebraic operations ∨, ∧ and ′
on DF. This choice derives from the natural ordering of DF: where f and g

are DF’s represented by the sequences 〈f1, f2, f3, . . .〉 and 〈g1, g2, g3, . . .〉
respectively, we set f ≤ g iff fi ≤ gi for all i (where the latter occurrence
of ‘≤’ is the standard ordering of the reals). The thought here is as follows.
For a start, we want T to be the maximum truth value and F the minimum
one – and given that T is represented by the sequence 〈1, 1, 1, . . .〉 and
F is represented by the sequence 〈0, 0, 0, . . .〉, this is exactly what the
proposed ordering yields. Turning now to DF’s of Types I and III, suppose
that f , represented as 〈f1, f2, f3, . . .〉, is the truth value of claim P , and g,
represented as 〈g1, g2, g3, . . .〉, is the truth value of claim Q. There are
two ways in which P could be better than Q, in respect of truth: first, P ’s
degree of truth could, to a first approximation, be higher up the scale from
0 to 1; second, P ’s degree of truth could be more localised, less diffuse.
The first condition holds if f1 is greater than g1; the second condition holds
if fi is greater than gi for all i > 1 (if fi > gi for some i > 1 and gj > fj

for some j > 1 then P and Q are, overall, incomparable in terms of the
diffuseness of their degrees of truth: one is more diffuse at one level of
approximation and the other is more diffuse at another level of approxi-
mation, but overall no comparison can be drawn). Now overall, P is better
than Q, in respect of truth, only if both conditions hold: if f1 is greater
than g1, but gj > fj for some j > 1, then overall, P and Q are simply
incomparable in respect of truth. Thus we arrive at the ordering of the
DF’s stated above: where f and g are DF’s represented by the sequences
〈f1, f2, f3, . . .〉 and 〈g1, g2, g3, . . .〉 respectively, f ≤ g iff fi ≤ gi for
all i.24

From the fact that the reals under the standard ordering form a complete
lattice, it follows in a straightforward way that DF under the ordering just
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defined forms a complete lattice. Thus we are immediately given our op-
erations ∨ and ∧: the lattice join and meet. Where fi ∨ gi = max{fi, gi}
and fi ∧ gi = min{fi, gi} we define:

f ∨ g = 〈f1 ∨ g1, f2 ∨ g2, f3 ∨ g3, . . .〉,
f ∧ g = 〈f1 ∧ g1, f2 ∧ g2, f3 ∧ g3, . . .〉.

As for ′, we want it to be the case that (f ′)′ = f and that if f ≤ g, then
g′ ≤ f ′, and thus it is natural to make the following definition (where
f ′
i = 1 − fi):

f ′ = 〈f ′
1, f

′
2, f

′
3, . . .〉.25

There are a number of conditions which we would like our operations
on DF to satisfy. Three basic conditions have already been mentioned:

1. f ′(〈〉) = 1 − f (〈〉),
2. (f ∨ g)(〈〉) = max{f (〈〉), g(〈〉)},
3. (f ∧ g)(〈〉) = min{f (〈〉), g(〈〉)}.

These say “Respect the standard fuzzy operations at the level of first ap-
proximations.” Apart from this, for the smooth development of blurry set
theory and logic, we will want a complete bounded lattice of truth values,
with an involution satisfying the De Morgan laws, and thus we require:

4. f ∨ f = f and f ∧ f = f ,
5. f ∨ g = g ∨ f and f ∧ g = g ∧ f ,
6. f ∨ (g ∨ h) = (f ∨ g) ∨ h and f ∧ (g ∧ h) = (f ∧ g) ∧ h,
7. f ∨ (f ∧ g) = f and f ∧ (f ∨ g) = f ,
8. For any set S ⊆ DF, there is a g ∈ DF such that:

(a) ∀f ∈ S, f ∨ g = g

(b) for any h ∈ DF which possesses property (a) (i.e. ∀f ∈ S, f ∨ h

= h), g ∨ h = h.

9. For any set S ⊆ DF, there is a g ∈ DF such that:

(a) ∀f ∈ S, f ∧ g = g

(b) for any h ∈ DF which possesses property (a) (i.e. ∀f ∈ S, f ∧ h

= h), g ∧ h = h.

10. f ∨ F = f ,
11. f ∧ T = f ,
12. (f ∨ g)′ = f ′ ∧ g′,
13. (f ∧ g)′ = f ′ ∨ g′,
14. (f ′)′ = f .
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Conditions 4–7 are the lattice axioms. Conditions 8 and 9 ensure that the
lattice is complete: every set S of DF’s has a supremum, which we denote∨

S, and an infimum, which we denote
∧

S. Conditions 10 and 11 ensure
that F is an identity for ∨ and T is an identity for ∧; thus the lattice is
bounded. Conditions 12 and 13 are the De Morgan laws. Finally, given the
other conditions, condition 14 suffices to ensure that ′ is an involution.26

It is easy to confirm that our newly defined operations on DF sat-
isfy all of conditions 1–14: 1–3 are immediate from the definitions of
∨, ∧ and ′, and 4–14 hold for the newly defined operations because they
hold for the operations on the reals from which they are defined. Where∨{fi, gi, hi, . . .} = sup{fi, gi, hi, . . .} and

∧{fi, gi, hi, . . .} = inf{fi, gi,

hi, . . .}, for conditions 8 and 9 we have:∨
{f, g, h, . . .}
=

〈 ∨
{f1, g1, h1, . . .},

∨
{f2, g2, h2, . . .},

∨
{f3, g3, h3, . . .}, . . .

〉
,∧

{f, g, h, . . .}
=

〈 ∧
{f1, g1, h1, . . .},

∧
{f2, g2, h2, . . .},

∧
{f3, g3, h3, . . .}, . . .

〉
.

Given ∨ we may define a corresponding quotient operation: f/g =
f ′ ∨ g. Similarly, given ∧ we may define a corresponding quotient op-
eration: f/g = (f ∧ g′)′. It is easy to see that the quotient operation
corresponding to ∨ is the same as the quotient operation corresponding
to ∧: f ′ ∨ g = f ′ ∨ g′′ = (f ∧ g′)′.

We have required that if we take notice only of first approximations
– that is, if we ignore everything about a DF except what it assigns to
the empty sequence – then things should work just as they do in fuzzy
logic. Equally attractive is the idea that if we take notice only of T and F,
then things should work just as they do in classical logic. We have seen
that (DF,∨,∧,′ ,F,T) is a complete bounded lattice with an involution
satisfying the De Morgan laws. What we now wish to confirm is that
with ∨, ∧ and ′ restricted to the subset {T,F} of DF, ({T,F},∨,∧,′ ) is
a Boolean algebra, that is, a bounded distributive complemented lattice.
For boundedness we want to show that for all f in {T,F}, F ∨ f = f

and T ∧ f = f ; these facts follow immediately from conditions 4, 10
and 11. For distributivity, we wish to show that for all f and g in {T,F},
f ∨ (g∧h) = (f ∨g)∧ (f ∨h) and f ∧ (g∨h) = (f ∧g)∨ (f ∧h); these
facts are very easy to verify. For complementarity, we want to show that
for each f in {T,F}, there is an element f ′ in {T,F} such that f ∧ f ′ = F
and f ∨ f ′ = T; if F′ = T and T′ = F then these facts are easy to verify
– and indeed it must be the case that F′ = T and T′ = F, by condition 1
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and the fact that the only DF which assigns 0 to 〈〉 is F, and the only DF
which assigns 1 to 〈〉 is T.

6. ALGEBRA OF BLURRY SETS

A blurry subset of an ordinary (or ‘crisp’) set U is a function from U to DF.
VU is the blurry power set of U : the set of all blurry subsets of U . The null
or empty blurry subset ∅v of U assigns F to everything in U ; the universal
blurry subset Uv of U assigns T to everything in U . Two blurry subsets S1

and S2 are identical just in case for all x in U , S1(x) = S2(x).27

Corresponding to our DF algebra from the previous section is an alge-
bra of blurry sets:

− Complement. For S ∈ VU , S ′ is the complement of S, defined as
follows: ∀x ∈ U, S ′(x) = (S(x))′.

− Union. For S1, S2 ∈ VU , S1 ∪ S2 is the union of S1 and S2, defined
as follows: ∀x ∈ U, (S1 ∪ S2)(x) = S1(x) ∨ S2(x). For an arbitrary
family {Si} of sets, (

⋃{Si})(x) = ∨{Si(x)}.
− Intersection. For S1, S2 ∈ VU , S1∩S2 is the intersection of S1 and S2,

defined as follows: ∀x ∈ U, (S1 ∩ S2)(x) = S1(x) ∧ S2(x). For an
arbitrary family {Si} of sets, (

⋂{Si})(x) = ∧{Si(x)}.
− Containment. For S1, S2 ∈ VU , S1 ⊆ S2 ⇔ S1 ∩ S2 = S1 ⇔ S1 ∪ S2

= S2. Thus for every S ∈ VU , ∅v ⊆ S and S ⊆ Uv.
− Quotient. For S1, S2 ∈ VU , S1/S2 is the quotient of S1 and S2, defined

as follows: ∀x ∈ U, (S1/S2)(x) = S1(x)/S2(x).

Given that (DF,∨,∧,′ ,F,T) is a complete bounded lattice with an involu-
tion satisfying the De Morgan laws, it follows in a straightforward way that
(VU,∪,∩,′ ,∅v, Uv) is also a complete bounded lattice with an involution
satisfying the De Morgan laws.

We may define an operation ∗ : VU → VU as follows. ∀S ∈ VU and
∀u ∈ U :

S∗(u) =
{

F if S(u) �= F,
T if S(u) = F.

∗ is a pseudocomplement because it satisfies the two conditions that, for
all S, S1 and S2 in VU :

1. S ∩ S∗ = ∅v.
2. S2 ⊆ S∗

1 ⇔ S1 ∩ S2 = ∅v.28
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Let VU ∗ = {S∗ ∈ VU : S ∈ VU }. Identifying the ordinary (crisp) subsets
of U with those blurry subsets which take only T and F as values, we can
see that VU ∗ consists of all the ordinary subsets of U . I noted at the end
of Section 5 that ({T,F},∨,∧,′ ) is a Boolean algebra. Thus with ∪, ∩
and ′ restricted to the subset VU ∗ of VU , (VU ∗,∪,∩,′ ,∅v, Uv) is also a
Boolean algebra. We can see that the operation ′ restricted to VU ∗ is the
same as the operation ∗ restricted to VU ∗ (although ′ on VU is not the
same as ∗ on VU ); thus, while ∗ is a pseudo-complement on VU , it is a
complement on VU ∗.

7. BLURRY MODEL THEORY

I shall now present a blurry-set-theoretic model theory for a language.
I assume that the language is a perfectly standard first-order language: the
special thing about vague language is not the syntactic constructions it
employs, but their meanings. The symbols of the language are as follows:

− the propositional connectives ¬, ∨, ∧, and →
− the quantifiers ∃ and ∀
− the punctuation marks ( , ) and ,
− infinitely many variables x1, x2, . . .

− infinitely many individual constants ai and predicate letters An
k (for

i, n, k ≥ 1; superscripts represent number of arguments; subscripts
are index numbers).

Terms and well-formed formulae (wfs) are defined in the usual way.
A blurry interpretation M = (M, I ) of this language consists in the

following:

− A nonempty set M (the domain)
− An interpretation function I which assigns:

• to each individual constant ak, an object (ak)M ∈ M

• to each n-adic predicate letter An
k , a function (An

k)
M : Mn → DF

(i.e. a blurry subset of Mn)

Terminology:

− [A]M is the truth value of A on interpretation M; this value is a
member of DF

− Aya is the sentence obtained by writing a in place of all free occur-
rences of y in A, a being some constant that does not occur in A

− Ma
o is the interpretation which is just like M except that in it the

constant a is assigned the denotation o.
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The truth values of closed wfs on an interpretation are defined as fol-
lows:

1. [An
k(ai, . . . , aj )]M = (An

k)
M((ai)

M, . . . , (aj )
M)

2. [¬A]M = ([A]M)′
3. [A ∨ B]M = [A]M ∨ [B]M
4. [A ∧ B]M = [A]M ∧ [B]M
5. [A → B]M = [A]M/[B]M
6. [∃yA]M = ∨

({[Aya]Ma
o
: o ∈ M})

7. [∀yA]M = ∧
({[Aya]Ma

o
: o ∈ M}).

7.1. Identity

I have not yet mentioned the relation of identity. The topic of vague identity
– and more generally, of vague objects – is one about which there is much
to be said, but a proper discussion of this topic is beyond the scope of
this paper: my focus here is on vague predication and vague properties.
There are in fact interesting relationships between the views developed in
this paper and the issues surrounding vague objects, but also, there is no
essential connection between them: we could combine the view of vague
properties and predication developed here with a classical view of identity.
Suppose that we expand our language to include the binary predicate sym-
bol ‘=’; we could then add the following clause to the definition of truth
for closed wfs:

8. [ai = aj ]M =
{

T if (ai)M = (aj )
M,

F otherwise.

In the absence of a proper discussion of the topic of vague objects, this
may serve as a default position on identity.

8. CONSEQUENCE

I shall use the notation 〈A〉M as an abbreviation of [A]M(〈〉), i.e. the value
assigned to the empty sequence by the truth value (i.e. DF) of A on inter-
pretation M. I shall say that B is a blurry consequence of a set ' of wfs
(' |=v B) just in case there is no interpretation M such that 〈A〉M > 0.5,
for every A in ', and 〈B〉M < 0.5. Correspondingly, I shall say that B is
a blurry tautology (|=v B) just in case there is no interpretation M such
that 〈B〉M < 0.5. There are two points to note about this definition of
consequence. First, in deciding whether B is a blurry consequence of A,
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we look at all possible interpretations of A and B, but on each interpre-
tation, all that we are concerned with is the value assigned to the empty
sequence by A’s and B’s DF’s. In other words, consequence is decided at
the level of first approximations. Second, the definition cannot be recast in
terms of preservation of designated values (in this case, of values assigned
to the empty sequence): for it to be the case that A |=v B, it is required
that on any interpretation on which the value assigned by A’s DF to the
empty sequence is strictly greater than 0.5, the value assigned by B’s DF
to the empty sequence is greater than or equal to 0.5. I shall discuss these
points below; first, I shall show that the blurry consequence relation on the
language specified above is identical to the classical consequence relation
(|=) on that language.

LEMMA 1. |= A ⇒ |=v A.
Proof. For any blurry interpretation M = (M, I ) of our language there

is a corresponding classical interpretation Mc = (Mc, Ic), specified as
follows. Mc = M, and for Ic:

− (ak)
Mc = (ak)

M.
− Where I assigns to an n-adic predicate letter An

k a function (An
k)

M :
Mn → DF, Ic assigns to An

k a function (An
k)

Mc : (Mc)
n → {0, 1}, as

follows. For each n-tuple x in Mn, let fx be the DF assigned to x by
(An

k)
M. If fx(〈〉) ≥ 0.5, then (An

k)
Mc (x) = 1; if fx(〈〉) < 0.5 then

(An
k)

Mc (x) = 0.29

The truth values of closed formulae on this classical interpretation are
determined by the usual classical valuation rules.

We can prove by induction on complexity of sentences that for any
blurry interpretation M and any sentence A, if 〈A〉M < 0.5 then A is
false on the corresponding classical interpretation Mc, and if 〈A〉M > 0.5
then A is true on the corresponding classical interpretation Mc.30

Base: atomic sentences. If 〈An
k(ai, . . . , aj )〉M < 0.5, then (An

k)
M

((ai)
M, . . . , (aj )

M)(〈〉) < 0.5, so (An
k)

Mc ((ai)
Mc , . . . , (aj )

Mc ) = 0, so
An

k(ai, . . . , aj ) is false on Mc. If 〈An
k(ai, . . . , aj )〉M > 0.5, then (An

k)
M

((ai)
M, . . . , (aj )

M)(〈〉) > 0.5, so (An
k)

Mc ((ai)
Mc , . . . , (aj )

Mc ) = 1, so
An

k(ai, . . . , aj ) is true on Mc.
Induction: one case for each of clauses 2–7 of the valuation scheme. In

fact we need not check the clauses for ∧, → and ∀, because these could
just as well have been introduced by definition, given ¬, ∨ and ∃.31

• If 〈¬A〉M < 0.5, then 〈A〉M > 0.5, so by the induction hypothesis,
A is true on Mc, hence ¬A is false on Mc. If 〈¬A〉M > 0.5, then
〈A〉M < 0.5, so by the induction hypothesis, A is false on Mc, hence
¬A is true on Mc.
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• If 〈A ∨ B〉M < 0.5, then 〈A〉M < 0.5 and 〈B〉M < 0.5, so by
the induction hypothesis, A is false on Mc and B is false on Mc, so
A ∨ B is false on Mc. If 〈A ∨ B〉M > 0.5, then 〈A〉M > 0.5 or
〈B〉M > 0.5, so by the induction hypothesis, A is true on Mc or B
is true on Mc, so A ∨ B is true on Mc.

• If 〈∃yA〉M < 0.5, then 〈Aya〉Ma
o
< 0.5 for every o in M, so by the

induction hypothesis, Aya is false on every interpretation (Ma
o)c; but

for every o, (Ma
o)c = (Mc)

a
o, so ∃yA is false on Mc. If 〈∃yA〉M >

0.5, then 〈Aya〉Ma
o
> 0.5 for some o in M, so by the induction hy-

pothesis, Aya is true on some interpretation (Ma
o)c = (Mc)

a
o , so ∃yA

is true on Mc.

Thus for any sentence A, if there is a blurry interpretation M such
that 〈A〉M < 0.5, then there is a classical interpretation on which A is
false. Contraposing, if A is a classical tautology (i.e. there is no classical
interpretation on which A is false) then A is a blurry tautology (i.e. there
is no blurry interpretation M such that 〈A〉M < 0.5). ✷
LEMMA 2. ',A |=v B ⇔ ' |=v A → B.

Proof. (⇐) Suppose ' |=v A → B. Consider an arbitrary interpre-
tation M such that 〈γ 〉M > 0.5 for all γ in ', and 〈A〉M > 0.5; then
〈¬A〉M < 0.5. By supposition 〈A → B〉M = 〈¬A ∨ B〉M ≥ 0.5, hence
〈B〉M ≥ 0.5.

(⇒) Suppose ',A |=v B. Consider an arbitrary interpretation M such
that 〈γ 〉M > 0.5 for all γ in '. If 〈A〉M > 0.5 then by supposition
〈B〉M ≥ 0.5, hence 〈A → B〉M = 〈¬A ∨ B〉M ≥ 0.5. If 〈A〉M ≤ 0.5
then 〈¬A〉M ≥ 0.5, hence 〈A → B〉M = 〈¬A ∨ B〉M ≥ 0.5. ✷
THEOREM 1. ' |= A ⇔ ' |=v A.

Proof. (⇒) Suppose ' |= A; then there is some finite γ ={A1, . . . ,An}
⊆ ' such that γ |= A; hence A1 ∧ · · · ∧ An |= A; hence |= (A1 ∧
· · · ∧ An) → A. So by Lemma 1, |=v (A1 ∧ · · · ∧ An) → A, hence by
Lemma 2, A1 ∧ · · · ∧ An |=v A. If there were a blurry interpretation M

such that 〈B〉M > 0.5 for all B in ' and 〈A〉M < 0.5, then in particular
〈Ai〉M > 0.5 for all Ai in γ , hence 〈A1∧· · ·∧An〉M > 0.5, contradicting
the fact that A1 ∧ · · · ∧ An |=v A; so there is no such interpretation, i.e.
' |=v A.

(⇐) As noted at the end of Section 5, ({T,F},∨,∧,′ ) is a Boolean
algebra; hence any classical interpretation is a special case of a blurry
interpretation (thinking of 0 or The False as F and 1 or The True as T).
A classical interpretation on which every γ in ' is true and A is false is
a blurry interpretation on which every γ in ' has truth value T and A
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has truth value F. Thus if there is no blurry interpretation M such that
〈γ 〉M > 0.5 for every γ in ' and 〈A〉M < 0.5, then a fortiori there is no
classical interpretation on which every γ in ' is true and A is false. ✷
The blurry consequence relation on the language defined above is, then,
identical to the classical consequence relation on that language. We thus
have a non-classical semantics giving rise to classical logic. In this respect
we are in the same position as the supervaluationist,32 and this position
is widely felt to be superior to the positions of those who advocate non-
classical logics of vagueness. It must be noted, however, that the result
about consequence cuts only so much ice. For a start, while our first-order
language is expressively complete with respect to classical truth functions,
it is not expressively complete with respect to DF-valued truth functions.
This would only be a significant issue, however, if further truth-functions
were needed in order to express our ordinary reasoning with vague con-
cepts: and I do not believe that this is the case. Second, we will later
introduce some truth predicates, and these will be needed in order to ex-
press some of our ordinary claims about vagueness. The supervaluationist
faces a similar issue, however: in order to express some of our ordinary
claims about vagueness, she needs definitely and indefinitely operators (or
truth predicates).

Given the result about consequence, the question of proof theory for
blurry logic is straightforward. Any proof theory for our first-order lan-
guage that is sound and complete with respect to classical set-theoretic
models is sound and complete with respect to blurry set-theoretic models:
for example, any standard classical proof theory, whether in the axiomatic,
natural deduction, sequent calculus or tableaux style.

I shall now discuss the two points raised at the beginning of this section.
The first point is that consequence is decided at the level of first approxi-
mations. One might wonder: why introduce degree functions in all their
complexity, if everything but the assignment to the empty sequence is
ignored when it comes to the question of consequence? Well, the point
of introducing degree functions in all their complexity is to accommodate
the phenomenon of higher-order vagueness, failure to accommodate which
was the downfall of the fuzzy account. (I shall explain in Section 11 exactly
how my account deals with higher-order vagueness.) When it comes to
logical consequence, however, we certainly do not want the higher levels
of degree functions playing a central role. This becomes clear when we
consider the notion of soundness. A valid argument is one such that, when-
ever the premises have a certain special property P which premises may
have, the conclusion has a certain special property C which conclusions
may have; a sound argument is one which is valid, and whose premises
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do indeed have this special property P (and hence whose conclusion must
have property C). P and C are usually the same property; for example in
classical logic they are the property truth. In general, however, we need
not assume that they are the same – an issue which I shall discuss shortly.
Now soundness is supposed to be a useful notion: it should not be de-
fined in such a way that it is, in principle, impossible for us to determine
whether any piece of ordinary reasoning is sound. But if the definition of
consequence referred to degree functions in all their glorious complexity,
then this is precisely what would happen: we would in general be unable
to determine of a piece of ordinary reasoning involving vague concepts
whether it was sound. In order to do so, we would need to determine
whether the conclusion was a consequence of the premises – whether if
the premises all had P , the conclusion would have C – and we would
need to determine whether the premises did indeed have P . But in the
envisioned circumstances, P and C involve degree functions in all their
complexity, whereas in general for any vague sentence S, all but the lowest
levels of S’s degree function are unknown to ordinary speakers. Given a
vague sentence S, we can in general hazard a first approximation to its
degree of truth (that is, we can hazard a fuzzy degree), and this will in
general be reasonably close to the value which its actual truth value (a
degree function) assigns to the empty sequence. Thus, first approximations
are accessible to ordinary speakers, and a definition of P and C, and hence
of consequence and of soundness, may reasonably make reference to them.
However in general, beyond first approximations the degree functions of
the sentences we use are unknown to us: the detail at higher levels is
there precisely in order to allow room for the thought that what we do
have access to is not the full and final story of the degree of truth of the
sentences we use. Hence in defining validity and soundness we should
restrict ourselves to properties P and C that are decided at the level of first
approximations.33

What about the second point mentioned at the beginning of this section:
that the definition of consequence allows that in a valid argument, the
premises might be more true (to a first approximation) than the conclu-
sion? Why adopt this definition, rather than – as is standard practice in
many-valued logics – a definition in terms of preservation of designated
values? Why have P and C being different properties? Obviously part of
the answer here is: “Because my definition works.” My definition yields
a classical consequence relation, and this is important. Epistemicists have
lorded their classicism over their opponents, and supervaluationists have
claimed their greater adherence to classical principles as an advantage over
their fuzzy rivals. An important constraint on a definition of validity is that



VAGUENESS AND BLURRY SETS 197

it counts intuitively valid forms of reasoning as valid – and the classi-
cally valid inference forms are all (pace relevant logicians, and other non-
classical logicians whose motivation is primarily proof-theoretic) prima
facie paradigms of valid forms of reasoning, even in contexts involving
vagueness. But of course, the ‘because it works’ answer is not enough:
if it were, we could give whatever semantics we pleased for a language,
and then simply say, “S is a consequence of ' just in case it is a classical
consequence.” What would be missing here is a meaningful relationship
between the semantics and the definition of consequence.

In the present case, however, there is a meaningful relationship between
the blurry set-theoretic semantics and the definition of blurry consequence.
Let us begin with the notion of a tautology. One semantic property that
classical tautologies possess is the property of being true (i.e. having the
truth value The True) on every interpretation; another is the property of
having the maximum truth value on every interpretation; a third is the
property that a sentence S has just in case, on every interpretation, S is
at least as true as ¬S (in other words, on every interpretation, a tautology
is at least as true as its negation). How are we to generalise the notion of
a tautology to the case of blurry semantics, where the latter two properties
– which are equivalent in the classical context – come apart? Well, the
general rule in this type of situation is that we should pick whichever of
the generalisations is most useful. Consider for example the notion of one
set of objects having fewer elements than another set. In finite sets, if U

is obtained from V by removing some members of V , then U has fewer
elements than V , while if U and V can be mapped onto each other, then
they contain the same number of members. Now consider infinite sets,
and in particular the set of positive integers and the set of even positive
integers. The latter can be obtained from the former by removing some
members, but on the other hand, each set can be mapped onto the other.
So do they have the same number of members, or are there fewer even
positive integers than positive integers? Two conflicting answers suggest
themselves, depending upon which of the facts about the finite case we
take as our point of departure. In this situation it was quite acceptable
for (Cantor, 1915) to choose the most useful generalisation – the one that
led to the better overall theory of transfinite numbers – and that is just
what he did.34 Returning to the case of vagueness, we face a similar type
of choice concerning the definition of a blurry tautology, and we should
choose the most useful generalisation.35 We are under no obligation to say
that a tautology has the value T on every interpretation: we could say this,
but then, the property of having the value T on every interpretation is not
very interesting, because so few sentences have it. We get a better overall
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theory if we generalise the other idea, that a tautology is always at least
as true as its negation. Confining ourselves to first approximations, this
becomes: to a first approximation, a tautology is always at least as true
as its negation; or equivalently, a tautology is at least 0.5 true (to a first
approximation) on every interpretation – which is the definition I chose.
On this way of looking at things, if you utter a tautology S, you may
not be uttering something that is as true as true can be (i.e. that has the
maximum truth value), but you will certainly be making a safe choice:
you could never say something more true by uttering the negation of S

instead.
With this definition in place, we know what property C must be in

the definition of consequence: it must be the tautology property36 – the
property of being at least 0.5 true, to a first approximation – for we wish
to retain the idea that an argument from no premises, with a tautology as
conclusion, is valid, and the idea that the conclusion of a valid argument
with no premises is a tautology. What about property P ? In the classical
framework, we may say that P and C are both the property of being true;
or we may say that P is the property of being true enough to form the
basis of a sound piece of reasoning, while C is the property of being true
enough to assert safely. Given that the only truth values available are The
True and The False, these amount to the same thing. They may not amount
to the same thing in the blurry framework, however. Suppose we adopt
the option P = C (where C is the property of being at least 0.5 true,
to a first approximation). It will then turn out that many paradigms of
valid inference are invalid, for example modus ponens: for we can have
〈A〉M ≥ 0.5 and 〈A → B〉M ≥ 0.5 and yet 〈B〉M = 0. Modus ponens
seems like a paradigm of valid inference even in vague contexts – so we
should consider the option of making the requirements on possessing the
property true enough to form the basis of a sound piece of reasoning more
stringent than the requirements on possessing the property true enough
to assert safely. The idea would be that a sentence needs to meet more
stringent standards of truth if it is to be used as the basis for further ar-
gument than if it is merely to be asserted – just as building codes place
more stringent standards of load-bearing capacity on foundations than on
superstructures.

Now at this point I still have not given any reason for making the
requirements on possessing the property true enough to form the basis
of a sound piece of reasoning more stringent than the requirements on
possessing the property true enough to assert safely, other than that this
may yield a classical consequence relation. But in fact, some idea of this
sort is very natural in the context of vagueness. Intuitively, the more steps
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you take down a Sorites series, the more shaky your conclusion (e.g.,
that the man before you is bald) becomes. Given that man 1 is bald, it
is safe to say that man 2 is bald – but maybe not safe enough for you
to then go on and assert that because man 2 is bald, man 3 is bald also.
When we first encounter the Sorites paradox, we feel that from the fact
that man 1 is bald, and that successive men in the series differ by just
a hair, we may conclude that man 2 is bald – and man 3, and perhaps
man 4 – but that the further we progress along the series, the shakier the
conclusion becomes. Some sentences are, so to speak, true enough to get
a terminating pass – they may be asserted, but not built on – while other
sentences have a higher grade of truth, and may be used as the basis of
further reasoning. So in vague contexts, the distinction between sentences
which are true enough to form the basis of a sound piece of reasoning, and
sentences which are merely true enough to assert safely, is a natural one.
Given this, and the fact that Sorites reasoning seems perfectly valid, it is
natural to say that a valid argument is one in which, if the premises are
true enough to be used as premises, then the conclusion is true enough to
be asserted safely. Now for the reasons given above, we want this property
‘true enough to form the basis of a sound piece of reasoning’ to make
reference only to first approximations. Should we then say that a sentence
is true enough to form the basis of a sound piece of reasoning if it is 1
true, to a first approximation? This seems too demanding: we can reason
soundly in vague contexts, even though none of our statements are 1 true,
to a first approximation. So how true is true enough? Well at this point,
the fact that if we say ‘true enough’ is ‘strictly greater than 0.5 true’ then
we get the classical consequence relation, is good reason to say it – and
hence, finally, we arrive at the definition of blurry consequence given at
the beginning of this section.

The fact that a blurrily valid inference always takes us from sentences
which are true enough to form the basis of a sound piece of reasoning to
sentences which are true enough to assert safely – rather than to sentences
which are also true enough to form the basis of a sound piece of reasoning
– does not mean that the relation of blurry consequence is not transitive. In
fact it is transitive: it must be, because it is the same relation as the classical
consequence relation, and that is transitive!37

8.1. Conditionals

Related to the question of consequence is the question of the conditional.
The semantics for the conditional given above does not generalise the stan-
dard fuzzy semantics for the conditional, according to which [A → B] =
1+[B]−max{[A], [B]}. The main reason for my choice is that I want the
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blurry consequence relation to be the same as the classical consequence
relation (provided this can be achieved with a reasonable definition of
blurry consequence – but as discussed in the previous section, it can be)
and I want to retain the usual connection between consequence and the
conditional: B is a consequence of A just in case A → B is a tautology
(i.e. is a consequence of the empty set of sentences). Given my definitions
of consequence and the conditional, we do indeed have this connection,
as Lemma 2 shows. If we were to adopt instead a generalisation of the
standard fuzzy conditional, then we might be able to redefine consequence
in such a way as to regain the connection – but then our consequence
relation could not (as far as I can see) be classical.

Nevertheless, it might be thought: doesn’t the standard fuzzy account
provide a better formal rendition of the English ‘if . . . then . . .’ than the
account presented above, according to which A → B, ¬A ∨ B and
¬(A ∧ ¬B) always have the same truth value? For example, consider
Bob, a borderline case of ‘bald’, and Bill, who has one less hair than Bob.
Let us suppose ‘Bob is bald’ is 0.5 true (i.e. to a first approximation) and
‘Bill is bald’ is 0.51 true. Then ‘If Bob is bald, then Bill is bald’ is 0.51
true, according to my semantics, whereas on the analogue of the standard
fuzzy semantics, it would be 1 true – and isn’t the latter the more intuitive
assignment? In fact this is not clear. In saying ‘If Bob is bald, then Bill
is bald’ one might mean that if one were to stipulate a sharp boundary
for ‘bald’, and it enclosed Bob, then it must enclose Bill also – i.e. one is
saying that if Bob counts as bald, then Bill counts as bald. This is certainly
something I want to accept – and I can easily accept it, for this claim about
boundary stipulation is not properly (semi-)formalised as ‘Bob is bald →
Bill is bald’. On the other hand, in saying ‘If Bob is bald, then Bill is bald’
one might be saying simply that if Bob is bald, then Bill is bald (just as
one might say ‘If the United States wins the World Cup, then the profile of
soccer in this country will increase dramatically’). In this case it does not
seem that the sentence should be definitely true. Suppose I am unwrapping
my Christmas presents; I get to a longish object and say ‘If this is a spade
I will use it to dig a vegetable garden.’ It turns out to be a two-piece fishing
rod, and looking at it, I say again ‘If this is a spade I will use it to dig a
vegetable garden.’ This is simply a very odd thing to say – for we can all
clearly see that it is not a spade. Now suppose you ask me whether Bob and
Bill – neither of whom I have seen – are bald, and you tell me that Bill has
one less hair than Bob. I say ‘Well then, if Bob is bald, then Bill is bald.’
Now Bob and Bill are brought in, and I see that Bob is a borderline case
for ‘bald’. Now if I say again ‘If Bob is bald, then Bill is bald’ (and I mean
just what I say) then far from being clearly true, my statement is simply
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odd: not as odd as the spade statement – because it is not clearly false that
Bob is bald – but quite odd nevertheless. What I say makes perfect sense if
it means ‘If Bob counts as bald, then Bill counts as bald’; and I could also
say quite truly, before seeing the men, ‘If Bob is clearly bald, then Bill is
bald’ – but then upon seeing them, it would be odd to repeat this; but as for
plain old ‘If Bob is bald, then Bill is bald’, the less true its antecedent, the
odder a thing it is to say (provided, as in the case just presented, all parties
to the discourse know the truth-status of the antecedent).38

I do not think, then, that the fuzzy conditional is clearly a better rendi-
tion of ‘if . . . then . . .’ than the conditional defined above – or at least, the
example considered does not show that it is. But if you disagree, then you
should consider the following example. Suppose that ‘Ben is tall’ is 0.51
true. Then, using the fuzzy conditional, both ‘If Bob is bald, then Bill is
bald’ and ‘If Bob is bald, then Ben is tall’ are true to degree 1. Presumably,
however, someone who believes that the former is true to a high degree
will not also believe that the latter is true to a high degree.39 Thus, from
the point of view of someone who believes that the former is true to a high
degree, the fuzzy conditional has taken us from the frying pan, but only as
far as the fire.

We could go on considering examples and pumping intuitions, but this
would not get us very far. The conditional is one of the most versatile and
puzzling of English constructions, and the question of its formalisation is a
very complex one, to which many works have been devoted. But not only
would a full treatment of the conditional occupy far more space than I have
available: there is in any case no reason to think that a logic of vagueness
should shed any special light on the question of conditionals.40 Thus it is
best if we admit that no truth definition for the conditional within a degree-
theoretic account of vagueness is going to accommodate all our intuitions
about conditionals, or be the final answer to the question of the proper
formalisation of ‘if . . . then . . .’. The right thing to do is to define, as one’s
basic conditional, a connective that behaves reasonably well, and leave
the matter there, with no claim to have cast any new light on the broader
questions about conditionals. This is the approach that I have taken: my
conditional has many nice properties, and while some persons’ intuitions
may count against it, it is certainly not an unacceptable rendition of ‘if . . .
then . . .’.

There are two points worth noting before we leave this issue. First, we
do not have to confine ourselves to one conditional. We could define as
many others as we please (but if we were to do so, the question of proof
theory would need to be addressed anew). Second, there is an important
point of connection between the conditional defined above and the standard
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fuzzy conditional. In the standard fuzzy account, the tautology property –
the property that a tautology has on every interpretation – is having the
value 1, and in the case of the standard fuzzy conditional, if [A] ≤ [B],
then [A → B] = 1, that is, the conditional has the tautology property.
In the account presented in this paper, the tautology property is having
a value of at least 0.5 (to a first approximation), and in the case of the
conditional defined above, if 〈A〉 ≤ 〈B〉, then 〈A → B〉 ≥ 0.5,41 that is,
the conditional has the tautology property.

Note that the foregoing account of consequence and the conditional
could be applied to the fuzzy theory: if we abandon the standard fuzzy
conditional in favour of a conditional like the one defined above, and
abandon the definition of fuzzy consequence in terms of preservation of
designated values, in favour of a definition analogous to that given above,
then we get a fuzzy consequence relation on our first-order language that
is identical to the classical consequence relation on that language.

9. SPEAKING OF TRUTH

In motivating my proposal for a formal model of the intuitive notion of
degree of possession of a property, I appealed to the intuition that when
I say that Bob is bald to degree 0.7, this is just an approximation, and you
might well say that my statement is true to degree 0.8 – and someone might
say that your statement is true to degree 0.4, and so on. So we might well
ask how such locutions as ‘Bill’s statement is true to degree 0.3’ can be
handled within (an extension of) the formal framework presented above.

Consider the classical framework for a moment. Suppose that you say
“Bob is bald”, and I say “That’s true”. There are two things I might be
doing. I might be saying, in effect, “Ditto”, that is, reasserting what you
asserted. In this case my statement should have the same truth value as
yours. On the other hand I might be making an assertion about your state-
ment, namely the assertion that your statement has the property of being
true. In this case, if your statement is indeed true, then mine should be true,
and if your statement is false, then my statement should be false. But that
is just to say that my statement should have the same truth value as yours,
so from the semantic point of view, there is no difference between the truth
predicate I use when I reassert what you say, and the truth predicate I use
when I say, of your statement, that it has the property of being true.

In non-classical frameworks, on the other hand, there may well be a
semantic difference between truth predicates as used to perform these dif-
ferent conversational tasks. In the framework presented in this paper we
may distinguish three sorts of truth predicate. First, there is the ‘ditto’
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predicate, T . If you say “Bob is bald” and I say, in the ‘ditto’ sense, “That’s
true”, then my statement should have the same truth value (i.e. DF) as
yours. Second, there are the approximate truth predicates, Tx : one for each
x ∈ [0, 1]. If you say “Bob is bald” and I make the claim, concerning your
statement, that it is true to degree 0.3 – i.e. T0.3 – then if your statement
has the DF f , my statement should have the DF f/0.3, which assigns to
the empty sequence what f assigns to 〈0.3〉, assigns to 0.2 what f assigns
to 〈0.3, 0.2〉, and so on. In general, if s is a sentence with DF f , then the
sentence Txs has DF f/x, defined as follows:

f/x(〈s1, . . . , sn〉) = f (〈x, s1, . . . , sn〉).

Third, there are the definite truth predicates, Tf : one for each f ∈ DF. If
you say “Bob is bald” and I make the claim, concerning your statement,
that it has the DF f , then if your statement does indeed have f as its truth
value, then my statement has DF T, while if your statement has a DF other
than f , then my statement has DF F.

The approximate truth predicates Tx are the ones of most interest in
modelling our ordinary use of vague predicates, but it is possible to con-
sistently introduce all the predicates just mentioned into the formal frame-
work presented above, and I shall now do so. The method employed is
based upon the construction in (Kripke, 1975).

I begin by introducing a new DF: ∗. Intuitively a sentence with ∗ as
its DF suffers from a truth value gap. We might (but need not) think of
∗ as the totally partial function from [0, 1]∗ to [0, 1]: the function that
assigns no value to any sequence. (Recall that all the other DF’s are total
functions from [0, 1]∗ to [0, 1].) On notation: DF does not include ∗; let
DFG = DF ∪ {∗}. I shall call ∗ a ‘value’, but reserve the name ‘truth
value’ for members of DF. Likewise, I shall reserve the name ‘degree’ for
members of DF, ∗ being thought of as a degree gap.

I now need to extend the valuation scheme presented earlier to handle
cases in which some sentences have no truth value (i.e. have value ∗). The
extension is by analogy with Kleene’s weak three valued logic, which is to
say that ∗ trumps.42 Originally I presented clauses for ¬, ∨, ∧, →, ∃ and ∀.
These clauses are not all necessary: given ¬ and ∨ and ∃, ∧ and → and ∀
can be introduced by definition. So I now consider only the first three cases.
The new valuation scheme is as follows. The definition of an interpretation
is the same as before, except that this time, the interpretation function I

assigns to each n-adic predicate letter An
k a function from Mn to DFG

(not DF), and [A]M – the value of A on interpretation M – is a member
of DFG (not DF). The values of closed formulae on an interpretation are
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defined as follows:

[An
k(ai, . . . , aj )]M = (An

k)
M((ai)

M, . . . , (aj )
M),(1)

[¬A]M =
{ ∗ if [A]M = ∗,

([A]M)′ otherwise,
(2)

[A ∨ B]M =
{ ∗ if [A]M = ∗ or [B]M = ∗,

[A]M ∨ [B]M otherwise,
(3)

[∃yA]M =
{ ∗ if [Aya]Ma

o
=∗ for any o∈M,∨{[Aya]Ma

o
: o ∈ M} otherwise.

(4)

Say that an interpretation M′ extends an interpretation M (in symbols
M ≤ M′ or M′ ≥ M) iff (i) they have the same domain M, and assign the
same denotations to all names, and (ii) for every n-adic predicate An and
every x ∈ Mn and any f ∈ DF (note: not DFG), if (An)M(x) = f then
(An)M

′
(x) = f . Clause (ii) says that if, according to interpretation M,

object x has property A to some degree f (where f is not ∗, this being
thought of as a degree gap), then according to interpretation M′, object
x has property A to that same degree f . Thus M′ might classify objects
that M left unclassified, but if M classifies an object – i.e. associates it
with some predicate to some degree – then M′ classifies it in the same
way.

LEMMA 3. The valuation scheme presented above is monotone; that is,
for any sentence φ and any f ∈ DF (note: not DFG):

M ≤ M′ ⇒ ([φ]M = f ⇒ [φ]M′ = f ).

That is, monotonicity of the valuation scheme says that if M′ extends M,
then for any sentence, if M assigns it a truth value f (i.e. a value other
than ∗) then M′ assigns it the same truth value.

Proof. Monotonicity is proved by induction on complexity of sentences:
Base: atomic sentences An(ai, . . . , aj ). Suppose [An(ai, . . . , aj )]M

= f . By clause 1 of the valuation scheme, (An)M((ai)
M, . . . , (aj )

M)= f .
But supposing M ≤ M′, (ak)

M = (ak)
M′

by clause (i) of the defi-
nition of extension, and so by clause (ii) of the definition of extension,
(An)M

′
((ai)

M′
, . . . , (aj )

M′
) = f . Thus by clause 1 of the valuation

scheme, [An(ai, . . . , aj )]M′ = f .
Induction: non-atomic sentences. There is a case for each of clauses

2–4 of the valuation scheme.
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(i) ¬A. Suppose [¬A]M = f . By clause 2 of the valuation scheme,
[A]M = g, where f = g′. So by the induction hypothesis, [A]M′ = g,
whence by clause 2 of the valuation scheme, [¬A]M′ = g′ = f .

(ii) A ∨ B. Suppose [A ∨ B]M = f . By clause 3 of the valuation
scheme, [A]M = f1 and [B]M = f2, where f = f1 ∨ f2. So by the
induction hypothesis, [A]M′ = f1 and [B]M′ = f2, whence by clause 3
of the valuation scheme, [A ∨ B]M′ = f1 ∨ f2 = f .43

(iii) ∃yA. Suppose [∃yA]M = f . By clause 4 of the valuation scheme,
for every o ∈ M, [Aya]Ma

o
�= ∗, and

∨{[Aya]Ma
o
: o ∈ M} = f . Now

M′ ≥ M, so for every o ∈ M, M′a
o ≥ Ma

o . Hence by the induction
hypothesis, for every o ∈ M, [Aya]M′a

o
= [Aya]Ma

o
. So

∨{[Aya]M′a
o
:

o ∈ M} = f . So [∃yA]M′ = f . ✷
Before introducing the truth predicates mentioned earlier, we begin with an
interpreted language L – interpreted in accordance with the model theory
presented above. Let the domain of the interpretation be M. M will remain
fixed throughout the following construction. We suppose that all predicates
are totally defined, in the sense that none of them is assigned an extension
which assigns ∗ to any object in M (or in general in Mn, for an n-ary
predicate). We now extend L to L by adding new monadic predicates T ,
Tx and Tf : one Tx for each x ∈ [0, 1] and one Tf for each f ∈ DF.
Initially these predicates are uninterpreted, but the ultimate point of the
exercise is to establish that they may be regarded as, respectively, a ‘ditto’
truth predicate (T ), approximate truth predicates (the Tx’s), and definite
truth predicates (the Tf ’s).

For now, however, some more preliminaries. We define an order relation
≤ on DFG as follows: ∀x, y ∈ DFG, x ≤ y iff (i) x = y or (ii) x = ∗
and y ∈ DF. That is, ∗ is less than everything, while each member of DF
is less than nothing except itself. Let 〈DFG,≤〉 be DFG together with the
relation just defined. Obviously 〈DFG,≤〉 is a partial order.

Where 〈D,≤〉 is a partial order, call X ⊆ D consistent if for every
x, y ∈ X there is a z ∈ D such that x ≤ z and y ≤ z. Then 〈D,≤〉 is a
coherent complete partial order or ccpo if every consistent X ⊆ D has a
supremum in D.44 Obviously 〈DFG,≤〉 is a ccpo.

DFGM is the set of all functions from the domain M to the set DFG,
that is, the set of all blurry subsets of M (including partial subsets: ones
which assign ∗ to some objects). For U,V ∈ DFGM , set U ≤ V just in
case U(x) ≤ V (x) for all x ∈ M (where the most recent occurrence of
‘≤’ denotes the relation on DFG defined above).45 Because 〈DFG,≤〉 is a
ccpo, so is 〈DFGM,≤〉.46

Let I = [0, 1] ∪DF ∪ {t}, where t is some arbitrary object that is not in
[0, 1] or DF. Consider (DFGM)I , the set of all functions from I to DFGM .
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(Think of I as a set of names, and each member of (DFGM)I as a named
set of blurry subsets of M. For F ∈ (DFGM)I , we have one subset F(t)

whose name is t , a subset F(x) named x for each x ∈ [0, 1], and a subset
F(f ) named f for each f ∈ DF.) For F,G ∈ (DFGM)I , set F ≤ G just
in case F(i) ≤ G(i) for all i ∈ I . Then, just as before, 〈(DFGM)I ,≤〉 is a
ccpo.

For F ∈ (DFGM)I , let L(F ) be the interpretation of L in which T

is assigned F(t) as its extension, Tx is assigned F(x) as its extension
(for each x ∈ [0, 1]), and Tf is assigned F(f ) as its extension (for each
f ∈DF).

We now define a function ′ on (DFGM)I as follows. (We write ′(F )

as F ′. Note that F ′(i) is the subset of M named i, under the naming
system F ′. We can specify F ′ by specifying F ′(i) for each i ∈ I , i.e.
for i = t , i = x ∈ [0, 1] and i = f ∈ DF . In turn we can specify each
F ′(i) by specifying the member of DFG that it assigns to each y ∈ M.
Recall that the notation ‘f/x’ is defined on p. 203.) For all y ∈ M:

F ′(t)(y) = F if y is not a sentence
= ∗ if y is a sentence, and y is assigned ∗ in L(F )

= f if y is a sentence, and y is assigned f ∈ DF in L(F )

F ′(x)(y) = F if y is not a sentence
= ∗ if y is a sentence, and y is assigned ∗ in L(F )

= f/x if y is a sentence, and y is assigned f ∈ DF in L(F )

F ′(f )(y) = F if y is not a sentence, or if y is a sentence,
and y is assigned g �= f ∈ DF in L(F )

= ∗ if y is a sentence, and y is assigned ∗ in L(F )

= T if y is a sentence, and y is assigned f ∈DF in L(F ).

LEMMA 4. If F ≤ G then L(F ) ≤ L(G) (i.e. L(G) extends L(F )).
Proof. The only difference between L(F ) and L(G) is in the extensions

they assign to T , the Tx’s and the Tf ’s. We thus need only show that for any
one Ti of these predicates (thinking of T as Tt , for the sake of convenience
of presentation) and any y ∈ M and any f ∈ DF, if (Ti)

L(F )(y) = f

then (Ti)
L(G)(y) = f . Now (Ti)

L(F ) = F(i) and (Ti)
L(G) = G(i), so

if F ≤ G, the desired result follows (recall that in the ordering of DFG
specified earlier, the only thing that f bears ≤ to is f ). ✷
THEOREM 2. ′ is a monotone function on (DFGM)I , i.e. F ≤ G ⇒
(F ′ ≤ G′).

Proof. F ′ ≤ G′ iff F ′(i) ≤ G′(i) for all i ∈ I , and F ′(i) ≤ G′(i) iff
F ′(i)(y) ≤ G′(i)(y) for all y ∈ M. Pick an arbitrary i and y. Case (i): If
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F ′(i)(y) = ∗ then F ′(i)(y) ≤ G′(i)(y), whatever G′(i)(y) is. Case (ii):
F ′(i)(y) = f ∈ DF. Case (ii-a): y is not a sentence. Then F ′(i)(y) = F =
G′(i)(y). Case (ii-b): y is a sentence. We need to consider the three cases
i = t , i = x ∈ [0, 1] and i = f ∈ DF:

(1) i = t . F ′(i)(y) = f , so y is assigned f in L(F ). Then by Lemmas 3
and 4, y is assigned f in L(G). Hence G′(i)(y) = f .

(2) i = x ∈ [0, 1]. F ′(i)(y) = f , so y is assigned g in L(F ), where
f = g/x. Then by Lemmas 3 and 4, y is assigned g in L(G). Hence
G′(i)(y) = g/x = f .

(3) i = f ∈ DF. There are two cases to consider:

(a) F ′(i)(y) = F, so y is assigned g �= f in L(F ). Then by Lem-
mas 3 and 4, y is assigned g in L(G). Hence G′(i)(y) = F.

(b) F ′(i)(y) = T, so y is assigned f in L(F ). Then by Lemmas 3
and 4, y is assigned f in L(G). Hence G′(i)(y) = T. ✷

We now define � ∈ DFGM to be the totally partial blurry subset of M:
the one which assigns ∗ to every object in M. Let F� ∈ (DFGM)I be the
function which assigns � to every i ∈ I .

THEOREM 3. F� is a sound point of the function ′, that is:

F� ≤ F�′
.

Proof. F� ≤ F�′ iff F�(i) ≤ F�′
(i) for all i ∈ I , and F�(i) ≤

F�′
(i) iff F�(i)(y) ≤ F�′

(i)(y) for all y ∈ M. But F�(i)(y) = ∗
for all i ∈ I and for all y ∈ M, so whatever F�′

(i)(y) is, F�(i)(y) ≤
F�′

(i)(y). ✷
Now we can link in with a general theorem which says that any monotone
function on a ccpo with a sound point has a fixed point. We need two
lemmas. In all cases we are concerned with a monotone function f on a
ccpo 〈X,≤〉, where X is a set.47

LEMMA 5. If x ∈ X is a sound point of f , then f (x) is a sound point
of f .

Proof. x is a sound point of f , i.e. x ≤ f (x), so by monotonicity
f (x) ≤ f (f (x)), i.e. f (x) is a sound point of f . ✷
LEMMA 6. If Y ⊆ X is a consistent set of sound points of f then the
supremum

∨
Y of Y is a sound point of f .
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Proof. We want to show that
∨

Y ≤ f (
∨

Y ). This will follow if
f (

∨
Y ) is an upper bound of Y , because

∨
Y is Y ’s least upper bound.

So we wish to show that for any x ∈ Y , x ≤ f (
∨

Y ). Well, x ≤ ∨
Y by

definition of
∨

Y , so f (x) ≤ f (
∨

Y ) by monotonicity of f , and x ≤ f (x)

because x is a sound point, so x ≤ f (
∨

Y ) by transitivity of ≤. ✷
THEOREM 4. If x ∈ X is a sound point of f , then f has a fixed point
x′ ∈ X (i.e. a point x′ such that f (x′) = x′) with x ≤ x′.

Proof. Let x0 = x, and for each successor ordinal α + 1 define xα+1 =
f (xα), and for each limit ordinal λ define xλ = ∨

β<λ xβ . We show by
induction on α that each xα does in fact exist, and is a sound point of f .
x0 exists and is sound by supposition. xα+1 exists by the supposition that
f is defined on X, and by Lemma 5, xα+1 is sound if xα is. Suppose that
λ is a limit ordinal and that xβ is defined and sound for all β < λ. Then
xβ ≤ xβ+1 for all such β (because each xβ sound), hence xβ ≤ xδ for all
β < δ < λ. Thus for any xβ and xδ in {xβ : β < λ}, either xβ ≤ xδ
or xδ ≤ xβ . Thus {xβ : β < λ} is consistent, and so by definition of a
ccpo, xλ = ∨

β<λ xβ exists, and by Lemma 6 is sound. So xα exists and
is sound for all α, and if α < β then xα ≤ xβ . Now either xα < xα+1

for all α, or there is some α such that xα = xα+1. In the former case,
{xα : α ∈ ON} is in one-to-one correspondence with ON (the class of all
ordinals), which is impossible because X is a set. So there is some α such
that xα = xα+1 = f (xα), i.e. xα is a fixed point of f ; and x = x0 ≤ xα
because 0 ≤ α. ✷
We now have everything we need to get an interpretation of our new pred-
icates T , the Tx’s and the Tf ’s. We specify a hierarchy of interpretations
Lα of L, for ordinal α (we know from the proof of Theorem 4 that the
hierarchy is well defined):

1. L0 = L(F0) = L(F�)

2. Lα+1 = L(Fα+1) = L(Fα
′)

3. For limit λ, Lλ = L(Fλ) = L(
∨

β<λ Fβ).

Theorems 2, 3 and 4 tell us that there is an α such that Fα = Fα+1. The
interpretation Lα = Lα+1 is then one in which the sentence Ts has the
same value as s for every sentence s (and has value F where s is not a
sentence), the sentence Txs has value f/x where s is a sentence with truth
value f (and has value F where s is not a sentence, and value ∗ where s

is a sentence with value ∗), and the sentence Tf s has value T where s is a
sentence with truth value f and value F where s is a sentence with truth
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value g �= f (and has value F where s is not a sentence, and value ∗ where
s is a sentence with value ∗), which is exactly what we wanted.48

10. DENYING BIVALENCE

Williamson has argued that bivalence cannot coherently be denied: any
denial of bivalence implies a contradiction.49 As an advocate of a view
which denies bivalence, I need to consider his argument. Where a is a
name of the sentence A, ā is a name of the sentence ¬A and T is a truth
predicate, the argument is as follows (Williamson, 1992, pp. 265–266):

1. ¬(Ta ∨ Tā) [the denial of bivalence],
2. Ta ↔ A and Tā ↔ ¬A [two instances of Tarski’s T-schema],
3. ¬(A ∨ ¬A) [from 1 and 2],
4. ¬A ∧ ¬¬A [from 3].

As (Williamson, 1992, pp. 266–267, n. 4) notes, in order for this argument
to carry weight, step 2 must be validated, and step 4 must indeed be absurd.

In my framework, there are three truth predicates which we could con-
sider in place of T in the above argument: T , T1 and TT. I shall consider
these in reverse order.

In the case of TT, step 2 is not validated. TTa ↔ A has the same DF as
(¬TTa ∨ A) ∧ (¬A ∨ TTa), which is not a tautology: if A is 0.9 true (i.e.
to a first approximation), then TTa has DF F; so the right conjunct is 0.1
true and the left conjunct is 1 true, so the whole conjunction is 0.1 true.

In the case of T1 also, step 2 is not validated. T1a ↔ A has the same
DF as (¬T1a∨A)∧ (¬A∨T1a), which is not a tautology: if A is 0.7 true
(i.e. to a first approximation), and to a second approximation, it is 0.01 true
that A is 1 true, then T1a is 0.01 true; so the left conjunct is 0.99 true and
the right conjunct is 0.3 true; so the whole conjunction is 0.3 true.

In the case of T , step 2 is validated: T does satisfy the T-schema.
T a ↔ A has the same DF as (¬T a∨A)∧ (¬A∨ T a), which is a tautol-
ogy: for it to be less than 0.5 true (i.e. to a first approximation), one of its
conjuncts must be less than 0.5 true, hence both disjuncts of this conjunct
must be less than 0.5 true – but this is impossible, because on every (fixed
point) interpretation, A and T a have the same DF, so one disjunct is the
negation of something which has the same value as the other disjunct. The
problem with T , however, is that the version of step 1 involving T is not a
denial of bivalence, and is not something to which the proponent of many-
valued semantics is committed. Williamson’s dialectic is as follows: “You,
the proponent of many-valued semantics, are committed to asserting a sen-
tence which denies bivalence; but this sentence implies a contradiction, so
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you are committed to asserting a contradiction.”50 But suppose that Bob is
a borderline case of baldness, and so we wish to deny that ‘Bob is bald’ is
true or false. If ‘a’ names this sentence, and ‘ā’ names its negation, then we
should go about this denial by asserting ¬(TTa∨TTā) or ¬(T1a∨T1ā), not
by asserting ¬(T a∨T ā). The latter is not something to which the advocate
of many-valued semantics is committed. This advocate might well wish to
say in a tentative, hedging way that it is not the case that Bob is bald nor
that he is not bald, but if so, he would be just as happy to say, in the same
tentative, hedging way, that Bob is bald but also not bald. These are just
the sorts of things non-philosophers do say about borderline cases.51 So in
this third case Williamson’s argument goes through: if we are committed
to step 1, we are committed to step 4. The problem for Williamson is that
no-one need be committed to step 1. We might well be sort of committed
to step 1, but the fact that we are then also sort of committed to step 4 is
no revelation, and no problem.

It seems then that Williamson’s error was to ignore the following point.
In a many-valued semantic framework, there will be one truth predicate for
each truth value, and a ‘ditto’ truth predicate. On the one hand, the former
do not obey the Tarskian T-schema, while the latter does: in general there
is no reason why ‘S has truth value x’ should have the same truth value
as S, but the ‘ditto’ predicate is precisely the predicate ‘T ’ such that ‘S is
T ’ and S always have the same truth value. On the other hand, the denial
of bivalence that characterises the many-valued system will be formalised
in terms of one of the former predicates: the proponent of the many-valued
system is committed to the idea that in general, for a sentence S and a
truth value x, it does not have to be the case that either S has x or S’s
negation has x. So the proponent of the many-valued semantics is immune
from Williamson’s reductio, which requires that the truth predicate used
to deny bivalence satisfies the T-schema.

11. VAGUENESS AND HIGHER-ORDER VAGUENESS

Having now presented my view, it is time to check that it does what we
want it to do. At the outset, I mentioned two problems for the fuzzy view:
the problem of the linear ordering of fuzzy truth values, and the higher-
order vagueness problem. Obviously my view is immune to the linear
ordering worry: the natural ordering of DF is not linear. Thus two issues
remain to be discussed: we need to verify that the account of vagueness
presented in this paper has the resources to accommodate both vagueness
(conceived in terms of Closeness), and the higher-order vagueness that the
fuzzy account cannot accommodate.
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11.1. Vagueness

According to the Closeness characterisation, a predicate ‘F ’ is vague just
in case it satisfies the condition that if a and b are very similar in F -relevant
respects, then ‘Fa’ and ‘Fb’ are very similar in respect of truth. Now in a
sorites series for the predicate F , adjacent members of the series are very
similar in F -relevant respects (for example, in a series for ‘tall’ they differ
by a millimetre in height; in a series for ‘bald’ they differ by a hair; etc.).
For vagueness to be accommodated and the sorites paradox avoided, we
need it to be the case that sentences of the form ‘Fx’, where ‘x’ refers to
a member of the sorites series for F , can start out being true simpliciter
(where ‘x’ refers to the object at one end of the series), end up being false
simpliciter (where ‘x’ refers to the object at the other end of the series),
and be such that ‘Fx’ and ‘Fx′’ are always very similar in respect of
truth, when ‘x’ and ‘x′’ refer to adjacent members of the series. Now the
fuzzy view, for example, clearly has the resources to achieve this result:
we can start at one end of the series with ‘Fx’ being 1 true, and move
to the other end of the series at which ‘Fx’ is 0 true, in such a way that
the difference between the truth values of ‘Fx’ and ‘Fx′’ is always very
small.

What about the blurry account? Does it have the resources to accom-
modate vagueness as characterised in terms of Closeness? Clearly it does.
We start at one end of the series with ‘Fx’ having T as its truth value;
and where ‘x’ refers to the second object in the series, ‘Fx’ has as its truth
value any DF f , represented as 〈f1, f2, f3, . . .〉, where f1 is a number very
close, but not equal, to 1 (say 0.999), and each other fi is a number very
close, or equal, to 1: intuitively, any such DF is very similar to T in respect
of truth. At the other end of the series, ‘Fx’ will have F as its truth value;
and where ‘x’ refers to the second last object in the series, ‘Fx’ has as its
truth value any DF f , represented as 〈f1, f2, f3, . . .〉, where f1 is a number
very close, but not equal, to 0 (say 0.001), and each other fi is a number
very close, or equal, to 1: intuitively, any such DF is very similar to F in
respect of truth. In between, we can progress in such a way that where f ,
represented as 〈f1, f2, f3, . . .〉, is the truth value assigned to ‘Fx’, and f ′,
represented as 〈f ′

1, f
′
2, f

′
3, . . .〉, is the truth value assigned to ‘Fx′’, it is the

case that for each i, the difference between fi and f ′
i is extremely small

– and hence intuitively, f and f ′ are very similar truth values. Thus we
may move between T and F in a series of steps in which we only ever
pass from a DF to a DF that is very close to it in respect of truth – and
thus we do have the resources to accommodate predicates which satisfy
Closeness.
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11.2. Finite Higher-Order Vagueness

The problem of higher-order vagueness for the fuzzy account was that no
sentence of the form ‘S is x true’ (where x is an element of [0, 1]) can have
an intermediate degree of truth. In presenting normal degree functions, we
found it natural to extend the ‘higher-order vagueness’ terminology in the
following way: S is first-order vague if S has an intermediate degree of
truth; S is second-order vague if some sentence of the form ‘S is x true’
(where x is an element of [0, 1]) has an intermediate degree of truth; S
is third-order vague if some sentence of the form ‘ ‘S is x true’ is y true’
has an intermediate degree of truth (where x and y are elements of [0, 1]);
and so on. The fuzzy account cannot accommodate sentence vagueness
above the first order. It is clear from the discussion of the approximate truth
predicates Tx in Section 9, however, that the account presented in this paper
can accommodate sentence vagueness of all finite orders. If S has f as its
truth value, where f is a Type I DF, then S is vague at every finite order;
if S has fn as its truth value, where fn is a Type III DF, then S is vague up
to and including the (n + 1)th order, but no higher (recall that n is a non-
negative integer); and if S has a Type II DF (T or F) as its truth value, then
S is not vague at all. Thus we see that the higher-order vagueness problem
for the fuzzy account does not pose a problem for the account presented
in this paper. Furthermore – as mentioned at the outset – the problem is
avoided without positing a hierarchy of vague metalanguages. There is a
hierarchical structure in my account, but it is inside each truth value: each
truth value is, as it were, the limit of a sequence of approximations of itself;
it contains within itself an infinite hierarchy of such approximations.

11.3. Transfinite Higher-Order Vagueness

It is natural to extend our terminology of sentence vagueness in the follow-
ing way: a sentence S is ω-order vague if some sentence of the form ‘S is f
true’ (where f is a DF) has an intermediate degree of truth. It is clear from
the discussion in Section 9 that the blurry account does not accommodate
ω-order sentence vagueness: sentences of the form Tf a always have T
or F as their truth value.52 Is it a problem for my view that it does not
accommodate transfinite higher order vagueness? No, it is not. I shall now
consider some reasons why someone might think it is a problem, and show
what is wrong with these reasons.

First, someone might think:

It was unacceptable that the fuzzy theorist gave us just one option re-
garding the degree of truth of ‘Bob is bald’: we don’t want to be told
that it is definitely true that Bob is 0.6 bald, and definitely false that he is
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0.60001 bald. But on your account, ‘Bob is bald’ has a certain DF as its
truth value, and this DF assigns one particular value to each sequence.
Consider, for example, the empty sequence: according to your account,
the DF assigns (say) 0.6 to it, and not 0.60001 or any other number,
and thus, to a first approximation, ‘Bob is bald’ is 0.6 true, and not
0.6001 true. But surely if Bob is approximately 0.6 bald, he is also
approximately 0.60001 bald. Thus your view is just as arbitrary and
unacceptable as the fuzzy view.

There are two misunderstandings of my view wrapped up in this objection.
First, I fully agree that if Bob is approximately 0.6 bald, then he is also
approximately 0.60001 bald. This fact is reflected in my account in the
fact that if you say ‘Bob is 0.6 bald’ and I say ‘Bob is 0.60001 bald’, our
statements can be similar in respect of truth. It is not that there is just
one correct first approximation to the degree of truth of ‘Bob is bald’,
this being the value assigned to the empty sequence by the DF of ‘Bob is
bald’. Rather, there are as many first approximations as there are numbers
in [0, 1], and some of them are better than others. The value assigned to
the empty sequence by the DF of ‘Bob is bald’ should be thought of not
as the first approximation to the degree of truth of ‘Bob is bald’, but as
the canonical first approximation. What distinguishes this approximation
from the others is simply that this one lies at the centre of mass of the
density function given at the next level of approximation. Of course, if
I were to say not that ‘Bob is bald’ is (approximately) 0.6 true, but that
the canonical approximation to the degree of truth of ‘Bob is bald’ is 0.6,
then what I said would be either definitely true or definitely false: this is
because what I said would be equivalent to saying that the DF of ‘Bob is
bald’ assigns 0.6 to the empty sequence, which is a statement about DF’s.
The issue under discussion is precisely whether such statements should
indeed always be definitely true or false; my aim at present is to clear
up the misunderstandings embodied in the first attempt to argue that they
should not be. The first misunderstanding, then, was to think that on my
view, there is one correct first approximation to Bob’s degree of baldness:
there is not; there are many approximations, some better and some worse,
but none uniquely correct.

With this misunderstanding cleared up, the objection presented above
amounts to the following:

It seems arbitrary that the fuzzy account assigns a particular value in
[0, 1] to each statement. But on your account, each sequence in [0, 1]∗
is assigned a particular value in [0, 1], and this seems just as arbitrary!
Why should it be the case that the DF of ‘Bob is bald’ assigns 0.8 to
some sequence, rather than 0.80001? Why should this or that density
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function have its centre of mass right here, and why should it have
precisely this shape?; and so on . . .

The intuitions behind this objection are intuitions which I share: they are in
fact intuitions about finite higher order vagueness, and they are accommo-
dated by my account. Certainly it seems wrong to say (as the fuzzy account
says) that Bob is bald to precisely this fuzzy degree: this is an intuition
about the existence of second-order vagueness, and is accommodated in
my account by the fact that a DF assigns values not just to the empty
sequence, but to sequences of length 1. Of course, it seems arbitrary in
turn to say that it is precisely x true that Bob is y bald: this is an intuition
about the existence of third-order vagueness, and is accommodated in my
account by the fact that a DF assigns values not just to the empty sequence
and to sequences of length 1, but to sequences of length 2. The curve given
at the second level of approximation is blurred at the third level of approx-
imation: there is no need to go to transfinite levels in order to blur it. And
so on: the intuition that there is something rough or arbitrary or approx-
imate or incomplete about the assignment to any sequence 〈a1 . . . , an〉 is
accommodated within my view in the assignments of values to sequences
〈a1 . . . , an, x〉: we do not need to go back again, after all the assignments
are fixed, and do something more to accommodate this intuition. Positing
transfinite levels would be overkill: the tasks the objector thinks they are
needed for have all already been performed within the existing hierarchy
of approximations; there is nothing more that needs to be blurred out.

A second sort of objector accepts my response to the first objection,
but asserts that just as the fuzzy theory was wrong to associate a partic-
ular number in [0, 1] with each sentence, so I am wrong to associate a
particular degree function with each sentence: the objection is that I face
the very problem that the fuzzy theory faces, only at a higher level –
I have not avoided the problem of higher-order vagueness, I have merely
postponed it.

There is a tendency amongst philosophers to reflexively reapply a form
of argument that works in one context, in any context that resembles the
first context. Thus, in the present case, the reflex reaction would be as
follows: “The fuzzy theorist assigned a unique degree of truth to each
sentence, and it got her into trouble; you assign a unique degree of truth
to each sentence, so you get into the same – or similar – trouble.” This
sort of reflex argument carries no weight, by itself: we need to actually
check that the new argument against my view has the same intuitive force
as the original argument against the fuzzy view. The intuition embodied in
the higher-order vagueness objection to the fuzzy account is widespread:
the fuzzy account fails to accommodate a genuine, robust intuition about
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vagueness.53 Is there also a genuine, robust intuition to the effect that some
or all vague predicates are such that some sentences in which they figure
are vague not only at all finite orders, but at some transfinite order? I cannot
see that there is.

We need to distinguish two scenarios. In the first scenario, the objector
simply feels that my account does not go far enough. I am not convinced
that some sentences are vague at all finite orders, but I am also not con-
vinced that no sentence is – and hence I wish to allow for all finite orders of
vagueness. I do not, however, think that any sentence is ω-order vague, and
accordingly, my account does not make room for transfinite higher-order
vagueness. The objector disagrees: she claims to have a genuine, robust
intuition to the effect that some sentences are transfinite-order vague. Now
if this is so, the objector can take up where I left off, and propose a se-
mantics for vagueness in which the truth values are functions not just
from finite sequences of elements of [0, 1] to [0, 1], but from transfinite
sequences (or, of course, she might approach the matter in another way
entirely). This theory might stop with sequences of a particular ordinal
length, or it might countenance sequences of every ordinal length. The
details would be complex – there might even be insuperable technical
difficulties (or there might not). My objection to this approach, however,
is simply that the added detail is pointless: it is not in the service of any
genuine intuition.

In the second scenario, the objector feels that no account which assigns
a unique truth value to a vague sentence could be adequate – not even if
the truth value were a ‘function’ which assigned an element of [0, 1] to
every ‘function’ from On (the class of all ordinals) to [0, 1]. But of course,
in this form the objection is not really about higher-order vagueness at all:
it is simply a version of the ‘no non-vague theory of vagueness’ objection,
which was dismissed at the outset.

In sum, objector A asserts that there is nothing wrong with the very
idea of assigning a unique truth value to a vague sentence – it’s just that
my proposed truth values are not good enough. This is the sort of objection
that I made to the fuzzy theory. My response is that while the objection to
the fuzzy theory is backed by genuine robust intuitions, the objection to my
view is not. Objector B asserts that there is a problem with my proposed
truth values, but ultimately the source of her conviction is an adherence to
the thought that there is something wrong with the very idea of assigning
a unique truth value to a vague sentence – and the more elaborate the truth
values, the worse the problem. This is not the sort of objection that I made
to the fuzzy theory. This sort of objection applies to any non-vague theory
of vagueness – and in the absence of good arguments to the effect that no
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non-vague theory of vagueness can be correct, we may dismiss it as mere
prejudice.54

12. THE SORITES PARADOX

Suppose we have a series of persons, ranging in height from four feet to
seven feet, in increments of a thousandth of an inch. We number the per-
sons from 0 through to 36,000, starting with the four foot person, assigning
the next number to the next tallest person, and so on. ‘T x’ says that person
number x is tall, and ‘xRy’ says that x is the immediate predecessor of y
in the series. The Sorites argument is this:

1. 0R1
2. 1R2
3. 2R3
...

36000. 35999R36000
36001. ¬T 0
36002. ∀x∀y((¬T x ∧ xRy) → ¬Ty)

36003. ¬T 36000

I assume that premises 1–36001 are true to degree T and the conclu-
sion (36003) is true to degree F.55 The argument is classically valid, hence
it is valid in blurry logic. That leaves premise 36002. This premise is not
strictly greater than 0.5 true (to a first approximation). As we move along
the series, facing an increasingly tall person x at each stage, the degree of
truth of the claim that x is tall gradually increases. There may be a person a

such that ‘T a’ is 0.5 true (to a first approximation), or there may not (there
may be adjacent persons a and b such that ‘T a’ is, say, 0.499 true and ‘T b’
is 0.501 true). Now premise 36002 is as true as its least-true instance. In
either of the cases mentioned above, there is no instance less true than the
one where the variable x is replaced by a name of a, and the variable y is
replaced by a name of a’s successor: in the first case this instance is 0.5
true; in the second case it is 0.499 true. Either way, it is not strictly greater
than 0.5 true. Hence the argument is unsound.

So far so good: we have located a flaw in the argument. But now what
of the fact that the Sorites paradox is compelling? Premise 36002 is 0.5
true at best – so why is the argument as appealing as it is? Furthermore, it
seems that premise 36002 is plausible because it corresponds to Closeness.
Now one of my aims has been to accommodate Closeness – and yet here
I am saying that the premise corresponding to Closeness is 0.5 true at
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best! Have I not got a big problem on my hands? No, I have not. The
basic point is that although premise 36002 is plausible because it seems to
correspond to Closeness, it does not actually express Closeness. We find it
plausible because when read out, it sounds as though it is just a statement
of Closeness – but closer attention reveals that this is not so.

If the predicate ‘is tall’ is vague, and if adjacent persons in the series are
very similar in tall-relevant respects (i.e. in height), then Closeness tells us
that for adjacent persons a and b, ‘T a’ and ‘T b’ are very similar in respect
of truth. In particular, if a is not tall (at all), then it cannot be that b is
(definitely) tall. But isn’t this just what premise 36002 says? No! This is
the crucial point. In the present semantics, ¬T a → ¬T b says the same
thing as T a ∨ ¬T b: ‘Either a is tall, or b is not’. Now when a and b are
borderline cases for ‘tall’, ordinary speakers will have exactly the same
sort of hedging reaction to this sentence as to the sentences ‘a is tall’ and
‘b is not tall’: they will not think that ‘Either a is tall, or b is not’ is clearly
true.56 Now the universal statement ‘For successive pairs a and b, either
a is tall, or b is not’ cannot be truer than its least-true instance: hence my
semantics gives the correct result for premise 36002.

This still leaves the question as to why the Sorites paradox is com-
pelling. In obtaining our assent to the inductive premise of her argument,
the purveyor of the Sorites paradox will say, ‘Surely you do not think it
can be the case that a is not tall, and yet b is tall?’ Given the emphases, it
is natural to hear this as ‘Surely you do not think it can be the case that a
is clearly not tall, and yet b is clearly tall?’ Now of course you don’t think
this, so you say ‘No, of course not’, and things are under way. Now the
purveyor of paradox decides to get tough, so she writes down an argument
in formal language, and proves to you using your favourite proof theory for
classical logic that it is valid. The premise she writes down corresponding
to your rejection of the claim that a is clearly not tall while b is clearly tall
is premise 36002. Now working within the classical picture, this is fine:
saying that a is tall is the same as saying that a is fully or clearly tall,
because in the classical picture, either you are tall or you are not – there
are no halfway houses. But now we have moved to the blurry picture pre-
sented in this paper. The purveyor of paradox comes back and says ‘Look,
this premise that you assented to so readily is only about half true on this
new semantics – so the new semantics is wrong!’ But we need to be more
subtle: we still vigorously reject the English statement that a is clearly not
tall while b is clearly tall, but given the new semantics, this claim is no
longer accurately formalised as ¬T a → ¬T b. As we have just seen, the
latter says something to which ordinary speakers make a hedging response.
In the new framework, there are halfway houses between definite falsity
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and definite truth, and saying that a is tall is not the same as saying that a is
clearly tall. The correct formalisation of the premise we heartily accept is
TFa → ¬TTb, where ‘a’ is a name of the sentence ‘T a’ and ‘b’ is a name
of the sentence ‘T b’. But with this premise, the purveyor of paradox is not
going to be able to derive a paradoxical conclusion. Let ‘x’ be a name for
the claim ‘Person x is tall’; then ‘TF0’ says that the sentence ‘Person 0 is
tall’ is true to degree F, and so on. Now consider the following argument:

1. TF0 → ¬TT1
2. TF1 → ¬TT2
3. TF2 → ¬TT3
...

36000. TF35999 → ¬TT36000
36001. TF0
36002. ¬TT36000

Premises 1–36001 are all true to degree T. Conclusion 36002 is true to
degree F. No problem: the argument is simply invalid.

In sum, my approach to the standard formulations of the Sorites para-
dox is that the arguments are valid, but the inductive premise (or premises)
are not (all) sufficiently true to render the arguments sound. We neverthe-
less find the arguments plausible, because the inductive premise or prem-
ises are presented in such a way that we mistake them for expressions
of Closeness. Closer inspection reveals that they are not so: interpreted
in accordance with blurry semantics (as opposed to classical semantics)
they express statements to which ordinary speakers would indeed make
hedging responses; and when the expressions of Closeness are correctly
formalised, paradoxical conclusions cannot be derived. Now this is quite
different from the standard fuzzy approach. On the standard fuzzy ap-
proach, the semantics of the conditional is such that conditionals of the
form ¬T a → ¬T b are true to ever so slightly less than degree 1: this is
the proposed explanation of the appeal of the Sorites paradox. But even if
this proposal provided a better explanation than mine of the attraction of
the Sorites paradox as formulated in this section (and I do not believe that
it does), the fuzzy theorist is left without anything to say about the Sorites
paradox as formulated in other ways. Crispin Wright writes:

Can a degree-theoretic account explain the plausibility of the major premises? There is no
difficulty, of course, with the usual, quantified conditional form of premise. The explana-
tion will claim that each instance, Fa → Fa′ , of (∀x)(Fx → Fx′) is almost true: that
its consequent enjoys a degree of truth ever so nearly but not quite as great as that of its
antecedent. And this claim will then be followed . . . by a stipulation that the degree of truth
of any universally quantified statement is the minimum of the degrees of truth enjoyed by
its instances . . . But . . . the major premise doesn’t need to be conditional at all. In the case
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of the Sorites-series of indiscriminable color patches for instance, we could just as well
take it in the form

(∀x)− [red(x) & − red(x′)].
All the ways of making the conditional form of major premise seem intuitively plausible
would be applicable to this conjunctive form . . . [the degree theorist] needs to explain
. . . with what right such a conjunctive major premise may be regarded as almost true;
otherwise he cannot explain its plausibility, or duly acknowledge the force of the arguments
which seem to sustain it. (Wright, 1987, pp. 251–252)

As Wright then goes on to point out, one cannot see how the degree theorist
could give an account on which such a conjunctive major premise is almost
true: and in any case, on the standard fuzzy account, such premises are not
almost true. Thus, the standard fuzzy theorist’s explanation of the plausi-
bility of the conditional formulation of the Sorites paradox does not extend
to other formulations – whereas my explanation does. Of course, the fuzzy
theorist – having the resources to accommodate Closeness – can adopt the
sort of view I have advocated: my point is precisely that the fuzzy theorist
should adopt my explanation of the plausibility of Sorites paradoxes, not
vice versa.

13. SEMANTIC INDETERMINACY AND MODALITY

In (Smith, 2001) I argue that in the standard cases of vagueness, what we
need is a theory that accounts for vagueness in language in terms of vague-
ness in the world, rather than seeing it as a purely semantic phenomenon.57

But while the idea of semantic indeterminacy should not play the central
role in the theory of vagueness, we should allow for its possibility. In fact it
is a very straightforward matter to accommodate semantic indeterminacy
within an extension of the view presented in this paper. The extension runs
along supervaluationist lines.

First, we will want to allow that in some cases there might be more
than one admissible interpretation of a discourse. When I say ‘Bob is
bald’, it might be that there is no unique blurry set that is the extension of
my predicate ‘is bald’: rather, my predicate picks out a number of blurry
sets, each of which meets all the constraints on the correct or intended
interpretation.58 Now in the standard supervaluationist view, a sentence is
true simpliciter if it is classically true on all admissible interpretations. So
to determine how true my sentence ‘Bob is bald’ is, we should, in effect,
quantify over the admissible interpretations. Thus if {Mi} is the set of all
admissible interpretations of my utterance, and fi is the truth value of my
utterance on Mi , then the supertruth value of my utterance with respect to
the supervaluation {Mi} is

∧{fi}.
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The point of this extension of the framework presented in this paper is
somewhat different from the point of the standard supervaluationist ac-
count of vagueness. Vagueness has already been accommodated within
the framework in which each discourse has a unique correct blurry in-
terpretation; the extension is to allow for the possibility that in some cases,
the facts that fix which interpretation of our sentences is the correct one
do not suffice to single out a unique such interpretation, but rather leave
open a number of possibilities. In the standard supervaluationist account
of vagueness, the admissible interpretations are the classical interpretations
which precisify the actual incomplete interpretation, while respecting the
constraints of penumbral connection. In the present account, the admissi-
ble interpretations will simply be those which are not ruled out by the facts
that fix which interpretations of our sentences are correct – whatever these
facts are.

Having made room for the idea of multiple correct interpretations, it is
easy to see (in outline) how to develop blurry modal logics. Suppose that
we have a set W of worlds – each associated with an interpretation of our
language – and an accessibility relation ≤ on this set. If [A]w is the truth
value (i.e. degree function) of sentence A at world w, then

[✷A]w =
∧

{[A]v : w ≤ v},
[✸A]w =

∨
{[A]v : w ≤ v}.

14. COMPARISON WITH OTHER VIEWS

One usually finds a fuzzy set defined as a function from some universal
set to the closed interval [0, 1]. However, [0, 1]-valued fuzzy sets are in
fact just one sort (the basic sort) of fuzzy set: following the terminology of
(Klir and Yuan, 1995, p. 16), they are ordinary fuzzy sets. There are many
generalisations of and variations on ordinary fuzzy sets; I shall end this
paper by considering some views that are (apparently or in fact) related to
the view presented here.

An ordinary fuzzy subset S of a universal set U has a membership
function of the form:

S : U → [0, 1].
Let F[0, 1] be the set of all fuzzy subsets – or fuzzy power set – of [0, 1],
i.e. the set [0, 1][0,1] of all functions S : [0, 1] → [0, 1]. A type 2 fuzzy
subset S of a universal set U has a membership function of the form:

S : U → F[0, 1] or equivalently S : U → [0, 1][0,1].
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Thus where an ordinary fuzzy subset of U assigns a number in [0, 1] to
each element of U , a type 2 fuzzy subset assigns an ordinary fuzzy subset
of [0, 1] to each element of U . Let F2[0, 1] be the set of all type 2 fuzzy
subsets – or type 2 fuzzy power set – of [0, 1], i.e. the set ([0, 1][0,1])[0,1] of
all functions S : [0, 1] → [0, 1][0,1]. A type 3 fuzzy subset S of a universal
set U has a membership function of the form:

S : U → F2[0, 1] or equivalently S : U → ([0, 1][0,1])[0,1].
Thus where an ordinary fuzzy subset of U assigns a number in [0, 1] to
each element of U , and a type 2 fuzzy subset assigns an ordinary fuzzy
subset of [0, 1] to each element of U , a type 3 fuzzy subset assigns a type
2 fuzzy subset of [0, 1] to each element of U . The definitions of type n

fuzzy subset and type n fuzzy power set proceed in the obvious recursive
way.59

There are some points of contact between my view and type n fuzzy
set theory, but overall, similarities are outweighed by differences. A blurry
subset is not a type n fuzzy subset, for any finite n. A blurry subset of
U assigns a DF to each member of U , where a DF in turn assigns an
element of [0, 1] to each finite sequence of elements of [0, 1]. A type n

fuzzy subset of U assigns to each member of U a type (n−1) fuzzy subset
of [0, 1], which in turn may be represented (although this is not normal
practice) as a function from length (n− 1) sequences of elements of [0, 1]
to [0, 1]. Thus, a blurry subset is not even a type (ω + 1) fuzzy subset,
this being thought of as assigning to each element of U a function from
ω-length sequences of elements of [0, 1] to [0, 1] – for a DF assigns a
value to finite sequences of every length, rather than only to sequences
of infinite length. We could, however, think of a blurry subset of U as an
infinite sequence (S1, S2, S3, . . .) of a type 1 fuzzy subset of U , a type 2
fuzzy subset of U , a type 3 fuzzy subset of U , and so on. However, not
just any such sequence will count as a blurry set: for as yet we have not
mentioned the idea of approximation. In a degree function, the assignments
to longer sequences provide a more detailed approximation (of degree of
membership or truth) than the assignments to shorter sequences: specif-
ically, the link is that the assignments to the sequences 〈a1, . . . , an, x〉
encode a density function of which the assignment to 〈a1, . . . , an〉 is the
centre of mass. Thus, if we are to think of a blurry set as a sequence
of type n fuzzy sets, we will need to impose some restrictions on these
fuzzy sets: for example, for any a ∈ U , we will want it to be the case that∫ 1

0 x(f ◦ S2(a))(x) dx = S1(a).
This is in fact the crucial difference between blurry sets and fuzzy

sets of higher type: I distinguish actual degrees of membership or truth
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(i.e. degree functions) from approximations thereto (i.e. fuzzy degrees),
whereas there is no such conceptual distinction in the higher-type fuzzy
view. The fact that I draw this distinction makes the question of defining
intersection, union and so on for blurry sets (equivalently, of defining the
connectives and so on in blurry semantics) more difficult than the corre-
sponding question for type n fuzzy sets, but on the other hand, it gives my
view a conceptual coherence that the higher-type fuzzy view lacks. I shall
now explain these two claims in more detail.

The set-theoretic operations for fuzzy sets of higher type are defined
using the extension principle.60 Consider a function f : X1×· · ·×Xr →Y ,
with y = f (x1, . . . , xr ), where Y and the Xi are ordinary crisp sets. Given
r ordinary fuzzy sets Si on each of the Xi , the extension principle yields a
fuzzy set S on Y , through f :

S(y) = sup
x1,...,xr :y=f (x1,...,xr )

min(S1(x1), . . . , Sr(xr))

= 0 if f −1(y) = ∅.
Consider a particular case, say conjunction/intersection: for ordinary fuzzy
sets we have an operation ∧ : [0, 1]×[0, 1] → [0, 1]; for type 2 fuzzy sets
we need an operation ∧ : [0, 1][0,1] × [0, 1][0,1] → [0, 1][0,1]; and given the
former, the extension principle yields the latter. Given operations for fuzzy
sets of type 2, the extension principle again yields operations for fuzzy sets
of type 3, and so on.61

If we wanted to apply this method of defining operations to the case of
blurry sets, we would proceed as follows: thinking of a blurry subset Si of
U as an infinite sequence (S1

i , S
2
i , S

3
i , . . .) of a type 1 fuzzy subset of U ,

a type 2 fuzzy subset of U , a type 3 fuzzy subset of U , and so on, we would
define (for example) S1 ∩ S2 as (S1

1 ∩ S1
2 , S

2
1 ∩ S2

2 , S
3
1 ∩ S3

2, . . .), where the
S
j

i ∩ S
j

k are defined using the extension principle. However, this definition
simply does not work! For some particular object a ∈ U , and two arbitrary
blurry subsets S1 and S2 of U , consider the two degree functions S1(a) and
S2(a). I mentioned above that we need to impose some restrictions on the
S
j

i if we are to think of Si as a sequence (S1
i , S

2
i , S

3
i , . . .) of higher-type

fuzzy sets. Let us suppose that we have imposed the appropriate restric-
tions. We now want it to be the case that if S1 and S2 meet the restrictions,
then so does S1 ∩ S2 as just defined. Thus, for example, we have it that∫ 1

0 x(f ◦ S2
1(a))(x) dx = S1

1(a) and
∫ 1

0 x(f ◦ S2
2(a))(x) dx = S1

2(a), and we

want it to be the case that
∫ 1

0 x(f ◦ (S2
1 ∩ S2

2)(a))(x) dx = (S1
1 ∩ S1

2)(a).
The problem is that in general this will not be the case: the definition of
intersection just presented (and the same goes for the analogous definitions
of union and so on) does not respect the new restrictions. For example, if
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there is no x ∈ [0, 1] such that both S2
1(a)(x) > ε and S2

2(a)(x) > ε, for
some sufficiently small ε, then (S2

1 ∩ S2
2)(a)(x) ≤ ε for every x ∈ [0, 1],

and hence does not encode a normalised density function at all, let alone
one whose centre of mass is at (S1

1 ∩ S1
2)(a).

Summing up: with a bit of rejigging (viz., thinking of a blurry set as a
sequence of type n fuzzy sets) we can find some common ground between
my view and higher-type fuzzy views.62 This common ground is very lim-
ited, however: when we come to the issue of connectives and set-theoretic
operations, the views diverge significantly. This divergence can be traced
ultimately to the distinction in my view between actual degrees of mem-
bership/truth, and approximations thereto. Now even if this distinction did
not lead to a divergence at the level of formal details, it would still be very
significant in itself – for the chief problem with type n fuzzy sets is that
they are not sufficiently motivated or explained at the conceptual level.
Before discussing this second point, however, I shall introduce a particular
type 2 fuzzy view, due to Zadeh: the theory of linguistic truth values.63 This
theory faces a problem in connection with the definition of the connectives
that is very similar to the problem discussed in the previous paragraph,
and it also provides a clear example of the conceptual problems associated
with higher-type fuzzy views.

In accordance with (reasonably) standard terminology, I have described
[0, 1]-valued logic as fuzzy logic, and [0, 1][0,1]-valued logic as type 2 fuzzy
logic.64 Zadeh uses a different terminology, according to which [0, 1]-
valued logic is nonfuzzy, and the term ‘fuzzy logic’ is reserved for the
generalisation that Zadeh introduces: “A fuzzy logic, FL, may be viewed,
in part, as a fuzzy extension of a nonfuzzy multi-valued logic which con-
stitutes a base logic for FL. For our purposes, it will be convenient to use
as a base logic for FL the standard Łukasiewicz logic L1 (abbreviated from
LAleph1

) in which the truth-values are real numbers in the interval [0, 1]”
(Zadeh, 1975b, pp. 409–410). The truth-value set of FL is a countable
set T of the form

{true, false, not true, very true, not very true, more or less true, rather
true, not very true and not very false, . . .}

where each element of this set represents a fuzzy subset of the truth-value
set of L1, that is, of [0, 1].65

Given the standard operations of [0, 1]-valued logic, Zadeh defines log-
ical operations in FL by means of the extension principle, as explained
above. Here he runs into a problem similar to that which I would face
were I to think of blurry sets as sequences of type n fuzzy sets, and then
define set-theoretic operations using the extension principle. The problem
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for Zadeh is that if we start with two FL truth values φ and ψ (that is,
two fuzzy subsets of [0, 1] that are named by terms in T ) and apply the
definition of (say) conjunction that the extension principle yields, we will
end up with a fuzzy subset of [0, 1], but it might not be named by any
term in T , in which case it is not an FL truth value.66 Zadeh’s solution
involves the idea of linguistic approximation: if (for example) φ ∧ ψ , as
defined using the extension principle, is not named by any member of T ,
then we approximate it by a linguistic truth value, that is, by a fuzzy subset
of [0, 1] that is named by a member of T . Zadeh notes that in general there
will not be a unique linguistic approximation. This strikes me as serious: it
means that even if sentences ‘A’ and ‘B’ have unique truth values, ‘A and
B’ might not have a unique truth value (which is quite different from its
having an unknown truth value).

Let us now consider the conceptual issues surrounding higher-type
fuzzy sets. At first sight, it seems that many generalisations of ordinary
fuzzy logic are motivated by thoughts similar to those that motivated me:
as Klir and Yuan sum up the situation, “The primary reason for generaliz-
ing ordinary fuzzy sets is that their membership functions are often overly
precise. They require that each element of the universal set be assigned
a particular real number” (Klir and Yuan, 1995, p. 16).67 However this
impression does not survive closer scrutiny; for example, the passage just
quoted continues: “However, for some concepts and contexts in which they
are applied, we may be able to identify appropriate membership functions
only approximately” (Klir and Yuan, 1995, p. 16). Such considerations
about the identification of membership functions are insufficient to moti-
vate a view like mine: rather, they motivate epistemicism (built on fuzzy,
rather than classical foundations). Again, consider the following quotation,
from the first page of a recent article on type 2 fuzzy sets: “Type-2 fuzzy
sets allow us to handle linguistic uncertainties, as typified by the adage
“words can mean different things to different people” ” (Karnik et al.,
1999). Such considerations about variations in meaning from person to
person are likewise insufficient to motivate a view like mine: rather, they
motivate contextualism (built on fuzzy, rather than classical or three-valued
foundations). In general, most writers on generalised fuzzy sets provide
just a line or two concerning motivation: sometimes the phrases used sug-
gest epistemic worries, sometimes worries about context, and sometimes
just a general worry about the restrictiveness of ordinary fuzzy logic. It is,
I believe, fair to sum up the basic motivation of most writers on higher-
type fuzzy sets as follows: “In applications, we are not presented with a
single real number to serve as x’s degree of X: the data are more complex.
We can massage the data to fit the ordinary fuzzy theory, but it would be
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better to have a more complex theory, with more sockets into which to plug
data.” Now most of these writers are engineers and computer scientists, so
this is fine for their purposes and audiences – but it would not be fine
in a philosophical treatment of vagueness. Thus, to at least as great an
extent as the formal differences, what distinguishes my view from exist-
ing generalisations of ordinary fuzzy sets is the effort I have expended to
ensure that the details of my view are well motivated and conceptually
coherent.

This point is most significant when it comes to comparing my view with
the views of those writers on generalised fuzzy sets who do have philo-
sophical goals. Two such writers are Zadeh and Copeland. Zadeh writes:
“approximate reasoning deals, for the most part, with propositions which
are fuzzy rather than precise, e.g., ‘Vera is highly intelligent’, ‘Douglas is
very inventive’, ‘Berkeley is close to San Francisco’, ‘It is very likely that
Jean-Paul will succeed’, etc. Clearly, the fuzzy truth-values of FL are more
commensurate with the fuzziness of such propositions than the numerical
truth-values of L1” (Zadeh, 1975b, p. 416). I think I probably share the
feeling expressed in the last sentence – but it is difficult to say, because the
relationship between the fuzzy truth values of FL and the numerical truth
values of L1 is never elucidated: all we are told is, “The truth-values in T
are referred to as linguistic truth-values in order to differentiate them from
the numerical truth-values of L1” (Zadeh, 1975b, p. 412). We certainly
have a distinction here, but what is the difference which it marks? For-
mally, FL is parasitic on L1, and yet conceptually, the relationship between
them is simply never explained. This is in contrast to my own view, where
fuzzy degrees are taken to be approximations to actual degrees (i.e. degree
functions).68

Copeland discusses a version of higher-type fuzzy logic in which:

With each statement A is associated A’s higher-order profile, written =(A). =(A) is a
subset of [0, 1]× [0, 1] . . . The idea is that each member 〈n, i〉 of =(A) records the degree
i to which it is true that A possesses the value n. I shall call the right-hand members of pairs
in a profile higher-order degrees and the left-hand members primary degrees . . . Where A

definitely has the value n, then 〈n, 1〉 ∈ =(A) . . .

Each =(A) considered so far consists of ordered pairs. Higher-order profiles of this sort
are called two-dimensional . . . A three-dimensional higher-order profile consists of triples
〈n, i, j〉. j is the degree to which it is true that i is the degree to which it is true that the
sentence in question possesses the value n. This process can be continued indefinitely . . . It
is, of course, only the finite cases that are of use to engineers, and how low a dimensionality
one can get away with will depend on the software project in hand. (Copeland, 1997,
pp. 531–532)69

Despite any impression that might be given by the last sentence just quoted,
Copeland’s article is primarily a contribution to philosophy (and indeed
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appeared in The Journal of Philosophy). Thus it would not be a sufficient
defence of his view to say simply that it gives us more sockets into which
to plug numbers. Now Copeland distinguishes higher-order degrees and
primary degrees: but as in Zadeh’s case, all we have here is a distinc-
tion, without any elucidation of the underlying difference. And indeed, if
we consider the issue carefully, we can see that while there is no formal
problem with Copeland’s view, the view does appear to be conceptually
inadequate. Consider the initial, two-dimensional view. The idea might be
that each sentence A has a fuzzy degree of truth (a number in [0, 1]) as well
as a higher-order profile (i.e. the ordinary fuzzy theory is augmented), or
the idea might be that each sentence A just has a higher-order profile (i.e.
the ordinary fuzzy theory is replaced). Textual evidence suggests that the
latter idea is intended, but I am not quite sure, so I shall consider both
options. In the second case, sentence A has a higher-order profile, that
is, a set of ordered pairs of elements of [0, 1]. If one of these pairs is,
say, 〈0.5, 0.8〉, then the idea is supposed to be that the degree to which A

possesses the value 0.5 is 0.8. Now immediately we have a problem: for
sentences do not get assigned fuzzy values, they only have higher-order
profiles; hence the degree to which A possesses the value x is 0, for all x
in [0, 1]. We cannot say that sentences get assigned higher-order profiles,
rather than fuzzy degrees, and then also say that there is some positive
degree of truth to the statement that some sentence has some fuzzy degree!
So what about the first case, in which sentences have fuzzy degrees as well
as higher-order profiles? Well, the situation here is no better. Suppose that
A’s fuzzy degree is d; then something has gone very wrong if A’s higher-
order profile does not consist just of the pairs 〈d, 1〉 and 〈x, 0〉, for every
x �= d. For one cannot say that A’s fuzzy degree is d (rather than x, for
any x �= d), and then also say that it is true to some positive degree that
A’s fuzzy degree is x, for some x �= d!

My view does not face this conceptual problem, because I am care-
ful to distinguish the roles played in my account by fuzzy degrees and
degree functions. The actual truth values that sentences have are degree
functions; in general these are unknown to speakers; they may however be
approximated by assigning fuzzy degrees to sentences. If I say that some
sentence is true to degree 0.5, it is understood that this is an approximation
to its actual truth value; if you say that my statement is true to degree 0.9,
this provides (part of) a more detailed approximation; and so on. Once
we have this idea, we need some constraints governing the relationships
between successive levels of approximation, in order to make good on the
idea that subsequent approximations really are better, or more detailed,
than earlier approximations; this is where the idea of density functions and
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centres of mass comes in. This leads to greater formal complexity in my
view, as compared with type n fuzzy views – but this is a small price to
pay for conceptual coherence, which is something that type n fuzzy views
lack.

15. CONCLUSION

In this paper I have presented a theory of vagueness with the following
features. First, like the fuzzy theory, my theory accommodates vagueness
as characterised in terms of Closeness, but my theory also accommodates
the higher-order vagueness that the fuzzy account cannot accommodate.
Second, by carefully distinguishing actual degrees of membership/truth
(i.e. degree functions) from approximations thereto (i.e. fuzzy degrees),
I am able to accommodate the intuition that for any statement S1 to the
effect that ‘Bob is bald’ is x true, for x in [0, 1], there should be a further
statement S2 which tells us how true S1 is, and so on – that is, I am able
to accommodate higher-order vagueness – without resorting to the claim
that the language in which the semantics of vagueness is presented is itself
vague: rather than a hierarchy of assignments of simple fuzzy truth values,
I employ a single assignment of complex truth values which have an inter-
nal hierarchical structure. Third, my theory does not require us to abandon
the idea that the logic – as opposed to the semantics – of vague discourse
is classical.
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NOTES

1 See for example (Williamson, 1994, p. 127) and (Copeland, 1997, p. 522).
2 I am not drawing an analogy between the content of my view and the content of Man-

delbrot’s view; I am drawing an analogy between the structure of Mandelbrot’s criticism of
the idea that coastlines are Euclidean curves and the structure of my criticism of the fuzzy
account of vagueness. For my purposes, it is quite irrelevant whether Mandelbrot’s view is
correct.

3 I shall sometimes distinguish a set from its characteristic function, and sometimes
identify them – but I trust this will never cause any confusion.

4 A model theory for a standard first-order language, that is – the idea being that what
distinguishes those parts of language which are vague from those parts which are precise
is a matter not of syntax, but of semantics.

5 At this stage, there is no requirement that the curve have a nice shape, as it does in
Figure 2.

6 The intuitive idea here is as follows. Imagine taking the unit interval [0, 1] and bending
it into an arc which constitutes the lower-right quarter of a circle centred on the point a.
Now draw a straight line from a through some point x on the arc (i.e. some point x in
[0, 1]) and down to the horizontal axis. The point on the horizontal axis which this line hits
is the value to which f maps the point x.

7 The general distinction between masses and densities also crops up in probability the-
ory, in the contrast between discrete and continuous probabilities. For another illustration
of the general distinction, suppose one has a number of lead fishing sinkers on a wire.
The sum of all their masses is 1, and the length of the wire is also 1. I can describe the
distribution of mass on the wire by assigning a number to each point on the wire: if the
point is right at the centre of a sinker, this number is the mass of that sinker, and otherwise
it is 0. The sum of all these numbers will be 1. But suppose that I now heat all the sinkers so
that they melt and flow together along the wire. Then I can again describe the distribution
of mass on the wire by assigning a number to each point on the wire: but this time the
numbers will represent densities, not masses, and they will not sum to 1. These numbers
together determine a density function f (x): the mass on any section [a, b] of the wire is∫ b
a f (x) dx, and because the total mass of the sinkers was 1,

∫ 1
0 f (x) dx = 1.

8 It is worth mentioning at this point that instead of bringing in f in order to main-
tain the idea that the area under each density function is 1, we could leave f out of the
picture and just consider f , but stipulate that the ‘unit’ area under each density func-
tion is not 1 but some smaller number, say 0.5. This would make no essential difference
to my view, although it would make the presentation of the material in Section 4 less
straightforward.

9 Thus, which members of F count as Type I (Basic) DF’s depends upon our choice of f

– but obviously, if a DF is to encode something, then whether or not it does so is relative
to the choice of coding method.

10 In general, the centre of mass of a density function f (x) over an interval [a, b] is∫ b
a xf (x) dx/

∫ b
a f (x) dx. Where – as in our case – the denominator is equal to 1, this

reduces to the numerator alone.
11 In these definitions, n ≥ 0. I adopt the terminological convention that in the case

n = 0, 〈x1, . . . , xn〉 = 〈〉 and 〈x1, . . . , xn, k〉 = 〈k〉.
12 c is the cardinality of the set of real numbers.
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13 Each Type I (Continuous) DF is determined by a choice of a number in [0, 1], followed
by a choice of a continuous function f n from the n-dimensional unit cube to [0, 1] for
each positive integer n. In each case there are c things to choose from, so there are c Type I
(Continuous) DF’s. There are 2 Type II DF’s. For each Type I (Continuous) DF f there
are ℵ0 (i.e. natural-number many) corresponding Type III DF’s fn, one for each non-
negative integer n. Thus there are c Type III DF’s. Thus there are c + 2 + c = c DF’s in
total.

14 The first approach is carried through in detail in (Smith, 2001, pp. 189ff.).
15 Note that this terminology concerns vagueness of sentences, not of predicates.
16 If there were such a measure: at this stage I have not said anything about how spread

might be measured. At the moment we are working at a fairly rough, intuitive level; things
will be made more precise below.

17 For a detailed discussion of the distinction between semantic and worldly predicate
vagueness, see (Smith, 2001) and (Rosen and Smith, 2004). Briefly, the idea is that a
predicate ‘F ’ is semantically vague if it fails to pick out a unique property, but rather refers
ambiguously to many properties at once, each of these properties being sharp – that is, such
that any object either possesses the property simpliciter or fails to possess it simpliciter.
A predicate ‘F ’ is vague in the worldly sense if it picks out a unique property, this property
being inherently vague – that is, such that objects need not possess it simpliciter or fail
to possess it simpliciter, but may possess it to intermediate degrees. The standard super-
valuationist account, for example, sees vagueness as a semantic phenomenon, whereas the
standard fuzzy account, for example, sees vagueness as a worldly phenomenon.

18 Distinguish a normal density function (which I am about to explain) from a normalised
density function (the area under the graph of which is equal to 1, as explained above).

19 Fabio has lots of hair and Yul Brynner has none at all.
20 Note carefully that while a normal density function assigns values to all real numbers,

each f ◦ f〈a1,...,an〉 is defined only on [0, 1]. I reiterate this point in order to ward off a
particular misunderstanding. An anonymous referee noted that the normal distribution is
symmetric about its mean, and inferred that if a sentence is 0.1 true to a first approximation,
then on my view it must be the case that at the second level of approximation, both 0.25
and −0.05 are regarded as equally good first approximations, which is absurd. I agree that
this result is absurd: but it is not a consequence of my view. For while N(f ◦ f〈〉) must
assign the same value to −0.05 as it assigns to 0.25, f ◦ f〈〉 does not assign a value to
−0.05 at all. N(f ◦ f〈〉) and f ◦ f〈〉 are extremely similar, but they are not identical: recall

that
∫ 1

0 (f ◦ f〈〉)(x) dx = 1 while
∫ 1

0 (N(f ◦ f〈〉))(x) dx < 1.
21 We could not (in general) require that they have the same standard deviation; this is

why we take π , rather than σ , as our measure of spread.
22 Note that we are simply representing or naming DF’s using sequences of real numbers:

we are not reducing DF’s to sequences of real numbers – DF’s are (still) certain functions
from [0, 1]∗ to [0, 1]; all we are doing now is introducing a convenient way of referring to
each DF.

23 Going in the other direction, f can be completely reconstructed from its correspond-
ing sequence. The first element of the sequence gives the value assigned to 〈〉, which
is the mean of the density function which f〈〉 encodes. The second element gives the
precision of this function, from which we can calculate its standard deviation, hence the
function itself (here, for the sake of simplicity of presentation, I conflate f ◦ f〈a1,...,aj 〉 and
N(f ◦ f〈a1,...,aj 〉)). The values of (the encoded version of) this function give the means of
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the density functions at the next level, and the third member of the sequence gives their
precision, hence their standard deviations – and so on all the way up.

24 Note carefully what has just been done: first we named DF’s using sequences of reals;
then we defined an ordering of DF’s via an ordering of their names (compare asking school
children to line up in alphabetical order: one transfers the alphabetical ordering of their
names onto the students themselves). One consequence of this ordering is that where C is
a sentence with truth value represented by the sequence 〈0.1, 0.9, 0.9, 0.9, . . .〉 and D is a
sentence with truth value represented by the sequence 〈0.1, 0.1, 0.1, . . .〉, C is truer than D,
because although C is precisely as true as D at the first level of approximation, C’s degree
of truth is, overall, less diffuse. An anonymous referee objected here that this lack of dif-
fuseness should not render C truer than D, as “what we are getting precise about is just how
false C really is”. This objection reveals an important misunderstanding, to dispel which
is the purpose of this note. The correct way to interpret C’s DF 〈0.1, 0.9, 0.9, 0.9, . . .〉
is not as a truth value (0.1) followed by a hierarchy of vagueness values. 0.1 is not C’s
truth value! 0.1 is simply a first approximation to C’s degree of truth. First approximations
should not be given a privileged role when it comes to determining the ordering of DF’s:
higher-level approximations (assignments to sequences of length 1 and greater) are just as
much parts of a DF as the first approximation (the assignment to the empty sequence), and
should be given just as big a role when it comes to ordering the DF’s. The entire DF is C’s
truth value – not just the assignment it makes to the empty sequence. To think otherwise is
to abandon my view in favour of another sort of generalisation of fuzzy logic: a sort which
I shall criticise in Section 14.

25 We shall see in Section 7 that where f is the truth value of the sentence C, f ′ is the
truth value of the sentence ¬C. Given this, it follows from the definition of ′ just given that
if the degree of truth of C is very diffuse, then the degree of truth of ¬C is very localised.
An anonymous referee objected here that this seems wrong, and suggested that we should
define the negation of 〈f1, f2, f3, . . .〉 as 〈f ′

1, f2, f3, . . .〉. I disagree. For a start, given
the latter definition, it would not be the case that if f ≤ g, then g′ ≤ f ′, which is very
undesirable. More importantly, the objection once again (cf. footnote 24) privileges the
first level of approximation: the negation of C should be bad in respect of truth in every
way in which C is good in respect of truth – and while having a low first approximation is
indeed bad, so is being diffuse.

26 The two conditions for an involution are that for all f and g in DF, (i) (f ′)′ = f

and (ii) f ≤ g ⇒ g′ ≤ f ′. (i) is just 14. Note that in (ii), with regard to the ordering ≤,
f ≤ g ⇔ f ∧ g = f ⇔ f ∨ g = g. So we show that f ∨ g = g ⇒ g′ ∧ f ′ = g′. If
f ∨ g = g then (f ∨ g)′ = g′; by 12, (f ∨ g)′ = f ′ ∧ g′, and by 5, f ′ ∧ g′ = g′ ∧ f ′, so
g′ ∧ f ′ = g′.

27 This is just the standard notion of identity for functions.
28 Proof. (Condition 1:) For arbitrary u ∈ U , S(u) = f ∈ DF. Either f = F, or f �= F.

Former case: S∗(u) = T. F ∧ T = F. So (S ∩ S∗)(u) = F. Latter case: S∗(u) = F. For
any f ∈ DF, F ∧ f = F. So (S ∩ S∗)(u) = F. Thus ∀u ∈ U, (S ∩ S∗)(u) = F, i.e.
S ∩ S∗ = ∅v . (Condition 2:) We need to show that S2 ∩ S∗1 = S2 ⇔ S1 ∩ S2 = ∅v. (⇒:)
∀u ∈ U, (S2 ∩ S∗1 )(u) = S2(u) ∧ S∗1 (u) = S2(u). Case (i): S∗1 (u) = F. Then S2(u) = F
also, because S2(u)∧S∗1 (u) = S2(u). Thus S1(u)∧S2(u) = F. Case (ii): S∗1 (u) = T. Then
S1(u) = F. Thus S1(u) ∧ S2(u) = F. So in all cases, S1(u) ∧ S2(u) = F. So in all cases,
(S1∩S2)(u) = F; i.e. S1∩S2 = ∅v . (⇐:) ∀u ∈ U, (S1∩S2)(u) = S1(u)∧S2(u) = F. Case
(i): S1(u) = F. Then S∗1 (u) = T, hence S2(u)∧S∗1 (u) = S2(u). Case (ii): S1(u) �= F. Then
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S∗1 (u) = F, hence S2(u) ∧ S∗1 (u) = F. But also S2(u) = F, because S1(u) ∧ S2(u) = F
and S1(u) �= F. So in all cases, S2(u) ∧ S∗1 (u) = S2(u), hence S2 ∩ S∗1 = S2.

29 Note that the treatment of the case fx(〈〉) = 0.5 is arbitrary.
30 Note that the result does not hold if we replace < 0.5 with ≤ 0.5, or > 0.5 with ≥ 0.5:

for if 〈¬A〉M = 0.5, then 〈A〉M = 0.5, but on the corresponding classical interpreta-
tion Mc , only one of A and ¬A can be true.

31 Recall that the De Morgan laws hold in the algebra of degree functions, and note that
if an algebra satisfies the conditions set out in Section 5, then the following generalised De
Morgan laws also hold: (

∨{fi})′ =
∧{f ′

i } and (
∧{fi})′ =

∨{f ′
i }.

32 For details, see for example (Keefe, 2000, pp. 175–176).
33 (a) An anonymous referee objected here that for soundness to be useful, it only needs

to be the case that we can tell to a pretty good approximation whether it is satisfied in
a particular case, and that this requirement is compatible with having DF’s in all their
complexity figure in the definition of soundness. I agree that for soundness to be useful,
it only needs to be the case that we can tell to a pretty good approximation whether it
is satisfied in a particular case (this is exactly the situation according to my own view:
supposing a sentence has a DF as its truth value, we can in general tell what this DF assigns
to the empty sequence only to a pretty good approximation; we cannot in general know
exactly which value it assigns), but I deny precisely that this is compatible with having
DF’s in all their complexity figure in the definition of soundness: supposing a sentence has
a DF as its truth value, in general we have no idea at all what this DF is like beyond the first
couple of levels (what does it assign to sequences of length 100, or 1,000, or 1,000,000? –
in general, no-one has the slightest idea).

(b) The reader may be wondering why I insisted that first approximations should not
be given a privileged role when it comes to determining the ordering of DF’s (see foot-
note 24), and yet now I assert that they should be given a privileged role in the definition of
validity and soundness. The two cases are fundamentally different and there is no reason to
think they should be treated similarly: earlier we were concerned solely with relationships
between DF’s; now we are also concerned with relationships between the sentences we use
and their DF’s.

34 Interesting issues in philosophy of language arise here, but I cannot take them up in
this paper. In case these issues have occurred to the reader, however, I should point out that
what I have just said is quite compatible with the view that even before Cantor’s work, the
extensions of the terms ‘has fewer elements’, ‘equinumerous’, and so on, were completely
fixed, even amongst infinite sets, and that Cantor did not make it true that there are the
same number of even positive integers as positive integers, and would indeed have said
something false had he denied this.

35 Again, this is not to say that we could not make an incorrect choice: the greater
usefulness of one choice may simply be evidence of its correctness.

36 Tautologies are the sentences that have the tautology property on every interpretation.
37 If ' |=v A and ?,A |=v B then by Theorem 1, ' |= A and ?,A |= B, whence

',? |= B and hence by Theorem 1, ',? |=v B.
38 If the parties to the discourse are epistemicists, then the statement is not odd at all. I am

assuming however that the parties to the discourse are ordinary speakers, whose intuitions
about vagueness are captured by the Closeness characterisation. For discussion of this point
see (Smith, 2001, §2.1).



232 NICHOLAS J. J. SMITH

39 This would indicate that the real source of the intuition that the former is true to a high
degree is understanding ‘If Bob is bald, then Bill is bald’ as meaning that if one were to
stipulate a sharp boundary for ‘bald’, and it enclosed Bob, then it must enclose Bill also.

40 Although the Sorites paradox is traditionally presented in a form that involves condi-
tionals, this is in no way essential.

41 If 〈B〉 ≥ 0.5, then 〈A → B〉 = 〈¬A ∨ B〉 ≥ 0.5. If 〈B〉 < 0.5, then 〈A〉 < 0.5, so
〈¬A〉 > 0.5, so 〈A → B〉 = 〈¬A ∨ B〉 > 0.5.

42 See (Kleene, 1952, p. 334).
43 Here we see that we could not extend the original valuation scheme by analogy with

Kleene’s strong three-valued logic (Kleene, 1952, p. 334). Suppose [A∨B]M = f . Then
on the strong extension, it could not be that [A]M = ∗ and [B]M = ∗, but one of them
might have value ∗, and the other have value f . The ∗ value need not be preserved in
M′; indeed it might be replaced by a value g �= f such that f ∨ g = g, in which case
[A ∨ B]M′ = g, and monotonicity is lost.

44 See (Visser, 1989, p. 656).
45 In future I will leave it to the reader to sort out the different meanings of ‘≤’: this will

not be hard, as in each context there will be only one thing that it sensibly can mean.
46 See (Visser, 1989, p. 657, Lemma 2.7(iii)).
47 The following three proofs are based on (Barker, 1998, pp. 17–18), who cites (Visser,

1989).
48 Note that in the semantics just presented, certain paradoxical sentences such as the

following, which is the referent of the name ‘a’

¬TTa

get the value ∗. Now intuitively, a says that it has a value other than T, and ∗ is a value other
than T, so shouldn’t a have the value T? To discuss this question, and all the further ques-
tions that the discussion would raise, would be to discuss the paradoxes of self-reference,
and such a discussion is well beyond the scope of this paper. My attitude in the present
section is that I simply do not care about paradoxical sentences such as the Liar. My aim
was to show that we can make good on the intuition that when I say that Bob is bald to
degree 0.7, this is just an approximation, and you might well say that my statement is true
to degree 0.8 – and someone might say that your statement is true to degree 0.4, and so
on. This intuition concerns the interrelation of non-pathological truth-talk and vague talk;
what happens when we also mix in self-reference is another question altogether. If I were
concerned with the latter question, I would need to consider other strategies for dealing
with truth-talk, apart from Kripke’s; for my purposes, however, there is no reason to look
further than Kripke’s construction: it may not provide the best account of the Liar paradox,
but it does provide a good basis for the demonstration that ditto, approximate and definite
truth predicates may consistently be introduced into the formal system presented in this
paper, in such a way that they behave exactly as we want them to (in non-self-referential
contexts – which is the sort of context we had in mind).

49 See (Williamson, 1994, §7.2) and (Williamson, 1992).
50 In fact Williamson is not exclusively concerned with many-valued semantics – his

target is broader. As an advocate of many-valued semantics, however, this is how his
argument strikes me.

51 For discussion of this issue see (Smith, 2001, §2.7) and (Smith, 2003), where I argue
that the supervaluationists’ argument from penumbral connection against the fuzzy view
gets things precisely the wrong way around. Contra the supervaluationist, if (for example)
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x is a point on the rainbow midway between red and orange, ordinary speakers have exactly
the same sort of hedging response to the claims ‘x is red and x is orange’ and ‘x is red or
x is orange’ as they have to the claims ‘x is red’ and ‘x is orange’.

52 That is, if they have a truth value (i.e. a value other than ∗) at all.
53 See (Smith, 2001, §3.7) for references to expressions of this intuition in the literature.
54 See (Smith, 2001, §§3.6.3, 3.8.2) and (Smith, 2003) for discussion of the issue of

vague versus non-vague theories of vagueness.
55 I also assume that the binary predicate ‘R’ is precise: if a is not the immediate prede-

cessor of b, then ‘aRb’ is true to degree F (even if a is, say, the immediate predecessor of
the immediate predecessor of b).

56 See footnote 51.
57 See footnote 17.
58 The term ‘correct interpretation’ is due to (Islam, 1996). I prefer Islam’s term to the

term ‘intended interpretation’ because it does not give the impression that it must be the
speaker’s intentions that single out the privileged interpretation.

59 Fuzzy sets of type n were introduced by Zadeh (1975a), and studied (in most cases
only up to type 2) by (amongst others) Mizumoto and Tanaka (1976a, 1976b, 1981),
Nieminen (1977), Yager (1980, 1984) and Hisdal (1981). Recently there has been renewed
interest in type 2 fuzzy sets – in particular in their applications: see for example (John,
1998; Karnik et al., 1999) and (Liang and Mendel, 2000) (and references therein). In the
philosophical literature, (Copeland, 1997) discusses fuzzy sets of higher type in relation to
the question of the semantics of ‘definitely’ and ‘indefinitely’ operators.

60 This principle is introduced in (Zadeh, 1975a, pp. 236ff); it is also presented in (Zadeh,
1975b, pp. 416–420). It is discussed in most textbooks on fuzzy logic, for example (Dubois
and Prade, 1980, pp. 36ff; Klir and Yuan, 1995, pp. 44–48) and (Nguyen and Walker, 2000,
p. 30). I follow the formulation in (Dubois and Prade, 1980, p. 37).

61 This is the standard way of defining higher-type fuzzy operations, but in fact it is not
the only possible way. Zadeh (1975a, 1975b) and Mizumoto and Tanaka (1976b) use the
method just outlined; Hisdal (1981) presents an alternative method.

62 As far as I am aware, no-one in the literature has considered sequences of type n fuzzy
sets, let alone the restrictions on these sequences that would be needed to get something
approaching my view.

63 The main sources are (Zadeh, 1975a, 1975b).
64 In fact I have written only of type 2 fuzzy sets, but I trust that the extension of the

terminology to logics is obvious.
65 Here we see that Zadeh’s terminology is somewhat unfortunate: he means by ‘fuzzy

subset of [0, 1]’ a function from [0, 1] to [0, 1], and yet he withholds the term ‘fuzzy’ from
[0, 1]-valued logic.

66 Recall that T is countable, while there are uncountably many fuzzy subsets of [0, 1].
67 Cf. Klir and Folger, as quoted by John in his article on type 2 fuzzy sets: “it may

seem problematical, if not paradoxical, that a representation of fuzziness is made using
membership grades that are themselves precise real numbers” (John, 1998, p. 563).

68 Note that Zadeh’s idea of linguistic approximation of fuzzy subsets of [0, 1] by mem-
bers of T is completely unrelated to the sort of approximation just mentioned.

69 Fine (1975, pp. 144–145) sketches a related construction within the context of three-
valued logic.
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