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Arithmetic Analogues of McAloon's Unique Rosser Sentences

C. Smorynski

It is always annoying to read what someone else has to say about one's papers. The

writer-- usually a reviewer-- inevitably picks out some small point of tangential interest and

expands on it. Such is what I intend to do to McAloon 1975 here: McAloon prefaces his

paper with an abstract which does not even mention the result on which I, perversely enough,

wish to focus. This result, as is so subtly hinted in the title of the present note, is the

uniqueness of a certain kind of Rosser sentence for ZF.

Rosser's original sentence is easily described. Let Prov(x,y) express "x proves y

(or, more precisely: the derivation coded by x proves the formula coded by y The Rosser

sentence is then any sentence (p provably satisfying

cp * Vx(Prov(x,rcpt) --, 3y <x Prov(y,

A variant of this using the weak inequality in place of the strict one,

cp H Vx(Prov(x,rcpt) - 2y <_ xProv(y, r...cpl)) , (2)

is equivalent for the usual encodings because any derivation proves only one formula.

McAloon obtains his Rosseresque sentences for set theory by stepping temporarily into

an infinitary language, or, if one prefers, into a hierarchy of such languages. Specifically, for

any admissible ordinal a, let ZFa, be the formulation of ZF in the admissible language of the

set La with additional axioms,

Vx(x E a H Wb Ea x= b), a E Lo.

There is a finitary formula Prov °°(x,y) asserting "x is an admissible ordinal and ZFx proves

y ". For this formula, McAloon considers sentences cp satisfying,

ZFi- (p H Vu(Prov °°(a, rcpt) -4 Prov °°(a, (3)

Observing that sentences (p satisfy (3) iff they satisfy

ZFi- cp H Vo(Prov °°(oc, rcpi) -4 2(3 < a Prov °°(j3, r,cpi)), (4)

we see that such sentences cp are indeed analogues to Rosser sentences of the form (2). Using

the well-ordering of the ordinals, McAloon proved the uniqueness up to ZF-provability of
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sentences satisfying (3). This result can also be proven by appeal to Lob's Theorem-- itself a

well-foundedness result of sorts-- using the method of section 1, below.

The main goal of the present note is not to give a new proof of McAloon's result, but to

attempt to mirror this result in arithmetic. By "arithmetic" I shall initially mean primitive

recursive arithmetic, PRA, formulated in the language of ordinary arithmetic with El-

induction. Eventually, I shall mean Peano arithmetic, PA. In place of PRA and PA, one

could take any pair T S T' of ne. extensions of PRA of sufficient difference in strength. For

the sake of definiteness, however, I shall stick to PRA and PA.

The "arithmetisation" of McAloon's construction is immediately suggested by rewriting

Prov °°((x,rcp1) as PrZF F(p1). Formula (4) becomes

ZFF- (p H `da[PrZF rcp') - 3 R <_ a PrZF, (r-,cps) ]. (5)

To obtain arithmetical McAloon-Rosser sentences, I simply replace the hierarchy of admissible

set theories,
ZF = ZFw s ZF(O1CK s ... s Ua Z Fa,

by a recursively enumerable "hierarchy" of arithmetic theories,

PRA STo S T1 g...5 UnE wTn

Thus, we get
PRAT- cp H Vx [PrTx( V) -> 3y <_ x PrTy( (6)

as an analogue to (5), whence to (4) and, eventually, (3). Recalling the strict inequality of the

original Rosser sentence (1), we have a second analogue,

PRAT (p H Vx [PrTx( rcpt) -4 3y < x PrTy( (7)

to an unstated set theoretic companion to (5). Under some minimal restraints on the sequence

{Tn In E co, both (6) and (7) have fixed points unique up to PRA-provable equivalence. I

shall prove this in section 1, below.

Sections 2 and 3 are devoted to a more general question: If we let T = U n E co Tw

then formulae satisfying (6) and (7) are presumably Rosseresque sentences for T, not for

PRA. If we relax (6) and (7) to
Ti- cp H b'x [PrT ( r(pt) -4 3y 5 x PrTy( (8)

X
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and TF- cp H Vx [Prix( 3y <x PrTy( (9)

respectively, do we have uniqueness up to equivalence provable in T of each of the two fixed

points? I will prove in section 2 that, if the sequence [Tn)nE w grows sufficiently rapidly in

strength, then the answer is yes. In particular, both types of fixed points are PA-unique for

Tn = PRA + En+1-Induction.

In section 3, I give a rather feeble counterexample if no growth requirement is made. In section

4, I prove uniqueness (and explicit definability) under a strong non-growth requirement.

The uniqueness proofs for (6) and (7) in section 1 are nearly identical, and the proofs

for (8) and (9) in section 2 are still quite similar. Unlike the situation regarding (1) and (2),

sentences satisfying (6) and (7) need not be equivalent and both cases must be checked.

Indeed, for the generality in which I have described (6) and (7), a divergence of behaviour is

readily demonstrated. This is done in the latter part of section 4, where I contrast "Henkin

sentences" for the strong non-growth case. The non-uniqueness of such sentences under

minimal growth is also observed.

Finally, in section 5, I take a look at the main results of McAloon's paper and prove

analogues of them. These analogues demonstrate more readily the possible arithmetic interest

of the McAloon-Rosser sentences, an interest obscured by sections 1 - 4 with their almost

paedagogical emphasis on illustrating the non-uniqueness of the notion of uniqueness of fixed

points.

Before getting down to business, let me introduce two abbreviations that will be useful

in the sequel:

MPr(z) : 3x [PrTx(z) ,. Vy <_ x -PrT (neg(z)) ]
Y

MPr'(z) : 3x [PrTx(z) ., Vy < x PrTy (neg(z)) ],

where

neg( rcpt) _ I-q,

for all formulae cp. Using these abbreviations, the McAloon-Rosser sentences of (6) and (8)

and of (7) and (9) can be written simply as,

cp H rq) - (10)
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and cp H -1MPr(

respectively.

1. Preliminary Uniqueness Results

Currently, the most general tool for proving the uniqueness of self-referential sentences

is the modal uniqueness theorem for my system SR-:

1. 1. Definition. SR- is the system of bimodal logic with language, axioms, and rules of

inference as follows:

Language.

Propositional variables: p, q, r, ...

Truth values: T, i

Propositional connectives:

Modal Operators: , V.

Axioms.

Al. All boolean tautologies

A2. A

A3. A -* A
A4. A) - A
A5. (A

Rules.

R1. A,A-*B/ B

R2. A / A.
To state the necessary uniqueness result, let abbreviate A A for modal

formulae A.

The following result was proven as Theorem 4. 1.8 in Smorynski 1985 for a slightly

stronger theory SR. The additional axiom schema of SR is, however, not used in the proof.

1.2. Modal Uniqueness Theorem.

SR-t- s (q H v q) -* (p H q).(p H vp) 0
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The application of this theorem in a specific self-referential context is given first by

choosing an r.e. theory T containing PRA and then interpreting by PrT( ). This will

guarantee the validity of axiom schemata A2 - A4 and closure under R2, the truth of Al and

closure under R1 coming for free. If one now interprets v by a formula p(x) which satisfies,

Tf- PrT( r(p H yr) -->.p( r(p1) E-> p( r }), (*)

for all sentences (p, yr, then schema A5 will also be valid. A formula p(x) for which (*) holds

will be called T-substitutable .

1.3. Arithmetic Uniqueness Theorem. Let T be an r.e. theory containing PRA, and let p(x)

be T- substitutable. If (p, yr are sentences satisfying,

TE- (p t * p( r(pi) and Ti- yr t- p(

then T - (p H yr.

The proof is very simple: The hypotheses and derivability conditions on PrT( ) yield,

TE- ((p H p( PrT( r(p H p( t(P1)) 1)

TF- (yrHp(r i ) ) ,. PrT( Ayr - p( rV) 1).

Interpreting Theorem 1.2 in T, we have

Tf- these things -4 ((p H yr),

whence T f- (p H yr.

Theorem 1.3 is and is not the most general result one can state. If p(x) is T-
i

substitutable, then -, p(x) , p( rp(x)1) , etc. have unique fixed points as well, and Theorem 1.3

doesn't state this. However, if p(x) is T- substitutable, then so are , p(x) , p( rp(x) 1) , etc.,

whence Theorem 1.3 yields this uniqueness. I refer the reader to Theorem 4.1.8 of Smorynski

1985 for a discussion of the generality of the result; in the present note I wish only to consider

a few specific T-substitutable formulae p(x) .

In fact, the formulae p(x) I wish to consider are -MPr(x) and .MPr'(x), the fixed

points of which are the arithmetic versions of McAloon's Rosser sentences. The uniqueness

proof applies equally well to McAloon's original set theoretic sentences, but I shall only prove

the uniqueness of the arithmetic analogues. In fact, since the proofs for the two types of

sentences are virtually identical, I shall only give the details in the one case.
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Perhaps the most interesting thing about the result is how little has to be assumed about

the sequence { Tn) nE co,

1.4. Theorem. Let To, TI, ... be an r.e. sequence of theories containing PRA-- provably so

in PRA:
PRAT Vx [PrPRA( rxi) -->PrTx (r7Ci)1,

for all sentences X. Then: PRA-provable fixed points of -.MPr( x) and -.MPr( x) are

unique, i.e.

(*)

i. if cp, Nt are sentences such that

PRAT- cp H MPr( r(pi) and PRAT yJ H MPr( rV)

then PRAT cp - yr;

and ii. if cp, yr are sentences such that

PRAt- cp H -,MPr'( rcpt) and PRAF- yr > ,MPr'( rV) ,

then PRA- cp t-* V.

Proof: I handle the case of ,MPr(x) . It suffices, by Theorem 1.3, to prove the PRA-

substitutability of -,MPr(x) . Let 0, x be any two sentences and observe:

PRAT- PrPRA( rg H x1) - VxPrTx( r8 )0) , by (*)

t- PrPRA( re E--j )0) -4 Vx [PrTx( MR)) H PrTx( r)i )) ],

by the derivability conditions, whence pure logic yields

PRAT- PrPRA( rA H Vx [PrTx( rOl) ,. Vy <_ x -iPrTy( r9i)

H PrTx( fly 5 x ,PrTy( Y)) ]

- Prp p ( r8 t-3 x1) -- [MPr( rOi) t- MPr( r)0)) ]

t- Prpp ( r8 H x') -.,MPr( rei) H -iMPr( r)i)) . QED

2. A Second Look at Uniqueness
As remarked in the introduction, if the sequence { Tn } nE (o forms a chain,

PRA s To S T1 5 ... S U n E co rn = T,

then the McAloon-Rosser sentences are sentences about T and it is the T-provable uniqueness

of such sentences that would be nice to have. Stated in such generality, such uniqueness is not

always possible. However, under some simple conditions on the sequence {Tn}nE co, the

6
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stronger uniqueness result obtains. First, there is the condition that the Tn s provably contain

enough arithmetic:

PRAT- Vx [PrpRA( r)l) -PrTx (rYl) ], (1)

for all sentences X. Second, there is the condition that the Tn's provably form a chain:

PRAM- Vxy [x<y -4 (PrTx(r)l) _PrTy (rx')) ], (2)

for all sentences X. Finally, there is a condition asserting that the Tn's grow in strength:

dk 2nk Vn > nk (Tn+liRfn Ik U Ijk`(Tn )), (3)

where Rfn r (Tn ) is the restriction of the local reflexion schema for Tn to sentences x E I':

PrTn (r)o) --> x.

Note that these conditions do not include the formalisation of (3) in PRA or the provability

within PRA that T is the union of the sequence. Such formalisations are only necessary if one

wishes to prove the uniqueness results within PRA.

Before proving the uniqueness theorems, let me quickly note that these conditions are

satisfied by the sequence

Tn = PRA + In+1-Induction,

and even by the extremely short sequence,

To= PRA, T1 = PA,

(where we take nk = 0 -- provided we agree to allow finite sequences at all, which will be

done in the next section).

2.1. Theorem. Let TD s T1 s ... be an r.e. sequence of consistent theories containing

PRA and satisfying (1) - (3), and let T = U n E co Tn. Then:

i. if (p, 4r are sentences such that

Ti- cp t> -MPr( r p1) and T F- yr H -1MPr(r

;then Ti- p - ;

and ii. if cp, jr tare sentences such that

T F- cp MP r( rcpt) and T r yr > -.MP r(

then Tt- < - - > V.

Proof: i. First, let Ti-- cp H -MPr( rcpt) .

7
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Let n be large enough so that Tn proves this equivalence, and also assume n >nk

where cp E Ek . Observe

TnF- cp t-4 b'x [PrTx( rcpt) -4 3y <_ xPrTy( ;cpl) ]

t- cp H Vx [PrTx( rcpt) -4 PrTx( by (2).

The universally quantified assertion in (4) splits into two conjuncts,

\k<n [PrTk( rcpt) - PrTk(

pn( rcpi) : Vx >_ n [PrTx( rqi) --4 PrTx(`r- p1) ].

I claim that (a) is derivable in Tn. For k < n ,

TnF- PrTk( rcpt) -4 (p, by reflexion

PrTk( rcpt) --> [PrTk( rcpt) -4 PrTk( since (p -), ((x)

PrTk( rcpt) -4 PrTk( r 1(f)1)

F- (a).

It follows that,

Ti- ntp H -pn( rcpi) ,

for pn( x) defined as in ((3).

Suppose now that TF- tjr H MPr( rWi) . By the same reasoning,

TnF- yr H , pn( rWi) for all sufficiently large n . In particular, cp and yr are Tn-provably

fixed points of pn(x) for some n . But pn(x) is clearly Tn-substitutable, whence

(4)

(a)

((3)

Tn F- (p -

ii. This proof follows the same lines, but is a bit more complicated. If

T F- cp H ,MPr'( rcpt) , then for sufficiently large n,

TnF- cp <-4 Vx [PrTx( r(p') - 3y <x PrTy( r, (P')] (5)

The quantified expression in (5) is equivalent to the conjunction of four sentences:

-1PrT0( r(Pl) ((X)

A1\0<k<n [PrTk( rcpt) 3y < k PrTy(f ,c l) ] ((3)

PrTn (rcpt) -3y <

n [PrTx( 3y < x PrTy( r,(P') ] (S)

This time the claim is that ((x) and ((3) are provable in Tn and that (y) and (8) can be simplified.

8
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Ad (a): Observe,
'TnF- Pry0( f(pl) - (p

F- PrT0( rcpt) -,PrT0( rcpt) , since cp - (a)

F- PrTO( rcpt) .

Ad ((3): Start again with reflexion for 0 < k < n :

Tni- PrTk( rcpt) - (p

F- PrTk( r(pl) - [PrTk( C(pl) --> 2y < k PrTY(

PrTk( 2y < k PrT ( r,(pl)
Y

r-.(p') ], since (p -> ((3)

F- (R)

Ad (y): Using reflexion one more time, we have

Tni- 2y < n PrT _cp
Y

(y) --> [PrTn( r()) -,(p]

F- (p -> [PrTn( r(pt) -4 ,(p] ^ (6), since (p --> (y) ^ (6)

F- (p -> -IPrTn( C(pl) , (6).

Conversely,
Tni- PrTn( r(pl) . (6) - [PrTn (r(pl) -4 3y < n PrTy(

F- -,PrTn( (P1) ^ (6) (y) ^ (6)

-,PrTn( rcpt) .. (6) -* (p, / since (y) ^ (6) (p.

Thus,
Tni- (p H PrTn( rql) .. (6).

Ad (6): By (2),
Tni- vx > n [3y < xPrTy( r,(pl) * 3y < x( n < y ^ PrTy( r_(q)) ].

Thus,
Tn F- (6) H \/x > n [PrTx (f(pl) -* By < x( n -< y ^ PrTy( r,(Pl) ]

Using (6) and (7), we see

Tni- (p H --,pn'( fcpl) ,

where

pn'( W) : PrTn( B(pi) ,. \x > n [PrTx (r(pl) - 3y < x(n <_ y .. PrTy(f C(pl) ]

(6)

(7)

9
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Now pn'(x) is again clearly Tri substitutable and the uniqueness of (p is readily established.

QED

2.2. Remark. Since -MPr( rcpt) and ,MPr( rcpt) are f12 , and since reflexion is only applied

to cp and cp in the proof of Theorem 2. 1, it is tempting to weaken (3) to

3n0 Vn >_ no (T n+1F-Rfn Z2 u I12 (Tn ))-

However, the proof that cp is f12 may not be available in the early theories Tn to which

reflexion is applied. If we make this weakening, the proof given will, thus, only prove the

uniqueness of fixed points in E2 U 172 .

3. Non-uniqueness; A Counterexample

A positive result is no good unless it is set off by a counterexample showing it to be

best possible. Alas, I can only show that some growth condition like (3) of the previous

section is necessary for the validity of Theorem 2.1. My counterexample may be viewed as a

rather artificial construction of a sequence TO s T1 s ... which stops growing, or as a good

example of a finite sequence TO S Tl with a minimal, but insufficient, growth throughout its

short length.

3.1. Counterexample. Let TO = PRA (or any E1-sound r.e. extension thereof) and T1= TO

+ ConTo . There are sentences cp,V such that

i. Tp- cp H MPr( and T1H V H ryi )

ii. T cp H -MPr( rcpt) and TIF- -V H -.MPr( rV) ,

and yet

iii. T ly` cp " V.

The proof is a simple application of Solovay's Second Completeness Theorem. In

applying this Theorem, I follow my exposition in Smorynski 1985, Chapter III, section 2, in
matters of notation. One tiny exception is this: I abbreviate o(,ol -4 A) (i.e. PrT1( rA 1) )

by VA. In any Kripke model, one will have

a iF- VA iff VP > a ((3 not terminal = R iF- A ).

The modal counterpart to cp H --MPr( rcpt) is the formula,

p &-(op --> o-.P) - (VP -V -P)

10



The assertion of its provability in T1 reads,

v [P H -4 -P) ,. (V p - v -°p) ] .

The modal counterpart to cp H -.MPr( r(pi) and the assertion of its provability in T1 read,

p H VP -) -.p)

and V [p H (Vp -4 ,p) ],

respectively.

By Solovay's Second Completeness Theorem, we can establish Theorem 3.1 by

constructing a Kripke model K = (K,<,(x0 ,iF-) of the provability logic PrL satisfying:

fixed oint assertions

(X0 iF- v [p H -4 -.p) ,. (vP -- V P) ]

(x0 iF- V[q H -4 ^q) ,(Vq-v-.q)]
a0 W- V [P > MP (Vp - ,P) ]
a0 i1-- V [q t-> q ,. (V q -* -q) ]

unpr vabilit of the equivalence

a0 iF- ,v(P H q)

instances of reflexion

a0 iF- v [fixed point assertions] fixed point assertions)

a0 if- p - p , a0 iH q -> q , a0 iF- --.p , a0 IF- -,q --> -.q

(x0 IF- Vp -4 o.i. --4 p) , a0 iF- Vq -4 (- o -L ---> q)

a0 iF- V (p -> q) -> (, i ---> (p -> q))

The following model does all of this:

(5)

(6)

(7)

(8)

(9)

11
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Y o

0o

For convenience I have circled the nodes at which i is forced.

To' verify (1), observe that jai ii- vA for any A . In particular, Pi it- Vp -4 V -.p and

v q -- v -.q . Moreover,

Ro ii- p and 00 iF- p -* ,p (since Rp ii-- a,p ),

whence

Ro IF- p H -P) ^ (VP ---) V -.P) .

On the other hand,

P1 n- p and al o-- (since j31 ii- p ^

whence

(31 if- p H -,P) ^ (VP -4 V ,P)

Hence (1) holds.

Assertion (2) holds by a symmetric argument, and (3), (4) hold by similar arguments.

Skipping ahead, note that (7) and (8) hold since

ap!
For precisely this reason, we also have

as - (VP - v -.P)

ap ii- (vq -> v,q)

etc.

But, as ° o ii- p,q , we have c o it- p H (op -4 ,p) ^ (Vp - V p) , etc., whence (6)

also holds.

12
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Finally, (5) holds since Pi yz p H q , and (9) holds since a0 iF- p H q . This

completes the proof of Counterexample 3.1.

The construction given readily extends to any finite iteration of consistency statements.

The real question is the following.

3.2. Open Problem. Define the sequence To s T1 s ... by

To = PRA

Tn+j = Tn + ConT .

n

Let T be the union of this sequence. Are the T-provably McAloon-Rosser sentences for this

sequence T-provably unique?

4. The Uniqueness Question for Sequences of Constrained Growth

There is another case besides that of strong growth given in section 2 in which

uniqueness can be established. This is the case in which the sequence To S T1 S ...

provably does not grow in proof theoretic strength. That is, in addition to some normalising

conditions,
PRA- Vx [PrPRA( rxl) -+PrTx (Y) ], (1)

PRAM b'x y [x < y - (PrTT (rxl) -)PrTy (Y) )l , (2)

and PRAT PrT ( Y) - 3xPrT (Y) , (3)X

for all sentences x, we assume

PRAF- Vx (ConTx - ConTx+l)
' (4)

Assertion (3) is a new normality condition asserting T to be the union of the Tn's. Using (2)

and (3), (4) readily yields
PRAt- Vx (ConT

x
t-> ConT) (4')

A trivial example of a sequence satisfying these conditions is the constant sequence,

To = Tg = ... = U n r= co Tn = IPA.

A less trivial example is given by

To = PRA

Tn+ll = Tn + Rosser(Tn),

13
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where, by "Rosser(Tn)", I mean a genuine Rosser sentence for Tn as given by formula (1) or

(2) of the introduction, above.

4.1. Theorem. Let TD c Tl s ... be an r.e. sequence of consistent theories containing

PRA, let T = U n e co Tn, and assume (1) - (4) are satisfied. Then: For any sentence (p,

i. if Tt- cp H _.MPr( rcpt) , then Ti-- cp t-4 ConT -4 ConT+ConT

and ii. if Tt- cp - _.MPr( rcpi) , then Ti- cp H ConT .

This theorem and a second one follow readily from the following lemma.

4.2. Lemma. Let TO s Tl s ... be an r.e. sequence of consistent theories containing

PRA, let T = U n co Tn, and assume (1) - (4) are satisfied. Then: For any sentence cp,

i. T - MPr( rep1) H PrT( reply .. ConT

ii. T i- MPr'( rcpt) H PrT( rcpt) .

Proof: i. Observe,
Tt- MPr( rcpt) H 3x [PrTx( rtpi) -IPrTx(

- MPr( reply H 3x [PrTx( rcpt) .. ConTx ]

- MPr( reply E-* Bx [PrTx( rcpi) .. ConT ], by (4')

t- MPr( rcpt) H PrT( rcpi) .. ConT .

ii. Observe,
Tt- MPr( rcpt) H Bx [PrTx( reply .. Vy < x -,PrTy( r.cp1 )]

i- MPr( rcpi) H PrTO( reply s Bx > 0 [PrTx( reply .. Vy <x -PrTY( roc 1)] (5)

But

Ti- ConT -> [PrTx( r(pi) -4 Vy < x _.PrTy (r-.(Q, )] (6)

and

Ti- x > 0 .. Vy < x -,PrT (r_. Ql) --+ Vy < x ConT
Y Y

t- x > 0 .. Vy < x -,PrT (r_.cpl) -
Y

ConT,

by (4). (5), (6) and (7) yield:
Ti- MPr( rcpt) H PrT0( rcpi) Bx > 0 [PrTx( rcpt) ConT ]

t- MPr( r(pi) H PrTO( reply PrT( rcpi) .. ConT

t- MPr( rcp7) PrT0( rcpt) . Pry( rcpi )

(7)

(8)

14
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i-- MPr( rcpt) -4 PrT( rcpt) ,

which is half of what we want.

To obtain the converse of (9), observe that

T +ConT E- PrT( rcpt) -* PrT( rcpt) ,\ ConT

}- Pry( rq) - PrT0( rcpt) PrT( rcpt) ,.

i- Pry{ rcpt) MPr'( rcpt) ,

by (8). Also observe,
T + ConT ConT0 , by (4)

- PrT0( rci)

- MPr( rcpt)
, by (8)

- PrT( rcpt) - MPr( rcpt) .

Together with (10), this yields

Ti- Pr7{ rcpt) -3, MPr( rcpt) ,

ConT

which with (9) yields the desired conclusion. QED

Via Lemma 4.2, the proof of Theorem 4.1 is a simple matter of calculating the fixed

points,

(9)

(10)

T i- cp H PrT( rcpt) ConT ,

and T - cp <- - > -iPrT( rcpt) ,

respectively, by the known algorithms (e.g. 2.3.15 of Smorynski 1985 ). The same holds for

the calculation of the "Henkin" sentences:

4.3. Theorem. Let Td F. Tl c ... be an r.e. sequence of consistent theories containing

PRA, let T = U n e co Tn, and assume (1) - (4) are satisfied. Then: For any sentence (p,

i. Ti- cp H MPr( rcpt) iff Ti- -(p

ii. Tt- cp H MPr( rq) iff Tr cp.

We can paraphrase 4.3 as saying that .L is the unique Henkin sentence for MPr(x) ,

while T is the unique one for MPr( x ) . Theorem 4.3 is not unusual for the obvious reason

that we expect Henkin sentences to be provable: As Kreisel first observed, the Henkin

sentences,

15
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T F- (p H RPr( rcpt) ,

for the "Rosser provability predicate"

RPr(z) : 3x [ProvT(x,z) ,. Vy < x -,ProvT(x,neg(z))], (11)

include both T and j- among their number. The oddity of Theorem 4.3 is that the analogy with

Rosser sentences only half holds, with different halves holding for MPr(x) and MPr(x) . The

behaviour observed by Kreisel and expected by the cognoscenti returns as soon as a minimal

increase in proof theoretic strength is assumed of the sequence. Moreover, as proven by Albert

Visser, a bit more occurs.

4.4. Theorem. Let TO S T1 ... be an r.e. sequence of consistent theories containing

PRA and satisfying (1), and let T = U n E w Tn. Suppose further that Tt-ConT0 . Then:

is if Ti- Ocp, then Ti- cp H MPr( rcpt) and TF- cp H MPr'( rcpt)

ii. if TO - cp, then Ti- cp H MPr( rcpi) and TF- cp H MPr( rq)

iii. if cp is the E1-form of an ordinary Rosser sentence, i.e. if

Ti- cp H RPr( r-,cpl) ,

with RPr(z) as in (11), then Ti- cp <-4 MPr( rcpt) and Ti- cp H MPr(

and iv. there are infinitely many pairwise T-inequivalent Henkin sentences for

MPr(x) and MPr'(x) .

Proof: The proofs of iii and iv can be obtained by translating the proofs in Visser A of

the corresponding result for the Henkin sentences for the Feferman predicate into the present

context. The proofs of i and ii are both trivial and repetitive, but I shall present them anyway in

order to illustrate where the strict assumption that cp be T0-provable or TD-refutable (as

opposed to T-provable or T-refutable) is used.

i. Assume T0F-(p and observe,

Ti- PrTO( rcpt) ,. Vy <_ 0 -+PrTy( since T F-ConTO

F- MPr( rcpt )

F- cp H MPr( r(pt) .

Also,

TF- PrTO( rcpt) Vy < 0 PrT
Y
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E- MPr( rcpt )

t- cp - MPr( rtpi) .

(Observe that this latter proof makes no use of the assumption that T l-ConT0 and affords us

a simple proof of the right-to-left implication of 4.3.ii in the case T0F-(p.)

ii. Assume T0i- --,(p and observe,

Ti-- MPr( rcpt) H 3x [PrTx( rcpt) .. Vy <_ x PrTy( r,cpl )]

t- MPr( rcpt) ,

since Ti- PrT0( Vy PrT Thus
Y

T t- cp H MPr( rq )

(Again, we have not made use of the assumption that T f-ConT0
)

Next, observe
Tt- MPr'( rcpt) t-* Elx [PrTx( rcpt) .. Vy < x PrTY(r -.p1)]

t- MPr( rcp') H PrT0( rcpt) ,

since Tt- PrT0( r,cpi) -a b'x > 0 `dy < x PrT ( r-,cpi) . But
Y

Ti- PrT0( r,cpl) ConT0 -4 -,PrT0( rp1 )

-uPrT0( rpi) , since Tt- PrT0( r.cpl) ConT0

- -MPr( rcpt) , by (12)

- ;cp H MPr( rq )

cpEaMPr( rq). QED

(12)

The proof made essential use of the fact that the provability or refutability of cp was in

the theory TO whose consistency is provable in T. Thus, e.g., to conclude

TnF-cp cp is a McAloon-Rosser-Henkin sentence,

for n > 0 would require in the above proof the assumption that Ti- ConTn . That this is not a

feature of the proof, but a genuine restriction is readily demonstrated.

4.5. Example. Consider the sequence

To = PRA
Ti = TD + ConT0

Tn+2 = Tn+1 + Rosser(Tn+1).

17
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For this sequence, Ti- ConTO , but Tyw ConTO t-3 MPr( ConT01) .

Proof: Let cp abbreviate ConTO , and observe that the assumption Ti- cp H MPr( rcpt)

yields successively,
TF- cp H 2x [PrTx( rcpt) .. \/y <_ x -,PrTy( r,(p1 )]

t- 3x [PrTx( rcpt) \y <_ x -PrTy( since Ti- cp

PrTO( V) ConTO . 3x > 0 [PrTx( rcpt) ^ ConTx ]. (13)

But Tf- -,PrT0( rcpt) by Godel's Second Incompleteness Theorem, whence (13) yields

TF- 3x > 0 [PrTx( rcpt) ,. ConTx ]

- 3x > 0 ConT
x

-- ConT,

contrary to the Second Incompleteness Theorem. QED

I leave it to the reader to generalise this Example to show the more general necessity of

assuming TF-ConT
n

in establishing the Henkinness of all theorems of Tn.

5. McAloon's Paper Revisited

In the present section, we assume given an ascending r.e. sequence TD c T1 c ... c

U n E co Tn = T of consistent extensions of PRA. For the sake of brevity, we will only

consider McAloon-Rosser sentences based on MPr(x) .

McAloon's simplest result-- one I have not yet explicitly cited-- is the independence of

the McAloon-Rosser sentences.

5.1. Lemma. Let TO S T1 ... be an r.e. sequence of consistent theories containing

PRA, and let T = U n E co Tn. Assume T is EI -sound and Ti- cp H -.MPr( rcpt) . Then: (p

is independent of T.

Proof: First, observe

Ti- cp = TnF- (p, for some n

Tni- cp ,. PrTn( rcpt)

= TnF- PrTn( by definition of MPr( rcpt)

Tni- PrTn( r11)

. PrTn( r-0) is true, by EI -soundness

(1)

18
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= Tnt- _L, a contradiction.

Next, observe

Ti- - p = Tai- -.(p, for some n

=> Ti- n3x [PrT ( rcpt) -.PrT ( r_,q )]
X x

°Tni- 3x < n PrTx( since Tni- PrTn( r" q)

Tn - PrTn( r(Pl )

Tni- PrTn( ril) , since Tni- PrTn( (2)

Tni- 1,

and again we have a contradiction. QED

5.2. Remarks. i. In the example of Theorem 4.1, we have
TI- cp H -.MPr( rcp') = TE- cp - ConT -4 ConT+ConT

Choosing such a sequence for which Ti- ConT , we have Tr cp, whence the condition of

E, -soundness in Lemma 5.1 cannot be replaced by simple consistency.

ii. Assuming a weak ultimate growth condition,
Vn Ti- ConTn, (3)

we can replace EI -soundness by consistency in Lemma 5.1. For, one can use this growth to

get contradictions from (1) and (2) as follows:

Ti- cp or Ti- - p => Tni- PrTn( r.0)

= Tni- ,ConT
n

= Ti- -ConT
n

making T inconsistent.

McAloon's purpose in introducing his set theoretic Rosser sentences was to construct

end extensions of models of set theory. The arithmetic analogue of his initial result is the

following.

5.3. Theorem. Let To 9 T1 S ... be an r.e. sequence of consistent extensions of PRA in

the langauge of arithmetic, let T = U n e w Tn, and assume condition (3) above. Assume

further that T contains T12 -induction. Let Tf- cp H -MPr( r(p) . Then: Any model

M T + cp has an end extension T + cp.
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Proof: Observe, for each n , that
T + <p F- PrTn( rcpt) --) PrTn(r ,(p )

- PrTn( rcpt) - -,ConTn

- Conjn -4 PrTn( rcpt)

F- -,PrTn( rcp') , by (3)

F- ConTn + ,cp. (4)

Applying the Arithmetised Completeness Theorem yields the desired conclusion. QED

5.4. Remark. As shown by McAloon in another paper (McAloon 1978 ), the assumption that

T include 112 -induction is necessary to conclude the existence of an end extension via the

construction in the proof of the Arithmetised Completeness Theorem. In the absence of 172 -

induction, one still has (4) which is enough to conclude that - p is III -conservative over T:

T + (p F- 7t = T F- it, for any 171 -sentence 7t.

For,
T + (p F- 7t = PRA + ConTn + (p F- 7t

T + cp F- it, by (4)

T + cp -,(pF- 71

T F- it.

Before we can continue presenting arithmetic analogues of McAloon`s other results, we

must take a closer look at McAloon's original Rosser sentences,

ZFF- cp H da(Prov °°((x, rcpt) - Prov °°(a, (5)

where, as said in the introduction,

Prov °°(x,y) : "x is an admissible ordinal and ZFx proves y (6)

As McAloon noted, formula (6) can be modified by imposing an extra condition on the

admissible ordinal. For any weak set theory T, he considered

Prov t°°(x,y) : "x is an admissible ordinal and Lx T and ZFx proves y

Each T has its own Rosser sentence (pt analogous to cp in (5):

ZFF- (pt E- Va(Provt °°(a, r(pt 1) --) Provt °°((x, rcpt '))
.
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McAloon then considered the question of the relation between (pt and cpu for different weak

set theories T and U. He showed that, if U is somewhat stronger than T in that,

U»T: UE- V(x30>a(L(X = T), (7)

then

Z]FF- (pt cpu . (8)

The arithmetic analogue to varying the weak theories T and U is the variation of the

hierarchies { Tn } nE w. Thus, we consider two hierarchies { Tn) nE 0 and { Un } nE co for the

same theory T:

To Tl s ... 9 U n E CO Tn = T

U0 C Ul F. ... s U n r= Co Un = T.

We will say that a hierarchy { Un } nE W is somewhat stronger than { Tn } nE co, if

PRAT- Vxy [PrTx(y) -*PrUx (y) ] (9)

and PRAT-- b`x PrUx( rConTx ') . (10)

We also say that { Un } nE co is not too much stronger than { Tn } nE o), if

PRAT- Vxy [PrUx(y) -.PrTx+l (y) ]
(11)

and PRAt- Vx PrTx+1 (rConU. 1) . (12)

We also write MPrt (x) and MPru (x) for the McAloon proof predicates based on {Tn }nE (0

and { Un }nE co, respectively.

It is not hard to guess that conditions (9) and (10) are intended as the arithmetic

analogues to (7). It turns out that one needs (11) and (12) as well: If, for example, {Tn}nE
Cpl

satisfies the strong growth condition of section 2, above, and the sequence { Un } nE co is

defined by

Un = Tn+l,
then (pt and cpu are virtually identical and T r (pt F-a (pu .

As for the normality conditions, first note that (9) and (11) yield the usual monotonicity

conditions,

PRAT Vx y [x < y -- (PrTx PrTy Y)) ]
PRAt- `dx y [x < y -4 (PrUx (xi) -4 PrUy (rxl)) ],
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for all sentences X. The other necessary condition is

PRAi- `dx [PrpRA( r)0) -4PrTx (rx) ], for all sentences x, (13)

which, with (9), yields the corresponding
PRAT Yx [PrpRA( rx') -PrUx for all sentences X.

We won't need to assume the provability within PRA that T is the union of each of the

sequences.

5.5. Theorem. Let TO S Tg s ... and U0 c Ug S ...be r.e. sequences of consistent

extensions of PRA satisfying (9) - (13), and let T = U n e co Tn. If

PRAT cp > -iMPrt ( r(pt) and PRAT- yr H -.MPru then PRAM- (p ., V.

Proof: First, observe
PRAT PrTx ( V) -.PrTx

( rprTx (r(Pl)1)

PrTx (rcpt) PrUx (rprTx (rff)

by (9). But (9) also yields
PRAT- PrT (rcpt) - PrU

x x

which, with (14) and the definition of MPrt (rcpt) , yields

PRAT- PrTx (rcpt) - PrUx (rprTx (rcpt) PrTx 1)

i- PrTx (rq) PrUx (r,ConTx 1)

- PrTx (rcpt) -PrUx(rll),

by (10).

Similarly,

PRA t- PrUx r V) -.PrTw+1 (r-L')

(14)

(15)

(16)

Let 0 abbreviate

PrTx (rcpt) .. Vy <_ x -IPrTy PrUw Vy <_ w -,PrUy( r 1 )

so that cp ,yr > 3x 3y 0. Observe,

PRAF- PrTx ( rcpt) ,. dy <_ w PrUx ( rll) ,. Vy _< w -.PrUy( r... l)

by (15), whence
PRAT PrTx (r(pt) ,. Vy < w w <x . (17)

Similarly,
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PRAT PrUw (rV) ,. Vy <_ x ,PrTY (r-,(pi) -3 PrTw+1 (rl0) ,. ey <x -.PrTY

f- PrUw (rV) ,. Vy ..<_ x -PrTY (r..cpl) ---> X < w +1 .

With (17) this yields,

PRAT 8-)w<x ,.x<w+1
f--.e

-,3x3y6

- , (-(p ,. ,w)

t- cp .. V. QED

5.6. Remark. If we also assume the strong growth requirement of section 2, then we can

conclude the more general

T f- cp E-a -,MPrt ( r(pt) & T F- yr H MPru T r cp V.

This can be seen either by analysing the proof or invoking Theorem 2. 1:

Ti- cp < - > (pd and T- 4f - 10 ,

where PRAT- cp0 H -MPrt ( r(p01) and PRAT- vo H -.MPru ( rVO1) . Thus, from the

fact that PRAT- (po , yfo , we can conclude Ti- cp ./ V.

5.7. Corollary. Let To c T1 S ... and UO c U1 C ...be r.e. sequences of consistent

theories in the language of arithmetic containing PRA and satisfying (9) - (13), and let T =

U n E co Tn. Assume further that T contains r12 -induction. Let Ti- cp H -MPrt ( r(pt) .

Then: Any model if T + cp has an end extension NC = T + (p.

Proof: Let PRAE- V - -.MPru (ryfi) and observe:

M i T + cp = if i-- fir; since PRAE- cp ., jr

3 N(M T + ( p ) , since PRAF- cp fir. QED

5.8. Remarks. i. The end extension obtained in the proof of 5.7 is proper. The end extension

promised in 5.3 can also be made proper-- under the presently assumed conditions-- by the

simple expedient of applying 5.3, 5.7, and 5.3 in succession.

ii. If the strong growth condition of Theorem 2.1 is assumed, then Theorem 5.7 holds

for all T-provably McAloon-Rosser sentences cp H MPr ( rcpt)
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iii. Moreover, if the strong growth condition and II2 -induction are assumed, the

Corollary can be proven directly without appeal to Theorem 5.6: If 9vf T + -. p, then

Mi 3x [PrTx( rcpt) ,.. PrTx( Let a in the domain of Mwitness this formula.

Thus, M believes that Ta proves T. By reflexion, if a were finite, we would have

9vf PrTa cp, whence 91vf i (p, a contradiction. Thus, a is infinite and

91vf .PrTn( for all finite n, i.e. 9vf i ConTn + (p for all finite n , and the Arithmetised

Completeness Theorem yields the result.

5.9. Remarks. i. Again, if we drop the requirement that T include H2 -induction, we can still

conclude that cp is Ill -conservative over T.

ii. If T is also EI -sound, then cp is also Er -conservative over T: Let 6 E1 and

suppose T + (p t- 6. If TV 6, then T + -.6 is consistent and EI -sound (since ,6 E nl ).

But T + m- -,tp
- 3x [PrTx( rcpt) .. PrTx( r_q )]

s- PrT(rq ).

The EI -soundness of T + -.6 would then tell us that TE- cp, contrary to Lemma 5.1.. Hence

Ti- 6.

iii. Alternate proof of ii: Observe

T + ConT E- PrT( by Remark 5.2

E-- `dx [PrT (y) __4 PrT (rI(Pl) ]
x x

F- (p,

and ConT is EI -conservative over T provided T is EI -sound. Thus (p, being a consequence

of a EI -conservative sentence, is itself EI -conservative.

iv. Again assuming the EI -soundness of T , -(p is not EI -conservative over T: As

we saw in ii,

T+ -(p F- PrT(ro)

and EI -conservation would yield

TF- PrT(rpl),

whence EI -soundness would yield T E- cp, contrary to Lemma 5.1.
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It is an easy matter to produce examples of sequences { Tn }nE w and { Un } nE w which

satisfy the conditions of Theorem 5.5. One starts wilth a sequence { Tn }nE w like

TO = PRA

Tn+1 = Tn + ConT ,
n

or

Tn = PRA + En+1-Induction, (18)

or, indeed, any sequence satisfying
PRAT- Vx [PrpRA( 1xi) - PrT for all sentences x

X

PRAF- Vx y [x < y - (PrTx (rx) ->PrTy for all sentences x

and PRAF-- b`x PrTx+l (rConTx ')

From such a sequence one can define two new sequences,

Tn' = T2n, Un = T2n+1,
and observe that { Un) nE w is somewhat stronger but not too much stronger than { Tn } nE w,

i.e. Theorem 5.5 applies to them.

Also, if { Un }nE co is somewhat stronger but not too much stronger than { Tn } nE w,

one can define

Tn' = Tn+1, Un' = Un,
and observe that {Tn' }nE w is somewhat stronger but not too much stronger than {Un' }nE w,

thus reversing the roles of the given sequences.

And, of course, for the sequence (18), there is enough room between succesive

elements of the sequence to interpolate a second sequence,
Un = Tn + ConT

n
.

A bit more interesting than the construction of such examples is the construction of a

strong counterexample, one which brings us full circle by returning us to the uniqueness

question.

5.10. Counterexample. Consider the sequences,

Tn = PRA + En+l-Induction, Un = PRA + En+2-Boundedness.

Then: If PAt- cp H MPrt ( rcpt) and PAt- yr H MPru (ryri) , then PAF- (p H Nr.
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The point to this example is that, although Tn and Un are unequal, they have the same

1-In+3-consequences (as shown independently by Friedman and Paris, cf. Paris 1981 ).

Hence, if we define pt n and Pu,n as in the proof of Theorem 2. Li, we have

Ti-nPtn (rx') H Pu,n (Y) ,

for x of low complexity. Thus, for sufficiently large n ,

Tnt- cp H -.ptn (V) , as in the proof of 2.1.i

i- (P t-> Pu,n V)

by (19). But we also have

(19)

(20)

Tnr- V H -,pu,n (1 ') , (21)

and pun is Tn-substitutable. Thus, (20) and (21) yield Tni- cO * AV-
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