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This brief leads the synthesis of fractional-order memristor (FOM) emulator circuits. To do so, a novel fractional-order integrator
(FOI) topology based on current-feedback operational amplifier and integer-order capacitors is proposed. Then, the FOI is
substituting the integer-order integrator inside flux- or charge-controlled memristor emulator circuits previously reported in the
literature and in both versions: floating and grounded. This demonstrates that FOM emulator circuits can also be configured
at incremental or decremental mode and the main fingerprints of an integer-order memristor are also holding up for FOMs.
Theoretical results are validated throughHSPICE simulations and the synthesized FOMemulator circuits can easily be reproducible.
Moreover, the FOM emulator circuits can be used for improving future applications such as cellular neural networks, modulators,
sensors, chaotic systems, relaxation oscillators, nonvolatile memory devices, and programmable analog circuits.

1. Introduction

Resistors, inductors, capacitors, and memristors are basic
network elements and the real behavior of each of them is
time-varying and nonlinear [1–3]. For the last three cases,
the real behavior of each element has always been modeled
from integer-order differential equations. However, it is well
known that this kind of modeling is only a narrow subset
of fractional calculus, which is a generalization of arbitrary
order differentiation and integration, and this last approach
can be used to better model the description of natural
phenomena [4–8]. In this context, fractional calculus is
beginning to be used for describing the behavior of memris-
tive elements and systems, i.e., memristors, memcapacitors,
meminductors, and any combination of them. Particularly,
few studies have been realized on fractional-order mem-
ristors (FOM). Thus, [9] analyzes the FOM state equation
behavior when a step signal is applied and demonstrates
that by controlling fractional parameters associated with the
FOM, the saturation time of the resistance can be con-
trolled. In [10], fractional calculus is used to generalize
the memristor and higher-order elements, although without
any physical meaning. From a mathematical point of view,

[11] reports the memfractance concept and according to
the fractional-order, it shows the interpolated characteristics
between different memristive elements. In [12], the relation-
ship between fracmemristance and fractance is discussed.
By combining capacitors together with memristors, net-
grid-type structures were also described to approximate the
capacitive and inductive fracmemristor. In [13], the no ideal
fractional interaction between flux and charge of amemristor
is described. However, a piecewise nonlinear model of the
memristor is considered and as a consequence, the fractional-
order dynamic system is approached but again without any
deep physical understanding. More recently, [14] reports the
use of Valsa-algorithm for approximating a fractional-order
capacitor. Afterwards, this element is substituting the integer-
order capacitor into a memristor emulator circuit, obtaining
the FOM behavior. However, the main disadvantage of [14]
is that not only large RC-circuits are obtained, but the
numerical value of each resistive and capacitive element is not
commercially available and hence, parallel-series networks
must again be used. Despite the FOMconcept has beenmath-
ematically studied and ideal numerical results were shown,
neither physical solid-state device nor emulator circuit has
been developed until today. In this scope, this paper addresses
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Figure 1: FOI circuit synthesis based on CFOA.

the synthesis of FOM emulator circuits from integer-order
memristor emulator circuits previously reported in the liter-
ature [15–18]. The rest of the paper is organized as follows. In
Section 2, a novel fractional-order integrator (FOI) topology
based on current-feedback operational amplifier (CFOA) and
integer-order capacitors is discussed. In Section 3, the FOI
previously designed is replacing the integer-order integrator
(IOI) inside flux- or charge-controlled memristor emulator
circuits, at their floating and grounded versions, and the
FOMs can also be configured for operating at incremental
or decremental mode [2]. Section 4 shows HSPICE simu-
lation results, showing that the fingerprints of an integer-
order memristor are holding up for their fractional versions.
Finally, some conclusions are summarized in Section 5.

2. Fractional-Order Integrator

A challenge at fractional calculus is the building or in best of
cases, the approximation of fractances [19, 20]. In this sense,
several mathematical approximations were researched and
by its quickly convergence, continuous fractional expansion
approach is the most adequate. Thus, the first-order approxi-
mation of an FOI is given by

1
𝑠𝛼 ≈

(1 − 𝛼) 𝑠 + (1 + 𝛼)
(1 + 𝛼) 𝑠 + (1 − 𝛼) =

𝐵𝑠 + 1
𝐵 + 𝑠 ,

𝐵 = 1 − 𝛼
1 + 𝛼 ∀0 < 𝛼 < 1,

(1)

where𝛼 is the fractional-order. It is important tomention that
high-order fractance approximations can also be obtained;
however, the synthesis of them leads to complex and bulky
circuits [21, 22]. A simple circuit able to synthesize (1) is given
in Figure 1, whose transfer function is

V𝑜 (𝑠)
V𝑖 (𝑠) = 𝐴V1𝐴V2𝐴 𝑖𝐵𝑠 + 1𝐵 + 𝑠 ≈ 1

𝑠𝛼 , (2)

where 𝐴V1,2 ≈ 0.98 and 𝐴 𝑖 ≈ 0.98 are the voltage and current
gains of the voltage and current followers associatedwithX-Y,
W-Z, and Z-X terminals of the CFOA, respectively. To design
the FOI, we propose the following design guide:

(1) Given 𝛼, use (1) to compute B.

(2) Choose C = 0.1mF and evaluate 𝑅 = 𝐶−1 = 10 kΩ.
(3) Using the numerical value of 𝐵 obtained in the first

step, evaluate BC and 𝑅𝑓 = (𝐵𝐶)−1 of Figure 1. Resis-
tances with noncommercial values are adjusted with
precision potentiometers and capacitances with series
and parallel connections.

(4) Frequency denormalization is done for 𝐶new = 𝐶/𝑘𝑓,
where kf is the denormalization constant.

Following these steps and from (1), we assume 𝛼 = 0.99, 0.75,
0.50, 0.25, 1m, and as a consequence B = 5m, 0.14, 0.33, 0.60,
0.99; 𝑉𝑑𝑑 = ±10V, V𝑖(𝑡) = 𝐴𝑚 sin(𝜔𝑡), where 𝐴𝑚 = 2V is the
amplitude of the voltage signal source, 𝜔 = 2𝜋𝑓, f = 20 kHz,
and kf = 50 k. According to the third and fourth steps, BC/kf
= 10 pF, 0.28 nF, 0.66 nF, 1.2 nF, 2 nF, 𝑅𝑓 = (𝐵𝐶)−1 = 2MΩ,
70 kΩ, 30 kΩ, 16.6 kΩ, 10 kΩ, and C/f = 2 nF. To make a
fair comparison, an IOI is obtained of Figure 1 by removing
(𝐵𝐶)−1 and BC. In this way, Figures 2(a)–2(e) illustrate the
transient behavior of the FOI for each 𝛼 described above
and one can observe that for 𝛼 = 0.99 (Figure 2(a)), the
behavior of the FOI approximates to IOI, whereas for 𝛼 =
1m, 𝐵 ≈ 1 and hence, Figure 1 becomes a voltage follower,
as described in (2) and depicted in Figure 2(e) [23]. Note
that, for all graphics, HSPICE results are in agreement with
experimental results. Moreover, from point of view of root
locus analysis, the zero and pole of (2) are moved when 𝛼
varies. This is a serious disadvantage, since 𝐶 should quickly
be discharged when 𝑅𝑓 is low. To mitigate this problem, the
pole is set up and fixed for 𝛼 = 0.99 and the FOI behavior is
plotted when the zero is varied. Figures 2(a)–2(e) show that
this assumption can stillmodel the behavior of FOIwith a low
error level. Nevertheless, when 𝛼 = 1m, the error increases
and the pole is not placed on the zero. Hence, Figure 1
becomes again a voltage follower, but with a light phase
shifting, as depicted in Figure 2(e). For convenience, the
magnitude and phase response in the frequency domain of
Figure 1 for the three cases (IOI, FOI, and FOI with 𝑅𝑓 fixed)
and when 𝛼 varies are illustrated in Figure 3. In the former
figure, one can observe that themagnitude response has slope
−20𝛼 dB/dec which decreases when 𝛼 also decreases. Notice
that when 𝛼 = 0.99, the magnitude response of the three cases
is superimposed and with 49.42 dB at DC. Afterwards, when
𝛼 is monotonically decreased, the magnitude and slope of the
second and third case are modified. Thus, for 𝛼 = 0.75, the
magnitude at DC of the second case is 16.45 dB and from
3 kHz, this is superimposed with the magnitude of the first
case. Later, when 𝛼 takes the aforementioned values and from
20 kHz, the frequency responses of the second and third cases
are similar, as shown in Figure 3(a), confirming the previous
analysis [20]. Note that, at low-frequency, the magnitude
of the FOI varies for the different values of 𝛼, whereas the
magnitude at DC of the third case remains at 49.42 dB.
Moreover, Figure 3(b) shows the phase response given by 𝜃 =
−90∘𝛼 or 𝜃 = −𝜋𝛼/2 rad. Similarly as above, when 𝛼 = 0.99
the phase response for all cases is superimposed at −90∘. This
behavior is modified for second and third cases, and when
𝛼 takes different values. Therefore, for FOI, one can observe
in Figure 3(b) that the phase becomes zero when 𝛼 = 1m,



Complexity 3

Input voltage

×10
−4

HSPICE results for FOI
HSPICE results for FOI with Rf fixed 
Experimental results for FOI
Experimental results for FOI with Rf fixed 

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5

A
m

pl
itu

de
 (V

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Time (S)

(a)

Input voltage

×10
−4

HSPICE results for FOI
HSPICE results for FOI with Rf fixed 
Experimental results for FOI
Experimental results for FOI with Rf fixed 

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5

A
m

pl
itu

de
 (V

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Time (S)

(b)

Input voltage

×10
−4

HSPICE results for FOI
HSPICE results for FOI with Rf fixed 
Experimental results for FOI
Experimental results for FOI with Rf fixed 

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5

A
m

pl
itu

de
 (V

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Time (S)

(c)

×10
−4

Input voltage
HSPICE results for FOI
HSPICE results for FOI with Rf fixed 
Experimental results for FOI
Experimental results for FOI with Rf fixed 

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5

A
m

pl
itu

de
 (V

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Time (S)

(d)

Input voltage

×10
−4

HSPICE results for FOI
HSPICE results for FOI with Rf fixed 
Experimental results for FOI
Experimental results for FOI with Rf fixed 

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5

A
m

pl
itu

de
 (V

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Time (S)

(e)
Figure 2: Transient responses of IOI, FOI, and FOI with 𝑅𝑓 fixed when (a) 𝛼 = 0.99, (b) 𝛼 = 0.75, (c) 𝛼 = 0.5, (d) 𝛼 = 0.25, and (e) 𝛼 = 1m, all
operating to f = 20 kHz.
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Figure 3: Behavior of IOI (black line), FOI for: 𝛼 = 0.99 (blue line), 𝛼 = 0.75 (red line), 𝛼 = 0.5 (green line), 𝛼 = 0.25 (cyan line), and 𝛼 = 1m
(magenta line); and FOI with 𝑅𝑓 fixed for 𝛼 = 0.99 (light blue line), 𝛼 = 0.75 (light red line), 𝛼 = 0.5 (light green line), 𝛼 = 0.25 (light cyan
line), and 𝛼 = 1m (light magenta line): (a) magnitude response and (b) phase response.

Table 1: Numerical values of the phase and magnitude response of IOI, FOI, and FOI with 𝑅𝑓 fixed for 𝛼 ∈ (0, 1) and 𝑓 = 20 kHz.

𝛼 Phase (Deg) Magnitude (dB)
IOI FOI FOI with 𝑅𝑓 fixed Difference IOI FOI FOI with 𝑅𝑓 fixed Difference

0.99 −89.92 −89.91 −89.91 0 −8.25 −8.25 −8.25 0
0.75 - −66.71 −69.89 3.18 - −7.71 −7.70 −0.01
0.5 - −42.27 −49.66 7.19 - −5.93 −5.85 −0.08
0.25 - −20.31 −33.44 13.13 - −3.19 −2.96 −0.23
1m - −0.88 −22.09 21.21 - 0.072 0.541 0.469

whereas a level of error is glimpsed for FOI with 𝑅𝑓 fixed.
From these graphics, we can claim that the proposed topology
is stable until 1MHz, approximately [24]. Table 1 gives the
numerical value of the magnitude and phase response for f
= 20 kHz and different 𝛼. It is important to mention that,
for any design where 𝛼 > 1 is required, the FOI must be
connected in cascade with 𝑞 integer-order integrators, such
that 𝛼̂ = 𝛼 − 𝑞. For instance, let us suppose 𝛼 = 4.35; then
𝑞 = 4 and 𝛼̂ = 4.35 − 4 = 0.35.
3. Fractional-Order Memristor Synthesis

In [15], a flux-controlled floating memristor emulator circuit
which uses four positive second-generation current con-
veyors (CCII+s) and one analog multiplier was reported.
According to Figure 1 in [15], the topology has an IOI circuit
well defined and its memristance equation given by (9) in [15]
is also of integer-order. To obtain an FOM from integer-order
memristor, the integrator circuit of the lattermust be replaced
by FOI circuit, as shown in Figure 4(a). Following the analysis
given in [15, 25], the behavioral model is deduced as

V𝑚 (𝑡)
𝑖𝑚 (𝑡) = 𝑅1 ±

𝑅4
10𝑅2 (𝑅1 −

𝑉𝑉
𝑖𝑚 (𝑡)) 𝑎𝐽

𝛼
𝑡 V𝑚 (𝑡) − 𝑉𝐻

𝑖𝑚 (𝑡) , (3)

where 𝑉𝐻 and 𝑉𝑉 are DC voltage sources to control hori-
zontally and vertically the offset of the dependent-frequency

pinched hysteresis loop on the voltage-current plane, respec-
tively [25], and 𝑎𝐽𝛼𝑡 denotes the fractional-order integral
operator of

(i) Riemann-Liouville and Caputo fractional integral

𝑎𝐽𝛼𝑡 V𝑚 (𝑡) = 1
Γ (𝛼) ∫

𝑡

𝑎

V𝑚 (𝜏)
(𝑡 − 𝜏)1−𝛼 𝑑𝜏, (4)

(ii) or Grunwald-Letnikov fractional integral

𝑎𝐽𝛼𝑡 V𝑚 (𝑡) = lim
ℎ→0

ℎ𝛼
(𝑡−𝑎)/ℎ

∑
𝑝=0

Γ (𝛼 + 𝑝)
𝑝!Γ (𝛼) V𝑚 (𝑡 − 𝑝ℎ) , (5)

where for both fractional integrals, 𝑎 and 𝑡 are the
lower and upper limits of integration.

Defining the fractional-order flux 𝜙𝛼𝑚(𝑡) = 𝑎𝐽𝛼𝑡 V𝑚(𝑡), (3) can
be rewritten as

V𝑚 (𝑡)
𝑖𝑚 (𝑡) = 𝑅1 ±

𝑅4
10𝑅2 (𝑅1 −

𝑉𝑉
𝑖𝑚 (𝑡)) 𝜙

𝛼
𝑚 (𝑡) − 𝑉𝐻

𝑖𝑚 (𝑡)
= 𝑀 (𝜙𝛼𝑚 (𝑡)) ,

(6)

where 𝑀(𝜙𝛼𝑚(𝑡)) is the flux-controlled fracmemristance and
can be controlled by applying a voltage or current signal
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Table 2: Component list of Figure 4(a), Figure 1 in [15], Figure 4(b), and Figure 5 in [18], assuming 𝐶 = 0.1mF, 𝑘𝑓 = 50 e3, 𝛼 ≈ 1, and
𝑓 = 20 kHz.

Element Figure 4(a) Figure 1 in [15] Figure 4(b) Figure 5 in [18] Tolerance
Inc. Dec. Inc. Dec. Inc. Dec. Inc. Dec.

𝑉𝐻 −37mV −75mV −40mV −70mV −49mV −50mV
𝑉𝑉 36mV 76mV 39mV 85mV −50mV −93mV −95mV
𝐴𝑚 2V
±𝑉𝑑𝑑 ±10V
𝑅1 10 kΩ 9 kΩ

±5%
𝑅2 1 kΩ 10 kΩ 11.5 kΩ
𝑅3 - 2.4 kΩ - 9.5 kΩ
𝑅4 10 kΩ - -
𝐶−1 10 kΩ - 10 kΩ -
(𝐵𝐶)−1 2MΩ - 2MΩ -
𝐵𝐶/𝑘𝑓 10 pF - 10 pF -

±20%𝐶/𝑘𝑓 2 nF - 2 nF -
𝐶𝑧 = 𝐶/𝑘𝑓 - 2 nF - 2 nF
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Figure 4: (a) Flux-controlled floating fracmemristor and (b) charge-
controlled grounded fracmemristor.

across the memristor, as depicted in Figure 4(a). Moreover,
charge-controlledmemristor emulator circuits have also been
reported in the literature. According to Figure 5 in [18],
the emulator circuit has also an IOI circuit and if it is

exchanged with Figure 1, then a fractional-order charge-
controlled grounded memristor emulator circuit is obtained,
as shown in Figure 4(b). Hence, following the analysis given
in [18, 25], one obtains

V𝑚 (𝑡)
𝑖𝑚 (𝑡) = 𝑅1 ±

𝑅2
10 (𝑅2 +

𝑉𝑉
𝑖𝑚 (𝑡)) 𝑎𝐽

𝛼
𝑡 𝑖𝑚 (𝑡) + 𝑉𝐻

𝑖𝑚 (𝑡) (7)

and the fractional-order charge becomes 𝑞𝛼𝑚(𝑡) = 𝑎𝐽𝛼𝑡 𝑖𝑚(𝑡).
Hence, (7) can be written as

V𝑚 (𝑡)
𝑖𝑚 (𝑡) = 𝑅1 ±

𝑅2
10 (𝑅2 +

𝑉𝑉
𝑖𝑚 (𝑡)) 𝑞

𝛼
𝑚 (𝑡) + 𝑉𝐻

𝑖𝑚 (𝑡)
= 𝑀 (𝑞𝛼𝑚 (𝑡)) ,

(8)

where 𝑀(𝑞𝛼𝑚(𝑡)) is the charge-controlled fracmemristance.
Regarding Figure 4, the S switch is used for selecting the kind
of fracmemristor, where I denotes the incremental topology
and D denotes the decremental topology. Note that if 𝑉𝐻 =
𝑉𝑉 = 0 and 𝛼 = 1, then (6) and (8) are reduced to their
original versions given in [15, 18].

4. Numerical Simulations

Once the behavioral model for each floating and grounded
fracmemristor at its incremental and decremental version
has been deduced, numerical simulations can be realized.
Henceforth, numerical results of the incremental topologies
will be shown below in the left-side and for the decremental
topologies will be shown in the right-side. On the one hand,
to design the integer-order floating memristor working at
incremental and decremental mode, the design guideline
reported in [15] was used. Table 2 gives the numerical value of
each element of Figure 4(a) and Figure 1 reported in [15], with
V𝑚(𝑡) = 𝐴𝑚 sin(𝜔𝑡). On the other hand, since it is not possible
to deduce, by now, an analytical model to make a frequency
analysis [15], each design variable of the fracmemristor was
varied in order to adjust the frequency-dependent pinched
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Figure 5: Comparing the frequency-dependent pinched hysteresis loops of the flux-controlled floating memristor (blue line) and
fracmemristor (red line): (a) incremental mode, (b) decremental mode, and for the charge-controlled grounded memristor (blue line) and
fracmemristor (red line): (c) incremental mode and (d) decremental mode.

hysteresis loop behavior with its integer version. In this way,
Figures 5(a) and 5(b) show the pinched hysteresis loops of
the flux-controlled floating memristor and fracmemristor at
each operation mode and one can observe a good agreement
among the graphics for the incremental case. However, a
slight variation is glimpsed for the decremental case and
could be due to the nonlinearities of the analog multiplier.
A similar analysis is done for Figure 4(b) at its integer-
order version and Figure 5 taken from [18]. Table 2 also
gives the numerical value of each element used in numerical
simulations. Thus, Figures 5(c) and 5(d) depict the behavior
of each pinched hysteresis loop at each operation mode.
For Figure 5(c), one can observe that both hysteresis loops

are almost the same and hence, Figure 4(b) becomes an
integer-order memristor [18]. Moreover, when the S-switch
is connected to D-terminal and I-terminal is grounded,
Figure 4(b) is now configured at decremental mode and
Figure 5(d) illustrates the hysteresis loops. On this last figure,
one can observe a good agreement among them. Therefore,
the behavior of Figure 4(b) becomes also an integer-order
memristor. Comparing all graphics of Figure 5, we note that,
for each case, the area of each lobe of the latter figures is
less than the area of each lobe of the former. Nonetheless,
the hysteresis loops of Figures 5(c) and 5(d) can be widened
by adjusting the numerical value of 𝑅1 or 𝑅2. However, this
will have a negative impact, since the hysteresis loops should
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Figure 6: Fractional-order frequency-dependent pinched hysteresis loops of the floating fracmemristor operating at (a) incremental mode
and (b) decremental mode. For the grounded fracmemristor operating at (c) incremental mode and (d) decremental mode. For all cases: 𝛼 =
0.99 (light blue line), 𝛼 = 0.75 (light red line), 𝛼 = 0.5 (light green line), 𝛼 = 0.25 (light cyan line), and 𝛼 = 1m (light magenta line).

be lost with a small variation of 𝛼. It is worth noting that,
unlike [15, 18], the behavior of each frequency-dependent
pinched hysteresis loop and at each operation mode has been
improved, achieving that, after the offset compensation, all
they are operating to 20 kHz and the lobe area of each hys-
teresis loop becomes relatively equal, obtaining frequency-
dependent pinched hysteresis loops almost symmetrical.
Furthermore, the real behavior of Figures 4(a) and 4(b) in
their integer-order versions was experimentally verified in
[15, 18] and Figure 5 shows similar behaviors.

Once obtained the hysteresis loops of the floating and
grounded fracmemristor in both operation modes and
for 𝛼 = 0.99, we can now reduce 𝛼 in order to obtain the

behavior of each fractional-order frequency-dependent
pinched hysteresis loop. Figure 6(a) shows the hysteresis
loops of Figure 4(a) at incremental mode and for five
numerical values of 𝛼, whereas Figure 6(b) illustrates the
fractional hysteresis loops of Figure 4(a) at decremental
mode. In both figures, note that, when 𝛼 = 1m, the hysteresis
loops are seriously deformed and as a consequence, the
emulator circuits do not work. This behavior is due to that
the FOI becomes a voltage follower, as shown in Figure 2(e)
(light green line). Moreover, Figures 6(c) and 6(d) show
the fractional hysteresis loops of Figure 4(b) configured at
incremental and decremental mode, respectively. On these
last figures, we note that when 𝛼 takes different values, the
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Table 3: Component list of Figure 1 when 𝛼 varies, assuming 𝐶 = 0.1mF and 𝑘𝑓 = 50 e3.
Element 𝛼 = 0.99 𝛼 = 0.75 𝛼 = 0.5 𝛼 = 0.25 𝛼 = 1m
𝐶−1 10 kΩ
𝑅𝑓 = (𝐵𝐶)−1 2MΩ
𝐵𝐶/𝑘𝑓 10 pF 0.28 nF 0.66 nF 1.2 nF 2 nF
𝐶/𝑘𝑓 2 nF
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Figure 7: Incremental and decremental fracmemristance variation when a pulse train (bottom graphics) is applied to (a) Figure 4(a) and (b)
Figure 4(b). For the incremental case: 𝛼 = 0.99 (light blue line), 𝛼 = 0.75 (light red line), and 𝛼 = 0.5 (light green line). For the decremental
case: 𝛼 = 0.99 (black line), 𝛼 = 0.75 (light cyan line), and 𝛼 = 0.5 (light magenta line).

range of variation of the hysteresis loops is shorter than
Figures 6(a) and 6(b). Similarly as above, when 𝛼 = 1m,
the emulator circuit does not work. For all graphics of
Figures 5 and 6, V1(𝑡) = 𝑖𝑚(𝑡)𝑅1 was used to indirectly plot
𝑖𝑚(𝑡). At this point, our results indicate that, by selecting
adequately the numerical value of each element of Figures
4(a) and 4(b) for a particular operating frequency, both
emulator circuits are able to generate fractional hysteresis
loops. Table 3 gives the numerical value of each element
of Figure 1 for different values of 𝛼. However, comparing
the linear time-varying parts of (6) and (8) we note that
the former has four design variables and the latter only
two, limiting the performance range of the emulator circuit
when 𝛼 varies and as a consequence, Figure 4(a) has better
performance, as shown in Figure 6. It is worth stressing that
our results are confirming the theory given in [10]. Besides
the fractional pinched hysteresis loops, other fingerprint
of the fracmemristor is when the pinched hysteresis loop
shrinks when increasing the excitation frequency and
although herein is not shown, each fracmemristor behaves
as a time-invariant resistor. Moreover, it is interesting to
research other fingerprints related to the fracmemristance,
which is the nonvolatility of its fracmemristance. This means
that once the fracmemristance is programmed, its last value
must be freezed during a long time and when the input

signal is not applied. Therefore, for Figure 4(a) configured
at incremental and decremental mode, a pulse train with
2V of amplitude, 1.36 𝜇s of pulse width, and 25𝜇s of period
is applied and as illustrated in Figure 7(a) (top graphics),
one obtains the incremental fracmemristance change for 𝛼
= 0.99 (light blue line), 𝛼 = 0.75 (light red line), and 𝛼 = 0.5
(light green line), whereas the decremental fracmemristance
changes for the same values of 𝛼 are also obtained and
given by black line, light cyan line, and light magenta line,
respectively. A similar analysis is done for Figure 4(b) also
configured at incremental and decremental mode but with a
pulse train of 2V of amplitude, 4 𝜇s of pulse width, and 50 𝜇s
of period. In this way, Figure 7(b) (top graphics) shows the
incremental and decremental fracmemristance change for
the same values of 𝛼 and labeled with the same kind of lines
described before. Note that, for all graphics, during nonpulse
period the fracmemristance is nonvolatile and its variation is
negligible. However, an overshoot signal is glimpsed for all
fracmemristances and it is due to the behavior of the FOI.
Nonetheless, after of the overshoot, each fracmemristance for
each 𝛼 is held up. Furthermore, when 𝛼 is near to 1, not only
the fracmemristances are similar to the memristances and
hence, the maximum (17 kΩ for Figure 7(a) and 16 kΩ for
Figure 7(b)) and minimum (4 kΩ for Figure 7(a) and 1.64 kΩ
for Figure 7(b)) fracmemristance are obtained, but the range
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of variation of the former should monotonically be reduced
when 𝛼 decreases and as a consequence, the maximum and
minimum fracmemristance are also reduced, as shown in
Figure 7. It is worth stressing that the proposed synthesis
methodology is only applicable for those integer-order
memristor topologies where the IOI circuit is clearly defined,
and when it is replaced by FOI circuit, the resulting emulator
circuit behavior, in general, is lightly modified.

5. Conclusions

A synthesis methodology for obtaining the behavior of
FOM emulator circuits from integer-order memristor emu-
lator circuits at their versions floating and grounded and
operating at incremental and decremental mode has been
described. Basically, the methodology consists of exchanging
the IOI circuit clearly defined in the integer-order memristor
emulator circuit by an FOI circuit, so that not only an
FOM is obtained, but also the synthesized topology is not
drastically modified with respect to its original topology. In
each fractional topology, amechanismof offset compensation
in order to push or pull the crossing point of the hysteresis
loops towards the origin was used [25] and as a consequence,
both fracmemristors are able to operate at high-frequency.
However, it is important to mention that, at high-frequency,
not only parasitic elements associated with the active devices
affect the performance of the emulators, but also the parasitic
elements associated with the breadboard or printed circuit
board. Therefore, there is a limit on the operating frequency
of the emulators, as has already been reported in [16, 17, 26]. It
has numerically been demonstrated that the fractional-order
frequency-dependent pinched hysteresis loops are reduced
when 𝛼 decreases, but each hysteresis loop becomes a straight
line whether the operating frequency of the signal source also
increases. Furthermore, nonvolatility tests were also shown
and one can observe in Figure 7 that the range of variation
of each incremental and decremental fracmemristance is
reduced when 𝛼 decreases. Finally, it is worth remarking that
to the best knowledge of the authors, solid-state FOMs have
not been still fabricated and therefore, not only the use of
emulator circuits is necessary for researching and improving
future real applications [27, 28], but also FOM emulator
circuits have not been reported in the literature, until today.

Data Availability

Experimental and simulation data along with source files can
be obtained through a letter sent to first author, explaining
their intended use.
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